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Abstract

This work describes the R package gcKrig for the analysis of geostatistical count data
using Gaussian copulas. The package performs likelihood-based inference and spatial
prediction using Gaussian copula models with discrete marginals. Two different classes
of methods are implemented to evaluate/approximate the likelihood and the predictive
distribution. The package implements the computationally intensive tasks in C++ using
an R/C++ interface, and has parallel computing capabilities to predict the response at
multiple locations simultaneously. In addition, gcKrig also provides functions to simulate
and visualize geostatistical count data, and to compute the correlation function of the
counts. It is designed to allow a flexible specification of both the marginals and the
spatial correlation function. The principal features of the package are illustrated by three
data examples from ecology, agronomy and petrology, and a comparison between gcKrig
and two other R packages.
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1. Introduction
Spatial data arise in numerous scientific disciplines. Following the classification of spatial data
in Cressie (1993), we consider here geostatistical data with discrete responses, specifically geo-
statistical count data. This type of data appears in many applications such as species counts,
disease counts, and mineral indicators. The number and variety of models for geostatistical
count data are quite limited, when compared to models available for geostatistical continuous
data, and hence the statistical software options for the former are also limited. The two
main classes of models for the analysis of geostatistical count data are the hierarchical models
proposed by Diggle, Tawn, and Moyeed (1998), and the Gaussian copula models proposed by
Madsen (2009), Kazianka and Pilz (2010), and Kazianka (2013a). In this work we consider
Gaussian copula models.

https://doi.org/10.18637/jss.v087.i13


2 gcKrig: Analyzing Geostatistical Count Data Using Gaussian Copulas in R

Likelihood-based inference for Gaussian copula models is computationally challenging, be-
cause the likelihood function can only be expressed as a high dimensional multivariate normal
integral. The initial strategies to circumvent likelihood computations were to base inference
on surrogate likelihoods that are less computationally demanding. Prime examples of these
for the analysis of geostatistical count data are the pairwise likelihood (PL) method proposed
in Kazianka and Pilz (2010) and Bai, Kang, and Song (2014), and the generalized quantile
transform (GQT) method proposed in Kazianka (2013a). The former uses bivariate copulas
only, which is a particular case of the composite likelihood method (see Varin, Reid, and
Firth 2011 for a review), while the latter uses a continuous approximation based on copula
densities. As for software implementation, Kazianka (2013b) implemented both methods in
the MATLAB (The MathWorks Inc. 2017) toolbox spatialCopula, and Bai et al. (2014) im-
plemented the pairwise likelihood method in the R (R Core Team 2018) package geoCopula
(Kang, Bai, and Song 2014) for the analysis of spatial-clustered data1.
A different approach consists of evaluating the likelihood via Monte Carlo simulation, which
is called the simulated likelihood method. An example of this approach is the use of a sequen-
tial importance sampling algorithm based on a variant of the so-called Geweke-Hajivassiliou-
Keane (GHK) simulator (Geweke 1991; Hajivassiliou, McFadden, and Ruud 1996; Keane
1994). Masarotto and Varin (2012) implemented this approach in the R package gcmr
(Masarotto and Varin 2017, 2018) to analyze longitudinal, time series and spatial data using
Gaussian copulas; see also Han and De Oliveira (2019). Another example of this approach
is to use a quasi-Monte Carlo algorithm to evaluate the likelihood, which is implemented in
the R package mvtnorm (Genz and Bretz 2009; Genz, Bretz, Miwa, Mi, and Hothorn 2018).
Nikoloulopoulos (2013, 2016) used the latter to make inference about Gaussian copula models
with discrete marginals.
The aforementioned packages allow to carry out some of the main tasks of scientific interest
for the analysis of geostatistical count data, but not others. In some applications, predictive
inference about spatially varying counts at unobserved locations is a task of equal or greater
importance than inference about the model parameters. But except for spatialCopula, these
packages carry out inference only about model parameters. Other tasks of scientific inter-
est are the computation of the correlation function of the process of observed counts, and
the determination of its restrictions for a given set of marginal distributions. Closed-form
expressions for these are usually not available for Gaussian copula models, and the required
numerical computations are not implemented in the aforementioned packages.
The R package gcKrig (Han 2018) carries out most of the main tasks of scientific interest for
the analysis of geostatistical count data based on Gaussian copula models and it is available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=gcKrig. It offers tools that range from simulation and visualization to estimation
and prediction. First, gcKrig can compute approximate maximum likelihood estimates and
confidence intervals for the model parameters, using either the GHK simulator or the less
computationally intensive option based on the GQT method. The latter is appealing for the
analysis of moderately large datasets. Second, the package can compute plug-in predictors
and prediction intervals at a given set of locations, using either the GHK simulator or the GQT
method for the computation of predictive distributions. The prediction tasks are based on
parallel computation capabilities, an appealing feature since prediction is usually sought for a

1At the time of writing geoCopula is not available from the Comprehensive R Archive Network (CRAN),
but can be obtained from http://www-personal.umich.edu/~jiankang/software/GeoCopula.html.

https://CRAN.R-project.org/package=gcKrig
https://CRAN.R-project.org/package=gcKrig
http://www-personal.umich.edu/~jiankang/software/GeoCopula.html
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large number of locations. Third, gcKrig can compute the correlation function of the process
of counts and the upper bound of this correlation for a given set of marginal distributions
(the so-called Fréchet-Hoeffding upper bound), using either a series expansion or a Monte
Carlo method. Finally, the package also includes functions for simulation and visualization
of spatial data from Gaussian copula models.
This article provides a detailed description of gcKrig, illustrates its use with three real-
world geostatistical count datasets, and ends with a comparison between it and two other
R packages, mvtnorm and gcmr, which can also perform some of the tasks implemented in
gcKrig.

2. The Gaussian copula random field
Let {Y (s) : s ∈ D}, D ⊂ R2, be a random field taking values on N0 = {0, 1, 2, . . .}, and
{Fs(· ;ψ) : s ∈ D} be a family of marginal cumulative distribution functions (cdfs) with
support contained in N0 and corresponding probability mass functions (pmfs) fs(· ;ψ), where
ψ are marginal parameters. We assume that Fs(· ;ψ) is parameterized in terms of its expected
value E(Y (s)), which is given by

E(Y (s)) = t(s)g−1(β>f(s)
)
, (1)

where g−1(·) is the inverse of a suitable link function, β = (β1, . . . , βp)> are regression pa-
rameters, f(s) = (f1(s), . . . , fp(s))> are known location-dependent covariates, and t(s) is a
known “sampling effort”. The cdf Fs(· ;ψ) can also depend on other marginal parameters, for
example on a dispersion parameter σ2 > 0, assumed to be constant in D. Typical examples
are the negative binomial and zero-inflated Poisson distributions, for which it holds that

VAR(Y (s)) = E(Y (s))(1 + σ2E(Y (s))); (2)

see Section 3.2 for the marginal families of distributions implemented in gcKrig.
The Gaussian copula random field Y (·) is defined by the property that for every n ∈ N and
s1, . . . , sn ∈ D, the joint cdf of (Y (s1), . . . , Y (sn)) is given by

P
(
Y (s1) ≤ y1, . . . , Y (sn) ≤ yn

)
= Φn

(
Φ−1(Fs1(y1;ψ)), . . . ,Φ−1(Fsn(yn;ψ)); Ψϑ

)
, (3)

where Φ(·) is the cdf of the standard normal distribution and Φn(· ; Ψϑ) is the cdf of the
Nn(0,Ψϑ) distribution. The (i, j)th entry of the n× n matrix Ψϑ is assumed to be

Kϑ(dij) = (1− τ2)K̄θ(dij) + τ21{dij = 0}, (4)

where K̄θ(dij) ≥ 0 is an isotropic correlation function in R2 that is continuous everywhere,
dij = ‖si− sj‖ is the Euclidean distance, ϑ = (θ>, τ2) are correlation parameters, with θ the
parameter(s) appearing in K̄θ(·), τ2 ∈ [0, 1] the so-called nugget effect (so Ψϑ is a correlation
matrix), and 1{A} is the indicator function of A; see Section 3.2 for the correlation functions
implemented in gcKrig.
An alternative formulation of the above model consists of viewing it as a transformed Gaussian
random field (De Oliveira 2003). Consider the latent Gaussian random field {Z(s) : s ∈ D}
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with mean 0, variance 1 and correlation function Kϑ(dij). Then the Gaussian copula random
field Y (·) can be written as

Y (s) = F−1
s
(
Φ(Z(s)) ; ψ

)
, s ∈ D, (5)

where F−1
s
(
· ; ψ

)
is the quantile function defined as

F−1
s
(
u ; ψ

)
= inf{x ∈ R : Fs

(
x ; ψ

)
≥ u}, u ∈ (0, 1). (6)

Unlike the hierarchical models proposed by Diggle et al. (1998), Gaussian copula models allow
the separate modeling of the marginal and dependence structures of the data. The marginals
(and hence the mean function) of the random field are modeled explicitly by the family of
cdfs {Fs(· ;ψ) : s ∈ D}, while the dependence structure is modeled through the family of
correlation functions Kϑ(·), albeit not in an explicit way; see Section 3.5 for the correlation
function of Y (·).

Remark. Genest and Nešlehová (2007) caution modelers about some potential limitations of
the use of copula models to describe multivariate discrete data, since many of the properties of
these models that hold when the marginals are continuous, do not hold when the marginals are
discrete. One of these is the uniqueness of the copula that couples the marginal cdfs to produce
a given joint cdf; this, in general, may pose an identifiability problem. This problem does not
arise in model (3) though, since this model restricts consideration to Gaussian copulas, and
for any u1, . . . , un the copula Φn

(
Φ−1(u1), . . . ,Φ−1(un); Ψϑ

)
is a one-to-one function of Ψϑ.

2.1. Likelihood computation

The package gcKrig implements two methods for likelihood computation, one approximates
the likelihood function via Monte Carlo simulation, and the other replaces the likelihood
function with a surrogate likelihood. Let η = (ψ,ϑ) denote all the parameters in the model.
For count responses the likelihood of η can be written as the n-dimensional normal integral

L(η;y) =
∫ ζs1 (y1;ψ)

ζs1 (y1−1;ψ)
· · ·
∫ ζsn (yn;ψ)

ζsn (yn−1;ψ)
φn(z1, . . . , zn; Ψϑ) dz1 . . . dzn, (7)

where ζs(y;ψ) = Φ−1(Fs(y;ψ)) and φn(· ; Ψϑ) is the probability density function (pdf) of
the Nn(0,Ψϑ) distribution. To approximate the integral in Equation 7, gcKrig implements a
variant of the popular sequential importance sampling algorithm proposed by Geweke (1991),
Hajivassiliou et al. (1996) and Keane (1994), known as the GHK simulator. The integral in
Equation 7 is approximated by importance sampling, using the importance sampling density
with support (ζs1(y1 − 1), ζs1(y1))× · · · × (ζsn(yn − 1), ζsn(yn)) given by

gϑ(z) =
n∏
i=1

pϑ(zi | zi−1, . . . , z1, yi), (8)

where pϑ(zi | zi−1, . . . , z1, yi) is the conditional density of Z(si) given Z(si−1), . . . , Z(s1),
and Y (si) = yi, and Z(·) is the Gaussian random field defined just before Equation 5.
Since Z(si) | Z(si−1), . . . , Z(s1) ∼ N(mi, v

2
i ), with mi = Eϑ(Z(si) | Z(si−1), . . . , Z(s1)) =

mi(Z(si−1), . . . , Z(s1);ϑ) and v2
i = varϑ(Z(si) | Z(si−1), . . . , Z(s1)) = v2

i (ϑ), it follows from
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Equation 5 that pϑ(zi | zi−1, . . . , z1, yi) is the density of the N(mi, v
2
i ) distribution truncated

to the interval (ζsi(yi − 1;ψ), ζsi(yi;ψ)). Then the GHK simulator approximates L(η;y) by

L̂(η;y) = 1
M

M∑
k=1

{
n∏
i=1

[
Φ
(
ζsi(yi;ψ)−mki(ϑ)

vki(ϑ)

)
− Φ

(
ζsi(yi − 1;ψ)−mki(ϑ)

vki(ϑ)

)]}
, (9)

where Z(1), . . . ,Z(M) are i.i.d. draws from gϑ(z), with Z(k) = (Z(k)
1 , . . . , Z

(k)
n ), mki(ϑ) =

mi(Z(k)
i−1, . . . , Z

(k)
1 ;ϑ), and v2

ki(ϑ) = v2
i (ϑ). The simulation of each Z(k) is done sequentially,

Z
(k)
1 , Z

(k)
2 , . . . , Z

(k)
n , using the standard algorithm for simulating from truncated normal dis-

tributions. This method is also implemented in the package gcmr (Masarotto and Varin 2017,
2018). The GHK simulator requires an ordering of the sampling locations, which for geostatis-
tical data is arbitrary. Although empirical experiments suggest that parameter estimates are
not sensitive to different orderings, gcKrig provides the option to use the ordering obtained
by the algorithm in Gibson, Glasbey, and Elston (1994), which orders the sampling locations
based on the impact that their corresponding observations have on the likelihood (integral);
see Genz and Bretz (2009) and Ridgway (2016) for details.
Many other approaches have been proposed for the approximation of n-dimensional normal
integrals, like those in Equation 7. One of these is the quasi-Monte Carlo approximation
implemented in the R package mvtnorm (Genz and Bretz 2009; Genz et al. 2018), and used
for Gaussian copula estimation by Nikoloulopoulos (2013, 2016). Another is a recent approach
that uses the minimax tilting algorithm proposed by Botev (2017); see also Genz and Bretz
(2009) for a review of classical approximations. A simulation experiment carried out by Han
and De Oliveira (2019), comparing the GHK simulator, quasi-Monte Carlo approximation and
a third method, showed that the GHK simulator provides the best balance between statistical
efficiency and computational efficiency.
A different strategy consists of avoiding the calculation of the likelihood in Equation 7 al-
together, and instead base inference on a surrogate likelihood. The gcKrig package also
implements the so-called generalized quantile transformation (GQT) method proposed in
Kazianka and Pilz (2010) and Kazianka (2013a,b), which is (partially) implemented in the
MATLAB toolbox spatialCopula. In this strategy the likelihood is replaced by the surrogate
likelihood

|Ψϑ|−
1
2 exp

(
−1

2Φ−1(u)>
(
Ψ−1
ϑ − In

)
Φ−1(u)

) n∏
i=1

fsi(yi;ψ), (10)

where Φ−1(u) = (Φ−1(u1), . . . ,Φ−1(un))> and ui = (Fsi(yi − 1;ψ) + Fsi(yi;ψ))/2.
The gcKrig package approximates the maximum likelihood estimates by optimizing the right-
hand-side of either Equation 9 or 10, using the box-constrained quasi-Newton algorithm
implemented in the R function optim(). The asymptotic standard errors are computed in
the classical way, by calculating the inverse of the (approximate) log-likelihood Hessian matrix
evaluated at the estimates. It should be noted that when the “discreteness” in the data is
extreme, e.g., when analyzing binary data, the GQT approximation becomes highly inaccurate
(Kazianka 2013a), so parameter estimates and their estimated variances are not reliable. In
general we recommend using the GHK simulator as the preferred option, if the size of the
data is not too large and the analysis not too time consuming, and leaving the GQT method
for moderately larger datasets.
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2.2. Predictive inference

Let η̂ be the vector of parameter estimates, and s0 ∈ D a location for which Y (·) is not
observed. The (plug-in) predictive distribution of Y (s0) is defined as

P(Y (s0) = y0 | Y ; η̂) =
P
(
Y (s0) = y0, Y (s1) = y1, . . . , Y (sn) = yn; η̂

)
P
(
Y (s1) = y1, . . . , Y (sn) = yn; η̂

) , y0 ∈ N0. (11)

Once the predictive distribution is computed for all y0 in the (practical) support of Equa-
tion 11, one can compute different optimal predictors, depending on the loss function that
is assumed. Under the squared error loss, the optimal predictor is Ŷ (s0) = E(Y (s0) | Y ; η̂).
This is guaranteed to be non-negative, but not integer-valued. According to Jeske (1993), the
optimal integer-valued predictor is given by

Ŷ (s0) = b0.5 + E(Y (s0) | Y ; η̂)c =
⌊
0.5 +

∞∑
y0=0

P(Y (s0) = y0 | Y ; η̂)y0
⌋
, (12)

where b·c is the floor function, and the uncertainty measure associated to this predictor is

V̂AR(Y (s0) | Y ; η̂) = E(Y 2(s0) | Y ; η̂)−
(
E(Y (s0) | Y ; η̂)

)2
. (13)

Kazianka and Pilz (2010) and Kazianka (2013a) suggested to approximate the numerator and
denominator of the predictive distribution using the GQT method, as in Equation 10. The
computational speed of this alternative is fast, but the approximation error can be substantial
in the case of low marginal variance and strong spatial dependence (Nikoloulopoulos 2016).
A more precise alternative is to compute the numerator and denominator of the predictive
distribution in Equation 11 using the GHK simulator. The package gcKrig implements both
alternatives. Since spatial prediction is usually needed for a large number of locations, gcK-
rig speeds up the computations with the help of parallel computing techniques using the R
package snowfall (Knaus 2015); see Section 3.4 for details.

2.3. Correlation function of the Gaussian copula random field

Recall thatKϑ(d) is the correlation function of the latent Gaussian process Z(·) in Equation 5.
The correlation function of the Gaussian copula random field Y (·) is not available in closed
form for most families of marginals. The package gcKrig implements the series expansion
discussed in De Oliveira (2013) to approximate the covariance (and correlation) function of
Y (·). Specifically

COV{Y (s), Y (u)} =
∞∑
k=1

ak(Fs)ak(Fu)
(
Kϑ(‖s− u‖)

)k
k! , s,u ∈ D, (14)

with
ak(Fs) =

∫ ∞
−∞

F−1
s (Φ(t);ψ)Hk(t)φ(t)dt, k = 1, 2, . . . (15)

where φ(t) is the pdf of the standard normal distribution and Hk(t) is the (probabilists’) Her-
mite polynomial of degree k (H1(t) = t, H2(t) = t2 − 1, . . . ). Hence, COR{Y (s), Y (u)} can
be quickly and accurately approximated by truncating the series in Equation 14 and approx-
imating the coefficients in Equation 15 by numerical quadrature (e.g., using the R function
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integrate()). Han and De Oliveira (2016) used this expansion to investigate properties
of this correlation function, founding it to be flexible in several regards; see Section 3.5 for
computational details.

3. Package functionality
The R package gcKrig offers a number of tools for the analysis of geostatistical count data,
ranging from simulation and visualization to estimation and prediction, with the two core
functions being mlegc() (for parameter estimation) and predgc() (for spatial prediction).

3.1. Data simulation and visualization

The function simgc() simulates geostatistical count data at a given set of m locations from
Gaussian copula models with different marginal and correlations structures:

simgc(locs, sim.n = 1, marginal, corr, longlat = FALSE)

The argument locs is a numeric m × 2 matrix or data frame containing the coordinates
of the locations, sim.n is a positive integer indicating the number of simulated datasets.
Also, marginal is an argument specified with an object of class ‘marginal.gc’ indicating
the family of marginals, and corr is an argument specified with an object of class ‘corr.gc’
indicating the family of correlation functions; see Section 3.2. If longlat = TRUE, the great
circle distance is used in the correlation function; otherwise the Euclidean distance is used.
The function returns a list of class ‘simgc’ with the simulated data and the corresponding
locations.
To visualize a simulated geostatistical count dataset, an S3 method plot is available for
objects of class ‘simgc’:

plot(x, index = 1, plottype = "Text", xlab = "xloc", ylab = "yloc",
xlim = NULL, ylim = NULL, pch = 20, textcex = 0.8, plotcex = 1,
angle = 60, col = 4, col.regions = gray(90:0/100), ...)

The argument x is an object of class ‘simgc’ generated from the function simgc(), index
is the index of the simulated dataset, plottype is one of the following, "Text", "Dot" or
"3D", denoting the type of the plot, and col.regions is the color vector to be used that
represents the magnitude of the observations at the locations. The general strategy for a good
visualization is to set the color vector with gradually varying colors. The other arguments
have the same meanings as in the standard R function plot(). The function can generate
three types of plot, allowing the visualization of different aspects of the dataset; see Figure 1
and its legend.

R> library("gcKrig")
R> grid <- seq(0.05, 0.95, by = 0.1)
R> xloc <- expand.grid(x = grid, y = grid)[, 1]
R> yloc <- expand.grid(x = grid, y = grid)[, 2]
R> set.seed(12345)
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Figure 1: Visualization of a simulated dataset. Left: Gray scale plot with the number of
counts at the locations (plottype = "Text"). Middle: Gray scale plot with point referenced
locations and varying colors to denote magnitude of counts (plottype = "Dot"). Right: A
3-D scatter plot of the simulated data (plottype = "3D")

.

R> sim1 <- simgc(locs = cbind(xloc,yloc), sim.n = 10,
+ marginal = negbin.gc(mu = 5, od = 1),
+ corr = matern.gc(range = 0.3, kappa = 0.5, nugget = 0.1))
R> plot(sim1, index = 1, plottype = "Text", col = 2)
R> plot(sim1, index = 1, plottype = "Dot", col = 2)
R> plot(sim1, index = 1, plottype = "3D", col = 2)

3.2. Classes of marginals and correlations

We describe here how to set the families of marginal and correlation functions needed to
specify Gaussian copula models in gcKrig. To make the package flexible, the arguments
in the gcKrig’s functions that specify marginals and correlations are of class ‘marginal.gc’
and ‘corr.gc’, respectively. These arguments are needed in both the functions simgc() and
corrTG() that are used to simulate geostatistical data and compute correlations between the
non-Gaussian variables, as well as in mlegc() and predgc() that are used to make inference
about the model parameters and spatial prediction. For simulation of geostatistical count
data or computation of correlations between the count variables, the parameters need to be
set as arguments in the corresponding functions. For inference about the model parameters
and spatial prediction the parameters are not set, as they are estimated from the data, which
is the default setting for discrete marginals and all correlation functions. In this case, the
link functions are also specified as arguments. When fitting a correlation model, the nugget
effect can be estimated (nugget = TRUE) or set to zero (nugget = FALSE), with the former
being the default. Also, for some correlation functions a shape parameter kappa needs to be
specified. Table 1 lists all the marginals and correlation functions available in gcKrig.
Standard parameterizations are used for most families of marginals, except for the negative
binomial and zero-inflated Poisson marginals. These are parameterized in terms of their mean
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Name Distribution/
Correlation

poisson.gc(link = "log", lambda = NULL) Poisson
negbin.gc(link = "log", mu = NULL, od = NULL) negative binomial
zip.gc(link = "log", mu = NULL, od = NULL) zero-inflated Poisson
binomial.gc(link = "logit", size = NULL, prob = NULL) binomial
gaussian.gc(mean = 0, sd = 1) Gaussian
gm.gc(shape = 1, rate = 1) Gamma
beta.gc(shape1 = 1, shape2 = 1) Beta
weibull.gc(shape = 1, scale = 1) Weibull
matern.gc(range = NULL, kappa = 0.5, nugget = TRUE) Matérn
powerexp.gc(range = NULL, kappa = 1, nugget = TRUE) power exponential
spherical.gc(range = NULL, nugget = TRUE) spherical

Table 1: Marginals of class ‘marginal.gc’ and correlation functions of class ‘corr.gc’.

µ(s) and overdispersion σ2, with respective pmfs

fNB
s (y;ψ) = 1

B(y, 1/σ2)

( 1
1 + µ(s)σ2

)1/σ2 (
µ(s)σ2

1 + µ(s)σ2

)y
, y = 0, 1, 2, . . . (16)

fZIP
s (y;ψ) =


σ2

1+σ2 + 1
1+σ2 exp

(
−(1 + σ2)µ(s)

)
if y = 0,

1
1+σ2

exp
(
−
(

1+σ2
)
µ(s)
)
(1+σ2)y(µ(s))y

y! if y = 1, 2, . . .
(17)

in which case the mean-variance relation in Equation 2 holds; see Cameron and Trivedi (2013)
and Han and De Oliveira (2016).
Three families of isotropic correlation functions are implemented in gcKrig: theMatérn family
given by

K̄(d) = 1
2κ−1Γ(κ)

(
d

φ

)κ
Kκ
(
d

φ

)
, d ≥ 0, φ > 0, κ > 0, (18)

where Γ(·) is the gamma function and Kκ(·) is the modified Bessel function of the second
kind and order κ; the power exponential family given by

K̄(d) = exp
{
−
(d
φ

)κ}
, d ≥ 0, φ > 0, κ ∈ (0, 2], (19)

and the spherical family given by

K̄(d) =
(

1− 3
2

(
d

φ

)
+ 1

2

(
d

φ

)3)
1[0,φ](d), d ≥ 0, φ > 0. (20)

For these families φ is called a range parameter, which controls the rate of correlation decay,
and κ is called a shape parameter, which controls the smoothness of the random field.

3.3. Estimation

The core function for parameter estimation is mlegc(), which provides either maximum
simulated likelihood estimates computed via the GHK simulator (Masarotto and Varin 2012)
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or maximum surrogate likelihood estimates computed via the generalized quantile transform
(Kazianka and Pilz 2010):

mlegc(y, x = NULL, locs, marginal, corr, effort = 1, longlat = FALSE,
distscale = 1, method = "GHK", corrpar0 = NULL,
ghkoptions = list(nrep = c(100, 1000), reorder = FALSE, seed = 12345))

The argument y is a vector containing the response counts, x is a matrix or data frame
containing the covariates (x = NULL when no covariates are available), and locs is a matrix
or data frame containing the coordinates of the sampling locations. By default these are
assumed Cartesian coordinates. When longitude and latitude coordinates are used, then
longlat = TRUE should be set. The argument marginal is a function of class ‘marginal.gc’
that specifies the marginal distributions of the counts, and corr is a function of class ‘corr.gc’
that specifies the correlation function defining the Gaussian copula; the current version of
gcKrig includes the four families of discrete marginal distributions and the three families of
isotropic correlation functions listed in Table 1. The argument effort is a vector containing
the sampling efforts associated with the sampling locations. For instance, in the case of
binomial marginals these efforts are the “total number of trials”; they are all set to 1 by
default. The argument distscale is an optional scalar factor to be multiplied by the elements
of the distance matrix. For example, if the original distance is measured in kilometers, we
can convert this into meters by setting distscale = 1000.
The package gcKrig includes two fitting methods. If method = "GQT" is set, the likelihood
is replaced by the generalized quantile transform; if method = "GHK" is set, the likelihood is
approximated by the GHK simulator. In the latter case the arguments in the list ghkoptions
need to be specified: nrep sets the Monte Carlo size, seed sets the seed of the pseudo-random
number generator, and reorder controls whether or not an ordering of the locations following
the algorithm in Gibson et al. (1994) is computed before each likelihood evaluation. As in
the R package gcmr, the argument nrep can be a vector with increasing positive integers, in
which case the model is fitted several times with different Monte Carlo sizes.
To optimize the likelihood approximation, gcKrig uses the quasi-Newton algorithm with box
constraints implemented in the R function optim(), with method = "L-BFGS-B". The start-
ing values of the marginal parameters are set as the estimates obtained by treating the obser-
vations as if they were independent. The starting values of the covariance parameters can be
set by the argument corrpar0. By default the starting value of the range parameter is set at
half the median of the elements of the distance matrix, and the starting value of the nugget
parameter is set at 0.2. When the model is fitted several times with different Monte Carlo
sizes, the starting values for each fit are set at the parameter estimates from the previous fit.
Once the likelihood function evaluated at the maximum likelihood estimates is available, it
is possible to conduct model selection using information criteria such as AIC, BIC or AICc;
these are computed by gcKrig and illustrated in Section 4.1.
The function mlegc() outputs a variety of objects of class ‘mlegc’. The following S3 meth-
ods are available for this class of objects: summary() and print(), which extract the basic
summaries, following the format in the R package gcmr (Masarotto and Varin 2017, 2018);
plot() generates contour plots and 3-D scatter plots of the original data and the fitted mean
response; vcov() displays the covariances and correlations between parameter estimates,
computed from the inverse of the observed Fisher information matrix.
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The package gcKrig computes both Wald-type and likelihood-based confidence intervals for
the parameters, where the latter are computed by evaluating the profile likelihood and invert-
ing a likelihood ratio test; see Meeker and Escobar (1995) for details. The likelihood-based
confidence intervals are implemented by the S3 method profile for ‘mlegc’ objects. The
endpoints of the profile likelihood confidence intervals are computed, not by evaluating the
profile likelihood on a selected grid of parameter values, as Masarotto and Varin (2017) do,
but by using two runs of the Newton-Raphson algorithm, each with a different starting point
(see below). The function call is as follows

profile(fitted, par.index, alpha = 0.05, start.point = NULL, method = "GQT",
nrep = 1000, seed = 12345, ...)

where fitted is the fitted model of class ‘mlegc’ and par.index is the index of the parameter
to be profiled. For example, when par.index = 1, the confidence interval of the intercept
parameter will be calculated. The argument alpha is a scalar between 0 and 1 denoting the
confidence level, and start.point is a numeric vector of length 2 indicating the starting points
of the Newton-Raphson iteration; by default these points are the endpoints of the Wald-type
confidence interval. The argument method specifies the likelihood evaluation method with
choices "GQT" and "GHK". If method = "GHK", the Monte Carlo size and the seed of the
pseudo-random number generator are specified by nrep and seed, respectively.

3.4. Prediction

The core function for spatial prediction is predgc(), which approximates the predictive dis-
tribution in Equation 11 and computes optimal predictors at a set of prediction locations.
The prediction task can become computationally intensive since prediction is usually sought
for a large number of locations on a grid covering the region of interest. Noting that the
denominator in Equation 11 is the same for all prediction locations and the numerators can
be computed independently of each other, gcKrig assigns the computation of the latter to
various cores of the computer using parallel computing techniques. Although by default R will
only use one processor regardless of the number of available cores, gcKrig takes advantage of
the parallel computing techniques from the R package snowfall (Knaus 2015). This is carried
out by the function predgc():

predgc(obs.y, obs.x = NULL, obs.locs, pred.x = NULL, pred.locs,
longlat = FALSE, distscale = 1, marginal, corr, obs.effort = 1,
pred.effort = 1, method = "GHK", estpar = NULL, corrpar0 = NULL,
pred.interval = NULL, parallel = FALSE,
ghkoptions = list(nrep = c(100,1000), reorder = FALSE, seed = 12345),
paralleloptions = list(n.cores = 2, cluster.type = "SOCK"))

where many of its arguments are the same as those in mlegc(). The argument obs.y is the
vector of observed counts, obs.x and pred.x are the matrices or data frames of the covariates
at the sampling and prediction locations, respectively, and obs.locs and pred.locs are the
matrices or data frames containing the coordinates of the sampling and prediction locations.
The arguments obs.effort and pred.effort are the respective efforts at the sampling and
predictive locations. The argument estpar is the vector of parameters needed to carry out
plug-in prediction. It is set to NULL by default, which means the function will call mlegc
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to fit the observed counts first, and then these parameter estimates are used in the plug-in
prediction. It is also possible to specify estpar as a numeric vector with some preliminary
estimates, so the model will not be re-fitted.
The function predgc() can also compute prediction intervals, which can be of two types.
One of them is the “equal-tail” prediction interval that divides equally the complement of
the confidence level to both tails of the predictive distribution in Equation 11. The other
is the “highest probability mass” prediction interval that includes in the interval all the
values in the support of Y (s0) with the highest values in Equation 11. In general, the latter
type of prediction interval is recommended, since predictive distributions are often highly
asymmetric. When prediction intervals are needed one sets the argument pred.interval
equal to a number between 0 and 1 representing the confidence level, in which case both
types of prediction intervals are computed. By default predgc() does not calculate prediction
intervals.
When the argument parallel = FALSE is set, a serial version of the function will be called,
while when parallel = TRUE the function calls for parallel computation. The argument
parallel.options is a list with elements n.cores and cluster.type that set the number of
cores and type of cache for parallel computing, respectively. Four cache types are available:
"SOCK", "MPI", "PVM" or "NWS", with "SOCK" being the default. More details can be found
in the manual of the snowfall package (Knaus 2015).
The output of the function predgc() is a list of objects with class ‘predgc’. The S3 method
summary() for ‘predgc’ objects extracts key summary information, including prediction loca-
tions, the mean of the predictive distribution, predicted discrete response, estimated predic-
tion variance, and two types of the prediction intervals, if pred.interval is provided. The S3
method plot for ‘predgc’ objects works in a similar way as the previously described method
for ‘simgc’ objects, which can generate five plots. One of them is a 3-D scatter plot with
both observed and predicted counts. The other four are contour plots displaying the observed
number of counts, the estimated means, the predicted responses and estimated prediction
variances. The usage of predgc() is illustrated with an example in Section 4.

3.5. Computation of correlations

For any two locations the function corrTG() computes the correlation between Y (s) and
Y (u), either by using the series expansion in Equation 14 or a Monte Carlo method:

corrTG(marg1, marg2, corrGauss = 0.5, method = "integral", nrep = 1000)

The arguments marg1 and marg2 are the marginal distributions of Y (s) and Y (u) from the
class ‘marginal.gc’, and corrGauss is the correlation of the latent Gaussian random field
Z(·). If method = "integral", the covariance is computed by using the series expansion in
Equation 14. The series is approximated by truncating Equation 14 up to a term so that the
magnitude of the next term is smaller than the square root of the smallest positive floating-
point number (sqrt(.Machine$double.eps)). The coefficients in Equation 15 are computed
by the R function integrate(). If method = "mc", a Monte Carlo method is used, which
consists of two steps. First, a random sample of size nrep is generated from the bivariate
Gaussian distribution with means (0, 0), variances (1, 1) and correlation in Equation 4 using
the function mvrnorm() in the R package MASS (Venables and Ripley 2002). Second, the
transformation in Equation 5 is applied to the bivariate Gaussian draws and the desired
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correlation is approximated by the sample correlation of the transformed draws. A similar
approach was carried out by Demirtas and Hedeker (2011) to compute the Fréchet-Hoeffding
upper and lower bounds.

3.6. Computation of Fréchet-Hoeffding upper bounds
The possible correlations between two non-Gaussian random variables are, in general, a sub-
set of [−1, 1]. The maximum and minimum correlations that are attainable for a given pair
of marginal distributions are called the Fréchet-Hoeffding bounds (Nelsen 2006). An im-
portant property of Gaussian copula models is that the correlation between two random
variables following these models always attains the Fréchet-Hoeffding upper bound, when
sup{Kϑ(d) : d > 0} = 1 (Nelsen 2006; Grigoriu 2007). The Fréchet-Hoeffding upper bound
can be computed for any pair of marginals with the function corrTG(), by setting the argu-
ment corrGauss = 1.
When both marginal distributions are discrete, there is an alternative expression for the
Fréchet-Hoeffding upper bound, proposed by Nelsen (1987), that may be faster to compute
in some cases. It is given by∑

(x,y)∈S
(
1− Fu(y;ψ)

)
+
∑

(x,y)∈T
(
1− Fs(x;ψ)

)
− µ(s)µ(u)(

VAR(Y (s))VAR(Y (u))
) 1

2
, (21)

where
S = {(x, y) ∈ N2

0 : Fs(x ; ψ) ≤ Fu(y;ψ)} , T = Sc. (22)
The computation of Equation 21 is faster than the computation of Equation 14 when both
marginal means are small. This alternative expression for the upper bound is implemented
in the function FHUBdiscrete(), where the summation over a two-dimensional grid is coded
in C++:

FHUBdiscrete(marg1, marg2, mu1, mu2, od1 = 0, od2 = 0, binomial.size1 = 1,
binomial.size2 = 1)

The arguments marg1 and marg2 are the names of the possible discrete marginals: "poisson",
"zip", "nb" and "binomial" (for Poisson, zero-inflated Poisson, negative binomial and bi-
nomial marginals, respectively). The argument mu1 is the mean of the first marginal, od1 is
the overdispersion parameter of the first marginal, when this is negative binomial or zero-
inflated Poisson, and binomial.size1 is the number of trials, when this is binomial. The
other arguments have the same interpretation, but for the second marginal.
Below are two examples. The first example, using FHUBdiscrete(), computes the Fréchet-
Hoeffding upper bounds for the correlations between the negative binomial random variable
with mean 10 and overdispersion 0.2, and negative binomial random variables with means
varying from 0.01 to 15 and overdispersion 0.2. The second example, using corrTG(), com-
putes the Fréchet-Hoeffding upper bounds for the correlations between the gamma random
variable with shape 0.5 and rate 1, and gamma random variables with shapes varying from
0.01 to 15 and rate 1. These bounds are plotted in Figure 2, which show that in some scenarios
the Fréchet-Hoeffding upper bound can be much lower than 1.

R> NBmu <- seq(0.01, 15, by = 0.02)
R> fhub1 <- vector("numeric", length(NBmu))
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Figure 2: Left: Fréchet-Hoeffding upper bounds between negative binomial random variables.
Right: Fréchet-Hoeffding upper bounds between gamma random variables.

R> for (i in 1:length(NBmu)) {
+ fhub1[i] <- FHUBdiscrete(marg1 = "nb", marg2 = "nb",
+ mu1 = 10, od1 = 0.2, mu2 = NBmu[i], od2 = 0.2)
+ }
R> gammaShape <- seq(0.01, 15, by = 0.02)
R> fhub2 <- vector("numeric", length(gammaShape))
R> for (i in 1:length(gammaShape)) {
+ fhub2[i] <- corrTG(marg1 = gm.gc(shape = gammaShape[i], rate = 1),
+ marg2 = gm.gc(shape = 0.5, rate = 1), corrGauss = 1,
+ method = "integral")
+ }
R> plot(NBmu, fhub1, type = "l", xlab = expression(E(X[2])), ylab = "FHUB")
R> plot(gammaShape, fhub2, type = "l",
+ xlab = "Shape of a gamma distribution", ylab = "FHUB")

3.7. Integrated datasets

The package gcKrig includes the following real-world datasets, which have been previously
analyzed in the literature:

AtlanticFish: This dataset contains fish counts sampled at 119 locations in a mid-Atlantic
region of the USA, together with several stream characteristics (covariates) related to
water quality; the covariates are standardized to have mean 0 and variance 1. It was
analyzed by Johnson and Hoeting (2011) to investigate the relation between abundance
of pollution tolerant fish and several environmental factors.

LansingTrees: This dataset was obtained by aggregating the lansing dataset in the R pack-
age spatstat (Baddeley, Turner, and Rubak 2018), which comes from an investigation
of a 924 ft × 924 ft (19.6 acres) area in Lansing Woods, Michigan, USA. The original
point process data describe the locations of 2,251 trees and their botanical classification
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(into maples, hickories, black oaks, red oaks, white oaks and miscellaneous trees). The
original plot size has been rescaled to the unit square and the number of different types
of trees has been counted within squares of length 1/16. See Kazianka (2013a) and Han
and De Oliveira (2019) for analyses of this dataset.

OilWell: This is a binary dataset that records the locations of successful and unsuccessful
drilling oil wells in the northwest shelf of the Delaware basin in New Mexico, USA. This
region is densely drilled in some parts, but has also some sparsely drilled subareas. The
original dataset was transformed to a central area of about 65 square kilometers. See
Hohn (1999, Chapter 6).

Weed95: This dataset consists of weed counts and the percentages of organic matter at 270
sampling locations in an agricultural field in Denmark. The weed species Viola Arvensis
was counted within circular frames of 0.25 square meters each, except for 10 missing
sites in the first row. See Christensen and Waagepetersen (2002) for an analysis of this
dataset.

4. Examples
In this section we describe brief analyses of the AtlanticFish, Weed95 and OilWell datasets
to illustrate the fitting of spatial Gaussian copula models using gcKrig; Han and De Oliveira
(2019) provide an analysis of the LansingTrees dataset. All the analyses were run on a
2015 MacBook Pro with 2.8 GHz Intel Core i7 processor, with 8 threads available for parallel
processing.

4.1. The AtlanticFish data

The AtlanticFish dataset was analyzed by Johnson and Hoeting (2011) with the goal of
identifying important covariates that affect fish abundance and estimate their effects. They
fitted a spatial generalized linear mixed model using a Bayesian approach. Out of nine po-
tential environmental covariates, three stood out as having a significant influence on fish
abundance. The important covariates and their respective posterior inclusion probabilities
were the Strahler stream order (ORDER, 0.883), the percentage of watershed classified as dis-
turbed by human activity (DISTOT, 0.787) and the index of fish habitat quality at the stream
site (HAB, 0.738). The covariate with the fourth highest posterior inclusion probability was
the watershed area (WSA, 0.426). However, no strong evidence was found for a significant
effect of WSA on fish abundance.
We fit a spatial Gaussian copula model to this dataset using gcKrig. We restrict attention
to the aforementioned four environmental covariates, and seek to assess their impacts on fish
abundance. The model assumes a family of negative binomial marginals with the log link
function, and an isotropic exponential correlation model with a nugget. We fit two models,
one with three covariates (ORDER, DISTOT, HAB), and the other with four covariates (ORDER,
DISTOT, HAB, WSA).

R> data("AtlanticFish", package = "gcKrig")
R> Fitfish <- mlegc(y = AtlanticFish[, 3], x = AtlanticFish[, 4:6],
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+ locs = AtlanticFish[, 1:2], longlat = TRUE,
+ marginal = negbin.gc(link = "log"),
+ corr = matern.gc(kappa = 0.5, nugget = TRUE), method = "GHK")
R> summary(Fitfish)

Call:
mlegc(y = AtlanticFish[, 3], x = AtlanticFish[, 4:6], locs = AtlanticFish[,
1:2], marginal = negbin.gc(link = "log"), corr = matern.gc(kappa = 0.5,
nugget = TRUE), longlat = TRUE, method = "GHK")

Coefficients of the model:
Estimate Std.Error z value Pr(>|z|)

Intercept 2.3524 0.2198 10.701 < 2e-16 ***
ORDER 0.3808 0.1894 2.010 0.044395 *
DISTOT -0.6360 0.2050 -3.103 0.001918 **
HAB 0.4952 0.2224 2.227 0.025948 *
overdispersion 3.6210 0.6125 5.912 3.37e-09 ***
range 38.5986 20.8584 1.851 0.064241 .
nugget 0.7072 0.1968 3.595 0.000325 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = -362.02, AIC = 738.04, BIC = 757.49, AICc = 739.04

All the regression parameters are significant at level 0.05. As in Johnson and Hoeting (2011),
it is found that ORDER and HAB are positively associated with fish abundance, while DISTOT is
negatively associated. In addition, there is strong evidence of overdispersion in the response
variable, and the large estimate for the nugget parameter together with a small estimate for
the range parameter (the median distance between sampling locations is 267.39 km) indicate
that the spatial association is modest. The above analysis took about 23 seconds to run.
After the model is fitted, the 95% confidence intervals for the regression and overdispersion
parameters were computed with

R> profile(Fitfish, par.index = 1, method = "GHK")

where the argument par.index is varied from 1 to 5. The Wald-type and profile likelihood-
based confidence intervals are displayed in Table 2. The two types of confidence intervals are
similar, but the Wald-type confidence intervals are narrower.
We also fitted a Gaussian copula model to this dataset, but now adding the environmental
covariate WSA to the other three, with the code and summary results displayed below.

R> Fitfish2 <- mlegc(y = AtlanticFish[, 3], x = AtlanticFish[, 4:7],
+ locs = AtlanticFish[, 1:2], longlat = TRUE,
+ marginal = negbin.gc(link = "log"),
+ corr = matern.gc(kappa = 0.5, nugget = TRUE), method = "GHK")
R> summary(Fitfish2)
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Coefficient Wald-type 95% CI Profile likelihood based 95% CI
Intercept ( 1.922, 2.783) ( 1.906, 2.880)
ORDER ( 0.010, 0.752) (−0.003, 0.753)
DISTOT (−1.038,−0.234) (−1.023,−0.204)
HAB ( 0.059, 0.931) ( 0.057, 0.941)
Overdispersion ( 2.421, 4.821) ( 2.632, 5.258)

Table 2: Two types of confidence intervals for marginal parameters in the AtlanticFish
dataset.

Call:
mlegc(y = AtlanticFish[, 3], x = AtlanticFish[, 4:7], locs = AtlanticFish[,
1:2], marginal = negbin.gc(link = "log"), corr = matern.gc(kappa = 0.5,
nugget = TRUE), longlat = TRUE, method = "GHK")

Coefficients of the model:
Estimate Std.Error z value Pr(>|z|)

Intercept 2.35078 0.21893 10.738 < 2e-16 ***
ORDER 0.32454 0.23843 1.361 0.173469
DISTOT -0.62947 0.20528 -3.066 0.002167 **
HAB 0.49094 0.22207 2.211 0.027055 *
WSA 0.08323 0.22063 0.377 0.705996
overdispersion 3.61206 0.60963 5.925 3.12e-09 ***
range 38.39692 21.01521 1.827 0.067685 .
nugget 0.71073 0.19697 3.608 0.000308 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = -361.94, AIC = 739.89, BIC = 762.12, AICc = 741.19

This new fit shows that the effect of WSA is not statistically significant. In addition, the model
comparisons based on any of the information criteria show that the initial model with the
three covariates is preferable. These findings based on a Gaussian copula model are consistent
with those reached by Johnson and Hoeting (2011) based on a spatial generalized linear mixed
model.

4.2. The Weed95 data

The Weed95 dataset was analyzed by Christensen and Waagepetersen (2002) using a general-
ized linear mixed model, with the goal of investigating the relation between weed occurrence
and soil properties. It consists of weed counts and percentage of organic matter at 270 small
circular frames within an agricultural field. As the response consists mostly of small counts,
generalized linear mixed models may not be able to represent the spatial correlation in these
data (De Oliveira 2013). Hence, we fit a Gaussian copula model with negative binomial
marginals to the Weed95 dataset, which has a more flexible correlation structure (Han and
De Oliveira 2016).
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We illustrate the prediction functionality of the package gcKrig using this dataset. Following
the analysis in Christensen and Waagepetersen (2002), organic matter and the y (northing)
coordinate are used as covariates in the mean model, and an isotropic exponential covariance
function with nugget; both covariates are standardized in the range [−1, 1]. We use observa-
tions of the weed counts at 70 sampling locations to fit the model, and make predictions at
the remaining 200 locations. These locations are shown in Figure 3. Rather than predicting
weed intensity at the latter set of locations, as Christensen and Waagepetersen (2002) did, we
predict weed counts directly, using the implemented parallel prediction function in predgc().
Normally, the maximum number of processing units for parallel computing is equal to the
number of threads available in a computer. We suggest to first call the R core package parallel
and run the following code to detect the number of threads available

R> library("parallel")
R> detectCores(all.tests = FALSE, logical = TRUE)

and then run the code

R> library("snowfall")
R> data("Weed95", package = "gcKrig")
R> weedobs <- subset(Weed95, dummy == 1)
R> weedpred <- subset(Weed95, dummy == 0)
R> predweed <- predgc(obs.y = weedobs$weedcount, obs.x = weedobs[, 4:5],
+ obs.locs = weedobs[, 1:2], pred.x = weedpred[, 4:5],
+ pred.locs = weedpred[, 1:2], marginal = negbin.gc(link = "log"),
+ corr = matern.gc(kappa = 0.5, nugget = TRUE), method = "GHK",
+ pred.interval = 0.95, parallel = TRUE,
+ paralleloptions = list(n.cores = 4, cluster.type = "SOCK"))
R> summary(predweed)
R> plot(predweed, plottype = "2D All", xlab = "Coordinate x (m)",
+ ylab = "Coordinate y (m)", col = c(3, 2), textcex = 0.8)
R> plot(predweed, plottype = "Predicted Variance",
+ xlab = "Coordinate x (m)", ylab = "Coordinate y (m)",
+ col = c(3, 2), textcex = 0.8)

The prediction of the counts at the 200 locations using the GHK method with 4 cores took
about 39 seconds to run; this includes both the estimation and prediction time. To visually
summarize the results, the S3 method plot() can be applied to the prediction results with
class ‘predgc’. With different choices of the plottype, the function can generate five different
plots including 2-D level plots for the original data, predicted mean responses and estimated
variances at predicted locations. It can also generate a 3-D plot and text plot with the
exact counts. Figure 3 displays two of these that map the observations, predictions and the
estimated prediction variances.
To assess the accuracy of the predictions, we compute the two types of 95% prediction inter-
vals described in Section 3.4 for all the 200 prediction locations. Out of the 200 locations,
the “equal-tail” prediction intervals did not include the actual counts at 11 locations, while
the “highest probability mass” predictions intervals did not include the actual counts at 9
locations; so the empirical coverages of these prediction intervals were 94.5% and 95.5%, re-
spectively. The average length of the two types of prediction intervals were 2.815 and 2.445.
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Figure 3: Left: Observed (green) and predicted counts (red). Right: Estimated prediction
variances.

These findings indicate that, for this example, the prediction intervals are accurate, with
the “highest probability mass” prediction intervals being slightly preferable, as they are on
average shorter.

4.3. The OilWell data

The OilWell dataset was analyzed by Hohn (1999) with the goal of assessing oil abundance
in a field in the northwest shelf of the Delaware basin in New Mexico, USA. Oil wells were
drilled at 333 locations, with oil found at 100 locations (coded as 1), and oil not found at the
remaining locations (coded as 0). The result is a spatial binary dataset in which there were
no covariates. The original region with irregular borderlines was rescaled to a central area
of about 65 square kilometers. The goal of the analysis is to estimate the probability of oil
presence at many unsampled locations. This will help engineers decide where to drill in the
future to assess the economic potential of the oil field. Preliminary analyses and information
criteria suggest that the fitted model lacks a nugget effect and that an exponential correlation
function fits this dataset better than the spherical correlation function and other correlation
functions from the Matérn family. This is consistent with the analysis in Hohn (1999) using
indicator kriging. We compute the predictive distribution of the response at each location
on a 40 × 40 grid covering the study area. Due to the binary nature of the response, the
predictive distribution of Y (s0) is determined by a single number, the conditional probability
of oil occurrence given the data. This is computed using gcKrig with parallel computing
using both the GHK and GQT methods. The code below computes both the probability of
oil occurrence at 1600 locations and their corresponding prediction variances using the GHK
method. It also computes the top graphs in Figures 4 and 5. Replacing the argument method
= "GHK" with method = "GQT" will generate the bottom graphs in Figures 4 and 5.

R> data("OilWell", package = "gcKrig")
R> gridstep <- seq(0.5, 30.5, length = 40)
R> locOilpred <- data.frame(Easting = expand.grid(gridstep, gridstep)[, 1],
+ Northing = expand.grid(gridstep, gridstep)[, 2])
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Figure 4: Probability of abundance of crude oil predictive map using GHK method (top) and
GQT method (bottom) based on 333 existing drills. Circles represent successful drills and
dots represent unsuccessful drills.
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Figure 5: Map of uncertainty about the predictive probabilities using GHK method (top) and
GQT method (bottom) based on 333 existing drills. Circles represent successful drills and
dots represent unsuccessful drills.
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R> PredOil <- predgc(obs.y = OilWell[, 3], obs.locs = OilWell[, 1:2],
+ pred.locs = locOilpred, marginal = binomial.gc(link = "logit"),
+ corr = matern.gc(nugget = FALSE), obs.effort = 1,
+ pred.effort = 1, method = "GHK",
+ parallel = TRUE, paralleloptions = list(n.cores = 4))
R> PredMat <- summary(PredOil)
R> library("colorspace")
R> filled.contour(seq(0.5, 30.5, length = 40),
+ seq(0.5, 30.5, length = 40), matrix(PredMat$predMean, 40),
+ zlim = c(0, 1), col = rev(heat_hcl(12)), nlevels = 12,
+ xlab = "Eastings (km)", ylab = "Northings (km)",
+ plot.axes = {axis(1); axis(2); points(OilWell[, 1:2], col = 1,
+ cex = 0.2 + 0.4 * OilWell[, 3])})
R> filled.contour(seq(0.5, 30.5, length = 40),
+ seq(0.5, 30.5, length = 40), matrix(PredMat$predVar, 40),
+ zlim = c(0, 0.3), col = rev(heat_hcl(12)), nlevels = 10,
+ xlab = "Eastings (km)", ylab = "Northings (km)",
+ plot.axes = {axis(1); axis(2); points(OilWell[, 1:2],
+ col = 1, cex = 0.2 + 0.4 * OilWell[, 3])})

The computation of the above predictive distributions at 1600 locations based on 4 cores
took about 556 seconds for the GHK method and 172 seconds for the GQT method; these
include both the estimation and prediction time. In general terms both methods provide
similar results. It is more likely to have a successful drill in the areas where the majority
of the existing drills were successful, and it is unlikely to have a successful drill in the areas
surrounded by dry wells. Also, the predictive variances are smaller in the places where the
prediction locations are closer to sampling locations, especially in the areas containing mostly
only one type of well (successful or unsuccessful). But there are two main differences between
the maps obtained by these methods. The map of the probability of oil occurrence obtained
from the GHK method is smoother than that obtained from the GQT method, and the
predictive uncertainty measures from the GQT method are smaller; the latter are likely to
underestimate the true prediction uncertainty. This illustrates the inaccuracy of the GQT
method, alluded to in Sections 2.1 and 2.2, when the “discreteness” in the data is extreme.

5. Comparison with other packages
In this section we provide a comparison between gcKrig and two other R packages, mvtnorm
and gcmr. The package mvtnorm (Genz et al. 2018) approximates general n-dimensional
integrals of normal (and t) densities, Equation 7 being a special case, using a quasi-Monte
Carlo method; Nikoloulopoulos (2013) used it to make inference about Gaussian copula models
with discrete marginals. The package gcmr (Masarotto and Varin 2017, 2018) can fit Gaussian
copula models to longitudinal, time series and spatial data, with both continuous and discrete
marginals. It uses the GHK method when fitting the models to discrete data. The packages
are compared by fitting a simulated dataset over the region [0, 1]× [0, 1], with 121 sampling
locations forming a regular 11 × 11 grid. The model for the simulated data has negative
binomial marginals with mean function exp(1 + 0.5x + y), s = (x, y), overdispersion 1 and
correlation function of the latent field exp(−‖s− u‖/0.3) (no nugget).



Journal of Statistical Software 23

R> xloc <- rep(seq(0, 1, by = 0.1), 11)
R> yloc <- rep(seq(0, 1, by = 0.1), each = 11)
R> simD <- as.matrix(dist(cbind(xloc, yloc)))
R> set.seed(321)
R> simData1 <- simgc(locs = cbind(xloc, yloc), sim.n = 1,
+ marginal = negbin.gc(mu = exp(1 + 0.5 * xloc + yloc), od = 1),
+ corr = matern.gc(range = 0.3, nugget = 0))
R> simDf1 <- data.frame(xloc = xloc, yloc = yloc, data = simData1$data)

Since mvtnorm is not specifically designed to make inference about Gaussian copula models,
the function below calls mvtnorm for the evaluation of the log-likelihood of the parameters
of the aforementioned model.

R> QMCLik <- function(v) {
+ mu <- exp(v[1] + v[2] * xloc + v[3] * yloc)
+ lower <- qnorm(pnbinom(q = simDf1$data - 1, size = 1/v[4], mu = mu))
+ upper <- qnorm(pnbinom(q = simDf1$data, size = 1/v[4], mu = mu))
+ R <- exp(-simD/v[5])
+ set.seed(1234)
+ lik <- -log(mvtnorm::pmvnorm(lower = lower, upper = upper,
+ mean = rep(0, length(lower)), sigma = R)[1])
+ return(lik)
+ }

The code below fits the aforementioned Gaussian copula model to the simulated data simDf1
using mvtnorm, gcmr and gcKrig. For the latter, both GHK and GQT methods are used.
The same initial values are used in all fits.

R> est1 <- MASS::glm.nb(data ~ xloc + yloc, data = simDf1)
R> start0 <- c(coef(est1), 1/est1$theta, median(simD)/2)
R> EPS <- .Machine$double.eps
R> library("mvtnorm")
R> library("numDeriv")
R> t0 <- proc.time()
R> GBFit <- optim(par = start0, fn = QMCLik, gr = NULL,
+ method = c("L-BFGS-B"), lower = c(-Inf, -Inf, -Inf, EPS, EPS),
+ upper = c(Inf, Inf, Inf, Inf, Inf))
R> tGB <- proc.time() - t0
R> HessGB <- hessian(QMCLik, x = GBFit$par)
R> sdGB <- sqrt(diag(solve(HessGB)))
R> library("gcmr")
R> t0 <- proc.time()
R> gcmrGHK <- gcmr(data ~ xloc + yloc, data = simDf1,
+ marginal = negbin.marg(link = "log"),
+ cormat = matern.cormat(D = simD),
+ options = gcmr.options(seed = 123, nrep = c(100, 1000)))
R> tgcmr <- proc.time() - t0
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Parameter gcmr gcKrig-GHK gcKrig-GQT mvtnorm
β0 1.423 (0.463) 1.442 (0.458) 1.434 (0.467) 1.422 (0.590)
β1 0.553 (0.511) 0.538 (0.506) 0.519 (0.521) 0.553 (0.561)
β2 0.672 (0.521) 0.665 (0.518) 0.656 (0.540) 0.673 (0.573)
σ2 0.550 (0.314) 0.544 (0.297) 0.615 (0.350) 0.551 (0.370)
θ 0.205 (0.094) 0.203 (0.090) 0.227 (0.107) 0.206 (0.120)
Log-likelihood −357.60 −357.60 −357.37 −357.56
Time (seconds) 15.7 13.0 4.5 431.0

Table 3: Parameter estimates with estimated standard deviations in parenthesis and the log-
likelihoods evaluated at the parameter estimates using different methods/packages, as well as
the corresponding computational times.

R> library("gcKrig")
R> t0 <- proc.time()
R> gcKrigGHK <- mlegc(y = simDf1[, 3], x = simDf1[, 1:2],
+ locs = cbind(xloc,yloc), method = "GHK",
+ marginal = negbin.gc(link = "log"),
+ corr = matern.gc(nugget = FALSE),
+ ghkoptions = list(nrep = c(100, 1000), seed = 123))
R> tgcKrigGHK <- proc.time() - t0
R> t0 <- proc.time()
R> gcKrigGQT <- mlegc(y = simDf1[, 3], x = simDf1[, 1:2],
+ locs = cbind(xloc,yloc), method = "GQT",
+ marginal = negbin.gc(link = "log"),
+ corr = matern.gc(nugget = FALSE))
R> tgcKrigGQT <- proc.time() - t0

Table 3 collects the results. Both the estimates and their standard errors (in parentheses)
are quite similar for all the packages. On the other hand, the running time of mvtnorm is
substantially larger than those of the others. The running times of gcmr and gcKrig with the
GHK method are about the same, while gcKrig with the GQT method runs in less than half
of the time. Then, the latter is a useful option when fitting moderately large datasets.
When comparing gcmr and gcKrig in terms of other capabilities, we note that gcKrig can
perform predictive inference at unobserved locations, as well as computation of the correlation
function of the random field of counts and Fréchet-Hoeffding upper bounds, while these tasks
are not available in gcmr. On the other hand, gcmr computes a type of residuals relevant for
assessing the fit of Gaussian copula models, while gcKrig does not (currently) perform this
task.
Finally, we note that the current version of gcmr does not seem to handle adequately cor-
relation functions that include a nugget effect. Although the currently available options for
the correlation structure in gcmr do not include a nugget effect in the correlation matrix, the
user can write a function of class ‘cormat.gcmr’ that includes a nugget effect; see Masarotto
and Varin (2017). But when we explored this for several simulated datasets, the estimated
nugget parameter turned out to be negative for some datasets, mostly when the true nugget
parameter was close to zero. This is presumably due to the optimization algorithm used in
gcmr not constraining the nugget parameter to be in [0, 1].
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6. Conclusions
In this work we described the use of the R package gcKrig for the analysis of geostatistical
count data using Gaussian copulas. The package implements most of the main tasks com-
monly required in the analysis of this kind of data: simulation and visualization, parameter
(point and interval) estimation, spatial (point and interval) prediction, and computation of
the correlation function of the process of counts. The inferential tasks rely either on an accu-
rate approximation to the likelihood (the GHK simulator) or on a surrogate likelihood (the
GQT method); the latter is appealing for the analysis of moderately large datasets. The
package implements the computationally intensive tasks in C++ using an R/C++ interface,
and has parallel computing capabilities to predict the response at multiple locations simulta-
neously. Nevertheless, the more accurate method based on the GHK simulator cannot handle
large datasets effectively. Hence, we plan to enhance the package in the future with the im-
plementation of methods to base inference on pairwise likelihoods or other efficient surrogate
likelihoods.
Another possible modeling approach is the use of copulas based on graphical models called
vines, along the lines described in Panagiotelis, Czado, and Joe (2012). Gräler (2014) and
Erhardt, Czado, and Schepsmeier (2015a,b) used this approach for the modeling of geosta-
tistical continuous data, which is implemented in the R packages spcopula (Gräler 2017) and
VineCopula (Schepsmeier, Stoeber, Brechmann, Graeler, Nagler, and Erhardt 2018). The
application of this approach to the modeling of geostatistical count data seems a promising
topic of future research.
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A. Specification prototypes
This appendix provides prototypes for users to specify marginals, link functions and corre-
lation functions. We first show how to construct a marginal of class ‘marginal.gc’ with a
user-defined link function. Then, we provide source code as an example on how to specify
correlation functions of class ‘corr.gc’. These prototypes serve as templates and can be
easily modified by interested users to construct user-defined marginals, link functions and
correlation functions that are not yet available in the package gcKrig.

A.1. Specification of a new marginal of class ‘marginal.gc’
This example provides the source code for specifying the binomial distribution with link
function t and df.t degrees of freedom as marginal of class ‘marginal.gc’. This function can
be an input for the argument marginal in the functions simgc(), corrTG(), mlegc() and
predgc(), and serves as prototype to construct user-defined marginals and link functions.

binomial_t.gc <- function(df.t = 6, size = NULL, prob = NULL)
{

ans <- list()
ans$discrete <- TRUE
if(is.null(size) & is.null(prob)){

ans$start <- function(y, x, effort) {
mfit <- suppressWarnings(glm.fit(x, y/effort,

family = binomial(link = "logit")))
reg0 <- coef(mfit)
glb <- qnorm(pbinom(y - 1, size = effort, prob = fitted(mfit)))
gub <- qnorm(pbinom(y, size = effort, prob = fitted(mfit)))
names(reg0)[1] <- "Intercept"
return(reg0)

}
ans$nod <- 0
ans$bounds <- function(y, x, pars, effort) {

p <- pt(pars[1:ncol(x)]%*%t(x), df = df.t)
a <- qnorm(pbinom(y - 1, size = effort, prob = p))
b <- qnorm(pbinom(y, size = effort, prob = p))
return(list(lower = a, upper = b))

}
ans$pdf <- function(y, x, pars, effort){

p <- pt(pars[1:ncol(x)]%*%t(x), df = df.t)
pdf <- dbinom(y, size = effort, prob = p, log = FALSE)
return(pdf)

}
ans$cdf <- function(y, x, pars, effort){

p <- pt(pars[1:ncol(x)]%*%t(x), df = df.t)
cdf <- pbinom(y, size = effort, prob = p)
return(cdf)

}
}
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if(is.numeric(size) & is.numeric(prob))
{

q <- function(p) qbinom(p = p, size = size, prob = prob)
ans$margvar <- size*prob*(1-prob)
ans$int.marg <- function (order){

if(requireNamespace("EQL", quietly = TRUE)){
integrate(function(x, order)

ifelse((q(pnorm(x))==Inf | dnorm(x) < .Machine$double.eps), 0,
q(pnorm(x))*dnorm(x)*EQL::hermite(x, order, prob = TRUE)),

order = order, -8, 8, subdivisions = 1500,
rel.tol = 0.01, stop.on.error = FALSE)

}else{
stop("Please install {EQL} first!")

}
}
ans$rsample <- function(nrep){

rbinom(n = nrep, size = size, prob = prob)
}
ans$q <- q

}
class(ans) <- c("marginal.gc")
return(ans)

}

The output of this function is a list with the following components:

discrete indicates whether the marginal is discrete or not. For continuous marginals, the
package can only be used for data simulation and non-Gaussian correlation computation.
In this case, start, nod, bounds, pdf and cdf of the list are no longer needed.

start is a function of the response vector y, the matrix or data frame of the covariates x and
the sampling effort effort. The output of start() is a vector of the starting values
for marginal parameters.

nod indicates whether the marginal has an overdispersion parameter (nod = 1) or not (nod
= 0).

bounds is a function of the response vector y, the matrix or data frame of the covariates x,
the vector of parameters pars and the sampling efforts effort. This function computes
the upper and lower limits of the integral in Equation 7.

pdf is a function of the response vector y, the matrix or data frame of the covariates x, the
vector of parameters pars and the sampling efforts effort. This function returns a
vector of the marginal probabilities of all observations.

cdf is a function of the response vector y, the matrix or data frame of the covariates x, the
vector of parameters pars and the sampling efforts effort. This function returns a
vector of the marginal cumulative distribution function of all observations.
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margvar returns the variance of the distribution for the given set of parameters.

int.marg is a function that returns the coefficients in Equation 15.

rsample is a function that generates a random sample of size nrep from this distribution.

q is the quantile function defined above.

A.2. Specification of a new correlation of class ‘corr.gc’

This example provides the source code for specifying the power exponential correlation func-
tion of class ‘corr.gc’, which can be the input for the argument corr in the function simgc(),
mlegc() and predgc(). It serves as a prototype to construct different correlation functions
for geostatistical data simulation, model fitting and spatial prediction.

powerexp.gc <- function (range = NULL, kappa = 1, nugget = TRUE)
{

ans <- list()
if (kappa > 2)

stop("'Kappa' must be between 0 and 2")
if (is.null(range)) {

if (nugget == TRUE) {
ans$nug <- 1
ans$npar.cor <- 2
ans$start <- function(D) {

corstart <- c(median(D)/2, 0.2)
names(corstart) <- c("range", "nugget")
return(corstart)

}
ans$corr <- function(corrpar, D) {

S <- (1 - corrpar[2]) * exp(-abs((D/corrpar[1])^(kappa))) +
corrpar[2] * diag(NROW(D))

return(S)
}

}
else {

ans$nug <- 0
ans$npar.cor <- 1
ans$start <- function(D) {

corstart <- median(D)/2
names(corstart) <- "range"
return(corstart)

}
ans$corr <- function(corrpar, D) {

S <- exp(-abs((D/corrpar[1])^(kappa)))
return(S)

}
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}
}
if (is.numeric(range) & is.numeric(nugget)) {

ans$S <- function(D) (1 - nugget) * exp(-abs((D/range)^(kappa))) +
nugget * diag(NROW(D))

}
class(ans) <- c("corr.gc")
return(ans)

}

The output is a list with five components:

nug indicates whether the correlation model has a nugget parameter (nugget = TRUE) or not
(nugget = FALSE).

npar.cor indicates the number of correlation parameters to be estimated in the model,
except the nugget parameter.

start is a function of the distance matrix D that returns the starting values of the correlation
parameters for optimization.

corr is a function of the correlation parameter corrpar and the distance matrix D that
returns the formula of the correlation function. It is used for likelihood inference and
spatial prediction.

S is a function of the distance matrix D only, which specifies the correlation function. It is
used for simulation purpose only, in which both range and nugget are known.
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