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Abstract

This tutorial provides a gentle introduction to the particle Metropolis-Hastings (PMH)
algorithm for parameter inference in nonlinear state-space models together with a software
implementation in the statistical programming language R. We employ a step-by-step
approach to develop an implementation of the PMH algorithm (and the particle filter
within) together with the reader. This final implementation is also available as the package
pmhtutorial from the Comprehensive R Archive Network (CRAN) repository. Throughout
the tutorial, we provide some intuition as to how the algorithm operates and discuss some
solutions to problems that might occur in practice. To illustrate the use of PMH, we
consider parameter inference in a linear Gaussian state-space model with synthetic data
and a nonlinear stochastic volatility model with real-world data.
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Monte Carlo, stochastic volatility model.

1. Introduction

We are concerned with Bayesian parameter inference in nonlinear state-space models (SSMs).
This is an important problem as SSMs are ubiquitous in, e.g., automatic control (Ljung 1999),
econometrics (Durbin and Koopman 2012), finance (Tsay 2005) and many other fields. An
overview of some concrete applications of state-space modeling is given by Langrock (2011).
The major problem with Bayesian parameter and state inference in SSMs is that it is an
analytically intractable problem, which cannot be solved in closed-form. Hence, approxi-
mations are required and these typically fall into two categories: analytical approximations
and statistical simulations. The focus of this tutorial is on a member of the latter category
known as particle Metropolis-Hastings (PMH; Andrieu, Doucet, and Holenstein 2010), which
approximates the posterior distribution by employing a specific Markov chain to sample from
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it. This requires us to be able to point-wise compute unbiased estimates of the posterior. In
PMH, these are provided by the particle filter (Gordon, Salmond, and Smith 1993; Doucet
and Johansen 2011), which is another important and rather general statistical simulation
algorithm.
The main aim and contribution of this tutorial is to give a gentle introduction (both in terms
of methodology and software) to the PMH algorithm. We assume that the reader is familiar
with traditional time series analysis and Kalman filtering at the level of Brockwell and Davis
(2002). Some familiarity with Monte Carlo approximations, importance sampling and Markov
chain Monte Carlo (MCMC) at the level of Ross (2012) is also beneficial.
The focus is on implementing the particle filter and PMH algorithms step-by-step in the
programming language R (R Core Team 2018). We employ literate programming1 to build
up the code using a top-down approach, see Section 1.1 in Pharr and Humphreys (2010).
The final implementation is available as a R package pmhtutorial (Dahlin 2019) distributed
under the GPL-2 license via the Comprehensive R Archive Network (CRAN) repository and
available at https://CRAN.R-project.org/package=pmhtutorial. The R source code is
also provided via GitHub with corresponding versions for MATLAB (The MathWorks Inc.
2017) and Python (Van Rossum et al. 2011) to enable learning by readers from many different
backgrounds, see Section 8 for details.
There are a number of existing tutorials which relate to this one. A thorough introduction
to particle filtering is provided by Arulampalam, Maskell, Gordon, and Clapp (2002), where
a number of different implementations are discussed and pseudo-code provided to facilitate
implementation. This is an excellent start for the reader who is particularly interested in
particle filtering. However, they do not discuss nor implement PMH. The software LibBi
and the connected tutorial by Murray (2015) includes high-performance implementations and
examples of particle filtering and PMH. The focus of the present tutorial is a bit different as it
tries to explain all the steps of the algorithms and provides basic implementations in several
different programming languages. Finally, Ala-Luhtala, Whiteley, Heine, and Piché (2016)
presents an advanced tutorial paper on twisted particle filtering. It also includes pseudo-code
for PMH but its focus is on particle filtering and does not discuss, e.g., how to tune the
proposal in PMH. We return to discuss related work and software throughout this tutorial in
Sections 3.3, 4.3, 6 and 7.
The disposition of this tutorial is as follows. In Section 2, we introduce the Bayesian parameter
and state inference problem in SSMs and discuss how and why the PMH algorithm works. In
Sections 3 and 4, we implement the particle filter and PMH algorithm for a toy model and
study their properties as well as give a small survey of results suitable for further study. In
Sections 5 and 6, the PMH implementation is adapted to solve a real-world problem from
finance. Furthermore, some more advanced modifications and improvements to PMH are
discussed and exemplified. Finally, we conclude this tutorial by Section 7 where related
software implementations are discussed.

1The skeleton of the code is outlined as a collection of different variables denoted by <variable>. These
parts of the code are then populated with content using a C++ like syntax. Hence, the operator = results in
the assignment of a piece of code to the relevant variable (overwriting what is already stored within it). On
the other hand, += denotes the operation of adding some additional code after the current code stored in the
variable. The reader is strongly encouraged to print the source code from GitHub and read it in parallel with
the tutorial to enable rapid learning of the material.

https://CRAN.R-project.org/package=pmhtutorial
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Figure 1: The structure of an SSM represented as a graphical model.

2. Overview of the PMH algorithm
In this section, we introduce the Bayesian inference problem in SSMs related to the param-
eters and the latent state. The PMH algorithm is then introduced to solve these intractable
problems. The inclusion of the particle filter into PMH is discussed from two complementary
perspectives: as an approximation of the acceptance probability and as auxiliary variables in
an augmented posterior distribution.

2.1. Bayesian inference in SSMs

In Figure 1, we present a graphical model of the SSM with the latent states (top), the
observations (bottom), but without exogenous inputs2. The latent state xt only depends on
the previous state xt−1 of the process as it is a (first-order) Markov process. That is, all the
information in the past states x0:t−1 , {xs}t−1

s=0 is summarized in the most recent state xt−1.
The observations y1:t are conditionally independent as they only relate to each other through
the states.
We assume that the state and observations are real-valued, i.e., yt ∈ Y ⊆ Rny and xt ∈ X ⊆
Rnx . The initial state x0 is distributed according to the density µθ(x0) parameterized by
some unknown static parameters θ ∈ Θ ⊂ Rp. The latent state and the observation processes
are governed by the densities3 fθ(xt|xt−1) and gθ(yt|xt), respectively. The density describing
the state process gives the probability that the next state is xt given the previous state xt−1.
An analogous interpretation holds for the observation process. With the notation in place, a
general nonlinear SSM can be expressed as

x0 ∼ µθ(x0), xt|xt−1 ∼ fθ(xt|xt−1), yt|xt ∼ gθ(yt|xt), (1)

where no notational distinction is made between a random variable and its realization.
The main objective in Bayesian parameter inference is to obtain an estimate of the parameters

2It is straightforward to modify the algorithms presented for vector valued quantities and also to include a
known exogenous input ut.

3In this tutorial, we assume that xt|xt−1 and yt|xt can be modeled as continuous random variables with
a density function. However, the algorithms discussed can be applied to deterministic states and discrete
states/observations as well.
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θ given the measurements y1:T by computing the parameter posterior (distribution) given by

πθ(θ) , p(θ|y1:T ) = p(θ)p(y1:T |θ)∫
Θ
p(θ′)p(y1:T |θ′)dθ′

,
γθ(θ)
Zθ

, (2)

where p(θ) and p(y1:T |θ) , pθ(y1:T ) denote the parameter prior (distribution) and the data
distribution, respectively. The un-normalized posterior distribution denoted by γθ(θ) =
p(θ)p(y1:T |θ) is an important component in the construction of PMH. The denominator Zθ is
usually referred to as the marginal likelihood or the model evidence.
The data distribution pθ(y1:T ) is intractable for most interesting SSMs due to the fact that
the state sequence is unknown. The problem can be seen by studying the decomposition

pθ(y1:T ) = pθ(y1)
T∏
t=2

pθ(yt|y1:t−1), (3)

where the so-called predictive likelihood is given by

pθ(yt|y1:t−1) =
∫
gθ(yt|xt)fθ(xt|xt−1)πt−1(xt−1)dxtdxt−1. (4)

The marginal filtering distribution πt−1(xt−1) , pθ(xt−1|y1:t−1) can be obtained from the
Bayesian filtering recursions (Anderson and Moore 2005), which for a fixed θ are given by

πt(xt) = gθ(yt|xt)
pθ(yt|y1:t−1)

∫
X
fθ(xt|xt−1)πt−1(xt−1) dxt−1, for 0 < t ≤ T, (5)

with π0(x0) = µθ(x0) as the initialization. In theory, it is possible to construct a sequence of
filtering distributions by iteratively applying (5). However in practice, this strategy cannot
be implemented for many models of interest as the marginalization over xt−1 (expressed by
the integral) cannot be carried out in closed form.

2.2. Constructing the Markov chain

The PMH algorithm offers an elegant solution to both of these intractabilities by leverag-
ing statistical simulation. Firstly, a particle filter is employed to approximate πt−1(xt−1)
and obtain point-wise unbiased estimates of the likelihood. Secondly, an MCMC algorithm
(Robert and Casella 2004) known as Metropolis-Hastings (MH) is employed to approximate
πθ(θ) based on the likelihood estimator provided by the particle filter. PMH emerges as the
combination of these two algorithms.
MCMC methods generate samples from a so-called target distribution by constructing a spe-
cific Markov chain, which can be used to form an empirical approximation. In this tutorial,
the target distribution will be either the parameter posterior πθ(θ) or the posterior of the
parameters and states πθ,T (θ, x0:T ) = p(θ, x0:T |y1:T ). We focus here on the former case and
the latter follows analogously. Executing the PMH algorithm results in K correlated samples
θ(1:K) , {θ(k)}Kk=1 which can be used to construct a Monte Carlo approximation of πθ(θ).
This empirical approximation of the parameter posterior distribution is given by

π̂Kθ (dθ) = 1
K

K∑
k=1

δθ(k)(dθ), (6)
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which corresponds to a collection of Dirac delta functions δθ′(dθ) located at θ = θ′ with equal
weights. In practice, histograms or kernel density estimators are employed to visualize the
estimate of the parameter posterior obtained from (6).
The construction of the Markov chain within PMH amounts to carrying out two steps to
obtain one sample from πθ(θ). The first step is to propose a so-called candidate parameter θ′
from a proposal distribution q(θ′|θ(k−1)) given the previous state of the Markov chain denoted
by θ(k−1). The user is quite free to choose this proposal but its support should cover the
support of the target distribution. The second step is to determine if the state of the Markov
chain should be changed to the candidate parameter θ′ or if it should remain in the previous
state θ(k−1). This decision is stochastic and the candidate parameter is assigned as the next
state of the Markov chain, i.e., {θ(k) ← θ′} with a certain acceptance probability α(θ′, θ(k−1))
which is given by

α
(
θ′, θ(k−1)) = min

{
1,

πθ
(
θ′
)

πθ
(
θ(k−1)) q

(
θ(k−1)∣∣θ′)

q
(
θ′
∣∣θ(k−1))

}
= min

{
1,

γθ
(
θ′
)

γθ
(
θ(k−1)) q

(
θ(k−1)∣∣θ′)

q
(
θ′
∣∣θ(k−1))

}
, (7)

where Zθ cancels as it is independent of the current state of the Markov chain. The stochastic
behavior introduced by (7) facilitates exploration of (in theory) the entire posterior and is
also the necessary condition for the Markov chain to actually have the target as its stationary
distribution. The latter is known as detailed balance which ensures that the Markov chain
is reversible and has the correct stationary distribution. That is, to ensure that the samples
generated by PMH actually are from πθ(θ).
Hence, the stochastic acceptance decision can be seen as a correction of the Markov chain
generated by the proposal distribution. The stationary distribution of the corrected Markov
chain is the desired target distribution. In a sense this is similar to importance sampling,
where samples from a proposal distribution are corrected by weighting to be approximately
distributed according to the target distribution.
The intuition for the acceptance probability (7) (disregarding the influence of the proposal
q) is that we always accept a candidate parameter θ′ if πθ

(
θ′
)
> πθ

(
θ(k−1)). That is if θ′

increases the value of the target compared with the previous state θ(k−1). This results in a
mode-seeking behavior which is similar to that of an optimization algorithm estimating the
maximum of the posterior distribution. However from (7), we also note that a small decrease
in the posterior value can be accepted to facilitate exploration of the entire posterior. This is
the main difference between PMH and that of an optimization algorithm, where the former
focus on mapping the entire posterior whereas the latter only would like to find the location
of its mode.

2.3. Approximating test functions

In Bayesian parameter inference, the interest often lies in computing the expectation of a
so-called test function, which is a well-behaved (integrable) function ϕ : Θ → Rnϕ mapping
the parameters to a value on the real space. The expectation with respect to the parameter
posterior is given by

πθ[ϕ] , E
[
ϕ(θ)

∣∣y1:T
]

=
∫

Θ
ϕ(θ)πθ(θ) dθ, (8)
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where, e.g., choosing ϕ(θ) = θ corresponds to computing the mean of the parameter posterior.
The expectation in (8) can be estimated via the empirical approximation in (6) according to

π̂Kθ [ϕ] ,
∫

Θ
ϕ(θ)π̂Kθ (dθ) = 1

K

K∑
k=1

∫
Θ
ϕ(θ)δθ(k)(dθ) = 1

K

K∑
k=1

ϕ
(
θ(k)), (9)

where the last equality follows from the properties of the Dirac delta function. This estimator
is well-behaved and it is possible to establish a law of large numbers (LLN) and a central limit
theorem (CLT), see Meyn and Tweedie (2009) for more information. From the LLN, we know
that the estimator is consistent (and asymptotically unbiased as K → ∞). Moreover from
the CLT, we know that the error is approximately Gaussian with a variance decreasing by
1/K, which is the usual Monte Carlo rate. Note that the LLN usually assumes independent
samples but a similar result known as the ergodic theorem gives a similar result (under some
assumptions) even when θ(1:K) are correlated4. However, the asymptotic variance is usually
larger than if the samples would be uncorrelated.

2.4. Approximating the acceptance probability

One major obstacle remains to be solved before the PMH algorithm can be implemented. The
acceptance probability (7) is intractable and cannot be computed as the likelihood is unknown.
From above, we know that the particle filter can provide an unbiased point-wise estimator
for the likelihood and therefore also the posterior πθ(θ). It turns out that the unbiasedness
property is crucial for PMH to be able to provide a valid empirical approximation of πθ(θ).
This approach is known as an exact approximation due to that the likelihood is replaced by
an approximation but the algorithm stills retains its validity, see Andrieu and Roberts (2009)
for more information.
The particle filter generates a set of samples from πt(xt) for each t, which can be used to
create an empirical approximation. These samples are generated by sequentially applying
importance sampling to approximate the solution to (5). The approximation of the filtering
distribution is then given by

π̂Nt (dxt) , p̂Nθ (dxt|y1:t) =
N∑
i=1

v
(i)
t∑N

j=1 v
(j)
t︸ ︷︷ ︸

,w(i)
t

δ
x

(i)
t

(dxt), (10)

where the particles x(i)
t and their normalized weights w(i)

t constitute the so-called particle
system generated during a run of the particle filter. The un-normalized weights are denoted by
v

(i)
t . It is possible to prove that the empirical approximation converges to the true distribution
when N →∞ under some regularity assumptions5.

4The theoretical details underpinning MH have been deliberately omitted. For the ergodic theorem to hold,
the Markov chain needs to be ergodic, which means that the Markov chain should be able to explore the entire
state-space and not get stuck in certain parts of it. The interested reader can find more about the theoretical
details in, e.g., Tierney (1994) and Meyn and Tweedie (2009) for MH and Andrieu et al. (2010) for PMH.

5Again we have omitted many of the important theoretical details regarding the particle filter. For more
information about these and many other important topics related to this algorithm, see, e.g., Crisan and
Doucet (2002) and Doucet and Johansen (2011).
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The likelihood can then be estimated via the decomposition (3) by inserting the empirical
filtering distribution (10) into (4). This results in the estimator

p̂Nθ (y1:T ) = p̂Nθ (y1)
T∏
t=2

p̂Nθ (yt|y1:t−1) =
T∏
t=1

[
1
N

N∑
i=1

v
(i)
t

]
, (11)

where a point-wise estimate of the un-normalized parameter posterior is given by

γ̂Nθ (θ) = p(θ)p̂Nθ (y1:T ). (12)

Here, it is assumed that the prior can be computed point-wise by closed-form expressions.
The acceptance probability (7) can be approximated by plugging in (12) resulting in

α
(
θ′, θ(k−1)) = min

{
1, γ̂Nθ (θ′)
γ̂Nθ (θ(k−1))

q
(
θ(k−1)∣∣θ′)

q
(
θ′
∣∣θ(k−1))

}

= min
{

1, p(θ′)
p(θ(k−1))

p̂Nθ′ (y1:T )
p̂N
θ(k−1)(y1:T )

q
(
θ(k−1)∣∣θ′)

q
(
θ′
∣∣θ(k−1))

}
. (13)

This approximation is only valid if p̂Nθ (y1:T ) is an unbiased estimator of the likelihood. Fortu-
nately, this is the case when employing the particle filter as its likelihood estimator is unbiased
(Del Moral 2013; Pitt, Silva, Giordani, and Kohn 2012) for any N ≥ 1.
As in the parameter inference problem, interest often lies in computing an expectation of a
well-behaved test function ϕ : X → Rnϕ with respect to πt(xt) given by

πt[ϕ] , E
[
ϕ(xt)

∣∣y1:t
]

=
∫
X
ϕ(xt)πt(xt) dxt,

where again choosing the test function ϕ(xt) = xt corresponds to computing the mean of the
marginal filtering distribution. This expectation is intractable as πt(xt) is unknown. Again,
we replace it with an estimate provided by an empirical approximation (10), which results in

π̂Nt [ϕ] ,
∫
X
ϕ(xt)π̂Nt (dxt) =

N∑
i=1

w
(i)
t

∫
X
ϕ(xt)δx(i)

t

(dxt) =
N∑
i=1

w
(i)
t ϕ

(
x

(i)
t

)
, (14)

for some 0 ≤ t ≤ T by the properties of the Dirac delta function. In the subsequent sections,
we are especially interested in the estimator for the mean of the marginal filtering distribution,

x̂Nt , π̂Nt [x] =
N∑
i=1

w
(i)
t x

(i)
t , (15)

which is referred to as the filtered state estimate.
Under some assumptions, the properties of π̂Nt [ϕ] are similar as for the estimator in the
PMH algorithm, see Crisan and Doucet (2002) and Doucet and Johansen (2011) for more
information. Hence, we have that the estimator is consistent (and asymptotically unbiased
when N →∞) and the error is Gaussian with a variance decreasing by 1/N .
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2.5. Outlook: Pseudo-marginal algorithms

The viewpoint adopted in the previous discussion on PMH is that it is an MH algorithm which
employs a particle filter to approximate the otherwise intractable acceptance probability.
Another more general viewpoint is to consider PMH as a pseudo-marginal algorithm (Andrieu
and Roberts 2009). In this type of algorithm, some auxiliary variables are introduced to
facilitate computations but these are marginalized away during a run of the algorithm.
This results in that the PMH algorithm can be seen as a standard MH algorithm operating
on the non-standard extended space Θ× U , where Θ and U denote the parameter space and
the space of the auxiliary variables, respectively. The resulting extended target is given by

πθ,u(θ, u) = π̂Nθ (θ|u)m(u). (16)

Here, the parameter posterior is augmented with u ∈ U which denotes some multivariate
random variables with density m(u). From the discussion above, we know that u can be used
to construct a point-wise estimator of π̂Nθ (θ|u) via the particle filter by (12).
The unbiasedness property of the likelihood estimator based on the particle filter gives

Eu
[
γ̂Nθ (θ|u)

]
=
∫
U
γ̂Nθ (θ|u)m(u) du = γθ(θ). (17)

This means that the un-normalized parameter posterior γθ(θ) can be recovered by marginaliz-
ing over all the auxiliary variables u. In the implementation, this results in that the sampled
values for u simply can be disregarded. Hence, we will not store them in the subsequent
implementations but only keep the samples of θ (and xt).
We conclude by deriving the pseudo-marginal algorithm following from (16). A proposal for
θ and u is selected with the form

q
(
θ′, u′

∣∣θ(k−1), u(k−1)
)

= qθ
(
θ′
∣∣θ(k−1), u(k−1)

)
qu
(
u′
∣∣u(k−1)

)
, (18)

which is the product of the two proposals selected as

qθ
(
θ′
∣∣θ(k−1), u(k−1)

)
= qθ

(
θ′
∣∣θ(k−1)

)
, qu

(
u′
∣∣u(k−1)

)
= m(u′). (19)

This corresponds to an independent proposal for u and a proposal for θ that does not include
u. Other options are a topic of current research, see Section 4.3 for some references. The
resulting acceptance probability from this choice of target and proposal is given by

α(θ′, u′, θ(k−1), u(k−1)) = min
{

1, πθ,u(θ′, u′)
πθ,u(θ(k−1), u(k−1))

q(θ(k−1), u(k−1)|θ′, u′)
q(θ′, u′|θ(k−1), u(k−1))

}

= min
{

1, γ̂Nθ (θ′|u′)
γ̂Nθ (θ(k−1)|u(k−1))

qθ(θ(k−1)|θ′)
qθ(θ′|θ(k−1))

}
,

Note that the resulting acceptance probability is the same as in (13).
These arguments provide a sketch of the proof that PMH generates samples from the target
distribution and were first presented by Flury and Shephard (2011). For a more formal
treatment and proof of the validity of PMH, see Andrieu and Roberts (2009) and Andrieu
et al. (2010).
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Figure 2: Simulated data from the LGSS model with latent state (orange), observations
(green) and autocorrelation function (ACF) of the observations (light green).

3. Estimating the states in a linear Gaussian SSM
We are now ready to start implementing the PMH algorithm based on the material in Sec-
tion 2. To simplify the presentation, this section discusses how to estimate the filtering
distributions {πt(xt)}Tt=0 for a linear Gaussian state-space (LGSS) model. These distribu-
tions can be used to compute x̂N0:T and p̂Nθ (y1:T ), i.e., the estimates of the filtered state and
the estimate of the likelihood, respectively. The parameter inference problem is treated in
the subsequent section.
The particular LGSS model considered is given by

x0 ∼ δx0(x), xt|xt−1 ∼ N
(
xt;φxt−1, σ

2
v

)
, yt|xt ∼ N

(
yt;xt, σ2

e

)
, (20)

where parameters are denoted by θ = {φ, σv, σe}. φ ∈ (−1, 1) determines the persistence
of the state, while σv, σe ∈ R+ denote the standard deviations of the state transition noise
and the observation noise, respectively. The Gaussian density is denoted by N (x;µ, σ2) with
mean µ and standard deviation σ > 0. Figure 2 presents a simulated data record from the
model with T = 250 observations using θ = {0.75, 1.00, 0.10} and x0 = 0. The complete code
for the data generation is available in generateData.

3.1. Implementing the particle filter

The complete source code for the implementation of the particle filter is available in the
function particleFilter. Its code skeleton is given by:

particleFilter <- function(y, theta, noParticles, initialState) {
<initialization>
<initializeStates>
for (t in 2:T) {

<resampleParticles>
<propagateParticles>
<weightParticles>
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<normalizeWeights>
<estimateLikelihood>
<estimateState>

}
<returnEstimates>

}

The function particleFilter has the inputs: y (vector with T + 1 observations), theta
(parameters {φ, σv, σe}), noParticles and initialState. The outputs will be the esti-
mates of the filtered states x̂N0:T and the estimate of the likelihood p̂N (θ|y1:T ). Note that
particleFilter iterates over t = 2, . . . , T , which corresponds to time indices t = 1, . . . , T −1
in (20) as the numbering of vector elements starts from 1 in R. The iteration terminates at time
index T −1 as future observations yt+1 are required at each iteration. That is, we assume that
the new observation arrives to the algorithm between the propagation and weighting steps.
It therefore makes sense to use the information in the weighting step if this is possible.
<initialization> The particle filter is initialized by allocating memory for the variables:
particles, ancestorIndices, weights and normalizedWeights. These correspond to the
particles, their ancestor, un-normalized weights and normalized weights, respectively. More-
over, the two variables xHatFiltered and logLikelihood are allocated to store x̂N0:T and
log p̂N (θ|y1:T ), respectively. This is all implemented by:

<initialization> =
T <- length(y) - 1

particles <- matrix(0, nrow = noParticles, ncol = T + 1)
ancestorIndices <- matrix(0, nrow = noParticles, ncol = T + 1)
weights <- matrix(1, nrow = noParticles, ncol = T + 1)
normalizedWeights <- matrix(0, nrow = noParticles, ncol = T + 1)
xHatFiltered <- matrix(0, nrow = T, ncol = 1)
logLikelihood <- 0

<initializeStates> For the LGSS model (20), we have that µθ(x0) = δ0(x0) so all the
particles are initially set to x(1:N)

0 = x0 = 0 and all weights to w(1:N)
0 = 1/N (as all particles

are identical). This operation is implemented by:

<initializeStates> =
ancestorIndices[, 1] <- 1:noParticles
particles[, 1] <- initialState
xHatFiltered[, 1] <- initialState
normalizedWeights[, 1] = 1 / noParticles

<resampleParticles> The particles in the filter corresponds to a number of different hy-
potheses of what the value of the latent state could be. The weights represents the probability
that a given particle has generated the observation under the model. In the resampling step,
this information is used to focus the computational effort of the particle filter to the relevant
part of the state-space, i.e., to particles with a large weight.
This is done by randomly duplicating particles with large weights and discarding particles with
small weights, such that the total number of particles always remains the same. Note that,
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the resampling step is unbiased in the sense that the expected proportions of the resampled
particles are given by the particle weights6. This step is important as the particle system
otherwise would consist of only a single unique particle after a few iterations. This would
result in a large variance in (14).
In our implementation, we make use of multinomial resampling, which is also known as a
weighted bootstrap with replacement. The output from this procedure are the so-called
ancestor indices a(i)

t for each particle i, which can be interpreted as the parent index of
particle i at time t. For each i = 1, . . . , N , the ancestor index is sampled from the multinomial
(categorical) distribution with

P
[
a

(i)
t = j

]
= w

(j)
t−1, j = 1, . . . , N.

The resampling step is implemented by a call to the function sample by:

<resampleParticles> =
newAncestors <- sample(noParticles, replace = TRUE,

prob = normalizedWeights[, t - 1])
ancestorIndices[, 1:(t - 1)] <- ancestorIndices[newAncestors, 1:(t - 1)]
ancestorIndices[, t] <- newAncestors

where the resulting ancestor indices a(1:N)
t are returned as newAncestors and stored in

ancestorIndices for bookkeeping. Note that the particle lineage is also resampled at the
same time as the particles. All this is done to keep track of the genealogy of the particle
system over time. That is, the entire history of the particle system.
<propagateParticles> The hypotheses regarding the state are updated by propagating the
particle system forward in time by using the model. This corresponds to sampling from the
particle proposal distribution to generate new particles x(i)

t by

x
(i)
t |x

a
(i)
t
t−1 ∼ pθ

(
x

(i)
t

∣∣xa(i)
t
t−1, yt

)
, (21)

where information from the previous particle xa
(i)
t
t−1 and the current measurement yt can be

included. There are a few different choices for the particle proposal and the most common one
is to make use of the model itself, i.e., pθ(xt|xt−1, yt) = fθ(xt|xt−1). However for the LGSS
model, an optimal proposal can be derived using the properties of the Gaussian distribution
resulting in

popt
θ

(
x

(i)
t

∣∣xa(i)
t
t−1, yt

)
∝ gθ(yt

∣∣xt)fθ(xt∣∣xa(i)
t
t−1

)
= N

(
x

(i)
t ;σ2

[
σ−2
e yt + σ−2

v φx
a

(i)
t
t−1

]
, σ2

)
, (22)

with σ−2 = σ−2
v + σ−2

e . This particle proposal is optimal in the sense that it minimizes
the variance of the incremental particle weights at the current time step7. For most other

6This unbiasedness property is crucial for the PMH algorithm to be valid. As a consequence, adaptive
methods (Doucet and Johansen 2011, Section 3.5) that only resamples the particle system at certain iterations
cannot be used within PMH.

7However, it is unclear exactly how this influences the entire particle system, i.e., if this is the globally
optimal choice.
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SSMs, the optimal proposal is intractable and the state transition model is used instead. The
propagation step is implemented by:

<propagateParticles> =
part1 <- (sigmav^(-2) + sigmae^(-2))^(-1)
part2 <- sigmae^(-2) * y[t]
part2 <- part2 + sigmav^(-2) * phi * particles[newAncestors, t - 1]
particles[, t] <- part1 * part2 + rnorm(noParticles, 0, sqrt(part1))

From (22), the ratio between the noise variances is seen to determine the shape of the proposal.
Essentially, there are two different extreme situations (i) σ2

e/σ
2
v � 1 and (ii) σ2

e/σ
2
v � 1. In

the first extreme (i), the location of the proposal is essentially governed by yt and the scale is
mainly determined by σe. This corresponds to essentially simulating particles from gθ(yt|xt).
When σe is small this usually allows for running the particle filter using only a small number of
particles. In the second extreme (ii), the proposal essentially simulates from fθ(xt|xt−1) and
does not take the observation into account. In summary, the performance and characteristics
of the optimal proposal are therefore related to the noise variances of the model and their
relative sizes.
<weightParticles> and <normalizeWeights> In these steps, the weights required for the
resampling step are computed. The weights can be computed using different so-called weight-
ing functions and a standard choice is the observation model, i.e., vt(xt) = gθ(yt|xt). However
for the LGSS model, we can instead derive an optimal weighting function by again applying
the properties of the Gaussian distribution to obtain

v
(i)
t , p(yt+1|x(i)

t ) =
∫
gθ
(
yt+1

∣∣xt+1
)
fθ
(
xt+1

∣∣x(i)
t

)
dxt+1 = N

(
yt+1;φx(i)

t , σ
2
v + σ2

e

)
.

Remember that in this implementation, the new observation yt+1 is introduced in the particle
filter between the propagation and the weighting steps for the first time. This is the reason
for the slightly complicated choice of time indices. However, the inclusion of the information
in yt+1 in this step is beneficial as it improves the accuracy of the filter. That is, we keep
particles that after propagation are likely to result in the observation yt+1.
In many situations, the resulting weights are small and it is therefore beneficial to work with
shifted log-weights to avoid problems with numerical precision. This is done by applying the
transformation

ṽ
(i)
t = log v(i)

t − vmax, for i = 1, . . . , N,

where vmax denotes the largest element in log v(1:N)
t . The weights are then normalized (en-

suring that they sum to one) by

w
(i)
t =

exp
(
ṽ

(i)
t

)
∑N
j=1 exp

(
ṽ

(j)
t

) =
exp(−vmax) exp

(
log v(i)

t

)
exp(−vmax)

∑N
j=1 exp

(
log v(j)

t

) = v
(i)
t∑N

j=1 v
(j)
t

, (23)

where the shifts −vmax cancel and do not affect the relative sizes of the weights. Hence,
the first and third expressions in (23) are equivalent but the first expression enjoys better
numerical precision. The computation of the weights is implemented by:
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<weightParticles> =
yhatMean <- phi * particles[, t]
yhatVariance <- sqrt(sigmae^2 + sigmav^2)
weights[, t] <- dnorm(y[t + 1], yhatMean, yhatVariance, log = TRUE)

<normalizeWeights> =
maxWeight <- max(weights[, t])
weights[, t] <- exp(weights[, t] - maxWeight)
sumWeights <- sum(weights[, t])
normalizedWeights[, t] <- weights[, t] / sumWeights

We remind the reader that we compare y[t+1] and particles[, t] due to the convention
for indexing arrays in R, which corresponds to yt and x(1:N)

t−1 in the model, respectively. This
is also the reason for the comment regarding the for-loop in particleFilter. We now see
that the weights depend on the next observation and that is why the loop needs to run to
T − 1 and not T .
<estimateLikelihood> The likelihood p(θ|y1:t) can be estimated by inserting the un-normalized
weights into (11). However, it is beneficial to instead estimate the log-likelihood to enjoy bet-
ter numerical precision as the likelihood often is small. This results in rewriting (11) to obtain
the recursion

log p̂Nθ (y1:t) = log p̂Nθ (y1:t−1) +
{
vmax + log

[
N∑
i=1

exp
(
ṽ

(i)
t

)]
− logN

}
,

where the log-shifted weights are used to increase the numerical precision. Note that the shift
by vmax needs to be compensated for in the estimation of the log-likelihood. This recursion
is implemented by:

<estimateLikelihood> =
predictiveLikelihood <- maxWeight + log(sumWeights) - log(noParticles)
logLikelihood <- logLikelihood + predictiveLikelihood

The estimate of the posterior distribution follows from inserting the estimate of the log-
likelihood into (12).
<estimateState> The latent state xt at time t can be estimated by (15) given the observations
y1:(t+1), which corresponds to the estimator

x̂Nt = 1
N

N∑
i=1

x
(i)
t , (24)

which is implemented by:

<estimateState> =
xHatFiltered[t] <- mean(particles[, t])

Note that this corresponds to the weights w(i)
t = 1/N which would correspond to that all

particles are identical according to the expression in (23). However, this is not the case
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Number of particles (N) 10 20 50 100 200 500 1000
log-bias −3.70 −3.96 −4.57 −4.85 −5.19 −5.67 −6.08
log-MSE −6.94 −7.49 −8.72 −9.29 −9.91 −10.87 −11.67

Table 1: The log-bias and the log-MSE of the filtered states for varying N .

in general and the estimator (24) is the result of making use of the optimal choices in the
propagation and weighing steps of the particle filter. This choice corresponds to a particular
type of algorithm known as the fully-adapted particle filter (faPF; Pitt and Shephard 1999),
see Section 3.3 for more details. In a faPF, we make use of separate weights in the resampling
step and when constructing the empirical approximation of πt(xt). In Section 5, we introduce
another type of particle filter with another estimator for x̂Nt , which can be used for most
SSMs.
<returnEstimates> The outputs from particleFilter are returned by:

<returnEstimates> =
list(xHatFiltered = xHatFiltered, logLikelihood = logLikelihood)

3.2. Numerical illustration

We make use of the implementation of particleFilter to estimate the filtered state and
to investigate the properties of this estimate for finite N . The complete implementation is
found in the script/function example1_lgss. We use the data presented in Figure 2, which
was generated in the beginning of this section. The estimates from the particle filter are
compared with the corresponding estimates from the Kalman filter. The latter follows from
using the properties of the Gaussian distribution to solve (5) exactly, which is only possible
for an LGSS model.
In the middle of Figure 3, we present the difference between the optimal state estimate from
the Kalman filter and the estimate from the particle filter using N = 20 particles. Two
alternative measures of accuracy are the bias (absolute error) and the mean square error
(MSE) of the state estimate. These are computed according to

Bias
(
x̂Nt
)

= 1
T

T∑
t=1

∣∣x̂Nt − x̂t∣∣, MSE
(
x̂Nt
)

= 1
T

T∑
t=1

(
x̂Nt − x̂t

)2
,

where x̂t denotes the optimal state estimate obtained by the Kalman filter. In Table 1 and in
the bottom part of Figure 3, we present the logarithm of the bias and the MSE for different
values of N . We note that the bias and the MSE decrease rapidly when increasing N . Hence,
we conclude that for this model N does not need to be large for x̂Nt to be accurate.

3.3. Outlook: Design choices and generalizations

We make a short de-tour before the tutorial continues with the implementation of the PMH
algorithm. In this section, we provide some references to important improvements and further
studies of the particle filter. Note that the scientific literature concerning the particle filter
is vast and this is only a small and naturally biased selection of topics and references. More
comprehensive surveys and tutorials of particle filtering are given by Doucet and Johansen
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Figure 3: Top and middle: A simulated set of observations (top) from the LGSS model and
the error in the latent state estimate (middle) using a particle filter with N = 20. Bottom: the
estimated log-bias (left) and log-MSE (right) for the particle filter when varying the number
of particles N .
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(2011), Cappé, Godsill, and Moulines (2007), Arulampalam et al. (2002) and Ala-Luhtala
et al. (2016) which also provide pseudo-code. The alterations discussed within these papers
can easily be incorporated into the implementation developed within this section.
In Section 3.1, we employed the faPF (Pitt and Shephard 1999) to estimate the filtered state
and likelihood. This algorithm made use of the optimal choices for the particle proposal and
weighting function, which corresponds to being able to sample from p(xt+1|xt, yt+1) and to
evaluate p(yt+1|xt). This is not possible for many SSMs. One possibility is to create Gaussian
approximations of the required quantities, see Doucet, de Freitas, and Gordon (2001) and
Pitt et al. (2012). However, these methods rely on quasi-Newton optimization that can be
computationally prohibitive if N is large. See Arulampalam et al. (2002) for a discussion and
for pseudo-code. Another possibility is to make use of a mixture of proposals and weighting
functions in the particle filter as described by Kronander and Schön (2014). This type of
filters are based on multiple importance sampling, which is commonly used in, e.g., computer
graphics.
A different approach is to make use of an additional particle filter to approximate the fully
adapted proposal, resulting in a nested construction where one particle filter is used within
another particle filter to construct a proposal distribution for that particle filter. The resulting
construction is referred to as nested sequential Monte Carlo (SMC), see Naesseth, Lindsten,
and Schön (2015) for details. The nested SMC construction makes it possible to consider
state-spaces where nx is large, something that other types of particle filter struggle with.
The bootstrap particle filter (bPF) is the default choice as it can be employed for most
SSMs. A drawback with the bPF is that it suffers from poor statistical accuracy when the
dimension of the state-space nx grows beyond about 10. In this setting, e.g., faPF or nested
SMC are required for state inference. However, there are some approaches which possibly
could improve the performance of the bPF in some cases and should be considered for efficient
implementations. These includes: (i) parallel implementations, (ii) better resampling schemes,
(iii) make use of linear substructures of the SSM and (iv) using quasi-Monte Carlo.
Parallel implementations of the particle filter (i) is a topic for ongoing research but some
encouraging results are reported by, e.g., Lee, Yau, Giles, Doucet, and Holmes (2010) and
Lee and Whiteley (2016). In this tutorial, we make use of multinomial resampling in the
particle filter. Alternative resampling schemes (ii) can be useful in decreasing the variance of
the estimates, see Hol, Schön, and Gustafsson (2006) and Douc and Cappé (2005) for some
comparisons. In general, systematic resampling is recommended for particle filtering.
Another possible improvement is the combination of Kalman and particle filtering (iii), which
is possible if the model is conditionally linear and Gaussian in some of its states. The idea
is then to make use of Kalman filtering to estimate these states and particle filtering for the
remaining states while keeping the linear ones fixed to their Kalman estimates. These types
of models are common in engineering and Rao-Blackwellization schemes like this can lead to
a substantial decrease in variance. See, e.g., Doucet, de Freitas, Murphy, and Russell (2000),
Chen and Liu (2000) and Schön, Gustafsson, and Nordlund (2005) for more information and
comparisons.
Quasi-Monte Carlo (iv) is based on so-called quasi-random numbers, which are generated by
deterministic recursions to better fill the space compared with standard random numbers.
These are useful in standard Monte Carlo to decrease the variance in estimates. The use of
quasi-Monte Carlo in particle filtering is discussed by Gerber and Chopin (2015).
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Finally, particle filtering is an instance of the SMC method (Del Moral, Doucet, and Jasra
2006), which represents a general class of algorithms based on importance sampling. SMC
can be employed for inference in many statistical models and is a complement/alternative
to MCMC. A particularly interesting member is the SMC2 algorithm (Chopin, Jacob, and
Papaspiliopoulos 2013; Fulop and Li 2013), which basically is a two-level particle filter similar
to nested SMC. The outer particle filter maintains a particle system targeting πθ(θ). The
inner particle filter targets πt(xt) and is run for each particle in the outer filter as this contains
the hypotheses of the value of θ. The likelihood estimates from the inner filter are used to
compute the weights in the outer filter. Hence, SMC2 is an alternative to PMH for parameter
inference, see Svensson and Schön (2016) for a comparison.

4. Estimating the parameters in a linear Gaussian SSM
This tutorial now proceeds with the main event, where the PMH algorithm is implemented
according to the outline provided in Section 2. The particle filter implementation from Sec-
tion 3.1 is employed to approximate the acceptance probability (13) in the PMH algorithm.
We keep the LGSS model as a toy example to illustrate the implementation and provide an
outlook of the PMH literature at the end of this section.
A prior is required to be able to carry out Bayesian parameter inference. The objective in
this section is to estimate the parameter posterior for θ = φ while keeping {σv, σe} fixed to
their true values. Hence, we select the prior p(φ) = T N (−1,1)(φ; 0, 0.5) to ensure that the
system is stable (i.e., that the value of xt is bounded for every t). The truncated Gaussian
distribution with mean µ, standard deviation σ in the interval z ∈ [a, b] is defined by

T N [a,b](z;µ, σ2) = I(a < z < b)N (z;µ, σ2),

where I(s) denotes the indicator function with value one if s is true and zero otherwise.

4.1. Implementing particle Metropolis-Hastings

The complete source code for the implementation of the PMH algorithm is available in the
function particleMetropolisHastings. Its code skeleton is given by:

particleMetropolisHastings <- function(y, initialPhi, sigmav, sigmae,
noParticles, initialState, noIterations, stepSize) {
<initialization>
for (k in 2:noIterations) {

<proposeParameters>
<computeAcceptProbability>
<acceptRejectStep>

}
phi

}

This function has inputs: y (vector with T+1 observations), initialPhi (φ(0) the initial value
for φ), sigmav, sigmae (parameters {σv, σe}), noParticles, initialState, noIterations
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(no. PMH iterations K) and stepSize (step size in the proposal). The output from func-
tion particleMetropolisHastings is φ(1:K), i.e., the correlated samples approximately dis-
tributed according to the parameter posterior πθ.
<initialization> We allocate some variables to store the current state of the Markov chain
phi, the proposed state phiProposed, the current log-likelihood logLikelihood and the pro-
posed log-likelihood logLikelihoodProposed. Furthermore, we allocate the binary variable
proposedPhiAccepted assuming the value 1 if the proposed parameter is accepted and 0
otherwise. Finally, we run the particle filter with the parameters {φ(0), σv, σe} to estimate
the initial likelihood. The initialization is implemented by:

<initialization> =
phi <- matrix(0, nrow = noIterations, ncol = 1)
phiProposed <- matrix(0, nrow = noIterations, ncol = 1)
logLikelihood <- matrix(0, nrow = noIterations, ncol = 1)
logLikelihoodProposed <- matrix(0, nrow = noIterations, ncol = 1)
proposedPhiAccepted <- matrix(0, nrow = noIterations, ncol = 1)

phi[1] <- initialPhi
theta <- c(phi[1], sigmav, sigmae)
outputPF <- particleFilter(y, theta, noParticles, initialState)
logLikelihood[1]<- outputPF$logLikelihood

<proposeParameters> There are many choices for the proposal distribution as discussed in
Section 2. In this tutorial, we make use of a Gaussian random walk proposal given by

q
(
θ′
∣∣θ(k−1)) = N

(
θ′; θ(k−1), ε2

)
, (25)

where ε > 0 denotes the step size of the random walk, i.e., the standard deviation of the
increment. The proposal step is implemented by:

<proposeParameters> =
phiProposed[k] <- phi[k - 1] + stepSize * rnorm(1)

<computeAcceptProbability> The acceptance probability (13) can be simplified since (25)
is symmetric in θ, i.e.,

q
(
θ′
∣∣θ(k−1)) = q

(
θ(k−1)∣∣θ′),

which results in that (13) can be expressed as

α(θ′, θ(k−1)) = min
{

1, exp
(

log
[

p(θ′)
p(θ(k−1))

]
+ log

[
p̂Nθ′ (y1:T )

p̂N
θ(k−1)(y1:T )

])}
.

The log-likelihood and log-priors are used to avoid loss of numerical precision. The prior
implies that α(θ′, θ(k−1)) = 0 when |φ| > 1. Therefore, the particle filter is not run in this
case to save computations and the acceptance probability is set to zero to ensure that θ′ is
rejected. The computation of the acceptance probability is implemented by:
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<computeAcceptProbability> =
if (abs(phiProposed[k]) < 1.0) {

theta <- c(phiProposed[k], sigmav, sigmae)
outputPF <- particleFilter(y, theta, noParticles, initialState)
logLikelihoodProposed[k] <- outputPF$logLikelihood
}

priorPart <- dnorm(phiProposed[k], log = TRUE)
priorPart <- priorPart - dnorm(phi[k - 1], log = TRUE)
likelihoodDifference <- logLikelihoodProposed[k] - logLikelihood[k - 1]
acceptProbability <- exp(priorPart + likelihoodDifference)
acceptProbability <- acceptProbability * (abs(phiProposed[k]) < 1.0)

<acceptRejectStep> Finally, we need to take a decision for accepting or rejecting the pro-
posed parameter. This is done by simulating a uniform random variable ω over [0, 1] by the
built-in R command runif. We accept θ′ if ω < α

(
θ′, θ(k−1)) by storing it and its correspond-

ing log-likelihood as the current state of the Markov chain. Otherwise, we keep the current
values for the state and the log-likelihood from the previous iteration. The accept/reject step
is implemented by:

<acceptRejectStep> =
uniformRandomVariable <- runif(1)

if (uniformRandomVariable < acceptProbability) {
phi[k] <- phiProposed[k]
logLikelihood[k] <- logLikelihoodProposed[k]
proposedPhiAccepted[k] <- 1

} else {
phi[k] <- phi[k - 1]
logLikelihood[k] <- logLikelihood[k - 1]
proposedPhiAccepted[k] <- 0

}

4.2. Numerical illustration

We make use of particleMetropolisHastings to estimate θ = φ using the data in Figure 2.
The complete implementation and code is available in the function/script example2_lgss. We
initialize the Markov chain in θ0 = 0.5 and make use of K = 5, 000 iterations (noIterations)
discarding the first Kb = 1, 000 iterations (noBurnInIterations) as burn-in. That is, we only
make use of the last 4, 000 samples to construct the empirical approximation of the parameter
posterior to make certain that the Markov chain in fact has reached its stationary regime, see
Section 6 for more information.
In Figure 4, three runs of PMH are presented using different step sizes ε = 0.01 (left), 0.10
(center) and 0.50 (right). The resulting estimate of the posterior mean is φ̂ = 0.66 for the
case ε = 0.10. This is computed by

R> mean(phi[noBurnInIterations:noIterations])
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Figure 4: The estimate of πθ[φ] in the LGSS model using the PMH algorithm using three
different step sizes: ε = 0.01 (left), 0.10 (center) and 0.50 (right). Top: the estimate of
πθ presented as a histogram and kernel density estimate (solid line). Middle: the state of
the Markov chain at 1, 000 iterations after the burn-in. Bottom: the estimated ACF of the
Markov chain. Dotted lines in the top and middle plots indicate the estimate of the posterior
mean. The dotted lines in the bottom plot indicate the 95% confidence intervals of the ACF
coefficients.
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Number of observations (T ) 10 20 50 100 200 500
Estimated posterior mean 0.596 0.794 0.765 0.727 0.696 0.719
Estimated posterior variance 0.040 0.013 0.009 0.006 0.003 0.001

Table 2: The estimated posterior mean and variance when varying T .

From the autocorrelation function (ACF), we see that the choice of ε influences the correlation
in the Markov chain. A good choice of ε is therefore important to obtain an efficient algorithm.
We return to discussing this issue in Section 6.3.
We note that the parameter estimate differs slightly from the true value 0.75 and that the
uncertainty is rather large in the estimate of the parameter posterior. This is due to the
relatively small sample size T (and a finite K). From the asymptotic theory of the Bayesian
estimator, we know that the posterior mass tends to concentrate around the true parameter
as T (and K) tends to infinity.
We exemplify this in Table 2 by estimating the posterior mean and variance using the same
setup when T increases. This small study supports that the true parameter is indeed recov-
ered by the posterior mean estimate in the limit. However, the rate of this convergence is
determined by the model and therefore it is not possible to give any general guidelines for
how large T needs to be to achieve a certain accuracy.

4.3. Outlook: Generalizations

We devote this section to give some references for important improvements and further studies
of the PMH algorithm. As for the particle filter, the scientific literature related to PMH
is vast and quickly growing. This is therefore only a small and biased selection of recent
developments. For a broader view of parameter inference in SSM, see, e.g., the surveys by
Kantas, Doucet, Singh, Maciejowski, and Chopin (2015) and Schön et al. (2015).
As discussed in Section 2, the PMH algorithm is a member of the family of exact approxima-
tion or pseudo-marginal algorithms (Andrieu and Roberts 2009). Here, the particle filter is
used to estimate the target but it is also possible to make use of, e.g., importance sampling for
this end. PMH is also an instance of the so-called particle MCMC (PMCMC; Andrieu et al.
2010) algorithm, which also includes particle versions of Gibbs sampling (Andrieu et al. 2010;
Lindsten, Jordan, and Schön 2014). PMCMC algorithms are a topic of current research and
much effort has been given to improve their performance, see Section 6 for some examples of
this effort.
In this tutorial, we make use of an independent proposal for u as discussed in Section 2.5. This
essentially means that all particle filters are independent. However, intuitively there could
be something to gain by correlating the particle filters as the state estimates are often quite
similar for small changes in θ. It turns out that correlating u results in a positive correlation
in the estimates of the log-likelihood, which decreases the variance of the estimate of the
acceptance probability. In practice, this means that N does not need to scale as rapidly with
T as for the case when u are uncorrelated between iterations. This is particularly useful when
T is large as it decreases the computational cost of PMH. See Dahlin, Lindsten, Kronander,
and Schön (2015a), Choppala, Gunawan, Chen, Tran, and Kohn (2016) and Deligiannidis,
Doucet, and Pitt (2018) for more information and source code.
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5. Application example: Estimating the volatility in OMXS30
We continue with a concrete application of the PMH algorithm to infer the parameters of
a stochastic volatility (SV; Hull and White 1987) model. This is a nonlinear SSM with
Gaussian noise and inference in this type of model is an important problem as the log-
volatility (the latent state in this model) is useful for risk management and to price various
financial contracts. See, e.g., Tsay (2005) and Hull (2009) for more information. A particular
parameterization of the SV model is given by

x0 ∼ N
(
x0;µ, σ2

v

1− φ2

)
, (26a)

xt+1|xt ∼ N
(
xt+1;µ+ φ(xt − µ), σ2

v

)
, (26b)

yt|xt ∼ N
(
yt; 0, exp(xt)

)
, (26c)

where the parameters are denoted by θ = {µ, φ, σv}. Here, µ ∈ R, φ ∈ [−1, 1] and σv ∈
R+ denote the mean value, the persistence and standard deviation of the state process,
respectively. Note that this model is quite similar to the LGSS model, but here the state xt
scales the variance of the observation noise. Hence, we have Gaussian observations with zero
mean and a state-dependent standard deviation given by exp(xt/2).
In econometrics, volatility is another word for standard deviation and therefore xt is known
as the log-volatility. The measurements in this model yt are so-called log-returns,

yt = 100 log
[
st
st−1

]
= 100

[
log(st)− log(st−1)

]
,

where st denotes the price of some financial asset (e.g., an index, stock or commodity) at time
t. Here, {st}Tt=1 is the daily closing prices of the NASDAQ OMXS30 index, i.e., a weighted
average of the 30 most traded stocks at the Stockholm stock exchange. We extract the data
from Quandl8 for the period between January 2, 2012 and January 2, 2014. The resulting log-
returns are presented in the top part of Figure 5. Note the time-varying persistent volatility
in the log-returns, i.e., periods of small and large variations. This is known as the volatility
clustering effect and is one of the features of real-world data that SV models aim to capture.
Looking at (26), this can be achieved when |φ| is close to one and when σv is small. As these
choices result in a first-order autoregressive process with a large autocorrelation.
The objectives in this application are to estimate the parameters θ and the log-volatility x0:T
from the observed data y1:T . We can estimate both quantities using PMH as both samples
from the posterior of the parameter and the state can be obtained at each iteration of the
algorithm. To complete the SV model, we assume some priors for the parameters based on
domain knowledge of usual ranges of the parameters, i.e.,

p(µ) = N (µ; 0, 1), p(φ) = T N [−1,1](φ; 0.95, 0.052), p(σv) = G(σv; 2, 10).

Here, G(a, b) denotes a Gamma distribution with shape a and scale b, i.e., expected value a/b.

5.1. Modifying the implementation
The implementation for the particle filter and PMH needs to be adapted to this new model.
We outline the necessary modifications by replacing parts of the code in the skeleton for the

8The data is available for download from https://www.quandl.com/data/NASDAQOMX/OMXS30.

https://www.quandl.com/data/NASDAQOMX/OMXS30
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two algorithms. The resulting implementations and source codes are found in the functions
particleFilterSVmodel and particleMetropolisHastingsSVmodel, respectively. In the
particle filter, we need to modify all steps except the resampling.
In the initialization, we need to simulate the initial particle system from µθ(x0) by replacing:

<initializeStates> =
ancestorIndices[, 1] <- 1:noParticles
normalizedWeights[, 1] = 1 / noParticles
particles[, 1] <- rnorm(noParticles, mu, sigmav / sqrt(1 - phi^2))

Furthermore, we need to choose a (particle) proposal distribution and the weighting function
for the particle filter implementation. For the SV model, we cannot compute a closed-form
expression for the optimal choices as for the LGSS model. Therefore, a bPF is employed
which corresponds to making use of the state dynamics as the proposal (21) given by

x
(i)
t |x

a
(i)
t
t−1 ∼ fθ

(
xt
∣∣xa(i)

t
t−1

)
= N

(
xt;µ+ φ

(
x
a

(i)
t
t−1 − µ

)
, σ2

v

)
,

and the observation model as the weighting function by

W
(i)
t = gθ

(
yt
∣∣x(i)
t

)
= N

(
yt; 0, exp

(
x

(i)
t

))
.

These two choices result in that the estimator x̂Nt = πt[x] is changed to

x̂Nt =
N∑
i=1

w
(i)
t x

(i)
t .

These three alterations to the particle filter are implemented by replacing:

<propagateParticles> =
part1 <- mu + phi * (particles[newAncestors, t - 1] - mu)
particles[, t] <- part1 + rnorm(noParticles, 0, sigmav)

<weightParticles > =
yhatMean <- 0
yhatVariance <- exp(particles[, t] / 2)
weights[, t] <- dnorm(y[t - 1], yhatMean, yhatVariance, log = TRUE)
xHatFiltered[t] <- sum(normalizedWeights[, t] * particles[, t])

We also need to generalize the PMH code to have more than one parameter. This is straight-
forward and we refer the reader to the source code for the necessary changes. The ma-
jor change is to replace the vectors phi and phiProposed with the matrices theta and
thetaProposed. That is, the state of the Markov chain is now three-dimensional correspond-
ing to the three elements in θ. Moreover, the parameter proposal is selected as a multivariate
Gaussian distribution centered around the previous parameters θ(k−1) with covariance matrix
Σ = diag(ε), where ε denotes a vector with three elements. This is implemented by:

<proposeParameters> =
thetaProposed[k, ] <- rmvnorm(1, mean = theta[k - 1, ], sigma = stepSize)
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The computation of the acceptance probability is also altered to include the new prior distri-
butions. For this model, it is required that |φ| < 1 and σv > 0 to ensure that it is stable and
that the standard deviation is positive. This is implemented by:

<computeAcceptProbability> =
if ((abs(thetaProposed[k, 2]) < 1.0) && (thetaProposed[k, 3] > 0.0)) {

res <- particleFilterSVmodel(y, thetaProposed[k, ], noParticles)
logLikelihoodProposed[k] <- res$logLikelihood
xHatFilteredProposed[k, ] <- res$xHatFiltered

}

priorMu <- dnorm(thetaProposed[k, 1], 0, 1, log = TRUE)
priorMu <- priorMu - dnorm(theta[k - 1, 1], 0, 1, log = TRUE)
priorPhi <- dnorm(thetaProposed[k, 2], 0.95, 0.05, log = TRUE)
priorPhi <- priorPhi - dnorm(theta[k - 1, 2], 0.95, 0.05, log = TRUE)
priorSigmaV <- dgamma(thetaProposed[k, 3], 2, 10, log = TRUE)
priorSigmaV <- priorSigmaV - dgamma(theta[k - 1, 3], 2, 10, log = TRUE)
prior <- priorMu + priorPhi + priorSigmaV

likelihoodDifference <- logLikelihoodProposed[k] - logLikelihood[k - 1]
acceptProbability <- exp(prior + likelihoodDifference)

acceptProbability <- acceptProbability * (abs(thetaProposed[k, 2]) < 1.0)
acceptProbability <- acceptProbability * (thetaProposed[k, 3] > 0.0)

Furthermore, <acceptRejectStep> needs to be altered to take into account that theta is a
vector, see the source code for the details.

5.2. Estimating the log-volatility
It is possible to compute an estimate of the log-volatility that takes into account the un-
certainty in θ using the pseudo-marginal view of PMH. The particle filter is a deterministic
algorithm given u. Hence, the random variables u are equivalent to an estimate of the filtering
distribution. The result is that it is quite simple to compute the state estimate by including
it in the Markov chain generated by PMH.
This is done by modifying the code for the particle filter. After one run of the algorithm, we
sample a single trajectory by sampling a particle at time T with probability given by w(1:N)

T .
We then follow the ancestor lineage back to t = 0 and extract the corresponding path in the
state-space. This enables us to obtain a better estimate of the log-volatility as both past
and future information are utilized. As a consequence, this often reduces the variance of the
estimate. This is done by using the stored resampled ancestor indices and the sampled state
trajectory by replacing:

<returnEstimates> =
ancestorIndex <- sample(noParticles, 1, prob = normalizedWeights[, T])
sampledTrajectory <- cbind(ancestorIndices[ancestorIndex, ], 1:(T + 1))
xHatFiltered <- particles[sampledTrajectory]
list(xHatFiltered = xHatFiltered, logLikelihood = logLikelihood)
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Figure 5: Top: the daily log-returns (dark green) and estimated log-volatility (orange) with
95% confidence intervals of the NASDAQ OMXS30 index for the period between January 2,
2012 and January 2, 2014. Bottom: the posterior estimate (left), the trace of the Markov
chain (middle) and the corresponding ACF (right) of µ (purple), φ (magenta) and σv (green)
obtained from PMH. The dotted and solid gray lines in the left and middle plots indicate the
parameter posterior mean and the parameter priors, respectively.



26 Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models

in the function particleFilterSVmodel. The sampled state trajectory in xHatFiltered is
then treated in the same manner as the candidate parameter in PMH, see the source code
for details. As a result, we can compute the posterior mean of the parameters and the
log-volatility and its corresponding standard deviation by:

R> thetaStationary <- pmhOutput$theta[noBurnInIterations:noIterations, ]
R> thetaHatMean <- colMeans(thetaStationary)
R> thetaHatStandardDeviation <- apply(thetaStationary, 2, sd)
R> xHatStationary <- pmhOutput$xHatFiltered[2500:7500, ]
R> xhatFilteredMean <- colMeans(xHatStationary)
R> xhatFilteredStandardDeviation <- apply(xHatStationary, 2, sd)

where pmhOutput denotes the output variable from particleMetropolisHastingsSVmodel.

5.3. Numerical illustration

We now make use of particleMetropolisHastingsSVmodel and particleFilterSVmodel
to the SV model using the OMXS30 data introduced in the beginning of this section. The
complete implementation is available in the function/code example3_sv. The resulting poste-
rior estimates, traces and ACFs are presented in Figure 7. We see that the Markov chain and
posterior are clearly concentrated around the posterior mean estimate θ̂ = {−0.23, 0.97, 0.15}
with standard deviations {0.37, 0.02, 0.06}. This confirms our belief that the log-volatility is
a slowly varying process as φ is close to one and σv is small. An estimate of the log-volatility
given this parameter is also computed and presented in the second row of Figure 7. We note
that the volatility is larger around t = 100 and t = 370, which corresponds well to what is
seen in the log-returns.

6. Selected advanced PMH topics
In this section, we outline a selected number of possible improvements and best practices for
the implementation in Section 5. We discuss initialization, convergence diagnostics and how
to improve the so-called mixing of the Markov chain. For the latter, we consider three different
approaches: tuning the random walk proposal, re-parameterizing the model and tuning the
number of particles. This section is concluded by a small survey of more advanced proposal
distributions and post-processing.

6.1. Initialization

It is important to initialize the Markov chain in areas of high posterior probability mass to
obtain an efficient algorithm. In theory, we can initialize the chain anywhere in the parameter
space and still obtain a convergent Markov chain. However, in practice numerical difficulties
can occur when the parameter posterior assumes small values or is relatively insensitive to
changes in θ. Therefore it is advisable to try to obtain a rough estimate of the parameters to
initialize the chain closer to the posterior mode.
In the LGSS model, we can make use of standard optimization algorithms in combination
with a Kalman filter to estimate the mode of the posterior. However, this is not possible
for general SSMs as only noisy estimates of the posterior can be obtained from the particle
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filter. Standard optimization methods can therefore get stuck in local minima or fail to
converge entirely. One approach to mitigate this problem is the simultaneous perturbation and
stochastic approximation (SPSA; Spall 1987) algorithm, which can be applied in combination
with the particle filter to estimate the posterior mode.

6.2. Diagnosing convergence

It is in general difficult to prove that the Markov chain has reached its stationary regime and
that the samples obtained are actually samples from πθ(θ). A simple solution is to initialize
the algorithm at different points in the parameter space and compare the resulting posterior
estimates. This can give an indication that the chain has reached its stationary regime if the
resulting estimates are similar.
Another alternative is to make use of the Kolmogorov-Smirnov (KS; Massey 1951) test to
establish that the posterior estimate does not change after the burn-in. This is done by
dividing the samples {θ(k)}Kk=1 into three partitions: the burn-in and two sets of equal number
of samples from the stationary phase. As the KS test requires uncorrelated samples, thinning
can be applied to decrease the autocorrelation. The Markov chain is thinned by keeping every
lth sample, where l is selected such that the autocorrelation is negligible between two retained
consecutive samples. A standard KS test is then conducted to conclude if the samples in the
two thinned partitions are from the same (stationary) distribution or not.
Other methods for diagnosing convergence are discussed by Robert and Casella (2009) and
Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013).

6.3. Improving mixing

Standard Monte Carlo methods assume that independent samples can be obtained from the
distribution of interest or from some instrumental distribution. However, the samples obtained
from PMH are correlated as they are a realization generated from a Markov chain. Intuitively,
these correlated samples contain less information about the target distribution than if the
samples were independent. That is, most samples are similar and the target is not fully
explored if the autocorrelation in the Markov chain is large. This autocorrelation is also
known as mixing, which is a very important concept in the MCMC literature. It is the key
quantity for comparing the efficiency of different MCMC algorithms.
It turns out that the mixing influences the performance of an MCMC algorithm by scaling
the asymptotic variance of the estimates. This is apparent from the CLT governing π̂Kθ [ϕ] in
(9) which under some assumptions9 has the form

√
K
(
πθ[ϕ]− π̂Kθ [ϕ]

)
d−→ N

(
0,VARπ[ϕ] · IACT

(
θ(1:K))), K →∞, (27)

when VARπ[ϕ] = πθ[(ϕ− πθ[ϕ])2] <∞. Here, IACT
(
θ(1:K)) denotes the integrated autocorre-

lation time (IACT) of the Markov chain, which is computed as the area under the ACF. An
interpretation of the IACT is that it estimates the number of iterations of an MCMC algo-
rithm between obtaining two uncorrelated samples. Hence, the IACT is one if the samples

9These assumptions include that the Markov chain should reach its stationary regime quickly enough.
This requirement is known as uniform ergodicity, which means that the total variational norm between the
distribution of the Markov chain and its stationary distribution should decrease with a geometric rate regardless
of the initialization of the Markov chain, see, e.g., Tierney (1994) for more details.
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Figure 6: The estimated marginal posterior for µ and φ (purple), µ and σv (magenta) and
φ and σv (green) obtained from PMH. The dark contours (top/bottom) indicate the original
proposal from Section 5 and the new (improved) proposal estimated from the pilot run,
respectively. Both proposals are centered at the posterior mean estimate.

are independent, which is the case in, e.g., importance sampling. Minimizing the IACT is
therefore the same as maximizing the mixing in an MCMC algorithm.
In the right column of Figure 5, we present the ACF for the three parameters in the SV
model. This information can be used to compute the corresponding IACTs by

IACT(θ(1:K)) = 1 + 2
∞∑
τ=1

ρτ
(
θ(1:K)),

where ρτ = E[(θ(k) − πθ[θ])(θ(k+τ) − πθ[θ])]/πθ[(θ − πθ[θ])2 denotes the autocorrelation coef-
ficient at lag τ for θ(1:K). In practice, we cannot compute the IACT exactly as we do not
know the autocorrelation coefficients for all possible lags. Also, it is difficult to estimate ρτ
when τ is large and K is rather small. A possible solution to this problem is to cut off the
ACF estimate at some lag and only consider lags smaller than this limit L. In this tutorial,
we make use of L = 100 lags to estimate the IACT by

ÎACT(θ(1:K)) = 1 + 2
100∑
τ=1

ρ̂Kτ
(
θ(1:K)),
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where ρ̂Kτ = COR(ϕ(θ(k)), ϕ(θ(k+τ))) denotes the estimate of the lag-τ autocorrelation of ϕ.
For the results presented in Figure 5, this corresponds to the IACT {135, 86, 66} for each of
the three parameters.

Tuning the proposal

The mixing can be improved by tuning the proposal distribution to better fit the posterior
distribution. This requires an estimate of the posterior covariance, which acts like a pre-
conditioning matrix P. The covariance is quite simple to estimate from a pilot run by

R> var(thetaStationary)

where thetaStationary denotes the trace of the Markov chain generated by PMH after the
burn-in has been discarded. For the problem considered in Section 5, this results in the
following pre-conditioning matrix

P̂ = 10−4

1371 −16 15
−16 5 −10
15 −10 31

 ,
which can be used to form a new improved proposal given by

q
(
θ′
∣∣θ(k−1)

)
= N

(
θ′; θ(k−1),

2.5622

3 P̂
)
. (28)

This scaling of the covariance matrix was proposed by Sherlock, Thiery, Roberts, and Rosen-
thal (2015) to minimize the IACT when sampling from a Gaussian target distribution.
In Figure 6, we present the marginal posteriors (in color) for each pair of parameters in (26)
together with the original (top) and the tuned proposals (bottom) from (28). The tuned
proposals fit the posteriors better and this is expected to improve the mixing of the Markov
chain. In Figure 7, we present the results obtained by the implementation from Section 5
when using the tuned proposal instead. This code is available in the function example4_sv.
The resulting IACT estimates are {32, 32, 28}, which is a clear improvement in mixing for µ
and σv compared with the results obtained in Section 5.3. The consequence is that K (and
therefore computational cost) can be cut by 135/32 = 4.2 while retaining the same variance in
the estimates. Note that the maximum IACTs are compared as these are the limiting factors.
We can also compare the support of the posterior estimates in Figures 5 and 7. According to
(27), the improved mixing should decrease the asymptotic variance of the estimate. However,
no such improvement can been seen in this case. This is probably due to that the variance in
the posterior estimates largely results from the finite amount of information in the data.

Re-parameterizing the model

Another approach to improve mixing is to re-parameterize the model to obtain unconstrained
parameters, which can assume any value on the real line. In Section 5, we constrained φ and
σv to the regions |φ| < 1 and σv > 0 to obtain a stable and valid SSM. This results in poor
mixing if many candidate parameters are proposed which violate these constraints and this
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Figure 7: Top: the daily log-returns (dark green) and estimated log-volatility (orange) with
95% confidence intervals of the NASDAQ OMXS30 index for the period between January 2,
2012 and January 2, 2014. Bottom: the posterior estimate (left), the trace of the Markov
chain (middle) and the corresponding ACF (right) of µ (purple), φ (magenta) and σv (green)
obtained from PMH. Dotted and solid gray lines in the left and middle plots indicate the
parameter posterior mean and the parameter priors, respectively.
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increases the autocorrelation. This problem can be mitigated by a re-parameterization of the
model given by

φ = tanh
(
ψ
)
, σv = exp

(
ς
)
, (29)

such that ψ, ς ∈ R are unconstrained parameters. Hence, the target of PMH is changed to
the posterior of ϑ = {µ, ψ, ς}. This transformation of parameters can be compensated for to
still obtain samples from the posterior of θ. This is done by taking the Jacobians of (29) into
account, which are given by

∂

∂ψ
tanh−1(ψ) = 1

1− ψ2 ,
∂

∂ς
log(ς) = ς−1. (30)

The resulting acceptance probability is calculated according to

α(ϑ′, ϑk−1) = min
{

1, p(θ′)
p(θ(k−1))

p̂Nϑ′(y1:T |u′)
p̂Nϑk−1

(y1:T |uk−1)

∣∣∣∣∣1− (φ′)2

1− φ2
k−1

∣∣∣∣∣
∣∣∣∣∣ σ′v
σv,k−1

∣∣∣∣∣
}
, (31)

where the original parameters are used to compute the prior and to estimate the likelihood.
Hence, the proposal operates on ϑ to propose a new candidate parameter ϑ′ but (30) is applied
to obtain θ′, which is used to compute the acceptance probability (31). After a run of this
implementation, samples from the posterior of θ can be obtained by applying (30) to the
samples from the posterior of ϑ.
To implement this, we need to change the call to the particle filter and the computation of the
acceptance probability. The complete implementation and code are available in the function
example5_sv. The resulting mean estimate of the parameter posterior is {−0.16, 0.96, 0.17}
with standard deviation {0.24, 0.02, 0.06} and IACT {21, 29, 17}. Note that the maximum
IACT is even smaller than when tuning the proposal which resulted in a speed-up of 4.7
compared to the implementation in Section 5.

Selecting the number of particles

The particle filter plays an important role in the PMH algorithm and greatly influences the
mixing. If the log-likelihood estimates are noisy (too small N in the particle filter), the
chain tends to get stuck for several iterations and this leads to bad performance. This is
the result of the fact that sometimes pθ′(y1:T ) � p̂Nθ′ (y1:T ), which is due to the stochasticity
of the estimator. Thus, balancing N and K to obtain good performance at a reasonable
computational cost is an important problem. A small N might result in that we need to take
K large and vice verse. This problem is investigated by Pitt et al. (2012) and Doucet, Pitt,
Deligiannidis, and Kohn (2015). A simple rule-of-thumb is to select N such that the standard
deviation of the log-likelihood estimates is between 1.0 and 1.7. These results are derived
under certain strict assumptions that might not hold in practice.
Here, we would like to investigate this rule-of-thumb in a practical setting. We make use of
the implementation when tuning the proposal and re-run it for different choices of N . We
also estimate the standard deviation of the log-likelihood estimator from the particle filter
for each choice of N using the estimate of the posterior mean as the parameters and 1, 000
independent Monte Carlo runs. The proposal distribution is tuned using a pilot run as before
and the Markov chain is initialized in the estimate of the posterior mean. The IACT is
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Number of particles (N) 50 100 200 300 400 500
Standard deviation of p̂Nθ (y1:T ) 2.6 1.8 1.2 1.0 0.9 0.7
Acceptance probability (%) 6 14 22 28 29 33
Maximum IACT 165 139 128 92 114 97
Time per PMH iteration (s) 0.03 0.05 0.09 0.12 0.15 0.19
Time per sample (s) 5 7 11 11 17 18

Table 3: The standard deviation of the log-likelihood estimate, the acceptance probability,
the maximum IACT for θ, the computational time per iteration of PMH and a benchmark
quantity (see main text) for varying N .

computed using L = 100 lags. Table 3 presents some quantities related to the particle filter
and PMH as N is varied (keeping all other parameters fixed).
The optimal choice forN is between 100 and 300 depending on the choice of proposal according
to the rule-of-thumb proposed in Doucet et al. (2015). The objective for the user is often to
minimize the computational time of PMH to obtain a certain number of uncorrelated samples
from the posterior. Hence, a suitable benchmark quantity is the maximum IACT multiplied
with the computational time for one iteration. Remember, that IACT is the estimated number
of iterations between two uncorrelated samples. The benchmark quantity (last row of Table 3)
is therefore an estimate of the computational time per uncorrelated sample. The results are a
bit inconclusive, which is the result of the fact that the IACT is very challenging to estimate
and thereby noisy. However, the rule-of-thumb seems to be valid for this model and setting
N to 100 seems to be a good choice.

6.4. Including geometric information

In practical applications, we typically encounter performance issues when the number of
parameters p grows beyond 5 or as previously discussed when the chain is initialized far from
the areas of high posterior probability. This problem occurs even if the rule-of-thumb from
Sherlock et al. (2015) is used to tune the proposal. The reason for this is that the problem lies
within the use of a random walk, which is known to poorly explore high-dimensional spaces.
To mitigate this problem, it can be useful to take geometrical information about the posterior
into account. Girolami and Calderhead (2011) show how to make use of the gradient and the
Hessian of the log-posterior to guide the Markov chain to areas of high posterior probability.
In the paper, this is motivated by diffusion processes on Riemann manifolds. However, a
perhaps simpler analogy is found in optimization, where we can make use of noisy gradient
ascent or Newton updates in the proposal. Gradient information is useful to guide the Markov
chain towards the area of interest during the burn-in and also to keep it in this area after the
burn-in phase. The Hessian information can be used to rescale the parameter posterior to
make it closer to be isotropic, which greatly simplifies sampling.
In Dahlin, Lindsten, and Schön (2015b), the authors show how to make use of this type of
proposals in the PMH algorithm. We refer to the proposal that makes use of only gradient
information as PMH1 (for first-order). The proposal that makes use of both gradient and
Hessian information is referred to as PMH2 (for second-order). The challenge here is to
obtain good estimates of the gradient and Hessian, which both are analytically intractable
for a nonlinear SSM. Furthermore, the computation of these quantities usually requires the
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use of a particle smoother with a high computational cost, which is prohibitive inside the
PMH algorithm. To mitigate this problem, they propose to make use of the faster but more
inaccurate fixed-lag particle smoother and instead regularize the Hessian estimate when it is
non-positive definite.
In Dahlin, Lindsten, and Schön (2015c), the authors describe a quasi-Newton PMH2 pro-
posal (qPMH2) based on a noisy quasi-Newton update that does not require any Hessian
information but constructs a local approximation of the Hessian based on gradient infor-
mation. PMH1 and similar algorithms are theoretically studied by Nemeth, Sherlock, and
Fearnhead (2016), which offers a rule-of-thumb to tune the step sizes based on an estimate of
the posterior covariance.

6.5. Control variates

Control variates are a common and useful variance reduction technique for standard Monte
Carlo, which also can be applied to MCMC algorithms such as PMH. Some interesting work
along these lines for MH are found in Mira, Solgi, and Imparato (2013), Papamarkou, Mira,
and Girolami (2014), Mijatović and Vogrinc (2018) and Dellaportas and Kontoyiannis (2012),
which should be quite straightforward to implement for PMH. However to the knowledge of
the authors of this paper, control variates have not yet been properly investigated for PMH
but some encouraging preliminary results are presented in Chapter 4.3 of Dahlin (2016) based
on Papamarkou et al. (2014).

7. Related software
There are a number of software packages related to the current tutorial which implements (i)
PMH and/or (ii) particle filtering and SMC. These can be used to quickly carry out Bayesian
parameter inference in new SSMs or as building blocks for the user who would like to create
his/her own implementations of PMH.
The software LibBi (Murray 2015) provides a platform for Bayesian inference in SSMs using
both serial and parallel hardware with a particular focus on high performance computing.
It is written in C++ and allows the user to define new models using a modeling language
similar to JAGS (Plummer 2003) or BUGS (Lunn, Spiegelhalter, Thomas, and Best 2009).
This enables the user to quickly solve the parameter inference problem using PMH and SMC2

in many different types of SSMs. An example of using LibBi for inference in the SV model
introduced in Section 5 is offered via the homepage (http://libbi.org/), which is helpful in
learning how to use the software. Furthermore, interfaces for R and Octave (Eaton, Bateman,
Hauberg, and Wehbring 2017) are available via RBi via CRAN and OctBi via the LibBi
homepage, respectively. This software is suitable for the user who would like to leverage the
power of multi-core computing to carry out inference quickly on large datasets.
Another alternative is Biips (Todeschini, Caron, Fuentes, Legrand, and Del Moral 2014),
which is implemented in C++ with interfaces to R and MATLAB via the package Rbiips and
the toolbox Matbiips, respectively. The functionality of Biips is similar to LibBi with the
crucial difference on the focus on parallel computations of the latter. Hence, Biips allows the
user to define a model using the BUGS language and carry out inference using PMH. The
homepage (https://biips.github.io/) connected to Biips contains some example code that
implements the model from Section 5.

http://libbi.org/
https://biips.github.io/
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The R package pomp (King, Nguyen, and Ionides 2016) includes an impressive setup of
different inference methods for SSMs. Among others, this includes particle filtering, PMH
and also approximate Bayesian computations (ABC; Marin, Pudlo, Robert, and Ryder 2012).
This software is a good choice for the reader who uses R on a regular basis and would like to
explore some recent developments in statistical computing. It also contains a number of pre-
defined models for epidemiology. The model specification in pomp is a bit more complicated
compared with LibBi and Biips, which could be a drawback for some users.

Probabilistic programming languages (PPLs) constitute a fairly recent contribution to soft-
ware for statistical modeling. They extend graphical models with stochastic branches, such as
loops and recursions. Three popular PPLs which allow for carrying out inference using PMH
in SSMs are Anglican (Tolpin, Van de Meent, Yang, and Wood 2016), Venture (Mansinghka,
Selsam, and Perov 2014) and Probabilistic C (Paige and Wood 2014). Anglican is the most
developed language of these three and it runs as a standalone application. Implementation
of PMH in Anglican requires some additional coding compared with, e.g., LibBi. However, it
is a more general framework which allows for inference for a larger class of models.

A C++ template for particle filtering and more general SMC algorithms is provided by SM-
CTC (Johansen 2009). This template is complemented with an interface to R via the package
RCppSMC (Eddelbuettel and Johansen 2018) and extended to parallel computations in C++
via the software vSMC (Zhou 2015). These templates require additional implementation by
the user to be able to carry out inference. They do not allow for easy specification of new
models or to carry out inference using, e.g., PMH directly. However, they give the user full
control of the particle filter, which allows for adding extensions and tailoring the algorithm
to a specific problem.

A parallel implementation of SMC using CUDA is provided by Lee et al. (2010) and the
source code is available online at http://www.oxford-man.ox.ac.uk/gpuss/cuda_mc.html.
A MATLAB toolbox for running SMC algorithms in parallel called DeCo is developed by
Casarin, Grassi, Ravazzolo, and Van Dijk (2015). DeCo makes use of SMC for combining
densities connected to forecasts in economics, but could potentially be generalized for other
applications.

To conclude, we would like to briefly mention some additional software. The Python library
pyParticleEst (Nordh 2017) provides functionality for state estimation using different types
of particle filters. It also includes parameter estimation using maximum likelihood via the
expectation-maximization (EM; Dempster, Laird, and Rubin 1977; McLachlan and Krishnan
2008) algorithm. MH is implemented in Ox (Doornik 2007) by Bos (2011) to estimate the
states and parameters for the SV model in Section 5. In this setting, MH is applied to
estimate both the states and parameters, so no particle filter is required. The R package
smfsb (Wilkinson 2018) accompanying Wilkinson (2011) contains demonstration code for
using PMH in a systems biology application.

The GitHub repository (https://www.github.com/compops) of the first author of this tu-
torial contains Python code for PMH1, PMH2, qPMH2 (Dahlin et al. 2015b,c) and pseudo-
marginal MH with correlated random variables (Dahlin et al. 2015a). This code is quite
similar to the Python code supplied with this tutorial and is a good starting point for the
interested reader who would like to try out more advanced implementations of PMH.

http://www.oxford-man.ox.ac.uk/gpuss/cuda_mc.html
https://www.github.com/compops
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8. Conclusions
We have described the PMH algorithm for Bayesian parameter inference in nonlinear SSMs.
This includes the particle filter as it plays an important role in PMH and provides an non-
negative unbiased estimator of the likelihood. Furthermore, we have applied PMH for infer-
ence in an LGSS model and a SV model using both synthetic and real-world data.
We also identified and discussed a wide range of practical matters related to PMH. This
includes initialization and tuning of the parameter proposal, which are important practical
problems. Furthermore, we have provided many references for the reader who could like to
continue his/her learning of particle filtering and PMH. The implementation developed within
this tutorial can be seen as a compilation of minimal working examples. Hopefully, these code
snippets can be of use for the interested reader as a starting point to develop his/her own
implementations of the algorithms.
The implementations developed in this tutorial are available as the package pmhtutorial from
CRAN. Source code for the implementation in R as well as similar code for MATLAB and
Python is available from GitHub at https://github.com/compops/pmh-tutorial. See the
README.md files in the directory corresponding to each programming language for specific
comments and for dependencies.
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