
JSS Journal of Statistical Software
March 2019, Volume 88, Issue 10. doi: 10.18637/jss.v088.i10

Dynamic Modeling, Parameter Estimation, and
Uncertainty Analysis in R

Daniel Kaschek
University of Freiburg

Wolfgang Mader
University of Freiburg

Mirjam Fehling-Kaschek
University of Freiburg

Marcus Rosenblatt
University of Freiburg

Jens Timmer
University of Freiburg

Abstract

In a wide variety of research fields, dynamic modeling is employed as an instrument
to learn and understand complex systems. The differential equations involved in this
process are usually non-linear and depend on many parameters whose values determine
the characteristics of the emergent system. The inverse problem, i.e., the inference or
estimation of parameter values from observed data, is of interest from two points of view.
First, the existence point of view, dealing with the question whether the system is able
to reproduce the observed dynamics for any parameter values. Second, the identifiability
point of view, investigating invariance of the prediction under change of parameter values,
as well as the quantification of parameter uncertainty.

In this paper, we present the R package dMod providing a framework for dealing with
the inverse problem in dynamic systems modeled by ordinary differential equations. The
uniqueness of the approach taken by dMod is to provide and propagate accurate deriva-
tives computed from symbolic expressions wherever possible. This derivative information
highly supports the convergence of optimization routines and enhances their numerical
stability, a requirement for the applicability of sophisticated uncertainty analysis methods.
Computational efficiency is achieved by automatic generation and execution of C code.
The framework is object-oriented (S3) and provides a variety of functions to set up ordi-
nary differential equation models, observation functions and parameter transformations
for multi-conditional parameter estimation.

The key elements of the framework and the methodology implemented in dMod are
highlighted by an application on a three-compartment transporter model.

Keywords: dynamic models, parameter estimation, code generation, maximum likelihood,
uncertainty analysis.

https://doi.org/10.18637/jss.v088.i10

2 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

1. Introduction

Dynamic systems modeled by ordinary differential equations (ODEs) are found in several
research fields, such as physics, biology or finance. In all these fields, models link theoretical
concepts and empirical evidence. Single mechanisms or single processes of a complex system
are represented by respective terms in the equations of a dynamic model. Parameter esti-
mation can then identify those processes which are crucial to explaining the observation. In
that sense, parameter estimation can be employed as an instrument to understand complex
systems. Once the link between observation and model has been established by the esti-
mated parameters, questions about their identifiability arise. The parameter space needs to
be explored in order to analyze whether the estimate is unique and to determine confidence
bounds.
Although the problem of parameter estimation in non-linear ODE models is highly relevant
and at the heart of statistical computing, there are currently not more than four R packages
published on the topic on the Comprehensive R Archive Network (CRAN), namely FME
(Soetaert and Petzoldt 2010), nlmeODE (Tornoe 2012), mkin (Ranke, Lindenberger, and
Lehmann 2019) and scaRabee (Bihorel 2014). All packages have in common that they are
built upon the deSolve package (Soetaert, Petzoldt, and Setzer 2010). Taking a broader
perspective on the topic of dynamic modeling and inference, we find more packages, dealing
with, e.g., discrete-time and continuous-time stochastic systems (Hooker, Ramsay, and Xiao
2016) or the statistical inference of partially observed Markov processes (King et al. 2017).
The packages mkin and FME support ODEs defined by compiled code while mkin also pro-
vides tools to autogenerate the C code and compile it using the inline package (Sklyar, Mur-
doch, Smith, Eddelbuettel, François, and Soetaert 2018). For model fitting and uncertainty
analysis, mkin fully resorts to the functionality of FME. Concerning model fitting, FME and
nlmeODE (with nlme in the background) use deterministic derivative-based optimizers by de-
fault, i.e., either Levenberg-Marquardt or Newton methods provided by nls.lm(), optim()
or nlmimb(). Although all these optimizers support gradient or Hessian information as input,
only the nlmeODE package provides an option to augment the ODE by its sensitivity equa-
tions to generate derivates for the residuals. By default, sensitivities are computed by finite
differences. Last but not least, the scaRabee package uses the Nelder-Mead optimization
algorithm which is derivative-free but generally needs more iterations until convergence com-
pared to derivative-based methods. In all packages, uncertainty analysis is by default based
on the variance-covariance matrix, i.e., non the inverse Hessian matrix of the least squares
function. For non-linear models, this method provides a good approximation only if parame-
ters are identifiable and the data is highly informative. If these conditions are not met, more
sophisticated methods like, e.g., Markov chain Monte Carlo (MCMC) sampling, implemented
in FME, are required. The strength of scaRabee and especially nlmeODE is multi-conditional
fitting. This means that the same model with the same parameters but different forcings to
reflect experimental conditions is fitted simultaneously to the condition-specific data sets. In
the context of mixed-effects modeling as provided by nlmeODE, parameters can be grouped
in fixed effects (parameters are the same in all conditions) and random effects (parameters
are different between conditions).
In this paper we present dMod, an R package on dynamic modeling and parameter estimation.
The package has grown over the past years and reflects many developments and lessons learned
from our research projects with time-resolved experimental data from systems biology. They

Journal of Statistical Software 3

dMod FME nlmeODE scaRabee mkin
Facilitated set-up of ODE models with au-
tomated C code generation for fast simu-
lation of model predictions and model sen-
sitivities

+ (+)1 − − (+)1

Flexible set-up of general parameter trans-
formations (explicit or implicit) and obser-
vation functions, allowing for the imple-
mentation of multiple experimental con-
ditions similar to mixed-effects modeling

+ − (+)2 (+)2 −

Parameter estimation based on trust-
region optimization of the negative log-
likelihood, making use of the sensitivity
equations of the dynamic system and of
symbolic derivatives of the observation-
and parameter transformation functions

+ − − − −

Identifiability and uncertainty analysis
based on the profile-likelihood method to
determine confidence intervals for param-
eters and predictions

+ (−)3 − − −

Table 1: Overview of the dMod core functionality and comparison with other packages.
1 = Only ODE, no sensitivity equations generated. 2 = Mixed-effects modeling allows to de-
fine parameters in a condition-specific manner. 3 = Other methods used, e.g., the collinearity
method (Brun et al. 2001).

form the basis of the development of dMod and are found as references in the following
paragraphs. The aim and core functionality of dMod is summarized in Table 1, first column.
A comparison with the other packages is shown in the remaining columns.
The dMod package deals with noise in the observation but not with noise in the dynamics.
Therefore, the application of dMod is restricted to systems that are described or can be ap-
proximated by a deterministic set of differential equations. The core functionality is extended
by two symbolic methods implemented in Python and interfaced via the rPython package:
identifiability and observability analysis based on Lie-group symmetries (Merkt, Timmer, and
Kaschek 2015) and steady-state constraints for parameter estimation (Rosenblatt, Timmer,
and Kaschek 2016).
The implementation of capabilities to generate and propagate derivatives on a compiled-code
level distinguishes dMod from other modeling frameworks as discussed above. Most of the
standard optimization routines implemented in R need derivative information. However, the
computation of derivatives in the context of ODE models holds some pitfalls. The accuracy
of sensitivities obtained from finite differences can be insufficient because the step control of
the integrator presents an additional source of numeric inaccuracy. Even for numeric methods
circumventing this problem, e.g., complex-step derivatives (Squire and Trapp 1998), the use
of sensitivity equations is still beneficial judging from the accuracy vs. computational cost
ratio. See Raue et al. (2013b) for a comparison of methods.
Another distinguishing feature of dMod is the handling of non-identifiability of parameters,

4 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

a phenomenon that occurs frequently in the context of parameter estimation in dynamic sys-
tems. In some cases, non-identifiability has structural reasons. The differential equations
bear certain symmetries which can or cannot be broken, depending on the structure of the
observation. A functional relationship between parameters that leaves the observation in-
variant is the consequence of the latter. In other cases, the data allows the determination
of a unique optimum but other solutions, although worse, cannot be statistically rejected.
The dMod package deals with parameter identifiability and parameter uncertainty by the
profile-likelihood method (Murphy and Van der Vaart 2000; Raue et al. 2009; Kreutz, Raue,
Kaschek, and Timmer 2013). This method has proven especially useful in the case of non-
identifiable parameters where results obtained from both the quadratic approximation by the
variance-covariance matrix and MCMC sampling can be misleading (Raue, Kreutz, Theis,
and Timmer 2013a). Besides parameter uncertainties, the profile likelihood method allows
the estimation of prediction uncertainty (Kreutz, Raue, and Timmer 2012). It therefore sup-
ports the planning of new informative experiments (Raue, Kreutz, Maiwald, Klingmüller, and
Timmer 2011) or suggests possible model reductions (Maiwald et al. 2016).
The key methods implemented in dMod are illustrated in great detail on a dynamic model of
bile acid flow. The example is a showcase of how modeling is a dynamic process, using the
analysis tools implemented in dMod to predict, plan new experiments, combine data from
different experiments and include non-linear parameter constraints to improve parameter
identifiability. In this way, we demonstrate that dMod is a fully developed, flexible modeling
environment, which is not only fast (thanks to compiled code), but also reliable (thanks to
symbolic derivatives) and accurate (thanks to advanced statistical methods).
The paper is organized as follows: Section 2 introduces the mathematical set-up of dynamic
modeling, symmetries in dynamic systems, parameter estimation by the maximum-likelihood
method and the profile likelihood. Section 3 discusses the implementation and design princi-
ples behind the dMod software. The functionality of dMod is presented in Section 4 on the
example of bile acid flow in a three-compartment model. Finally, Section 5 discusses the two
Python extensions shipped with dMod.
The dMod package is available on the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=dMod. The project is hosted on GitHub at https://github.com/
dkaschek/dMod, where more information about system requirements and installation is avail-
able. dMod is licensed under the GPL-3 license.

2. Theoretical background

2.1. Dynamic models and model sensitivities
Dynamic models describe systems with states x, usually quantifying the involved species,
their interaction and evolution over time. The time evolution of the states is expressed via
a set of ODEs, ẋ = f(x). Although constituting quite a special class of dynamic systems,
chemical reaction networks formulated by the law of mass action as considered here allow for
surprisingly general applications. Typical ODE examples derived from the law of mass action
are:

• ẋA = kp, constant production of xA (∅ → A)

• ẋC = kc xA xB = −ẋA = −ẋB, complex formation (A+B → C)

http://CRAN.R-project.org/package=dMod
http://CRAN.R-project.org/package=dMod
https://github.com/dkaschek/dMod
https://github.com/dkaschek/dMod

Journal of Statistical Software 5

• ẋC = −kd xC , proportional degradation of xC (C → ∅) .

A general chemical reaction

ν1X1 + · · ·+ νnXn −→ ν ′1X1 + · · ·+ ν ′nXn (1)

for species Xj , j = 1, . . . , n, and stoichiometric coefficients νj , ν ′j ∈ N translates into the ODE

ẋj = k0
(∏

xνii

)
︸ ︷︷ ︸
w0(x,k0)

(ν ′j − νj), (2)

where k0 is the reaction rate. When several reactions 1, . . . , r are involved, all contributions
have to be summed up which can be expressed by the matrix equation

ẋ = Sw(x, k). (3)

Here, S denotes the n×r stoichiometry matrix where each column corresponds to one reaction
and the coefficients within one column are the values ν ′j − νj of the corresponding reaction.
The vector w(x, k) denotes the vector of r reaction fluxes where the vectors x and k correspond
to states and rate constants, respectively. Equation 3 also holds for general ODEs that do
not follow from mass action kinetics. Moreover the system may be explicitly time-dependent
and may contain forcings u(t) which, e.g., describe the external stimulation of the system. A
general form of the dynamic model is therefore given by

ẋ = f(x, k, u, t) = Sw(x, k, u, t), with x(t = 0) = x0. (4)

The solution x(t, θ) for a given parameter vector θ = (k, x0) is called model prediction. It is
generally assumed that the stoichiometry matrix S of the system is known. Besides the model
predition itself, also the sensitivity of the prediction to changes in the parameter values is of
interest. The sensitivities si = ∂x

∂θi
satisfy the sensitivity equations

ṡi = ∂f

∂x
si + ∂f

∂θi
, with si(t = 0) = ∂x0

∂θi
, (5)

a system of ordinary differential equations that in general depend on the states x and, there-
fore, need to be solved jointly with the original ODE.
Often, the experimentally observed quantities y do not directly correspond to the species x
described by the ODE, but are obtained via an observation function g : Rn → Rm,

y = g(x, c) (6)

with the observation parameters c. Examples for observation functions are scaling and offset
transformations, y = cs ·x+co, or the measurement of a superposition of species, yi = ∑

j cjxj .
The model prediction for the observed states is obtained by evaluating the observation func-
tion on the solution of the ODE. Following the chain rule of differentation also the sensitivities
of the observed states ∂y

∂θi
= ∂g

∂x
∂x
∂θi

+ ∂g
∂θi

are obtained. Here, the parameter vector θ has been
augmented by the observation parameters, θ = (k, x0, c).
The estimation of the parameters θ given the observation y(t) is addressed in the next section.

6 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

2.2. Maximum-likelihood method

Parameter estimation is a common task in statistics. It describes the process of inferring
parameter values or parameter ranges of a statistical model based on observed data. Over
decades, appropriate estimators have been developed for different problem classes. The prin-
ciple of maximum likelihood allows to derive an estimator which is especially suited for appli-
cations where the distribution of the measurement noise is known. This knowledge about the
structure of the noise constitutes additional information that makes the maximum-likelihood
estimator (MLE) efficient, i.e., from all unbiased estimators the MLE has the lowest vari-
ance. Other properties of maximum-likelihood estimation are consistency, i.e., the estimated
parameter value approaches the true parameter value in the limit of infinite data-sample size,
and asymptotic normality, i.e., in the limit of infinite data the MLE follows a multivariate
normal distribution. See Azzalini (1996) for an introduction to likelihood theory.
Maximum-likelihood estimation is based on the maximization of the likelihood function
L(θ) = φ(yD|θ). Here, φ is the joint probability density for a vector of observations y,
c.f. Equation 6, evaluated at the point y = yD, the vector of data points. The distribution
φ depends parametrically on model parameters θ. The maximum-likelihood estimator θ̂ is
defined as

θ̂ := arg max
θ

L(θ),

meaning that θ̂ is an extremum estimator. Depending on the model class and the probability
distribution φ, maximization of the likelihood can be a challenge beyond the scope of ana-
lytical methods. Numerical optimization methods help to solve the maximization problem in
practical applications.
The easiest and one of the most frequent situations is when φ follows a normal distribution,
φ ∼ N (y(θ),Σ). When measurements are statistically independent, the variance-covariance
matrix Σ = diag(σ2

1, . . . , σ
2
N) is diagonal and φ factorizes. The likelihood function reads

L(θ) =
N∏
i=1

1√
2πσ2

i

e
−

(yi(θ)−yD
i

)2

2σ2
i . (7)

Taking twice the negative logarithm, Equation 7 turns into

l(θ) = −2 logL(θ) =
∑
i

(yi(θ)− yDi
σi

)2

+ log(2πσ2
i)

 , (8)

thus converting the maximization of L(θ) to a minimization of l(θ). Assuming that the data
uncertainties σi are known, Equation 8 is the weighted least-squares function shifted by a
constant. For unknown σi, Equation 8 can be optimized with respect to θ and σ jointly,
yielding the MLE θ̂′ = (θ̂, σ̂).

2.3. Non-linear optimization

Numerical optimization is a diverse field with as many algorithms as there are optimization
problems around. The dMod package supports derivative-based methods, and in particular
the Newton method.

Journal of Statistical Software 7

Optimization by the Newton method attempts to iteratively find the root of the gradient
∇l(θ) by the recursion

θ(n+1) = θ(n) −Hl(θ)−1∇l(θ), (9)

where Hl(θ) denotes the Hessian, i.e., the matrix of second derivatives of l(θ). The fact
that for normally distributed noise the log-likelihood is a least squares function, has a big
advantage: gradient and (approximate) Hessian can be computed from first-order derivatives
(Press, Teukolsky, Vetterling, and Flannery 1996). Since the second-order contributions to
the Hessian can be neglected, gradient and Hessian read

∇l(θ) = 2r(θ)J(θ) Hl(θ) ≈ 2J(θ)TJ(θ), (10)

with the weighted residual vector ri(θ) = yi(θ)−yDi
σi

and its first derivative, the Jacobian matrix

Jij(θ) = ∂ri
∂θj

(θ) = 1
σi

∂yi
∂θj

(θ). (11)

As indicated by eqs. (10)-(11), first order model sensitivities ∂yi
∂θj

are sufficient to compute
gradient and Hessian in good approximation.
The Newton recursion, Equation 9, converges in one iteration if l(θ) is a quadratic form.
However, l(θ) is only quadratic if the model y(θ) is linear in θ which is usually not the case
for ODE models. On the other hand, each smooth function, no matter if quadratic or not,
can be approximated by a quadratic function based on its Taylor series. Thus, l(θ) can
be approximated by a quadratic function in at least a small region around θ. The idea of
trust-region optimization is to confine a Newton step to a region, the trust region, where
the quadratic approximation holds (Wright and Nocedal 1999). In each iteration, the trust-
region radius is adjusted and the optimization problem restricted to the trust region is solved.
For parameter estimation in ODE models this has the additional advantage that parameter
changes are constricted and optimization steps into parameter regions where the ODE cannot
be numerically solved any more become less frequent. This makes trust-region optimization
the method of choice for dMod.

2.4. Parameter uncertainty analysis
Parameter estimates θ̂ are obtained by non-linear optimization of the log-likelihood function
l(θ). Although being a function of the parameters, the log-likelihood depends on the data,
too. Consequently, “equivalent” random realizations of the data would lead to different pa-
rameter estimates θ̂. Given θ̂ for one random realization of the data, the question is, at
which significance level we can reject other parameters θ. This leads to the related question
of parameter convidence intervals.
A useful tool to derive confidence intervals beyond the scope of Fisher Information Matrix
is the profile likelihood (Venzon and Moolgavkar 1988; Murphy and Van der Vaart 2000).
Consider a parameter of interest, θi, being one of the parameters in the vector θ. Furthermore,
let cτ (θ) = θi − τ = 0 be a parameter constraint. Then, extending the likelihood with the
constraint via a Lagrange multiplier λ yields

pli : R −→ R
τ 7−→ min

(θ,λ)

[
l(θ) + λcτ (θ)

] (12)

8 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

which is called the profile likelihood of the i th parameter. The path τ 7→ (θ̂τ , λ̂τ) along the
minimizing parameters is called the profile likelihood path. Hence, the profile likelihood pli
returns the minimal log-likelihood under the constraint θi

!= τ . By construction, the inequality
Di := pli(τ)−pli(θ̂i) ≥ 0 holds for all τ , assuming equality at least for τ = θ̂i. Interpreting the
unconstrained model as the null model, which we assume to be true, and that with θi fixed to
τ as the alternative model, the value D is twice the log of the likelihood-ratio between those.
Hence, a likelihood-ratio test can be performed to accept or reject the alternative model at a
given confidence level. To compute the corresponding threshold, we assume a sufficiently large
sample size to apply Wilks’ theorem according to which the thresholds are the quantiles of
the χ2 distribution with one degree of freedom. Consequently, the 68%/90%/95%-confidence
intervals of θi are those values of τ for which Di(τ) ≤ 1, 2.71 and 3.84, respectively.
The reason to formulate the profile likelihood by Lagrangian multipliers is that we can directly
use Equation 12 to derive the profile likelihood path (θ̂τ , λ̂τ) with respect to τ :

d
dτ

(
θ̂τ
λ̂τ

)
=
(
Hl(θ̂τ) ∇cτ (θ̂τ)
∇cτ (θ̂τ)T 0

)−1(0
1

)
. (13)

Equation 13 forms the basis of what is implemented in dMod for computing the profile
likelihood.
The profile likelihood approach can be applied to compute confidence intervals for model
predictions, too, see Kreutz et al. (2012); Hass, Kreutz, Timmer, and Kaschek (2016).

3. Implementation and design principles
The guiding idea behind the implementation of dMod is to provide a class structure for models,
predictions, observations and parameter transformations that allows a flexible combination of
many experimental conditions in one objective function to fit models to data. This flexibility
is achieved by two concepts: (1) concatenation of functions by the "*" operator and (2)
stacking of functions representing different conditions by the "+" operator. The handling and
propagation of derivatives is part of the classes and happens in the background. Methods for
the generic print(), plot() and summary() functions are implemented for most outputs.

3.1. Model formulation
A system of ODEs ẋ = f(x, p, u, t) is represented by a named character vector of symbolic
expressions, the right-hand side of the ODE, involving symbols for the states x, the parameters
p, the forcings u and the keyword time for t. The names of the vector are the state names.
The class provided by dMod for such objects is the eqnvec class which checks whether the
character can be parsed and thus, can be interpreted as an equation.
dMod provides several ways to define the differential equations. An eqnvec of equations can
be explicitly formulated, analogously to a c() command. Especially for chemical reactions it
can be tedious to keep track of all gain and loss terms. Therefore, dMod provides also the
eqnlist class which encodes the ODE by a list of (1) state names, (2) rate expressions, (3)
compartment volumes and (4) the stoichiometric matrix. Each reaction flux, c.f. Equation 3,
occurs only once and the gain and loss is represented by the coefficients in the stoichiometric
matrix. dMod supports the read-in of a csv file with the stoichiometric matrix and rate
expressions and provides a function addReaction() to construct an eqnlist object step-
by-step or add further reactions to an already existing eqnlist. An eqnlist is converted

Journal of Statistical Software 9

to (differential) equations, i.e., an eqnvec, by as.eqnvec(). The conversion does all the
bookkeeping of gain and loss terms and volume ratios due to compartment transitions.
dMod makes use of derivatives wherever possible. It is one of the core functionalities of the
cOde package (Kaschek 2019) upon which dMod is based to augment a system of ODEs by
its sensitivity equations. If r parameters are involved and the system consists of n states, the
number of equations grows as quick as n2 + nr. Solving the equations can be considerably
accelerated by utilizing compiled code. dMod provides the odemodel class. An object of
class odemodel is generated from an eqnlist or eqnvec. In the background, C code for the
ODE and the combined system of ODE and sensitivity equations is generated, written to the
working directory and compiled. The odemodel object keeps track of the shared objects. It
is the basis of a prediction function x(t, p) generated by the Xs() command.

3.2. Prediction functions

dMod seeks to stay close to the mathematical formulation, i.e., x <- Xs(myodemodel) will
indeed return an R function, an object of class prdfn, which expects arguments times and
pars and turns them into a model prediction. The letter "s" in "Xs" refers to sensitivities,
i.e., the solution x(t) is returned, the sensitivities ∂x

∂p (t) are returned, too.
Besides parameters, the prediction might also depend on forcings u(t) and sudden events,
e.g., setting states to 0 at a predefined point in time. Since forcings and events are by default
fixed, they are defined together with the prediction function, x <- Xs(odemodel, forcings
= myforcings, events = myevents). The definitions of both, forcings and events, are com-
patible with the way they are defined in deSolve.

3.3. Observation functions

An observation function is a function g(x, pobs, t) that evaluates the solution x(t) together
with additional (observation) parameters pobs. The function can explicitly depend on time t.
Similar to the ODE case, an observation function can be expressed as a character vector with
names corresponding to the names of the observables and equations involving symbols for the
states, parameters and the keyword time. An observation function is defined as an eqnvec
and turned into an R function via Y().
It is one of the fundamental concepts of dMod to allow concatenation of functions via the "*"
operator. The mathematical formulation y = g ◦ x, i.e., y(t, p) = (g ◦ x)(t, p) := g(x(t, p), p, t)
becomes y = g * x in R. To obtain derivatives ∂y

∂p , the chain rule is applied: ∂y
∂p = ∂g

∂x
∂x
∂p + ∂g

∂p .
This means that Y() needs to be informed which symbols are states and parameters to gen-
erate the corresponding expressions ∂g

∂x and ∂g
∂p . The observation function g takes care of

computing theses derivatives from the symbolic expressions and doing the matrix multiplica-
tion with the sensitivities ∂x

∂p from the prediction function. Evaluation of symbolic expressions
can become inefficient in R. Therefore, the observation function is usually translated into a C
code and compiled.
When observation- and prediction functions are concatenated, the result is a prediction func-
tion, e.g., y = g * x is the R function computing values y(t) from the arguments times and
pars via evaluation of the ODE and subsequent evaluation of the observation function. Two
observation functions can be concatenated, too, again yielding an observation function.

10 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

3.4. Parameter transformations

Parameter transformations are the key element of dMod to formulate different kinds of con-
straints and allow the combination of several experimental/modeling conditions in one pa-
rameter vector.
In principle, a parameter transformation p = Φ(θ) is a (differentiable) function connecting
inner parameters p with outer parameters θ. The rationale behind the distinction of inner
and outer parameters is that the vector p usually desribes those parameters defined in the
model equations. The outer parameters θ refer to a convenient parameterization by which
the model parameters are computed. Examples are a log-transform of the inner parameters,
θ = log(p)⇔ p = Φ(θ) = eθ, or parameter constraints like (p1, p2) = (θ1, θ1 + θ2).
An R function of class parfn is produced by the P() command. Transformations can either be
formulated explicitly or implicitly. In the explicit case, the function p = Φ(θ) corresponds to
an eqnvec whose names are the names of the inner parameters and entries are equations with
symbols for the outer parameters. An implicit transformation has the form f

(
p = Φ(θ), θ

)
= 0.

In this case, f is expressed by an eqnvec with equations containing symbols for p and θ and
the names of the eqnvec are the symbols for p.
Similar to prediction- and observation functions, parameter functions not only return pa-
rameter values but the Jacobian of the transformation, too. Exploiting the chain rule, the
derivatives are propagated, allowing to define y = g * x * p which is a function returning
y(t, θ) and ∂y

∂θ (t), i.e., g * x * p is a prediction function.
Let g, x, p1 and p2 be an observation-, a prediction- and two parameter transformation
functions. Then p1 * p2 is a parameter transformation function, x * p1 is a prediction
function and g * p1 is an observation function.

3.5. Multi-conditional prediction

A set of parameter values, forcings and events captures a certain condition in which we find
the modeled system. Manipulating the system, single model parameters, forcings or events
need to be changed to account for the manipulation. It is a typical approach in systems
inference to systematically perturb small parts of a modeled system to reveal information
about the processes.
The aim of dMod is to allow for “simultaneous” predictions under several conditions and
compare these predictions to the corresponding experimental data sets to estimate model
parameters. Different experimental conditions are typically expressed by the fact that some
parameters are different between conditions whereas others are common to all conditions. This
situation occurs, e.g., if perturbation experiments are performed, affecting only few parts of
a system. Mathematically speaking, we want to construct a parameter transformation

Φ : Rp −→
n⊕
i=1

Rq

θ 7−→ (Φ1(θ), . . . ,Φn(θ))
(14)

where i = 1, . . . , n corresponds to the different conditions. If all parameters are shared
throughout all conditions, then p = q. If, however, all parameters are distinct, then p = n · q.
Perturbation experiments correspond to a situation where p & q.

Journal of Statistical Software 11

The dMod package allows to define transformations Φ, see Equation 14, by the "+" operator:1

p <- P(eqnvec1, condition = "one") + P(eqnvec2, condition = "two")

All symbols from eqnvec1 and eqnvec2 are collected and their union constitutes the symbols
of θ. The evaluation p(theta) returns a list of length n (in the example n = 2) with inner
parameters. The "+" operator can be applied consecutively to add conditions.
Prediction- and observation functions are generalized to multiple conditions by the "+" oper-
ator, too. Mathematically speaking, they become

x : R×
n⊕
i=1

Rq −→
n⊕
i=1

Rm

(t, p1, . . . , pn) 7−→ (x1(t, p1), . . . , xn(t, pn))

g :
n⊕
i=1

Rm ×
n⊕
i=1

Rq × R −→
n⊕
i=1

Rs

(x1(t), . . . , xn(t), p1, . . . , pn, t) 7−→ (g1(x1(t), p1, t), . . . , gn(xn(t, pn), pn, t)).

In words, if prediction- or observation functions are defined for different conditions then they
expect condition-specific inputs which are evaluated by the matching functions. Examples for
condition-specific prediction functions typically involve different forcings or events. Observa-
tion functions can, e.g., differ between different measurement techniques. In all these cases,
the different prediction functions x1, . . . , xn or observation functions g1, . . . , gn are defined,
referencing the condition, and combined by the "+" operator analogously to p.
All commands, P(), Xs(), Y(), etc. can be executed with condition = NULL. In that case,
the corresponding returned function is generic and, if called for different conditions, the same
identical function is evaluated with the condition-specific input. The other way round, if a
function, say, x is defined for several conditions, its prediction can be evaluated only for a
subset of conditions by x(times, pars, conditions = myconditions).

3.6. The data structure

In dMod different experimental conditions are handled by lists. Parameter transformations,
prediction- and observation functions stacked by the "+" operator return list objects. On
the other hand, data.frames as they are used for linear modeling, mixed-effects modeling or
plotting with ggplot2 are highly convenient to organize the data. The class datalist provides
the interface between dMod’s list structures and data.frame objects. A datalist is a list
of data frames with identical structure: observable names, time points, measured values and
measurement uncertainty.
Objects of class datalist are usually generated by the as.datalist() command from a
data.frame. The factor variables in the data frame to be used as generators for the unique
condition names can be passed by the split.by argument. The resulting list of data frames
has an additional attribute "condition.grid", a translation table between the condition
names and the original factor variables which can be used for specification of parameter
transformations or augmentation of predictions by descriptive columns.

1We chose the "+" sign in analogy to the ⊕ formulation used for the direct sum of vector spaces in Equa-
tion 14.

12 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

3.7. Objective function
The aim of dMod is parameter estimation. The objective function to be minimized for this
purpose is twice the negative log-likelihood derived from the normal distribution, see Equa-
tion 8. The objective function is produced by the command normL2(data, prdfn) where
data is a datalist object and prdfn is a prediction function. By default, it is expected
that the datalist contains non-zero measurment uncertainty values in the sigma column cor-
responding to the σi in Equation 8. However, it is also possible to use Equation 8 to estimate
σ. To this end, an error model needs to be defined as an eqvec object. The names are
expected to be a subset of the obervable names and the equations define the expected σ
of the observable as a function of error model parameters and the observables themselves.
The eqnvec object is translated into an “observation function” by the Y() command. Fi-
nally, the objective function is generated by normL2(data, prdfn, errfn) with the datalist
and prediction function as before and an object errfn of class prdfn being the error model
function.
The objective function is the final link connecting the chain of parameter transformations,
prediction- and observation functions to observations. It collects all derivative information
and besides the objective value it also computes gradient and Hessian. The standard optimizer
employed within dMod is the trust() optimizer from the trust package.
Objective functions can be added by the "+" operator, meaning the objective values, gradi-
ents and Hessians are accumulated by summation. Besides the standard function normL2(),
dMod provides several other functions returning objective functions, e.g., constraintL2()
or datapointL2(). They allow to define quadratic parameter priors or treat data points as
parameters, respectively, as shown in Section 4. Thus, a typical objective function used for
parameter estimation could be

obj <- normL2(data, g * x * (p1 + p2 + p3)) + constraintL2(mu, sigma)

4. Three-compartment model of bile acid transport
The following model is a simplified dynamic model on bile acid transport published by
Kaschek, Sharanek, Guillouzo, Timmer, and Weaver (2017). Bile acids are produced in
the liver. They are necessary for the digestion of fat and oil. In the liver, bile acids are taken
up in hepatocytes (liver cells) by specific transporter molecules. Clearance occurs either via
canalicular or sinusoidal export, i.e., export to the bile transportation system of bile canaliculi
or the intercellular space.
To study bile clearance, experiments with hepatocytes or hepatocyte-derived cell lines are
performed in-vitro. Cells in a Petri dish stick together to a monolayer of cells, forming bile
canaliculi in between cells. They adhere to the dish and are surrounded by a buffer providing
the cells with nutrients. A radioactive label allows to measure the bile acid taurocholic acid
(TCA).
For the mathematical description of bile flow, a three-compartment differential equation model
is used. TCA is pipetted into the buffer compartment (TCA_buffer) from where it is trans-
ported into the cells (TCA_cell). Intracellular TCA is exported back to the buffer or the
canalicular compartment (TCA_cana). Finally, canalicular TCA flows back into the buffer
compartment.

Journal of Statistical Software 13

A
d
dt

TCA_buffer = -import * TCA_buffer

+ export_sinus * TCA_cell

+ reflux * TCA_cana
d
dt

TCA_cana = export_cana * TCA_cell

- reflux * TCA_cana
d
dt

TCA_cell = import * TCA_buffer

- export_sinus * TCA_cell

- export_cana * TCA_cell.

B

bufer
bufer

cell
TCA

bufer
TCA

cana
TCA cell

canaliculi

import

export_sinus

export_cana

reflux

Figure 1: Differential equations and flowchart of the reaction network. Taurocholic acid,
TCA, is transported between three compartments by four different processes. (A) Assuming
mass-action kinetics, the three dynamic states satisfy a set of coupled differential equations.
(B) The equations are visualized in a flowchart.

In the following sections, the bile acid example will be used to illustrate key elements of ODE
modeling and how they are implemented using dMod. We will start with the implementation
of the model itself and show simulation results for the model and model sensitivities. Next,
we will introduce the observation function based on radioactive labeling of TCA and will
use the model to simulate experimental data. The data will be fitted by the model several
times following a multi-start strategy. Parameter identifiability is discussed based on the
profile-likelihood method. Finally, different ways to include steady-state constraints in the
parameter estimation are discussed and the prediction uncertainty will be assessed.

4.1. Simulation and prediction

These processes involved in bile acid transport give rise to the differential equations and
corresponding flowchart presented in Figure 1. Each transportation process is modeled by
mass-action kinetics. A possible implementation in dMod is:

R> reactions <- NULL
R> reactions <- addReaction(reactions, "TCA_buffer", "TCA_cell",
+ rate = "import*TCA_buffer", description = "Uptake")
R> reactions <- addReaction(reactions, "TCA_cell", "TCA_buffer",
+ rate = "export_sinus*TCA_cell", description = "Sinusoidal export")
R> reactions <- addReaction(reactions, "TCA_cell", "TCA_cana",
+ rate = "export_cana*TCA_cell", description = "Canalicular export")
R> reactions <- addReaction(reactions, "TCA_cana", "TCA_buffer",
+ rate = "reflux*TCA_cana", description = "Reflux into the buffer")

The reaction list is translated into an ODE model object:

R> mymodel <- odemodel(reactions, modelname = "bamodel")

14 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

TCA_cana

TCA_cell

TCA_buffer

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0.6

0.8

1.0

0.0
0.1
0.2
0.3
0.4

0.00

0.05

0.10

0.15

time

co
nc

en
tr

at
io

n

A

TCA_buffer.reflux TCA_cell.reflux TCA_cana.reflux

TCA_buffer.export_cana TCA_cell.export_cana TCA_cana.export_cana

TCA_buffer.export_sinus TCA_cell.export_sinus TCA_cana.export_sinus

TCA_buffer.import TCA_cell.import TCA_cana.import

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.0
0.1
0.2
0.3

-0.3
-0.2
-0.1
0.0

0
1
2
3

-1.0
-0.5
0.0

0.0
0.5
1.0

-0.75
-0.50
-0.25
0.00

-2.0
-1.5
-1.0
-0.5
0.0

0.0
0.2
0.4
0.6

-1.5
-1.0
-0.5
0.0

0.0
0.3
0.6
0.9

-0.6
-0.4
-0.2
0.0

0.0
0.2
0.4
0.6

time

pa
ra

m
et

er
 s

en
sit

iv
ity

B

Figure 2: Output of the prediction function. (A) Prediction of the TCA states. (B) Sensitiv-
ities of the three TCA states for the rate parameters only.

Finally, the prediction function is generated:

R> x <- Xs(mymodel, condition = NULL)

The reactions are collected in an eqnlist object. The odemodel() command composes the
single reactions to an ODE system and auto-generates the C code which is used by the deSolve
package to evaluate the ODE. Prediction functions are generated by the Xs() command. The
usage of the prediction function is illustrated by the following code chunk. Time points are
defined between 0 and 50, numeric values are assigned to all model parameters. Note that
the first three parameters correspond to initial state values.

R> times <- seq(0, 50, 0.1)
R> pars <- c(TCA_buffer = 1, TCA_cell = 0, TCA_cana = 0, import = 0.2,
+ export_sinus = 0.2, export_cana = 0.04, reflux = 0.1)

Finally the prediction function is called and both, the prediction and the sensitivities, are
plotted, shown in Figure 2.

R> out <- x(times, pars)
R> plot(out)
R> outSens <- getDerivs(x(times, pars[4:7], fixed = pars[1:3]))
R> plot(outSens)

Figure 2A shows the uptake of TCA_buffer in the cell and canaliculi, saturating around t = 50.
The prediction parametrically depends on initial values and rate parameters. Figure 2B shows
the model sensitivities ∂x

∂p for the rate parameters.

Journal of Statistical Software 15

4.2. Observation function and simulated data

In experiments, the three dynamic states, TCA_buffer, TCA_cell and TCA_cana cannot be
directly measured. Rather, the radioactivity can only be measured separately for two com-
partments, namely the buffer and the cellular compartment, where the latter contains cells
and canaliculi. This translates into the following relation between the radioactive counts and
the dynamic states of our ODE model:

buffer = s * TCA_buffer

cellular = s * (TCA_cana + TCA_cell)
(15)

The scaling factor s translates amounts of TCA into radioactive counts. The observation
function is expressed in dMod as follows.
First, observables are defined by an eqnvec object from which an observation function g
is generated by the Y() command. The Y() command needs to be informed which of the
symbols are variables (dynamic states) or parameters. Conveniently, Y() can retrieve this
information from the prediction function x it is built on, or parse an eqnvec or eqnlist such
as reactions.

R> observables <- eqnvec(buffer = "s*TCA_buffer",
+ cellular = "s*(TCA_cana + TCA_cell)")
R> g <- Y(observables, f = x, condition = NULL, compile = TRUE,
+ modelname = "obsfn")

Observation functions link internal to observable states. Thus, providing values for the model
parameters, the observation function can be used to simulate the outcome of an experiment.
Adding noise to the prediction, experimental data is simulated. In the following, we will simu-
late the outcome of an efflux experiment. The experiment starts with all TCA concentrations
in steady state, such as shown in Figure 2 after t = 50. To initiate the efflux, the buffer is
replaced by TCA-free buffer, i.e., TCA_buffer = 0. This translates into the following initial
parameter values:

R> pars["TCA_cell"] <- 0.3846154
R> pars["TCA_cana"] <- 0.1538462
R> pars["TCA_buffer"] <- 0
R> pars["s"] <- 1e3

The predicted dynamics of the system’s internal and observable states is obtained by evalua-
tion of the concatenated prediction function g ◦x, formulated as g * x in dMod. The scaling
parameter s is set to 1000.

R> out <- (g * x)(times, pars, conditions = "standard")

Since g and x have been generated as generic functions, i.e., condition = NULL, we can assign
the output to a condition of our choice, in this case “standard”. The predicted noiseless obser-
vation is obtained by considering the observable states only at the time point of observation
timesD.

16 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

buffer cellular TCA_buffer TCA_cell TCA_cana

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.08

0.10

0.12

0.14

0.20

0.25

0.30

0.35

0.00

0.05

0.10

0.15

0.20

0.25

300

400

500

0

100

200

time

co
nc

en
tr

at
io

n

Figure 3: Model prediction of the observable and internal states. Simulated data is shown as
dots with error bars.

R> timesD <- c(0.1, 1, 3, 7, 11, 15, 20, 41)
R> datasheet <- subset(as.data.frame(out),
+ time %in% timesD & name %in% names(observables))

Data uncertainties σ are derived by the Poisson nature of radioactive count experiments, i.e.,
σx =

√
x. To avoid division by 0, the minimal σ-value is set to 1. Random values are added to

the predicted values to simulate observation noise. In the end, the data.frame is converted
into a datalist object.

R> datasheet <- within(datasheet, {
+ sigma <- sqrt(value + 1)
+ value <- rnorm(length(value), value, sigma)
+ })
R> data <- as.datalist(datasheet)
R> plot(out, data)

Both, the simulated data and the model prediction from which the data is derived are shown
in Figure 3. The data reflects a typical time course of an efflux experiment, showing decreasing
cellular TCA levels and increasing levels of TCA in the buffer.

4.3. Parameter transformation

Parameter transformations play a crucial role in the set-up of dMod. They can have several
purposes such as fixing paramer values, implementing parameter bounds, including steady-
state constraints or mapping parameters to different conditions. While being conceptually the
same, it might be worth noting that parameters can be distinguished in two classes. The first
class of parameters are initial values for dynamic states, such as TCA_buffer. Parameters of
the second class, such as rate parameters, have no accompanying dynamic state.
First, we use parameter transformations to constrain all parameters to be positive or zero
because all our parameters are either amounts or rate parameters. The parameter transforma-
tion is generated by the P() command taking an eqnvec object. Parameter transformations
explicitly state the relation between the inner parameters, i.e., the parameter values that are
evaluated within the model, and the outer parameters, i.e., the parameter values provided
by the user or by an optimizer. In our case, we imply positivity of inner parameters using
the exp() function on outer parameters. The corresponding code reads:

Journal of Statistical Software 17

buffer cellular TCA_buffer TCA_cell TCA_cana

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.20

0.25

0.30

0.35

0.15

0.20

0.25

0.30

0.35

0.0

0.1

0.2

0.3

0

200

400

0

100

200

time

co
nc

en
tr

at
io

n

Figure 4: Prediction of internal and observed states. All values of the outer parameters have
been set to −1. Simulated data points are shown as dots with error bars.

R> p <- P(
+ trafo = eqnvec(TCA_buffer = "0", TCA_cell = "exp(TCA_cell)",
+ TCA_cana = "exp(TCA_cana)", import = "exp(import)",
+ export_sinus = "exp(export_sinus)", export_cana = "exp(export_cana)",
+ reflux = "exp(reflux)", s = "exp(s)"),
+ condition = "standard")
R> outerpars <- getParameters(p)
R> pouter <- structure(rep(-1, length(outerpars)), names = outerpars)
R> plot((g * x * p)(times, pouter), data)

The vector outerpars is the collection of all symbols on the right-hand side of trafo. It
coincides with names(pars) except for TCA_buffer, which is fixed to a constant expression,
here 0, by the transformation. However, the interpretation of the parameters has changed
since now their values are on a log-scale. All three functions, the observation function, pre-
diction function and parameter transformation can be concatenated to one new prediction
function, g * x * p which takes times and values of the outer parameters to predict internal
and observable states. The model prediction generated by pouter is shown in Figure 4.

4.4. Objective function and model fitting

The objective of model fitting is to find parameter values such that the corresponding model
prediction matches the observation. In Figure 4, the graphs of buffer and cellular should
match the observation within the error. For normally distributed measurement noise, maxi-
mum-likelihood estimation is equivalent to least-squares estimation. A least-squares objective
function can be generated by the normL2() command which requires a datalist object, in
our case data, and a prediction function, in our case g * x * p.
If prior knowledge for parameter values is available, this can be incorporated by calling
constraintL2(). The function penalizes distances between arbitrary prior values and pa-
rameter values with a quadratic function weighted by the strength of the prior. Thereby,
parameters are treated like observations with normally distributed error. The objective func-
tions returned by normL2() and constraintL2() are objects of class objfn and can be added
by the "+" operator.
Frequently, non-identifiable parameters are encountered in non-linear dynamic systems. In
this case, adding a weak prior to all parameters prevents the optimizer from selecting extreme

18 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

buffer cellular TCA_buffer TCA_cell TCA_cana

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
10

15

20

0.5

1.0

1.5

2.0

2.5

0

3

6

9

300

400

500

0

100

200

time

co
nc

en
tr

at
io

n

Figure 5: Prediction of internal and observed states after optimization of the objective func-
tion. Simulated data points are shown as dots with error bars.

parameter values for which the ODE solver aborts. This situation is to be distinguished
from the prior knowledge case. A general prior is only used during model development
to facilitate parameter estimation and should be dropped in the end. To distinguish prior
knowledge contributions from a general prior in the objective value, the attr.name argu-
ment of constraintL2() can be used. Numeric attributes from objective functions added
by the "+" operator are collected and values from equally named attributes are added. Set-
ting attr.name = "data" causes the prior to be combined with the data likelihood whereas
attr.name = "prior" distinguishes it from the data.
The following code illustrates the implementation of the objective function and how it is used
with the trust() optimizer from the trust package (Geyer 2015) to obtain a model fit, shown
in Figure 5.

R> obj <- normL2(data, g * x * p) + constraintL2(pouter, sigma = 10)
R> myfit <- trust(obj, pouter, rinit = 1, rmax = 10)
R> plot((g * x * p)(times, myfit$argument), data)

Besides non-identifiability of parameters, local optima constitute another pit-fall when op-
timizing non-linear functions. The trust() optimizer employs derivative information and
therefore, if starting within a certain region around a local optimum, is very efficient in find-
ing it back. Once an optimum is found, we can be confident that there is no deeper point
around. However, to be confident that an optimum is the globally best solution, we might
want to scatter starting points for optimization runs all over the parameter space. The dMod
package provides the mstrust() function based on trust() to do a multi-start search:

R> out_mstrust <- mstrust(obj, pouter, rinit = 1, rmax = 10, iterlim = 500,
+ sd = 4, cores = 4, fits = 50)
R> myframe <- as.parframe(out_mstrust)
R> plotValues(myframe, tol = 0.01, value < 100)
R> plotPars(myframe, tol = 0.01, value < 100)

Here, we have searched according to ~pi = ~p0 + ∆~pi where ~p0 is the center, in our case pouter,
∆~pi ∼ N(0, σ2) is a random parameter vector taken from a normal distribution, in our case
σ = 4, and the index i runs from 1 to fits = 50. The mclapply() command from the
standard parallel package (R Core Team 2019) is used internally to run fits in parallel, here
cores = 4. The result of mstrust() is a list of all returned values of trust(). To extract the

Journal of Statistical Software 19

1

29

44

47
12.60

12.65

12.70

12.75

12.80

0 10 20 30 40 50
index

χ
2

va
lu

e

converged
TRUE

40

60

80

iterations

-2

0

2

T
C

A
_

ce
ll

T
C

A
_

ca
na

im
po

rt

ex
po

rt
_

sin
us

ex
po

rt
_

ca
na

re
flu

x s

pa
ra

m
et

er
 v

al
ue index

1

29

44

47

buffer cellular TCA_buffer TCA_cana TCA_cell

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0

5

10

15

20

0

5

10

15

20

0

3

6

9

300

400

500

0

100

200

time

co
nc

en
tr

at
io

n

A B

C

Figure 6: Result of multi-start fitting procedure. (A) Fits have been sorted by increasing
objective value. Four optima were found with almost identical objective value. (B) The
parameter values for different optima are shown in different colors. (C) Each local optimum
corresponds to a different model prediction, shown in different colors. The observed states
are pracitically undistinguishable although the internal states show different behavior.

final objective value, parameter values, convergence information and the number of iterations,
as.parframe() is used. The multi-start approach identifies four local optima, see Figure 6,
which yield almost the same objective value, Figure 6A. Despite the similar objective value,
the optima are not close to each other in parameter space, as being illustrated by Figure 6B,
and lead to different predictions, Figure 6C. Figure 6B suggests that the two initial values
TCA_cell and TCA_cana are connected in the sense that if one takes a large value, the other
takes a small value and vice versa. This is not surprising because the observed cellular TCA
amount is the sum of both. A new experiment needs to be designed to distinguish one
situation from another.

4.5. Working with several conditions

In practice, the canaliculi only form a closed compartment if Ca2+/Mg2+ ions are present in
the buffer. Therefore, if the experiment is repeated with Ca2+/Mg2+-free efflux buffer, the
contents of the canaliculi escapes quickly into the buffer compartment. Under this condition,
the buffer measurement reflects what was formerly the total TCA content in buffer and
canaliculi whereas the cellular measurement reflects what was fomerly the TCA content
of the cells. Mathematically, two experimental conditions which differ only by the reflux
parameter need to be combined in one objective function.

20 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

Like before, we simulate a data set. Then, a parameter transformation for the additional
condition is set up and the parameter space is explored by a multi-start fit.
To simulate the new experimental condition, the "reflux" parameter is modified. The new
data set is combined with the original data by the "+" operator.

R> pars["reflux"] <- 1e3
R> out <- (g*x)(times, pars, conditions = "open")
R> datasheet <- subset(as.data.frame(out),
+ time %in% timesD & name %in% names(observables))
R> datasheet <- within(datasheet, {
+ sigma <- sqrt(value + 1)
+ value <- rnorm(length(value), value, sigma)
+ })
R> data <- data + as.datalist(datasheet)

To add a condition to the parameter transformation function, we use the equations of the stan-
dard condition as a template for the “open” condition. Parameter transformation functions
for different conditions are combined by the "+" operator.

R> trafo <- getEquations(p, conditions = "standard")
R> trafo["reflux"] <- "exp(reflux_open)"
R> p <- p + P(trafo, condition = "open")

Both transformations “standard” and “open” now possess the outer parameters reflux and
reflux_open. However, the value of reflux is mapped to an inner parameter only by trans-
formation “standard”. Accordingly, transformation “open” only uses reflux_open. Thus,
both transformations return the same values for all but the reflux parameter. The predic-
tion function g * x is generic in the sense that condition = NULL whereas the concatenation
g * x * p has the conditions “standard” and “open”, evaluating the identical function g * x
on two parameter vectors.
We define an updated objective function:

R> outerpars <- getParameters(p)
R> pouter <- structure(rep(-1, length(outerpars)), names = outerpars)
R> obj <- normL2(data, g * x * p) + constraintL2(pouter, sigma = 10)

Then we start 50 fits around pouter. The list of fits is simplified to a parframe and by the
as.parvec() function, the parameter vector (of the best fit) is extracted from the parframe.
The best fit is used to make a prediction which is plotted together with the simulated data.
All results are shown in Figure 7.

R> out_mstrust <- mstrust(obj, pouter, rinit = 1, rmax = 10, iterlim = 500,
+ sd = 4, cores = 4, fits = 50)
R> myframe <- as.parframe(out_mstrust)
R> plotValues(myframe, tol = 0.1, value < 100)
R> plotPars(myframe, tol = 0.1, value < 100)
R> bestfit <- as.parvec(myframe)
R> plot((g * x * p)(times, bestfit), data)

Journal of Statistical Software 21

buffer cellular TCA_buffer TCA_cell TCA_cana

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0

1

2

3

4

5

6

0

2

4

200

300

400

500

0

100

200

300

time

co
nc

en
tr

at
io

n

condition
standard

open

1

21

30

40

50

60

0 10 20 30 40
index

χ
2

va
lu

e

30

50

70

90

iterations

converged
TRUE

-2

0

2

4

T
C

A
_

ce
ll

T
C

A
_

ca
na

im
po

rt

ex
po

rt
_

sin
us

ex
po

rt
_

ca
na

re
flu

x s

re
flu

x_
op

en

pa
ra

m
et

er
 v

al
ue

index
1

21

A

B C

Figure 7: Result of multi-start fitting procedure with two experimental conditions. (A) Model
prediction of the best fit and the simulated data are shown in different colors. (B) Fits have
been sorted by increasing objective value. The lowest value clearly separates from the second
plateau. (C) Plotting the parameter values for each of the fits reveals that the second plateau
consists of two optima. The lowest plateau however corresponds to a unique optimum.

Interestingly, with the new experiment the best optimum becomes unique. The log-likelihood
difference, i.e., half the difference between the objective values, is more than 20 between the
lowest and the second plateau, which is highly significant. The uniqueness of the lowest
plateau is confirmed by Figure 7C which shows no scattering of the black circles.

4.6. Parameter uncertainty and identifiability

One might wonder why the optimum is unique as for any choice of the scaling parameter
s we find appropriate values of the TCA initial value parameters that give rise to exactly
the same prediction of the observables. The reason for the uniqueness is the parameter L2-
constraint that we have added to the objective function. Nonetheless, we will see, that the
non-identifiability is still visible in the profile likelihood.
The profile likelihood is computed by the profile() command. There are several options to
control the step-size and accuracy. For convenience the method option can be used to select
between the presets "integrate" and "optimize".
The code

R> profiles <- profile(obj, bestfit, names(bestfit), limits = c(-5, 5),
+ cores = 4)
R> plotProfile(profiles)
R> plotPaths(profiles, whichPar = "s")

22 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

export_cana reflux s reflux_open

TCA_cell TCA_cana import export_sinus

-5 -4 -3 -2 -3 -2 -1 0.0 2.5 5.0 7.5 4 6 8

-2 0 2 4 6 -2.5 0.0 2.5 5.0 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -7 -6 -5 -4 -3 -2

68% / 1

90% / 2.71

95% / 3.84

68% / 1

90% / 2.71

95% / 3.84

parameter value

C
L

/ Δ
χ

2

mode total data prior

s -
TCA_cell

s -
TCA_cana

s -
import

s -
export_sinus

s -
export_cana

s -
reflux

s -
reflux_open

-3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3

-3
0
3

Δparameter 1

Δ
pa

ra
m

et
er

 2

A

B

Figure 8: Profile likelihood. (A) Profiles of all parameters. Data- and prior contribution to
the total objective value are distinguished by line-type. (B) Parameter paths for the scaling
parameter s.

gives us the result shown in Figure 8. Computing the profile likelihood, the sum of data con-
tribution, normL2, and prior contribution, constraintL2, are optimized under the constraint
of a given parameter value for the profiled parameter. In the optimum, data and prior contri-
bution are evaluated separately giving rise to the dashed and dotted lines in Figure 8A. As we
had expected, the data contribution to the initial value parameters TCA_cell, TCA_cana and
the scaling parameter s is constantly zero. The parameters are structurally non-identifiable.
Each profile corresponds to a certain path in parameter space. The path for the profile of
the non-identifiable scaling parameter s is shown in Figure 8B. It shows a clear coupling
of the scaling parameter s and the initial value parameters TCA_cell and TCA_cana: both
initial value parameters have to be decreased by the same extent as the scaling parameter is
increased to keep the prediction unchanged.
The profiles of the parameters export_sinus and reflux_open exceed the 95% confidence
threshold only to one side. Given the data, the export_sinus parameter could equally be
−∞ (corresponding to an export rate of 0) without changing the likelihood significantly for
the worse. A similar statement holds for the reflux_open parameter which could equally
be ∞ meaning that we could assume instantaneous draining of the canaliculi for the "open"

Journal of Statistical Software 23

condition. The two parameters are practically non-identifiable.
Finally, the parameters import, export_cana and reflux exceed the 95% confidence thresh-
old in both directions meaning that the parameters have finite confidence intervals. However,
the confidence intervals are rather large and we might ask if there is further information that
we could use to improve parameter identifiability without generating new data.

4.7. Steady-state constraints and implicit transformations

So far we have estimated both initial concentrations, TCA_cell and TCA_cana, independently.
However, we know that the efflux experiment was just started after completion of the uptake
process. Our system runs into a steady state, the buffer is exchanged and the measurement
begins. Hence, we can use the steady-state condition as an additional information for the
modeling process.
The steady-state relation between TCA_cana and TCA_cell can be derived analytically from
the ODE, Figure 1A, by setting the right-hand side of d

dtTCA_cana to zero. It reads

TCA_cana = export_cana * TCA_cell / reflux (16)

This relation can be explicitly used in a parameter transformation to express TCA_cana in
terms of other parameters. The dimension of the parameter space is thereby reduced by one.
The following implementation shows how we would use the existing transformation function
p to generate an alternative transformation function pSS which includes the steady-state
condition and replaces p in the prediction function g * x * p.

R> pSS <- NULL
R> equations <- getEquations(p)
R> conditions <- names(equations)
R> for (n in conditions) {
+ equations[[n]]["TCA_cana"] <- "exp(export_cana)*exp(TCA_cell)/exp(reflux)"
+ pSS <- pSS + P(equations[[n]], condition = n)
+ }

We get all the information about the transformations from the getEquations() command.
The equation for TCA_cana is substituted by our steady-state constraint. By the "+" operator,
a new parameter transformation function pSS is iteratively constructed for all conditions.
Alternatively, we want to implement the steady-state constraint by an implicit parameter
transformation, as opposed to the explicit transformation shown above. Let ẋ = f(x, p)
be our dynamic system. Then, under certain conditions, we find a function g(p) such that
f
(
g(p), p

)
= 0 for all p, i.e., xS = g(p) is a steady state of f . The parameter transformation

we want to generate is the function p 7→
(
p, g(p)

)
. Here, the set of outer parameters is the

set of the reaction rates p whereas the set of inner parameters contains these rates and the
corresponding steady states as initial value parameters. The root of f must be determined
numerically to which end multiroot() from the rootSolve package (Soetaert and Herman
2009) is used.
The following code is a reimplementation of the example above. The replacement of the buffer
and the possibility for different reflux rates between the “standard” and “open” conditions
are explicitly modeled by events at time zero.

24 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

R> reactions <- NULL
R> reactions <- addReaction(reactions, "TCA_buffer", "TCA_cell",
+ rate = "import*TCA_buffer", description = "Uptake")
R> reactions <- addReaction(reactions, "TCA_cell", "TCA_buffer",
+ rate = "export_sinus*TCA_cell", description = "Sinusoidal export")
R> reactions <- addReaction(reactions, "TCA_cell", "TCA_cana",
+ rate = "export_cana*TCA_cell", description = "Canalicular export")
R> reactions <- addReaction(reactions, "TCA_cana", "TCA_buffer",
+ rate = "(reflux*(1-switch) + reflux_open*switch)*TCA_cana",
+ description = "Reflux into the buffer")
R> reactions <- addReaction(reactions, "0", "switch", rate = "0",
+ description = "Create a switch")

The events for TCA_buffer and switch are generated as part of the model and, therefore,
need to be provided to the odemodel() command together with the model.

R> events <- NULL
R> events <- addEvent(events, var = "TCA_buffer", time = 0, value = 0)
R> events <- addEvent(events, var = "switch" , time = 0, value = "OnOff")
R> mymodel <- odemodel(reactions, modelname = "bamodel2", events = events)
R> x <- Xs(mymodel)

Event times and values can both be either numeric or a character representing a parameter.
These parameters are treated in the same way as all other parameters, meaning that they
can be set in a condition-specific way or be estimated.
For the implicit parameter transformation we need the ODE which is obtained by the com-
mand as.eqnvec() from the reactions. The Jacobian of f is rank-deficient because the system
has a conserved quantity c = TCA_buffer + TCA_cana + TCA_cell which is the total TCA
amount. Replacing one element of f by c− TCA_tot, the rank of the Jacobian is completed,
the condition for the local existence of the implicit function g(p) is satisfied and the steady
state is parameterized by p and the additional parameter TCA_tot.

R> f <- as.eqnvec(reactions)[c("TCA_buffer", "TCA_cana", "TCA_cell")]
R> f["TCA_cell"] <- "TCA_buffer + TCA_cana + TCA_cell - TCA_tot"
R> pSS <- P(f, method = "implicit", compile = TRUE, modelname = "pfn")

For the optimization, all outer parameters should still be log-parameters, implemented by an
explicit parameter transformation. Outer parameters for the initial values are not necessary
any more. They can be replaced by 0 since the initial values are computed by the implicit
transformation. The switch parameter OnOff is defined in a condition-specific way: zero for
the “standard” condition and one for the “open” condition. The final transformation will be
a concatenation of the implicit and explicit transformations: pSS*p.

R> innerpars <- unique(c(getParameters(mymodel), getSymbols(observables),
+ getSymbols(f)))
R> trafo <- repar("x~x" , x = innerpars)
R> trafo <- repar("x~0" , x = reactions$states, trafo)

Journal of Statistical Software 25

reflux s reflux_open TCA_tot

TCA_cell TCA_cana import export_sinus export_cana

-3 -2 -1 -2.5 0.0 2.5 5.0 7.5 4 6 8 0 3 6 9

0 5 -2.5 0.0 2.5 5.0 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -6 -4 -2 -5 -4 -3 -2

68% / 1

90% / 2.71

95% / 3.84

68% / 1

90% / 2.71

95% / 3.84

parameter value

C
L

/ Δ
χ

2

implementation

no SS

explicit SS

implicit SS

Figure 9: Parameter profiles for three different model implementations. The profile likelihood
around the global optimum for the models without steady-state constraints, explicit steady-
state constraints and implicit implementation of steady states is visualized by different colors.
To illustrate that explicit (red) and implicit (blue) steady-state implementations yield the
same result, the corresponding profiles are highlighted by red plus and blue cross signs,
respectively.

R> trafo <- repar("x~exp(x)", x = setdiff(innerpars, "OnOff"), trafo)
R> p <- P(repar("OnOff~0", trafo), condition = "standard") +
+ P(repar("OnOff~1", trafo), condition = "open")

Although the observables have not changed compared to the set-up with purely explicit trans-
formations, the observation function must be generated again because the ODEs have struc-
turally changed and a new parameter reflux_open has appeared. Using the old observation
function would result in a wrong propagation of parameter sensitivities.

R> g <- Y(observables, f = x, compile = TRUE, modelname = "obsfn2")

Finally, the objective function is defined. The prediction function is now a concatenation of
four functions.

R> outerpars <- getParameters(p)
R> pouter <- structure(rep(-1, length(outerpars)), names = outerpars)
R> obj <- normL2(data, g * x * pSS * p) + constraintL2(pouter, sigma = 10)

The same simulated data set has been fitted by the fully explicit and the implicit/explicit
model implementations. In both cases the global optimum is unique. Parameter profiles
have been computed with both model implementations, shown in Figure 9. In addition, the
original profiles without steady-state constraints are plotted. The optima found by all three
approaches, no steady-state, analytic steady-state and numeric steady-state, are statistically

26 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

compatible. The two implementations using the steady-state information show exactly the
same profiles. Since one formulation is parameterized by TCA_cell whereas the other is
parameterized by TCA_tot, the plot highlights one of the fundamental properties of the profile
likelihood: invariance under reparameterization. In comparison to the profiles without steady-
state information, the new profiles are narrower, meaning that the parameters have smaller
confidence intervals. This was to be expected because we have reduced the dimension of the
parameter space by one.

4.8. Prediction uncertainty and validation profiles
Combining the steady-state constraint and two efflux experiments, one with closed canali-
culi and the other with open canaliculi, we could fully identify the rate parameters import,
export_cana and reflux. The amount parameter TCA_tot is fully coupled with the scaling
parameter s such that both are structurally non-identifiable. The parameters export_sinus
and reflux_open are practically non-identifiable since both parameters cannot be constrained
to a finite interval with 95% confidence.
Next, we investigate the possibility to predict cellular amounts of TCA, TCA_cell, despite
the non-identifiability of parameters. The amount of TCA_cell certainly depends on the total
amount of TCA in the system. This total amount must be fixed in which case the parameters
TCA_cell, TCA_cana and s become identifiable. The prediction uncertainty is assessed by a
prediction profile which is computed based on a virtual data point for cellular TCA, measured
at time point t = 41 in the “standard” condition. The dMod formulation reads as:

R> obj.validation <- datapointL2(name = "TCA_cell", time = 41, value = "d1",
+ sigma = 0.002, condition = "standard")

The uncertainty σ = 0.002 is set to a small value, i.e., below 1% of the prediction value. The
datapointL2() command returns an objective function which evaluates the model prediction2

and computes the least-squares function of the virtual datapoint, returning derivatives for
the data-point parameter d1. Its value “d1” is yet to be determined. By fitting the objective
function obj together with obj.validation, “d1” equals the value of TCA_cell at t = 41, as
only then its contribution to the objective value is zero.

R> fixed <- c(TCA_tot = log(1))
R> myfit <- trust(obj + obj.validation,
+ parinit = c(d1 = 1, pouter[!names(pouter) %in% names(fixed)]),
+ fixed = fixed, rinit = 1, rmax = 10)

Using the derivative information provided by datapointL2, a prediction profile around d1 is
calculated.

R> profile_prediction <- profile(obj + obj.validation,
+ myfit$argument, "d1", limits = c(-5, 5), fixed = fixed)

The result is shown in Figure 10A. The interpretation of such a prediction profile is, that a
measurement yielding a value for the cellular TCA level at time point t = 41 outside of the
interval [0.19, 0.21] does not conform to our model with 95% confidence.

2Several objective functions combined by the "+" operator share the same environment. Thus, the prediction
computed by the first objective function can be evaluated by all other functions to come.

Journal of Statistical Software 27

d1

0.19 0.20 0.21

68% / 1

90% / 2.71

95% / 3.84

parameter value

C
L

/ Δ
χ

2

mode
total

data

prior

validation

TCA_cell TCA_cana switch

buffer cellular TCA_buffer

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0
0.0

0.1

0.2

0.3

0.4

0.00

0.25

0.50

0.75

1.00

200

300

400

500

0.00

0.05

0.10

0.15

0

100

200

300

400

0.20

0.25

0.30

0.35

time

va
lu

e

condition
standard

open

A B

Figure 10: Validation profile and confidence bands for the model prediction. (A) The profile
likelihood for the data point parameter d1 describing TCA_cell at time point t = 41 is shown.
(B) Computing the data parameter profile for different time points yields 95% confidence
bands on the prediction of TCA_cell.

More precisely, changing the data-point parameter d1, the model is quickly forced to match
the new data point. This is apparent from the least squares contribution entitled “validation”
of the virtual data point, returned by obj.validation. The contribution is shown as dashed
line in Figure 10A. It remains small at the expense of a larger deviation from original data
points, indicated by the “data” contribution. Forcing d1 and thereby the model prediction
to deviate more than 0.01 from the original value, the profile exceeds the 95% confidence
threshold providing a confidence interval for the prediction itself. By calculating prediction
profiles for several time points, a confidence band for the course of TCA_cell is constructed
as shown in Figure 10B. The 95% confidence band is closed towards small and large amounts.
In summary, we find that the prediction of cellular TCA amounts is highly precise despite
the non-identifiability of the export_sinus and reflux_open parameters.

4.9. Speed comparison

Last but not least, the computational efficiency of dMod was tested. In comparison to other R
packages offering functions to estimate parameters of ODEmodels from experimental data, see
Table 1, dMod provides all observation-, prediction- and parameter transformation functions
with derivatives. Those are based on symbolic expressions being translated into C code and
being compiled alongside the model itself.
For the comparison, we have tested three different scenarios with dMod. The scenarios ap-
proximate the conditions found in different frameworks: (1) The default settings with deriva-
tives and trust region optimization, (2) derivative-free optimization with the Nelder-Mead
algorithm and, (3) optimization with the L-BFGS-B algorithm with numerically computed
gradient. With either of these settings, the example model has been fitted 50 times and the

28 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

(dMod)

(mkin, FME)*

(FME)*

(nlmeODE)*

(scaRabee, FME)*

(FME)*
* estimated

(1) trust-region

(2) Nelder-Mead

(3) L-BFGS-B

1 5 10 50 100 500 1000
runtime for a single fit [s] (logarithmic)

op
tim

iz
at

io
n

m
et

ho
d

code compiled not compiled

Figure 11: Comparison of the runtime for parameter estimation for different scenarios. The
runtime values obtained from 50 fits per scenario with dMod are shown as black dots and
violin lines. Runtime values for native R code (not compiled) were assumed be 50 times larger,
shown as orange triangles and violin lines. Modeling frameworks have been assigned to either
of the scenarios based on their characteristics.

runtime of each fit has been evaluated. The result of the runtime evaluation is shown in Fig-
ure 11 as black dots and violin lines. Since in dMod the ODE model and observation function
are compiled, runtime values for the corresponding scenarios with native R code have been
roughly estimated to exceed the runtime of compile code by a factor of 50, as indicated by
Soetaert et al. (2010). The extrapolated runtimes are shown in orange. Finally, the available
packages for parameter estimation in ODE models have been assigned to one or more sce-
narios depending on whether the framework supports compiled code or supports sensitivity
equations. Except for the runtime values obtained with dMod, these assignments reflects a
rough estimate, indicated by an asterisk.
The speed comparison shows that by a combination of compiled code and symbolically derived
gradient and hessian, the runtime achieves its best value. The reason for the good performance
is that the evaluation of sensitivity equations is only slower by a factor 2-3. On the other hand,
the objective function needs to be called only once per iteration of the optimizer whereas the
numeric evaluation of the gradient requires many function calls.

5. Extensions of dMod
Computer algebra and symbolic tools are not part of R’s core functionality. In this sec-
tion we illustrate two symbolic tools that are shiped with dMod, dealing with structural
non-identifiability and steady-state constraints. They are implemented in Python and are
interfaced via the rPython package (Bellosta 2015).

5.1. Lie-group symmetry detection

In Section 4.6, profile likelihood computation showed the existence of both practically and
structurally non-identifiable parameters. While practical non-identifiability arises from insuf-
ficient information in the data, structural non-identifiabilty is connected to Lie-group sym-

Journal of Statistical Software 29

metries, i.e., transformations of the states and parameters

Ψ : (x, θ) 7−→ (x∗, θ∗)

that preserve the model prediction of the observables:

g(x∗, θ∗) = g(x, θ) .

Based on Merkt et al. (2015), the symmetryDetection() command outputs a list of available
symmetry transformations. For example, the code

R> reactions <- NULL
R> reactions <- addReaction(reactions, "TCA_buffer", "TCA_cell",
+ rate = "import_baso*TCA_buffer")
R> reactions <- addReaction(reactions, "TCA_cell", "TCA_buffer",
+ rate = "export_sinus*TCA_cell")
R> reactions <- addReaction(reactions, "TCA_cell", "TCA_cana",
+ rate = "export_cana*TCA_cell")
R> reactions <- addReaction(reactions, "TCA_cana", "TCA_buffer",
+ rate = "reflux*TCA_cana")
R> observables <- eqnvec(buffer = "s*TCA_buffer",
+ cellular = "s*(TCA_cana + TCA_cell)")
R> symmetryDetection(as.eqnvec(reactions), observables)

returns the following output:

1 transformation(s) found:
variable : infinitesimal : transformation

#1: Type: scaling
TCA_buffer : -TCA_buffer : TCA_buffer*exp(-epsilon)
TCA_cana : -TCA_cana : TCA_cana*exp(-epsilon)
TCA_cell : -TCA_cell : TCA_cell*exp(-epsilon)
s : s : s*exp(epsilon)

In agreement with the identifiability analysis by the profile-likelihood method, the parame-
ters s, TCA_buffer, TCA_cana and TCA_cell are found to be non-identifiable due to a scaling
symmetry. The corresponding scaling transformation, last column, leaves the observation in-
variant for any choice of epsilon. The parameter non-identifiability can be resolved choosing
one representative from the orbit of the transformation. In our case, the scaling parameter
could, for example, be fixed to 1.

5.2. Analytical steady-state constraints

While for the the present model, the steady-state could be explicitly calculated by hand, this
might be much more challenging for models with a large number of states and parameters.
For many of these models, the steadyStates() command outputs an analytical steady-state
solution that can be incorporated in the model as an additional parameter transformation.
Based on Rosenblatt et al. (2016), the steady-state constraint is solved for a combination

30 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

of state variables and kinetic parameters while positivity of the solution is ensured. As the
paper states, the approach outperforms common methods of steady-state implementation
with respect to reliability and performance of the optimization process. For our example, the
code reads

R> steadyStates(reactions, file = "SS.Rds")

yielding the output

TCA_cana = TCA_buffer*export_cana*import_baso/(reflux*(export_cana +
export_sinus))

TCA_cell = TCA_buffer*import_baso/(export_cana + export_sinus)
TCA_buffer = TCA_buffer

The solution is stored in an .Rds file. After loading the file by readRDS(), the equations can
be used when defining the parameter transformation.

References

Azzalini A (1996). Statistical Inference Based on the Likelihood, volume 68. CRC Press.

Bellosta CJG (2015). rPython: Package Allowing R to Call Python. R package version 0.0-6,
URL https://CRAN.R-project.org/package=rPython.

Bihorel S (2014). scaRabee: Optimization Toolkit for Pharmacokinetic-Pharmacodynamic
Models. R package version 1.1-3, URL https://CRAN.R-project.org/package=scaRabee.

Brun R, Reichert P, Künsch HR (2001). “Practical Identifiability Analysis of Large En-
vironmental Simulation Models.” Water Resources Research, 37(4), 1015–1030. doi:
10.1029/2000wr900350.

Geyer CJ (2015). trust: Trust Region Optimization. R package version 0.1-7, URL https:
//CRAN.R-project.org/package=trust.

Hass H, Kreutz C, Timmer J, Kaschek D (2016). “Fast Integration-Based Prediction Bands
for Ordinary Differential Equation Models.” Bioinformatics, 32(8), 1204–1210. doi:10.
1093/bioinformatics/btv743.

Hooker G, Ramsay JO, Xiao L (2016). “CollocInfer: Collocation Inference in Differential
Equation Models.” Journal of Statistical Software, 75(2), 1–52. doi:10.18637/jss.v075.
i02.

Kaschek D (2019). cOde: Automated C Code Generation for deSolve, bvpSolve and ‘Sundials’.
R package version 1.0.0, URL https://CRAN.R-project.org/package=cOde.

Kaschek D, Sharanek A, Guillouzo A, Timmer J, Weaver RJ (2017). “A Dynamic Mathe-
matical Model of Bile Acid Clearance in HepaRG Cells.” Toxicological Sciences.

https://CRAN.R-project.org/package=rPython
https://CRAN.R-project.org/package=scaRabee
https://doi.org/10.1029/2000wr900350
https://doi.org/10.1029/2000wr900350
https://CRAN.R-project.org/package=trust
https://CRAN.R-project.org/package=trust
https://doi.org/10.1093/bioinformatics/btv743
https://doi.org/10.1093/bioinformatics/btv743
https://doi.org/10.18637/jss.v075.i02
https://doi.org/10.18637/jss.v075.i02
https://CRAN.R-project.org/package=cOde

Journal of Statistical Software 31

King AA, Ionides EL, Breto C, Ellner SP, Ferrari MJ, Kendall BE, Lavine M, Nguyen D,
Reuman DC,Wearing H, Wood SN, Funk S, Johnson SG (2017). pomp: Statistical Inference
for Partially Observed Markov Processes. R package version 1.14, URL https://CRAN.
R-project.org/package=pomp.

Kreutz C, Raue A, Kaschek D, Timmer J (2013). “Profile Likelihood in Systems Biology.”
FEBS Journal, 280(11), 2564–2571. doi:10.1111/febs.12276.

Kreutz C, Raue A, Timmer J (2012). “Likelihood Based Observability Analysis and Con-
fidence Intervals for Predictions of Dynamic Models.” BMC Systems Biology, 6(1), 120.
doi:10.1186/1752-0509-6-120.

Maiwald T, Hass H, Steiert B, Vanlier J, Engesser R, Raue A, Kipkeew F, Bock HH, Kaschek
D, Kreutz C, Timmer J (2016). “Driving the Model to Its Limit: Profile Likelihood Based
Model Reduction.” PloS ONE, 11(9), e0162366. doi:10.1371/journal.pone.0162366.

Merkt B, Timmer J, Kaschek D (2015). “Higher-Order Lie Symmetries in Identifiability
and Predictability Analysis of Dynamic Models.” Physical Review E, 92(1), 012920. doi:
10.1103/physreve.92.012920.

Murphy SA, Van der Vaart AW (2000). “On Profile Likelihood.” Journal of the American
Statistical Association, 95(450), 449–465. doi:10.1080/01621459.2000.10474219.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996). Numerical Recipes in C,
volume 2. Cambridge University Press Cambridge.

Ranke J, Lindenberger K, Lehmann R (2019). mkin: Kinetic Evaluation of Chemical Degra-
dation Data. R package version 0.9.48.1, URL https://CRAN.R-project.org/package=
mkin.

Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009).
“Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models
by Exploiting the Profile Likelihood.” Bioinformatics, 25(15), 1923–1929. doi:10.1093/
bioinformatics/btp358.

Raue A, Kreutz C, Maiwald T, Klingmüller U, Timmer J (2011). “Addressing Parameter
Identifiability by Model-Based Experimentation.” IET Systems Biology, 5(2), 120–130.
doi:10.1049/iet-syb.2010.0061.

Raue A, Kreutz C, Theis FJ, Timmer J (2013a). “Joining Forces of Bayesian and Frequentist
Methodology: A Study for Inference in the Presence of Non-Identifiability.” Philosophical
Transactions of the Royal Society A, 371(1984), 20110544. doi:10.1098/rsta.2011.0544.

Raue A, Schilling M, Bachmann J, Matteson A, Schelker M, Kaschek D, Hug S, Kreutz
C, Harms BD, Theis FJ, Klingmüller U, Timmer J (2013b). “Lessons Learned from
Quantitative Dynamical Modeling in Systems Biology.” PloS ONE, 8(9), e74335. doi:
10.1371/journal.pone.0074335.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

https://CRAN.R-project.org/package=pomp
https://CRAN.R-project.org/package=pomp
https://doi.org/10.1111/febs.12276
https://doi.org/10.1186/1752-0509-6-120
https://doi.org/10.1371/journal.pone.0162366
https://doi.org/10.1103/physreve.92.012920
https://doi.org/10.1103/physreve.92.012920
https://doi.org/10.1080/01621459.2000.10474219
https://CRAN.R-project.org/package=mkin
https://CRAN.R-project.org/package=mkin
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1049/iet-syb.2010.0061
https://doi.org/10.1098/rsta.2011.0544
https://doi.org/10.1371/journal.pone.0074335
https://doi.org/10.1371/journal.pone.0074335
https://www.R-project.org/

32 Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R

Rosenblatt M, Timmer J, Kaschek D (2016). “Customized Steady-State Constraints for
Parameter Estimation in Non-Linear Ordinary Differential Equation Models.” Frontiers in
Cell and Developmental Biology, 4. doi:10.3389/fcell.2016.00041.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, François R, Soetaert K (2018). inline:
Functions to Inline C, C++, Fortran Function Calls from R. R package version 0.3.15,
URL https://CRAN.R-project.org/package=inline.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling: Using R as a
Simulation Platform. Springer-Verlag.

Soetaert K, Petzoldt T (2010). “Inverse Modelling, Sensitivity and Monte Carlo Analysis in
R Using Package FME.” Journal of Statistical Software, 33(3), 1–28. doi:10.18637/jss.
v033.i03.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 1548-7660. doi:10.18637/
jss.v033.i09.

Squire W, Trapp G (1998). “Using Complex Variables to Estimate Derivatives of Real Func-
tions.” SIAM Review, 40(1), 110–112. doi:10.1137/s003614459631241x.

Tornoe CW (2012). nlmeODE: Non-Linear Mixed-Effects Modelling in nlme Using Differ-
ential Equations. R package version 1.1, URL https://CRAN.R-project.org/package=
nlmeODE.

Venzon DJ, Moolgavkar SH (1988). “A Method for Computing Profile-Likelihood-Based
Confidence Intervals.” Applied Statistics, pp. 87–94. doi:10.2307/2347496.

Wright S, Nocedal J (1999). “Numerical Optimization.” Springer-Verlag, 35, 67–68. doi:
10.1007/b98874.

Affiliation:
Daniel Kaschek
University of Freiburg
Institute of Physics
Hermann-Herder-Str. 3
79104 Freiburg, Germany
E-mail: daniel.kaschek@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

March 2019, Volume 88, Issue 10 Submitted: 2016-10-19
doi:10.18637/jss.v088.i10 Accepted: 2017-12-17

https://doi.org/10.3389/fcell.2016.00041
https://CRAN.R-project.org/package=inline
https://doi.org/10.18637/jss.v033.i03
https://doi.org/10.18637/jss.v033.i03
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.1137/s003614459631241x
https://CRAN.R-project.org/package=nlmeODE
https://CRAN.R-project.org/package=nlmeODE
https://doi.org/10.2307/2347496
https://doi.org/10.1007/b98874
https://doi.org/10.1007/b98874
mailto:daniel.kaschek@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v088.i10

	Introduction
	Theoretical background
	Dynamic models and model sensitivities
	Maximum-likelihood method
	Non-linear optimization
	Parameter uncertainty analysis

	Implementation and design principles
	Model formulation
	Prediction functions
	Observation functions
	Parameter transformations
	Multi-conditional prediction
	The data structure
	Objective function

	Three-compartment model of bile acid transport
	Simulation and prediction
	Observation function and simulated data
	Parameter transformation
	Objective function and model fitting
	Working with several conditions
	Parameter uncertainty and identifiability
	Steady-state constraints and implicit transformations
	Prediction uncertainty and validation profiles
	Speed comparison

	Extensions of dMod
	Lie-group symmetry detection
	Analytical steady-state constraints

