
JSS Journal of Statistical Software
May 2019, Volume 89, Issue 2. doi: 10.18637/jss.v089.i02

BFDA: A MATLAB Toolbox for Bayesian Functional
Data Analysis

Jingjing Yang
Emory University

Peng Ren
Bank of America Corporation

Abstract

We provide a MATLAB toolbox, BFDA, that implements a Bayesian hierarchical model
to smooth multiple functional data samples with the assumptions of the same underlying
Gaussian process distribution, a Gaussian process prior for the mean function, and an
Inverse-Wishart process prior for the covariance function. This model-based approach
can borrow strength from all functional data samples to increase the smoothing accuracy,
as well as simultaneously estimate the mean-covariance functions. An option of approxi-
mating the Bayesian inference process using cubic B-spline basis functions is integrated in
BFDA, which allows for efficiently dealing with high-dimensional functional data. Exam-
ples of using BFDA in various scenarios and conducting follow-up functional regression are
provided. The advantages of BFDA include: (1) simultaneously smooths multiple func-
tional data samples and estimates the mean-covariance functions in a nonparametric way;
(2) flexibly deals with sparse and high-dimensional functional data with stationary and
nonstationary covariance functions, and without the requirement of common observation
grids; (3) provides accurately smoothed functional data for follow-up analysis.

Keywords: functional data analysis, Bayesian hierarchical model, Gaussian process, cubic B-
spline basis functions, MATLAB.

1. Introduction
Since Ramsay and Dalzell (1991) first coined the term “functional data analysis” (FDA) for
analyzing data that are realizations of a continuous function, many statistical methods and
tools have been proposed for FDA. For examples, Graves et al. (2010) provided both, the R
(R Core Team 2019) package fda (Ramsay et al. 2018) and the MATLAB (The MathWorks
Inc. 2017) package fdaM (Ramsay 2014) for typical functional data analysis (Ramsay and
Silverman 2002, 2005); Febrero-Bande and de la Fuente (2012) provided the R package fda.usc
for implementing nonparametric functional data analysis methods (Vieu and Ferraty 2006)

https://doi.org/10.18637/jss.v089.i02

2 BFDA: Bayesian Functional Data Analysis in MATLAB

with fda (Ramsay et al. 2018); Yao et al. (2005a,b) developed the key technique of functional
principal component analysis (FPCA) for analyzing sparse functional data, accompanied by
the MATLAB package PACE (Yao et al. 2015); Crainiceanu and Goldsmith (2010) proposed
insights about implementing the standard Bayesian FDA using WinBUGS (Sturtz et al.
2005); and Shi and Cheng (2014) derived the R package GPFDA for applying the Bayesian
nonparametric Gaussian process (GP) regression models (Shi and Choi 2011). However, the
smoothing step that constructs functions from noisy discrete data has been neglected by most
of the existing FDA methods and tools, where functional data representations are integrated
in the analyzing models. On the other hand, most of the existing smoothing methods process
functional samples individually (e.g., cubic smoothing spline, CSS, and kernel smoothing;
Green and Silverman 1993; Ramsay and Silverman 2005), which is likely to induce bias when
functional samples are of the same distribution.
Here, we provide a MATLAB toolbox BFDA for simultaneously smoothing multiple functional
data samples from the same distribution and estimating the underlying mean-covariance func-
tions, using a nonparametric Bayesian hierarchical model (BHM) with Gaussian-Wishart pro-
cesses (Yang et al. 2016). This model-based approach borrows strength through modeling the
shared mean-covariance functions, thus producing more accurate smoothing results than the
individually smoothing methods. Moreover, BFDA is flexible for analyzing sparse and dense
functional data without the requirement of common observation grids, suitable for analyzing
functional data with both stationary and nonstationary covariance functions, and efficient
for high-dimensional functional data using an efficient Bayesian approximating reference al-
gorithm with Basis functions (BABF; Yang et al. 2017). In addition, BFDA provides options
for implementing the standard Bayesian GP regression method, conducting Bayesian princi-
pal component analysis, applying cubic smoothing splines per functional sample, and using
the fdaM package (Ramsay 2014) for follow-up analysis.
In the following context, we first review the BHM and BABF methods in Section 2, and then
provide examples using BFDA with simulated data in Section 3. In Section 4, we compare
the functional linear regression results by fdaM (Ramsay 2014) using the smoothed data by
BFDA and CSS. Last, we conclude with a discussion in Section 5. Details of input options and
outputs are provided in Appendix A. Example MATLAB scripts for generating the simulation
results in this paper are contained in the supplementary material.

2. Methods overview

2.1. Model-based Bayesian smoothing method: BHM

Consider a total of n functional data samples {Xi(t); t ∈ T , i = 1, 2, . . . , n} that are gen-
erated from the same stochastic process with independent measurement errors. In order to
simultaneously smooth all noisy functional samples and estimate mean-covariance functions,
Yang et al. (2016) proposed the following Bayesian hierarchical model (BHM) with Gaussian-
Wishart processes:

Xi(t) = Zi(t) + εi(t); Zi(·) ∼ GP(µZ(·),ΣZ(·, ·)), εi(·) ∼ N(0, σ2
ε); (1)

µZ(·)|ΣZ(·, ·) ∼ GP
(
µ0(·), 1

c
ΣZ(·, ·)

)
, ΣZ(·, ·) ∼ IWP(δ, σ2

sA(·, ·)), σ2
ε ∼ IG(aε, bε);

Journal of Statistical Software 3

σ2
s ∼ IG(as, bs);

where {Zi(t); i = 1, . . . , n} denotes the underlying true functional data following the same
GP distribution with mean function µZ(·) and covariance function ΣZ(·, ·), IWP denotes
the Inverse-Wishart process (IWP) prior (Dawid 1981) for the covariance function, IG de-
notes the Inverse-Gamma prior, and (µ0(·), c, δ, A(·, ·), aε, bε, as, bs) are hyper-parameters to
be determined. The IWP prior on ΣZ(·, ·) models the covariance function nonparametrically
and therefore makes the BHM method suitable for analyzing functional data with unknown
stationary and nonstationary covariance structures. The hyper-parameter σ2

s provides the
flexibility of estimating the scale of the covariance structure in the IWP prior from the data.
For the hyper-parameter setup, we take µ0(·) as the smoothed empirical mean estimate, c as
1 for the same prior data variation on the mean function as on the functional data, δ as 5 for
a non-informative prior on the variance function, and determine (aε, bε, as, bs) by matching
the hyper-prior moments with the empirical estimates. In addition, A(·, ·) can be taken as the
Matérn correlation kernel for analyzing functional data with stationary covariance (default in
BFDA),

Materncor(d; ρ, ν) = 1
Γ(ν)2ν−1

(√
2ν d
ρ

)ν
Kν

(√
2ν d
ρ

)
, d ≥ 0, ρ > 0, ν > 0,

where d denotes the distance between two grid points, ρ is the scale parameter, ν is the order
of smoothness, and Kν(·) is the modified Bessel function of the second kind. Particularly,
A(·, ·) can also be taken as a smoothed empirical covariance estimate for analyzing functional
data with nonstationary covariance.
Although the BHM is constructed with infinite-dimensional Gaussian-Wishart processes,
practical posterior inference will be conducted in a finite manner, e.g., on the observation
grids {ti}, the pooled grid t = ∪ni=1ti, or other user-specified evaluation grids. For accommo-
dating uncommon observation grids, especially sparsely observed data, BHM evaluates data
functions and mean-covariance functions on the pooled grid, while estimating the unobserved
functional data by conditioning on the observations (similar approach as used by PACE).
For simplified notation, we denote Xi(ti) by Xti , Zi(ti) by Zti , µ0(t) by µ0, µZ(t)
by µZ , ΣZ(t, t) by ΣZ , and A(t, t) by A. BHM conducts Bayesian inference for
({Zti},µZ ,ΣZ , σ

2
ε , σ

2
s) by a Monte Carlo Markov chain (MCMC) algorithm (essentially a

Gibbs sampler; Geman and Geman 1984) as follows (refer to Yang et al. 2016 for more de-
tails):

• Step 0: Set initial values. Set hyper-parameters (c,µ0, ν, ρ, aε, bε, as, bs). Take (µ, σ2
ε)

as respective empirical estimates, {Zti} as the raw data {Xti}, and ΣZ as an identity
matrix.

• Step 1: Conditioning on {Xti} and (µZ ,ΣZ), update {Zti} from the corresponding
conditional multivariate normal (MVN) distributions.

• Step 2: Conditioning on {Xti} and {Zti}, update σ2
ε from the conditional Inverse-

Gamma (IG) distribution.

• Step 3: Conditional on {Zti} and ΣZ , update µZ from the conditional MVN distribu-
tion.

4 BFDA: Bayesian Functional Data Analysis in MATLAB

• Step 4: Conditioning on {Zti} and µZ , updateΣZ from the conditional Inverse-Wishart
(IW) distribution.

• Step 5: Conditioning on ΣZ , update σ2
s from the conditional Gamma distribution.

Specifically, the averages of posterior samples of {{Zti},µZ ,ΣZ} are taken as estimates for
functional signals and mean-covariance functions.
In addition, BFDA uses the existing MATLAB package mcmcdiag (Särkkä and Aki 2014)
to diagnose the MCMC convergence by the potential scale reduction factor (PSRF; Gelman
and Rubin 1992), and implements the method proposed by Yuan and Johnson (2012) with
the pivotal discrepancy measures (PDM) of standardized residuals for the goodness-of-fit
diagnosis of the assumed model.

2.2. Alternative efficient Bayesian inference algorithm: BABF

Because BHM (Yang et al. 2016) has computational complexity O(np3m) with n samples, p
pooled-grid points, and m MCMC iterations, the method encounters a computational bottle-
neck for analyzing functional data with large pooled-grid dimension p. To resolve this com-
putational bottleneck, BFDA enables the option of using the alternative efficient Bayesian
inference algorithm BABF that was proposed by Yang et al. (2017). Essentially, BABF con-
ducts approximating posterior inference of BHM with basis functions, which greatly improves
computation efficiency. Here, we briefly outline the BABF algorithm.
To implement the BABF algorithm, one need to first select a working grid based on data
density, τ = (τ1, τ2, . . . , τL)> ⊂ T , where the dimension of the working grid is generally
much smaller than the pooled observation dimension (L << p). Then {Zi(τ)} can be ap-
proximated by using a system of basis functions (e.g., cubic B-splines as implemented by
BFDA). Let B(·) = [b1(·), b2(·), . . . , bK(·)] denote K selected basis functions with coefficients
ζi = (ζi1, ζi2, . . . , ζiK)>, then Zi(τ) = ∑K

k=1 ζikbk(τ) = B(τ)ζi. Generally, K can be se-
lected as equivalent to L, and then the basis function coefficients can be represented by
ζi = B(τ)−1Zi(τ), a linear transformation of Zi(τ). Note that even if B(τ) is singular or
non-square, ζi can still be written as a linear transformation of Zi(τ) by using the generalized
inverse (James 1978) of B(τ).
Because ζi is a linear transformation of Zi(τ) that follows a MVN distribution under the
assumptions in Equation 1, the induced Bayesian hierarchical model for {ζi} is derived as

ζi ∼ MVN (µζ , Σζ); µζ = B(τ)−1µZ(τ); Σζ = B(τ)−1ΣZ(τ , τ)B(τ)−>. (2)

Further, from the assumed priors of (µZ(·),ΣZ(·, ·)) in Equation 1, with Ψ(τ , τ) = σ2
sA(τ , τ),

the following priors of (µζ ,Σζ) are also induced:

µζ |Σζ ∼ MVN
(
B(τ)−1µ0(τ), cΣζ

)
; (3)

Σζ ∼ IW (δ, B(τ)−1Ψ(τ , τ)B(τ)−>).

Then, the BABF inference algorithm by MCMC has computation complexity O(nK3m),
comparing to O(np3m) by BHM where p >> K. The MCMC steps for BABF are presented
as follows (refer to Yang et al. (2017) for more details):

Journal of Statistical Software 5

• Step 0: Set initial values similarly as in BHM. Set hyper-parameters (c,µ0, ν, ρ, aε, bε, as,
bs). Take (µZ(τ),ΣZ(τ , τ), σ2

ε) as empirical estimates, inducing the initial values for
(µζ ,Σζ) by Equation 2.

• Step 1: Conditioning on {Xti} and (µζ ,Σζ , σ
2
ε), update {ζi} from the conditional MVN

distribution.

• Step 2: Conditioning on {ζi}, update µζ and Σζ respectively from the conditional MVN
and IW distributions.

• Step 3: Conditioning on ({ζi},µζ ,Σζ), approximate {Zti , µZ(ti), ΣZ(ti, ti), ΣZ(τ , ti),
ΣZ(ti, τ), ΣZ(τ , τ)} by

Zti = B(ti)ζi, µZ(ti) = B(ti)µζ , ΣZ(ti, ti) = B(ti)ΣζB(ti)>,

ΣZ(τ , ti)> = ΣZ(ti, τ) = B(ti)ΣζB(τ)>, ΣZ(τ , τ) = B(τ)ΣζB(τ)>.

• Step 4: Conditioning on {Zti} and {Xti}, update σ2
ε by the conditional IG distribution.

• Step 5: Conditioning on ΣZ(τ , τ), update σ2
s by the conditional Gamma distribution.

As a result, the posterior estimates of ({ζi},µζ ,Σζ) are given by the averages of the MCMC
samples, which are then used to estimate {Zti , µZ(ti), ΣZ(ti, ti)} by the approximation
formulas in Step 3.
BFDA uses the existing MATLAB package bspline (Hunyadi 2010) to construct B-spline basis
functions that are widely used by GP regression methods (Rasmussen and Williams 2006; Shi
et al. 2007); and generates the optimal knot sequence for interpolation at the working grid τ
with MATLAB function optknt() (Gaffney and Powell 1976; Micchelli et al. 1976; De Boor
1977). Yang et al. (2017) instructed selecting τ to represent data densities (L may be selected
by grid search with test data), such as taking the

(
100
L+1 , . . . ,

L×100
L+1

)
percentiles of the pooled

grid, or the equally-spaced grid for evenly distributed data.

3. Examples with simulated data
In this section, we provide examples of using BFDA to analyze simulated functional data
with stationary and nonstationary covariance functions, common and uncommon (sparse)
observation grids, as well as random observation grids. The simulation data used for the ex-
ample results were generated with n = 30 functional samples, pooled-grid dimension p = 40,
functional data observation domain (au = 0, bu = π/2), functional data standard variation
s =

√
5, signal-to-noise ratio r = 2 (i.e., the ratio between the signal and noise standard

deviations), order of smoothness nu = 3.5 and scale parameter rho = 0.5 in the Matérn
function, dense = 0.6 proportion of observation points on the pooled grid pgrid (equally
spaced grid over (0, π/2) with length 40).

3.1. Simulate functional data from a Gaussian process

BFDA provides the convenience of generating simulated functional data from a shared GP
with mean function µ(t) = 3 sin(4t), stationary covariance function s2Materncor(d; ρ, ν), and
noises ∼ N(0, (s/r)2) by

6 BFDA: Bayesian Functional Data Analysis in MATLAB

GausFD_cgrid = sim_gfd(pgrid, n, s, r, nu, rho, dense, cgrid, stat);

where cgrid is a Boolean indicator that controls the output as either common-grid (with
cgrid = 1) data on pgrid or uncommon-grid data with a randomly selected proportion
(given by dense) of observation grid points (with cgrid = 0) from pgrid. In addition, stat
specifies simulating stationary data (with stat = 1) from GP(3 sin(4t), s2Materncor(d; ρ, ν)),
or simulating data from a nonlinearly transformed GP (with stat = 0) with mean function
µ(t) = 3(t + 0.5) sin(4t2/3) and nonstationary covariance function Σ(t, t′) = s2(t + 0.5)(t′ +
0.5)Materncor(|t2/3 − t′2/3|; ρ, ν).
Here, p denotes the length of pooled-grid pgrid. The output GausFD_cgrid is a data structure
consisting of a cell of true data (Xtrue_cell1×n), a cell of noisy data (Xraw_cell1×n), a cell of
observation grids (Tcell1×n), a true covariance matrix (Cov_truep×p), and a true mean vector
(Mean_true1×p).

3.2. Analyze stationary functional data by BHM

Stationary functional data with common grids

First, we need to setup the required parameter structure with function setOptions_bfda. For
example, to analyze functional data with common observation grids and stationary covariance
function by BHM, the structure param can be set as

param = setOptions_bfda('smethod', 'bhm', 'cgrid', 1, 'mat', 1, 'M', ...
10000, 'Burnin', 2000, 'w', 1, 'ws', 1);

where each parameter is followed by its value, and unspecified parameters are taken as de-
fault values (Appendix A.1). Specifically, smethod = 'bhm' denotes using the BHM method;
cgrid = 1 denotes the analyzed data are of common-grid; mat = 1 denotes taking A(·, ·)
in Equation 1 as a Matérn correlation function; M = 10000 denotes the number of MCMC
iterations; Burnin = 2000 denotes the number of MCMC burn-ins; w = 1 and ws = 1 are
used to tune the Gamma priors for σ2

ε and σ2
s .

To analyze the stationary functional data with common grid by BHM, we can then call the
main function BFDA() by

[out_cgrid, param] = BFDA(GausFD_cgrid.Xraw_cell, GausFD_cgrid.Tcell, param);

The output structure out_cgrid contains smoothed estimates for the signals (out_cgrid.Z),
mean function (out_cgrid.mu), covariance function (out_cgrid.Sigma), and other param-
eters in Equation 1, along with the corresponding 95% point-wise credible intervals (Ap-
pendix A.1). The output argument param is the updated parameter structure.

Stationary functional data with uncommon grids

To apply BHM on stationary functional data of uncommon-grid, e.g., GausFD_ucgrid gener-
ated by

GausFD_ucgrid = sim_gfd(pgrid, n, s, r, nu, rho, dense, 0, stat);

Journal of Statistical Software 7

0 0.5 1 1.5
-10

-5

0

5

(a)

Sample
Truth
BHM
BHM 95% CI

0 0.5 1 1.5
-10

-5

0

5

(b)

0 0.5 1 1.5
-5

0

5
(c)

0 0.5 1 1.5
-5

0

5
(d)

Figure 1: Results of analyzing stationary functional data by BHM: (a) two sample signal
estimates with common grids; (b) two sample signal estimates with uncommon grids; (c)
mean estimate with common grids; (d) mean estimate with uncommon grids; along with 95%
point-wise credible intervals (blue dots).

the main function BFDA can be called by

param_uc = setOptions_bfda('smethod', 'bhm', 'cgrid', 0, 'mat', 1, 'M', ...
10000, 'Burnin', 2000, 'pace', 1, 'ws', 0.1);

[out_ucgrid, param_uc] = BFDA(GausFD_ucgrid.Xraw_cell, ...
GausFD_ucgrid.Tcell, param_uc);

Here cgrid is set as 0 in param_uc to specify the functional data input are observed on
uncommon grids.

Example BHM results with stationary function data input
In Figure 1(a, b), for both scenarios with common and uncommon grids, we show that the
smoothed functional samples by BHM (blue solid) well represent the truth (red dashed),
with coverage probabilities by 95% point-wise credible intervals (blue dotted) > 0.95. In
addition, the nonparametric mean estimates by BHM (blue solid curves in Figure 1(c, d)) are
also smooth and well represent the truth (red dashed),with coverage probabilities > 0.95 by
corresponding 95% point-wise credible intervals (blue dotted).
In addition, we show that the Bayesian nonparametric covariance estimates in Figure 2(a, b)
are clearly smoother than the sample covariance estimate by using the raw common-grid data
in Figure 2(c), and well represent the true stationary covariance as shown in Figure 2(d).

8 BFDA: Bayesian Functional Data Analysis in MATLAB

0

2

2

2

4

(a)

6

1

8

1
0 0

0

2

2

2

4

(b)

6

1

8

1
0 0

0

2

2

2

4

(c)

6

1

8

1
0 0

0

2

2

2

4

(d)

6

1

8

1
0 0

Figure 2: Results of covariance estimation with stationary functional data: (a) BHM estimate
with common grids; (b) BHM estimate with uncommon grids; (c) sample estimate with raw
common-grid data; (d) true covariance surface.

Importantly, although 40% information is lost for the uncommon-grid scenario, BHM still
produces similarly good smoothing and estimation results as using completely observed data
on pooled grid.

3.3. Analyze nonstationary functional data by BHM

Nonstationary functional data with common grids
To apply BHM on nonstationary functional data with common grids, e.g., functional data
(GausFD_cgrid_ns) simulated by:

GausFD_cgrid_ns = sim_gfd(pgrid, n, s, r, nu, rho, dense, cgrid, 0);

the main function BFDA() can be called by

param_ns = setOptions_bfda('smethod', 'bhm', 'cgrid', 1, 'mat', 0, 'M', ...
10000, 'Burnin', 2000, 'pace', 1, 'ws', 0.01);

[out_cgrid_ns, param_ns] = BFDA(GausFD_cgrid_ns.Xraw_cell, ...
GausFD_cgrid_ns.Tcell, param_ns);

Here, A(·, ·) in Section 2.1 is set as the empirical estimate (mat = 0) by PACE (Yao et al.
2005a, 2015) with pace = 1 (default), or by the sample covariance estimate using smoothed
data by CSS with pace = 0.

Journal of Statistical Software 9

0 0.5 1 1.5

-10

0

10

(a)

Sample
Truth
BHM
BHM 95% CI

0 0.5 1 1.5

-10

0

10

(b)

0 0.5 1 1.5

-5

0

5

(c)

0 0.5 1 1.5

-5

0

5

(d)

Figure 3: Results of analyzing nonstationary functional data by BHM: (a) two sample signal
estimates with common grids; (b) two sample signal estimates with uncommon grids; (c)
mean estimate with common grids; (d) mean estimate with uncommon grids; along with 95%
point-wise credible intervals (blue dots).

Nonstationary functional data with uncommon grids

To analyze nonstationary functional data collected on uncommon (sparse) grids, e.g., func-
tional data (GausFD_ucgrid_ns) simulated by

GausFD_ucgrid_ns = sim_gfd(pgrid, n, s, r, nu, rho, dense, 0, 0);

we can call the main function BFDA() by

param_uc_ns = setOptions_bfda('smethod', 'bhm', 'cgrid', 0, 'mat', 0, ...
'M', 10000, 'Burnin', 2000, 'pace', 1, 'ws', 0.01);

[out_ucgrid_ns, param_uc_ns] = BFDA(GausFD_ucgrid_ns.Xraw_cell, ...
GausFD_ucgrid_ns.Tcell, param_uc_ns);

where variables cgrid and mat are set as 0.

Example BHM results with nonstationary functional data input

Similarly, as shown in Figures 3 and 4, the BHM estimates of functional signals and mean-
covariance functions well represent the truth. Specifically, the 95% point-wise credible in-
tervals of the BHM signal estimates have coverage probabilities > 0.95. Although BHM
overestimated the scale of covariance function, BHM captured the major covariance structure

10 BFDA: Bayesian Functional Data Analysis in MATLAB

0
2

10

2

20

(a)

1

30

1
0 0

0
2

10

2

20

(b)

1

30

1
0 0

0
2

10

2

20

(c)

1

30

1
0 0

0
2

10

2

20

(d)

1

30

1
0 0

Figure 4: Results of covariance estimates for nonstationary functional data: (a) BHM estimate
with common grids; (b) BHM estimate with uncommon grids; (c) sample estimate with raw
common-grid data; (d) true covariance surface.

and produced a smoothed estimate. The magnitude of the covariance estimate by BHM can
be tuned by ws, where a smaller ws will relatively shrink the magnitude of BHM covariance
estimate. We suggest users to tune this parameter according to the magnitude of sample
covariance estimate.

3.4. Analyze functional data with random observation grids by BABF

To analyze functional data with random (or high dimensional) observation grids, we recom-
mend users to use the efficient BABF inference algorithm. In addition, BFDA also provides
the convenience to simulate stationary and nonstationary functional data with random ob-
servation grids from the same GPs as in Section 3.1. For example, a structure of functional
data GausFD_rgrid, with n independent functional samples and p random observation points
per sample (uniformly generated from the observation domain [au, bu]), can be generated by

GausFD_rgrid = sim_gfd_rgrid(n, p, au, bu, s, r, nu, rho, stat);

Here, stat specifies simulating from the stationary (stat = 1) GP or simulating from the
nonstationary (stat = 0) GP.

Stationary functional data with random grids

To analyze stationary functional data by BABF, simply call the main function BFDA() by:

Journal of Statistical Software 11

0 0.5 1 1.5
-10

-5

0

5

10
(a)

Sample
Truth
BABF
BABF 95% CI

0 0.5 1 1.5
-10

-5

0

5

10

(b)

0 0.5 1 1.5

-5

0

5

(c)

0 0.5 1 1.5

-5

0

5

(d)

Figure 5: Results of analyzing functional data with random grids by BABF: (a) two sample
signal estimates with stationary data; (b) two sample signal estimates with nonstationary
data; (c) mean estimate with stationary data; (d) mean estimate with nonstationary data;
along with 95% point-wise credible intervals (blue dots).

param_rgrid = setOptions_bfda('smethod', 'babf', 'cgrid', 0, 'mat', 1, ...
'M', 10000, 'Burnin', 2000, 'm', m, 'eval_grid', pgrid, 'ws', 1);

[out_rgrid, param_rgrid]= BFDA(GausFD_rgrid.Xraw_cell, ...
GausFD_rgrid.Tcell, param_rgrid);

Here, the working grid τ can be either set up with user-specified grid in param_rgrid, or set
as the equally spaced quantiles of the pooled grid by default with user-specified dimension m.

Nonstationary functional data with random grids

To implement BABF with nonstationary functional data such as GausFD_rgrid_ns simulated
by

GausFD_rgrid_ns = sim_gfd_rgrid(n, p, au, bu, s, r, nu, rho, 0);

we can call the main function BFDA() by

param_rgrid_ns = setOptions_bfda('smethod', 'babf', 'cgrid', 0, 'mat', 0, ...
'M', 10000, 'Burnin', 2000, 'm', m, 'eval_grid', pgrid, 'ws', 0.05);

[out_rgrid_ns, param_rgrid_ns] = BFDA(GausFD_rgrid_ns.Xraw_cell, ...
GausFD_rgrid_ns.Tcell, param_rgrid_ns);

12 BFDA: Bayesian Functional Data Analysis in MATLAB

0

2

2

2

4

(a)

6

1

8

1
0 0

0
2

10

2

(b)

20

1 1
0 0

0

2

2

2

4

(c)

6

1

8

1
0 0

0
2

10

2

(d)

20

1 1
0 0

Figure 6: Results of covariance estimation for functional data with random grids: (a) BABF
estimate with stationary data; (b) BABF estimate with nonstationary data; (c) true covari-
ance surface for stationary data; (d) true covariance surface for nonstationary data.

where mat is set as 0 in param_rgrid_ns.

Example BABF results with random observation grids

BABF method can efficiently analyze both stationary and nonstationary functional data
with random observation grids, producing smooth estimates for functional signals and mean-
covariance functions that well represent the truth (Figures 5 and 6). Particularly, the 95%
point-wise credible intervals of signal estimates have coverage probabilities > 0.95.

4. Functional linear regression with smoothed data
We expect that follow-up FDA results will be improved by using the accurately smoothed
functional data produced by BFDA (especially by BHM and BABF). Here, we show exam-
ple results of functional linear regression under the following two models (with scalar and
functional responses respectively),

Y = β0 +
∫
X(t)>β(t) dt+ ε, (4)

Y (t) = β0(t) +X(t)>β(t) + ε(t), (5)

where

Journal of Statistical Software 13

• Y in Equation 4 denotes a n× 1 vector of scalar responses; Y (t) = (y1(t), . . ., yn(t))>
in Equation 5 denotes a vector of functional responses;

• X(t) denotes a n× q design matrix of q functional independent variables;

• β(t) denotes a q × 1 vector of coefficient functions for independent variables;

• β0 and β0(t) denote the intercept terms;

• ε and ε(t) denote the error terms.

Note that X(t) and β(t) can also denote nonfunctional covariates and coefficients, because
nonfunctional variables are basically constant functions of t.

4.1. Simulate functional data

To evaluate the improvement of regression results using smoothed data by the BABF method
implemented in BFDA, we first simulated 30 raw stationary GP trajectories {Xi(ti)} with
random grids from domain [0, π/2], which were generated by sim_gfd_rgrid(30, 40, 0,
1.5708, 2.2361, 2, 3.5, 0.5, 1). Then we simulated scalar responses by

Yi =
∫ 1.5708

0
Xi(t)t2 dt+ ε, ε ∼ N(0, 1);

and functional responses by

Yi(t) = Xi(t)t2 + ε, ε ∼ N(0, 1).

Because functional regression function fRegress() from fdaM package requires inputs of func-
tional data with common grids, we used the function csaps() with the suggested optimal
smoothing parameter 1 (CSS approach) to interpolate true functional data, smoothed func-
tional data by BABF, and noisy functional data on the same equally spaced grid (with length
40) over [0, π/2]. The interpolated functional data from raw functional data are equivalent
to the individually smoothed ones by CSS (one example curve is shown in Figure 7(a)).
Using the smoothed data by BABF and CSS, we respectively fitted the functional linear
models (Equations 4 and 5) using 20 randomly chosen signals, and then tested the prediction
results using the remains. We replicated this fitting process for 100 times, and evaluated the
performance by the average mean square errors (MSEs) of the fitted and predicted responses.

4.2. Results of functional linear regression with scalar responses

For the scenario with scalar responses, although the fitted coefficient functions using both
smoothed data by BABF and CSS are close to the truth (Figure 7(b, c)), with coverage
probabilities > 0.95 for the 95% confidence intervals, the average MSEs of the fitted and
predicted responses from 100 replications are smaller for using the BABF smoothed data than
the ones using the CSS smoothed data (0.311 vs. 0.388 for fitted responses, 0.497 vs. 0.677
for predicted responses, as shown in Table 1). Figure 8 shows the results of an example
replication of this fitting and predicting process with scalar responses.

14 BFDA: Bayesian Functional Data Analysis in MATLAB

0 0.5 1 1.5
t

-4

-3

-2

-1

0

1

2

3

4

5

6

x(
t)

(a)

Raw data
BABF
CSS
Truth

0 0.5 1 1.5

-2

-1

0

1

2

3
(b)

0 0.5 1 1.5

-2

-1

0

1

2

3
(c)

Figure 7: (a) Example estimate of Xi(t); (b) the estimate of β(t) using the smoothed data
by BABF; (c) the estimate of β(t) using the smoothed data by CSS along with the truth in
the cyan dotted lines.

-5 -4 -3 -2 -1 0 1 2
Truth

-5

-4

-3

-2

-1

0

1

2

3

F
itt

ed

(a)
BABF
CSS

-5 -4 -3 -2 -1 0 1 2 3
Truth

-4

-3

-2

-1

0

1

2

3

4

P
re

di
ct

ed

(b)
BABF
CSS

Figure 8: (a) Fitted vs. true scalar responses; (b) predicted vs. true scalar responses.

4.3. Results of functional linear regression with functional responses

For the scenario with functional responses, we can see that the fitted intercept term using
BABF smoothed data is closer to the truth (constant 0) with narrower 95% confidence interval
than the one using CSS smoothed data (Figure 9(a, c)). In addition, the coefficient function
using BABF smoothed data has narrower 95% confidence interval and higher coverage prob-
ability (Figure 9(b, d)). Consequently, both fitted and predicted functional responses using
BABF smoothed data have smaller point-wise MSEs out of 100 replications, 0.417 vs. 1.190
for fitted functional responses, 0.464 vs. 1.354 for predicted functional responses (Table 1).
Figure 10 shows the results of an example replication of this fitting and predicting process
with functional responses.

5. Discussion
The MATLAB tool BFDA presented in this paper can simultaneously smooth multiple func-
tional observations and estimate the mean-covariance functions, assuming the functional data

Journal of Statistical Software 15

MSE (std) BABF smoothed CSS smoothed
Y Y (t) Y Y (t)

Fitted 0.311 (0.061) 0.417 (0.049) 0.388 (0.074) 1.190 (0.186)
Predicted 0.497 (0.289) 0.464 (0.112) 0.677 (0.435) 1.354 (0.419)

Table 1: Average MSEs of the fitted and predicted responses for 100 replicates, along with
the standard deviations of these MSEs among 100 replicates in the parentheses, for scalar
responses Y and functional responses Y (t).

0 0.5 1 1.5
-1

-0.5

0

0.5

1
(a)

0 0.5 1 1.5
-1

-0.5

0

0.5

1
(c)

0 0.5 1 1.5
0

1

2

3
(b)

0 0.5 1 1.5
0

1

2

3
(d)

Figure 9: (a) Estimated intercept function β0(t) using BABF smoothed data; (b) Estimated
coefficient function β(t) using BABF smoothed data; (c) Estimated intercept function β0(t)
using CSS smoothed data; (d) Estimated coefficient function β(t) using CSS smoothed data;
along with 95% confidence intervals and true coefficient functions in cyan dotted lines.

0 0.5 1 1.5
t

-3

-2

-1

0

1

2

3

4

5

6
(a)

BABF
CSS
Truth

0 0.5 1 1.5
t

-5

-4

-3

-2

-1

0

1
(b)

BABF
CSS
Truth

Figure 10: (a) Example fitted functional responses; (b) example predicted functional re-
sponses; with true signals in cyan dotted lines.

are of the same GP distribution. The smoothed data by BFDA are shown to be more accurate
than the conventional individual smoothing methods such as CSS, thus improving follow-up
FDA results. The advantages of BFDA include:

• Simultaneously smoothing multiple functional samples and estimating mean-covariance
functions in a nonparametric way;

16 BFDA: Bayesian Functional Data Analysis in MATLAB

• Flexibly handling functional data with stationary and nonstationary covariance func-
tions, common or uncommon (sparse) observation grids;

• Efficiently dealing with high-dimensional functional data or functional data with random
observation grids by the efficient BABF algorithm.

BFDA is suitable for analyzing data that can be roughly assumed as from the same GP dis-
tribution. We recommend using the BHM method for low-dimensional functional data with
common grids or sparse functional data, and using the BABF method for high-dimensional
functional data with dense grids (including both common and random grids). In addition,
we recommend using the Matérn function as the prior covariance structure for analyzing
functional data with stationary covariance functions, while using the empirical covariance
estimate (e.g., the estimate by PACE) for analyzing functional data with nonstationary co-
variance functions.
The follow-up functional data analysis can be conducted using existing software packages
(e.g., fdaM in MATLAB, Ramsay 2014; fda in R, Ramsay et al. 2018). Examples are provided
in the supplementary file about using the fdaM package with functional data smoothed by
BFDA. Details about the inputs and outputs of BFDA are provided in Appendix A. The most
recent version of BFDA tool and example scripts are freely available from https://github.
com/yanglab-emory/BFDA.

References

Crainiceanu CM, Goldsmith AJ (2010). “Bayesian Functional Data Analysis Using Win-
BUGS.” Journal of Statistical Software, 32(11), 1–33. doi:10.18637/jss.v032.i11.

Dawid AP (1981). “Some Matrix-Variate Distribution Theory: Notational Considerations and
a Bayesian Application.” Biometrika, 68(1), 265–274. doi:10.1093/biomet/68.1.265.

De Boor C (1977). “Computational Aspects of Optimal Recovery.” In CA Micchelli, TJ Rivlin
(eds.), Optimal Estimation in Approximation Theory, pp. 69–91. Springer-Verlag, Boston.
doi:10.1007/978-1-4684-2388-4_3.

Febrero-Bande M, de la Fuente M (2012). “Statistical Computing in Functional Data Analysis:
The R Package fda.usc.” Journal of Statistical Software, 51(4), 1–28. doi:10.18637/jss.
v051.i04.

Gaffney PW, Powell MJD (1976). Optimal Interpolation. Springer-Verlag.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472. doi:10.1214/ss/1177011136.

Geman S, Geman D (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
6, 721–741. doi:10.1109/tpami.1984.4767596.

Graves S, Hooker G, Ramsay J (2010). Functional Data Analysis with R and MATLAB.
Springer-Verlag. doi:10.1007/978-0-387-98185-7.

https://github.com/yanglab-emory/BFDA
https://github.com/yanglab-emory/BFDA
https://doi.org/10.18637/jss.v032.i11
https://doi.org/10.1093/biomet/68.1.265
https://doi.org/10.1007/978-1-4684-2388-4_3
https://doi.org/10.18637/jss.v051.i04
https://doi.org/10.18637/jss.v051.i04
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1109/tpami.1984.4767596
https://doi.org/10.1007/978-0-387-98185-7

Journal of Statistical Software 17

Green PJ, Silverman BW (1993). Nonparametric Regression and Generalized Linear Models:
A Roughness Penalty Approach. CRC Press. doi:10.1201/b15710.

Hunyadi L (2010). bspline: Draw, Manipulate and Reconstruct B-Splines. MATLAB package,
URL http://www.mathworks.com/matlabcentral/fileexchange/27374-b-splines.

James M (1978). “The Generalised Inverse.” The Mathematical Gazette, 62(420), 109–114.
doi:10.2307/3617665.

Micchelli CA, Rivlin TJ, Winograd S (1976). “The Optimal Recovery of Amooth Functions.”
Numerische Mathematik, 26(2), 191–200. doi:10.1007/bf01395972.

Ramsay JO (2014). fdaM: Functional Data Analysis. MATLAB package, URL http://www.
psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/.

Ramsay JO, Dalzell CJ (1991). “Some Tools for Functional Data Analysis.” Journal of the
Royal Statistical Society B, 53(3), 539–572. doi:10.2307/2981865.

Ramsay JO, Silverman BW (2002). Applied Functional Data Analysis: Methods and Case
Studies, volume 77. Springer-Verlag. doi:10.1007/b98886.

Ramsay JO, Silverman BW (2005). Functional Data Analysis. Springer Series in Statistics,
2nd edition. Springer-Verlag. doi:10.1007/978-1-4757-7107-7.

Ramsay JO, Wickham H, Graves S, Hooker G (2018). fda: Functional Data Analysis. R
package version 2.4.8, URL https://CRAN.R-project.org/package=fda.

Rasmussen CE, Williams CKI (2006). Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Särkkä S, Aki V (2014). “MCMC Diagnostics for MATLAB.” URL http://becs.aalto.fi/
en/research/bayes/mcmcdiag/.

Shi JQ, Cheng Y (2014). GPFDA: Apply Gaussian Process in Functional Data Analysis. R
package version 2.2, URL https://CRAN.R-project.org/package=GPFDA.

Shi JQ, Choi T (2011). Gaussian Process Regression Analysis for Functional Data. CRC
Press, Boca Raton, FL.

Shi JQ, Wang B, Murray-Smith R, Titterington DM (2007). “Gaussian Process Functional
Regression Modeling for Batch Data.” Biometrics, 63(3), 714–723. doi:10.1111/j.
1541-0420.2007.00758.x.

Sturtz S, Ligges U, Gelman A (2005). “R2WinBUGS: A Package for Running WinBUGS
from R.” Journal of Statistical Software, 12(3), 1–16. doi:10.18637/jss.v012.i03.

The MathWorks Inc (2017). MATLAB – The Language of Technical Computing, Version
R2017b. Natick. URL http://www.mathworks.com/products/matlab/.

https://doi.org/10.1201/b15710
http://www.mathworks.com/matlabcentral/fileexchange/27374-b-splines
https://doi.org/10.2307/3617665
https://doi.org/10.1007/bf01395972
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/
https://doi.org/10.2307/2981865
https://doi.org/10.1007/b98886
https://doi.org/10.1007/978-1-4757-7107-7
https://CRAN.R-project.org/package=fda
https://www.R-project.org/
http://becs.aalto.fi/en/research/bayes/mcmcdiag/
http://becs.aalto.fi/en/research/bayes/mcmcdiag/
https://CRAN.R-project.org/package=GPFDA
https://doi.org/10.1111/j.1541-0420.2007.00758.x
https://doi.org/10.1111/j.1541-0420.2007.00758.x
https://doi.org/10.18637/jss.v012.i03
http://www.mathworks.com/products/matlab/

18 BFDA: Bayesian Functional Data Analysis in MATLAB

Vieu P, Ferraty F (2006). Nonparametric Functional Data Analysis: Theory and Practice.
Springer-Verlag.

Yang J, Cox DD, Lee JS, Ren P, Choi T (2017). “Efficient Bayesian Hierarchical Functional
Data Analysis with Basis Function Approximations Using Gaussian-Wishart Processes.”
Biometrics, 73(4), 1082–1091. doi:10.1111/biom.12705.

Yang J, Zhu H, Choi T, Cox DD (2016). “Smoothing and Mean-Covariance Estimation of
Functional Data with a Bayesian Hierarchical Model.” Bayesian Analysis, 11(3), 649–670.
doi:10.1214/15-ba967.

Yao F, Müller HG, Wang JL (2005a). “Functional Data Analysis for Sparse Longitudinal
Data.” Journal of the American Statistical Association, 100(470), 577–590. doi:10.1198/
016214504000001745.

Yao F, Müller HG, Wang JL (2005b). “Functional Linear Regression Analysis for Longitudinal
Data.” The Annals of Statistics, 33(6), 2873–2903. doi:10.1214/009053605000000660.

Yao F, Müller HG, Wang JL (2015). PACE Package for Functional Data Analysis and Em-
pirical Dynamics (MATLAB). Version 2.17, URL http://www.stat.ucdavis.edu/PACE/.

Yuan Y, Johnson VE (2012). “Goodness-of-Fit Diagnostics for Bayesian Hierarchical Models.”
Biometrics, 68(1), 156–164. doi:10.1111/j.1541-0420.2011.01668.x.

https://doi.org/10.1111/biom.12705
https://doi.org/10.1214/15-ba967
https://doi.org/10.1198/016214504000001745
https://doi.org/10.1198/016214504000001745
https://doi.org/10.1214/009053605000000660
http://www.stat.ucdavis.edu/PACE/
https://doi.org/10.1111/j.1541-0420.2011.01668.x

Journal of Statistical Software 19

A. Inputs and outputs

A.1. Input variables

The main function BFDA() has three input arguments:

• A cell containing all functional data.

• A cell containing all grids on which functional data are observed.

• A parameter structure outputted by function setOptions_bfda(), containing all re-
quired parameters:

– smethod, specifying the method used for analyzing the functional data. Default
value is 'babf' for BABF method with basis function approximation; other choices
are 'bhm' for BHM method without basis function approximation, 'bgp' for stan-
dard Bayesian GP regression, 'bfpca' for Bayesian principal components analysis,
and 'css' for cubic smoothing spline.

– Burnin, the number of burn-ins for the MCMC algorithm. Default value is 2000.
– M, the number of iterations for the MCMC algorithm. Default value is 10000.
– cgrid, set as 1 if the functional data are observed on a common-grid, otherwise

set as 0 for uncommon or random grids. Default value is 1.
– Sigma_est, estimated smooth covariance matrix from previous analysis. Default

is empty and will be estimated by PACE or sample estimate from individually
smoothed data.

– mu_est, estimated smooth functional mean from previous analysis. Default is
empty and will be set as the smoothed sample mean.

– mat, set as 1 to use the Mateŕn covariance function as prior structure for stationary
functional data; set as 0 to use the empirical covariance estimate Sigma_est as the
prior structure for nonstationary functional data. Default value is 1.

– nu, order of smoothness for the Mateŕn covariance function. Default is empty and
will be estimated based on Sigma_est.

– delta, shape parameter δ of the IWP. Default is 5 for a non-informative prior.
– c, determining the prior covariance for functional mean. Default is 1.
– w, ws, determining the prior gamma distributions for σ2

ε and σ2
s . Defaults are w

= 1, ws = 0.1. The parameter ws should be tuned for a proper magnitude of the
posterior covariance estimate.

– pace, if Sigma_est and mu_est are empty, set pace = 1 to obtain Sigma_est
and mu_est by PACE, and set pace = 0 to use the empirical estimates from the
individually smoothed data by CSS. Default is 1.

– m, tau, working grid tau is only required for 'babf' method. Default is empty
and will be set up as the (0 : 100

m−1 : 100) percentiles of the pooled observation grid
with length m.

– eval_grid, evaluation grid for all functional estimates, only required for 'babf'
methods.

20 BFDA: Bayesian Functional Data Analysis in MATLAB

– lamb_min, lamb_max, lamb_step, determining the smoothing parameter candi-
dates for general cross validation of the CSS method. Defaults are lamb_min =
0.9, lamb_max = 0.99, lamb_step = 0.01.

– a, b, hyper-parameters for the gamma distributions in 'bgp', and 'bfpca'.
– resid_thin, determine the MCMC thinning steps of the residuals that are used

to test the goodness-of-fit of the model. Default is 10.

A.2. Output variables

The main function BFDA() has two output arguments, one structure outputted by the specified
method, and the other the parameter structure as specified by setOptions_bfda() containing
updated parameter values.
Output structure with smethod = 'bhm':

• Z, Z_CL, Z_UL, smoothed functional data, lower and upper 95% credible intervals.

• Sigma, Sigma_CL, Sigma_UL, functional covariance estimate, lower and upper 95%
credible intervals.

• Sigma_SE, the empirical covariance estimate by using the smoothed data Z.

• mu, mu_CI, functional mean estimate, 95% credible intervals.

• rn, rn_CI, estimate and 95% credible interval for the noise precision.

• rs, rs_CI, estimate and 95% credible interval for σ2
s .

• rho, nu, estimated parameter values for the Matérn function.

• residuals, MCMC samples of the residuals that are used to test the goodness-of-fit.

• pmin_vec, p values for testing the goodness-of-fit for all functional samples. A p value
> 0.25 suggests no evidence of model inadequacy; 0.05 < p value < 0.25 suggests
some evidence of model inadequacy; p value < 0.05 suggests strong evidence of model
inadequacy.

The output structure with smethod = 'babf' has the following variables that are different
from the ones with smethod = 'bhm':

• Zt, smoothed functional data on the observation grids.

• Z_cgrid, Z_cgrid_CL, Z_cgrid_UL, smoothed functional data on the evaluation grid
eval_grid, along with lower and upper 95% credible intervals.

• Sigma_cgrid, Sigma_cgrid_CL, Sigma_cgrid_UL, functional covariance estimate on
the evaluation grid eval_grid, along with lower and upper 95% credible intervals.

• mu_cgrid, mu_cgrid_CI, functional mean estimate on the evaluation grid eval_grid,
along with 95% credible intervals.

Journal of Statistical Software 21

• Zeta, Zeta_CL, Zeta_UL, estimates for the coefficients of basis functions, along with
lower and upper 95% credible intervals.

• Sigma_zeta_SE, the empirical covariance estimate with the estimated Zeta.

• Sigma_zeta, Sigma_zeta_CL, Sigma_zeta_UL, covariance estimate for the coefficients
of basis functions, along with lower and upper 95% credible intervals.

• mu_zeta, mu_zeta_CI, mean estimate for the coefficients of basis functions, along with
95% credible intervals.

• Btau, the basis function evaluations on the working grid tau.

• BT, the basis function evaluations on the observation grids.

• Sigma_tau, functional covariance estimate on the working grid tau.

• mu_tau, functional mean estimate on the working grid tau.

• optknots, the optimal knots selected by optknt() for evaluations on the working grid
tau.

Affiliation:
Jingjing Yang, Ph.D.
Center for Computational and Quantitative Genetics
Department of Human Genetics
Emory University School of Medicine
615 Michael St.
Atlanta, GA, 30322, United States of America
E-mail: jingjing.yang@emory.edu, yjingj@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
May 2019, Volume 89, Issue 2 Submitted: 2016-04-16
doi:10.18637/jss.v089.i02 Accepted: 2017-10-29

mailto:jingjing.yang@emory.edu
mailto:yjingj@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v089.i02

	Introduction
	Methods overview
	Model-based Bayesian smoothing method: BHM
	Alternative efficient Bayesian inference algorithm: BABF

	Examples with simulated data
	Simulate functional data from a Gaussian process
	Analyze stationary functional data by BHM
	Stationary functional data with common grids
	Stationary functional data with uncommon grids
	Example BHM results with stationary function data input

	Analyze nonstationary functional data by BHM
	Nonstationary functional data with common grids
	Nonstationary functional data with uncommon grids
	Example BHM results with nonstationary functional data input

	Analyze functional data with random observation grids by BABF
	Stationary functional data with random grids
	Nonstationary functional data with random grids
	Example BABF results with random observation grids

	Functional linear regression with smoothed data
	Simulate functional data
	Results of functional linear regression with scalar responses
	Results of functional linear regression with functional responses

	Discussion
	Inputs and outputs
	Input variables
	Output variables

