

BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Reza Mohammadi
University of Amsterdam

Ernst C. Wit
Universita della Svizzera Italiana

Abstract

Graphical models provide powerful tools to uncover complicated patterns in multivariate data and are commonly used in Bayesian statistics and machine learning. In this paper, we introduce the R package $\mathbf{B D g r a p h}$ which performs Bayesian structure learning for general undirected graphical models (decomposable and non-decomposable) with continuous, discrete, and mixed variables. The package efficiently implements recent improvements in the Bayesian literature, including that of Mohammadi and Wit (2015) and Dobra and Mohammadi (2018). To speed up computations, the computationally intensive tasks have been implemented in $\mathrm{C}++$ and interfaced with R , and the package has parallel computing capabilities. In addition, the package contains several functions for simulation and visualization, as well as several multivariate datasets taken from the literature and used to describe the package capabilities. The paper includes a brief overview of the statistical methods which have been implemented in the package. The main part of the paper explains how to use the package. Furthermore, we illustrate the package's functionality in both real and artificial examples.

Keywords: Bayesian structure learning, Gaussian graphical models, Gaussian copula, covariance selection, birth-death process, Markov chain Monte Carlo, G-Wishart, BDgraph, R.

1. Introduction

Graphical models (Lauritzen 1996) are commonly used, particularly in Bayesian statistics and machine learning, to describe the conditional independence relationships among variables in multivariate data. In graphical models, each random variable is associated with a node in a graph and links represent conditional dependency between variables, whereas the absence of a link implies that the variables are independent conditional on the rest of the variables (the pairwise Markov property).
In recent years, significant progress has been made in designing efficient algorithms to discover graph structures from multivariate data (Dobra, Lenkoski, and Rodriguez 2011; Dobra and

Lenkoski 2011; Jones, Carvalho, Dobra, Hans, Carter, and West 2005; Dobra and Mohammadi 2018; Mohammadi and Wit 2015; Mohammadi, Abegaz Yazew, Van den Heuvel, and Wit 2017; Friedman, Hastie, and Tibshirani 2008; Meinshausen and Bühlmann 2006; Murray and Ghahramani 2004; Pensar, Nyman, Niiranen, Corander, and others 2017; Rolfs, Rajaratnam, Guillot, Wong, and Maleki 2012; Wit and Abbruzzo 2015a,b; Dyrba et al. 2018; Behrouzi and Wit 2019). Bayesian approaches provide a principled alternative to various penalized approaches.
In this paper, we describe the BDgraph package (Mohammadi and Wit 2019) in $R(R$ Core Team 2019) for Bayesian structure learning in undirected graphical models. The package can deal with Gaussian, non-Gaussian, discrete and mixed datasets. The package includes various functional modules, including data generation for simulation, several search algorithms, graph estimation routines, a convergence check and a visualization tool; see Figure 1. Our package efficiently implements recent improvements in the Bayesian literature, including those of Mohammadi and Wit (2015); Mohammadi et al. (2017); Dobra and Mohammadi (2018); Lenkoski (2013); Letac, Massam, and Mohammadi (2017); Dobra and Lenkoski (2011); Hoff (2007). For a Bayesian framework of Gaussian graphical models, we implement the method developed by Mohammadi and Wit (2015) and for Gaussian copula graphical models we use the method described by Mohammadi et al. (2017) and Dobra and Lenkoski (2011). To make our Bayesian methods computationally feasible for moderately high-dimensional data, we efficiently implement the BDgraph package in C++ linked to R. To make the package easy to use, the BDgraph package uses several S3 classes as return values of its functions. The package is available under the general public license (GPL ≥ 3) from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/packages=BDgraph.
In the Bayesian literature, the $\mathbf{B D}$ graph package is one of the few R packages which is available online for Gaussian graphical models and Gaussian copula graphical models. Another R package is ssgraph (Mohammadi 2019) which is based on the spike-and-slab prior. On the other hand, more packages seem to be available in the frequentist literature. The existing packages include huge (Zhao, Liu, Roeder, Lafferty, and Wasserman 2019), glasso (Friedman, Hastie, and Tibshirani 2018), bnlearn (Scutari 2010), pcalg (Kalisch, Mächler, Colombo, Maathuis, and Bühlmann 2012), netgwas (Behrouzi, Arends, and Wit 2018), and QUIC (Hsieh, Sustik, Dhillon, and Ravikumar 2011, 2014).
In Section 2 we illustrate the user interface of the BDgraph package. In Section 3 we explain some methodological background of the package. In this regard, in Section 3.1 we briefly explain the Bayesian framework for Gaussian graphical models for continuous data. In Section 3.2 we briefly describe the Bayesian framework in the Gaussian copula graphical models for data that do not follow the Gaussianity assumption, such as non-Gaussian continuous, discrete or mixed data. In Section 4 we describe the main functions implemented in the BDgraph package. In addition, we explain the user interface and the performance of the package by a simple simulation example in Section 5. In Section 6, using the functions implemented in the BDgraph package, we study two actual datasets.

2. User interface

In the R environment, one can install and load the BDgraph package by using the following commands:

Figure 1: Configuration of the BDgraph package which includes three main parts: (M1) data simulation, (M2) several statistical methods, (M3) several search algorithms, (M4) various functions to evaluate convergence of the search algorithms, estimation of the true graph, assessment and comparison of the results and graph visualization.

```
R> install.packages("BDgraph")
R> library("BDgraph")
```

By loading the BDgraph package we automatically load the igraph (Csardi and Nepusz 2006) package, since the BDgraph package depends on this package for graph visualization. The igraph package is available from the Comprehensive R Archive Network (CRAN) at https: //CRAN.R-project.org/package=igraph.
To speed up computations, we efficiently implement the BDgraph package by linking the C++ code to R. The computationally extensive tasks of the package are implemented in parallel in C++ using OpenMP (OpenMP Architecture Review Board 2008). For the C ++ code, we use the highly optimized LAPACK (Anderson et al. 1999) and BLAS (Lawson, Hanson, Kincaid, and Krogh 1979) linear algebra libraries on systems that provide them. The use of these libraries significantly improves program speed.
We design the BDgraph package to provide a Bayesian framework for undirected graph estimation of different types of datasets such as continuous, discrete or mixed data. The package facilitates a pipeline for analysis by three functional modules; see Figure 1. These modules are as follows:

Module 1. Data simulation: Function bdgraph.sim simulates multivariate Gaussian, discrete, binary, and mixed data with different undirected graph structures, including "random", "cluster", "scale-free", "lattice", "hub", "star", "circle", "AR(1)", "AR(2)", and "fixed" graphs. Users can determine the sparsity of the graph structure and can generate mixed data, including "count", "ordinal", "binary", "Gaussian", and "non-Gaussian" variables.

Module 2. Methods: The function bdgraph and bdgraph.mpl provide several estimation methods regarding to the type of data:

- Bayesian graph estimation for the multivariate data that follow the Gaussianity assumption, based on the Gaussian graphical models (GGMs); see Mohammadi and Wit (2015); Dobra et al. (2011).
- Bayesian graph estimation for multivariate non-Gaussian, discrete, and mixed data, based on Gaussian copula graphical models (GCGMs); see Mohammadi et al. (2017); Dobra and Lenkoski (2011).
- Bayesian graph estimation for multivariate discrete and binary data, based on discrete graphical models (DGMs); see Dobra and Mohammadi (2018).

Module 3. Algorithms: The function bdgraph and bdgraph.mpl provide several sampling algorithms:

- Birth-death MCMC (BDMCMC) sampling algorithms (Algorithms 2 and 3) described in Mohammadi and Wit (2015).
- Reversible jump MCMC (RJMCMC) sampling algorithms desciribed in Dobra and Lenkoski (2011).
- Hill-climbing (HC) search algorithm desciribed in Pensar et al. (2017).

Module 4. Results: Includes four types of functions:

- Graph selection: The functions select, plinks, and pgraph provide the selected graph, the posterior link inclusion probabilities and the posterior probability of each graph, respectively.
- Convergence check: The functions plotcoda and traceplot provide several visualization plots to monitor the convergence of the sampling algorithms.
- Comparison and goodness-of-fit: The functions compare and plotroc provide several comparison measures and an ROC plot for model comparison.
- Visualization: plot methods for objects of class 'sim' and 'bdgraph' provide visualizations of the simulated data and estimated graphs.

3. Methodological background

In Section 3.1, we briefly explain the Gaussian graphical model for multivariate data. Then we illustrate the birth-death MCMC algorithm for sampling from the joint posterior distribution over Gaussian graphical models; for more details see Mohammadi and Wit (2015). In Section 3.2, we briefly describe the Gaussian copula graphical model (Dobra and Lenkoski 2011), which can deal with non-Gaussian, discrete or mixed data. Then we explain the birthdeath MCMC algorithm which is designed for the Gaussian copula graphical models; for more details see Mohammadi et al. (2017).

3.1. Bayesian Gaussian graphical models

In graphical models, each random variable is associated with a node and conditional dependence relationships among random variables are presented as a graph $G=(V, E)$ in which $V=\{1,2, \ldots, p\}$ specifies a set of nodes and a set of existing links $E \subset V \times V$ (Lauritzen 1996). Our focus here is on undirected graphs, in which $(i, j) \in E \Leftrightarrow(j, i) \in E$. The absence of a link between two nodes specifies the pairwise conditional independence of those two variables given the remaining variables, while a link between two variables determines their conditional dependence.

In Gaussian graphical models (GGMs), we assume that the observed data follow multivariate Gaussian distribution $\mathcal{N}_{p}\left(\mu, K^{-1}\right)$. Here we assume $\mu=0$. Let $\mathbf{Z}=\left(Z^{(1)}, \ldots, Z^{(n)}\right)^{\top}$ be the observed data of n independent samples, then the likelihood function is

$$
\begin{equation*}
\mathrm{P}(\mathbf{Z} \mid K, G) \propto|K|^{n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(K U)\right\}, \tag{1}
\end{equation*}
$$

where $U=\mathbf{Z}^{\top} \mathbf{Z}$.
In GGMs, conditional independence is implied by the form of the precision matrix. Based on the pairwise Markov property, variables i and j are conditionally independent given the remaining variables, if and only if $K_{i j}=0$. This property implies that the links in graph $G=(V, E)$ correspond with the nonzero elements of the precision matrix K; this means that $E=\left\{(i, j) \mid K_{i j} \neq 0\right\}$. Given graph G, the precision matrix K is constrained to the cone \mathbb{P}_{G} of symmetric positive definite matrices with elements $K_{i j}$ equal to zero for all $(i, j) \notin E$.
We consider the G-Wishart distribution $W_{G}(b, D)$ to be a prior distribution for the precision matrix K with density

$$
\begin{equation*}
\mathrm{P}(K \mid G)=\frac{1}{I_{G}(b, D)}|K|^{(b-2) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}(D K)\right\} 1\left(K \in \mathbb{P}_{G}\right), \tag{2}
\end{equation*}
$$

where $b>2$ are the degrees of freedom, D is a symmetric positive definite matrix, $I_{G}(b, D)$ is the normalizing constant with respect to the graph G and $1(x)$ evaluates to 1 if x holds, and otherwise to 0 . The G-Wishart distribution is a well-known prior for the precision matrix, since it represents the conjugate prior for multivariate Gaussian data as in Equation 1.
For full graphs, the G-Wishart distribution reduces to the standard Wishart distribution, hence the normalizing constant has an explicit form (Muirhead 1982). Also, for decomposable graphs, the normalizing constant has an explicit form (Roverato 2002); however, for nondecomposable graphs, it does not. In that case it can be estimated by using the Monte Carlo method (Atay-Kayis and Massam 2005), the Laplace approximation (Lenkoski and Dobra 2011), or a recent approximation proposed by Letac et al. (2017). In the BDgraph package, we design the gnorm function to estimate the log of the normalizing constant by using the Monte Carlo method proposed Atay-Kayis and Massam (2005).
Since the G-Wishart prior is a conjugate prior to the likelihood (1), the posterior distribution of K is

$$
\mathrm{P}(K \mid \mathbf{Z}, G)=\frac{1}{I_{G}\left(b^{*}, D^{*}\right)}|K|^{\left(b^{*}-2\right) / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(D^{*} K\right)\right\},
$$

where $b^{*}=b+n$ and $D^{*}=D+S$, that is, $W_{G}\left(b^{*}, D^{*}\right)$.

Direct sampler from G-Wishart

Several sampling methods from the G-Wishart distribution have been proposed; to review existing methods see Wang and Li (2012). More recently, Lenkoski (2013) has developed an exact sampling algorithm for the G-Wishart distribution, borrowing an idea from Hastie, Tibshirani, and Friedman (2009).
In the $\mathbf{B D}$ graph package, we use Algorithm 1 to sample from the posterior distribution of the precision matrix. We implement the algorithm in the package as a function rgwish; see the R code below for illustration.

```
Algorithm 1 Exact sampling from the precision matrix.
Input: A graph \(G=(V, E)\) with precision matrix \(K\) and \(\Sigma=K^{-1}\)
Output: An exact sample from the precision matrix.
    Set \(\Omega=\Sigma\)
    repeat
        for \(i=1, \ldots, p\) do
            Let \(N_{i} \subset V\) be the neighbor set of node \(i\) in \(G\). Form \(\Omega_{N_{i}}\) and \(\Sigma_{N_{i}, i}\) and solve
            \(\hat{\beta}_{i}^{*}=\Omega_{N_{i}}^{-1} \Sigma_{N_{i}, i}\).
            Form \(\hat{\beta}_{i} \in R^{p-1}\) by padding the elements of \(\hat{\beta}_{i}^{*}\) to the appropriate locations and zeros
            in those locations not connected to \(i\) in \(G\).
            Update \(\Omega_{i,-i}\) and \(\Omega_{-i, i}\) with \(\Omega_{-i,-i} \hat{\beta}_{i}\).
        end for
    until convergence
    return \(K=\Omega^{-1}\)
```

$R>\operatorname{adj}<-\operatorname{matrix}(c(0,0,1,0,0,0,1,0,0), 3,3)$
R> adj

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0	0	1
$[2]$,	0	0	0
$[3]$,	1	0	0

$R>$ sample <- rgwish(n = 1, adj $=$ adj, $b=3, D=\operatorname{diag}(3))$
$R>$ round (sample, 2)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	2.37	0.00	-2.12
$[2]$,	0.00	6.15	0.00
$[3]$,	-2.12	0.00	7.26

This matrix is a sample from a G-Wishart distribution with $b=3$ and $D=I_{3}$ as an identity matrix and a graph structure with adjacency matrix adj.

BDMCMC algorithm for GGMs

Consider the joint posterior distribution of the graph G and the precision matrix K given by

$$
\begin{equation*}
\mathrm{P}(K, G \mid \mathbf{Z}) \propto \mathrm{P}(\mathbf{Z} \mid K) \mathrm{P}(K \mid G) \mathrm{P}(G) \tag{3}
\end{equation*}
$$

For the prior distribution of the graph $G=(V, E)$, we consider a Bernoulli prior on each link inclusion indicator variable as follow

$$
\begin{equation*}
\mathrm{P}(G) \propto\left(\frac{\theta}{1-\theta}\right)^{|E|} \tag{4}
\end{equation*}
$$

where $|E|$ indicates the number of links in the graph G (graph size) and parameter $\theta \in(0,1)$ is a prior probability of existing links. For the case $\theta=0.5$ (the default option of the $\mathbf{B D g r a p h}$
package), we will have a uniform distribution over the graph space, implying a non-informative prior. For the prior distribution of the precision matrix conditional on the graph G, we use a G-Wishart $W_{G}(b, D)$.
Here we consider a computationally efficient birth-death MCMC sampling algorithm proposed by Mohammadi and Wit (2015) for Gaussian graphical models. The algorithm is based on a continuous time birth-death Markov process, in which the algorithm explores the graph space by adding/removing a link in a birth/death event.
In the birth-death process, for a particular pair of graph $G=(V, E)$ and precision matrix K, each link dies independently of the rest as a Poisson process with death rate $\delta_{e}(K)$. Since the links are independent, the overall death rate is $\delta(K)=\sum_{e \in E} \delta_{e}(K)$. Birth rates $\beta_{e}(K)$ for $e \notin E$ are defined similarly. Thus the overall birth rate is $\beta(K)=\sum_{e \notin E} \beta_{e}(K)$.
Since the birth and death events are independent Poisson processes, the time between two successive events is exponentially distributed with mean $1 /(\beta(K)+\delta(K))$. The time between successive events can be considered as inverse support for any particular instance of the state (G, K). The probabilities of birth and death events are

$$
\begin{align*}
\mathrm{P}(\text { birth of link } e)=\frac{\beta_{e}(K)}{\beta(K)+\delta(K)}, & \text { for each } e \notin E, \tag{5}\\
\mathrm{P}(\text { death of link } e)=\frac{\delta_{e}(K)}{\beta(K)+\delta(K)}, & \text { for each } e \in E . \tag{6}
\end{align*}
$$

The birth and death rates of links occur in continuous time with the rates determined by the stationary distribution of the process. The BDMCMC algorithm is designed in such a way that the stationary distribution is equal to the target joint posterior distribution of the graph and the precision matrix (3).
Mohammadi and Wit (2015, Theorem 3.1) derived a condition that guarantees the above birth and death process converges to our target joint posterior distribution (3). By following their theorem we define the birth and death rates, as below,

$$
\begin{align*}
& \beta_{e}(K)=\min \left\{\frac{\mathrm{P}\left(G^{+e}, K^{+e} \mid \mathbf{Z}\right)}{\mathrm{P}(G, K \mid \mathbf{Z})}, 1\right\}, \text { for each } e \notin E, \tag{7}\\
& \delta_{e}(K)=\min \left\{\frac{\mathrm{P}\left(G^{-e}, K^{-e} \mid \mathbf{Z}\right)}{\mathrm{P}(G, K \mid \mathbf{Z})}, 1\right\}, \text { for each } e \in E, \tag{8}
\end{align*}
$$

in which $G^{+e}=(V, E \cup\{e\})$ and $K^{+e} \in \mathbb{P}_{G^{+e}}$ and similarly $G^{-e}=(V, E \backslash\{e\})$ and $K^{-e} \in$ $\mathbb{P}_{G^{-e}}$. For the computation part related to the ratio of the posterior see Letac et al. (2017).
Algorithm 2 provides the pseudo-code for our BDMCMC sampling scheme which is based on the above birth and death rates. Note, step 1 of the algorithm is suitable for parallel computation. In the BDgraph package, we implement this step of the algorithm in parallel using OpenMP in C++ to speed up the computations.
The BDMCMC sampling algorithm is designed in such a way that a sample (G, K) is obtained at certain jump moments, $\left\{t_{1}, t_{2}, \ldots\right\}$ (see Figure 2). For efficient posterior inference of the parameters, we use the Rao-Blackwellized estimator, which is an efficient estimator for continuous time MCMC algorithms (Cappé, Robert, and Rydén 2003, Section 2.5). By using the Rao-Blackwellized estimator, for example, one can estimate the posterior distribution of the graphs proportional to the total waiting times of each graph.

Figure 2: This image visualizes the Algorithm 2. The left side shows the true posterior distribution of the graph. The middle panel presents a continuous time BDMCMC sampling algorithm where $\left\{W_{1}, W_{2}, \ldots\right\}$ denote waiting times and $\left\{t_{1}, t_{2}, \ldots\right\}$ denote jumping times. The right side denotes the estimated posterior probability of the graphs in proportion to the total of their waiting times, according to the Rao-Blackwellized estimator.

3.2. Gaussian copula graphical models

In practice we encounter both discrete and continuous variables; Gaussian copula graphical modeling has been proposed by Dobra and Lenkoski (2011) to describe dependencies between such heterogeneous variables. Let \mathbf{Y} (as observed data) be a collection of continuous, binary, ordinal or count variables with the marginal distribution F_{j} of Y_{j} and F_{j}^{-1} as its pseudo inverse. For constructing a joint distribution of \mathbf{Y}, we introduce a multivariate Gaussian latent variable as follows:

$$
\begin{array}{r}
Z_{1}, \ldots, Z_{n} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}_{p}(0, \Gamma(K)) \\
Y_{i j} \tag{9}
\end{array}=F_{j}^{-1}\left(\Phi\left(Z_{i j}\right)\right), ~ \$
$$

where $\Gamma(K)$ is the correlation matrix for a given precision matrix K. The joint distribution of \mathbf{Y} is given by

$$
\begin{equation*}
\mathrm{P}\left(Y_{1} \leq Y_{1}, \ldots, Y_{p} \leq Y_{p}\right)=C\left(F_{1}\left(Y_{1}\right), \ldots, F_{p}\left(Y_{p}\right) \mid \Gamma(K)\right) \tag{10}
\end{equation*}
$$

where $C(\cdot)$ is the Gaussian copula given by

$$
C\left(u_{1}, \ldots, u_{p} \mid \Gamma\right)=\Phi_{p}\left(\Phi^{-1}\left(u_{1}\right), \ldots, \Phi^{-1}\left(u_{p}\right) \mid \Gamma\right),
$$

with $u_{v}=F_{v}\left(Y_{v}\right)$ and $\Phi_{p}(\cdot)$ is the cumulative distribution of the multivariate Gaussian and $\Phi(\cdot)$ is the cumulative distribution of the univariate Gaussian distribution. It follows that $Y_{v}=F_{v}^{-1}\left(\Phi\left(Z_{v}\right)\right)$ for $v=1, \ldots, p$. If all variables are continuous then the margins are unique; thus zeros in K imply conditional independence, as in Gaussian graphical models (Hoff 2007; Abegaz and Wit 2015). For discrete variables, the margins are not unique but still well-defined (Nelsen 2007).
In semiparametric copula estimation, the marginals are treated as nuisance parameters and estimated by the rescaled empirical distribution. The joint distribution in (10) is then parametrized only by the correlation matrix of the Gaussian copula. We are interested to infer the underlying graph structure of the observed variables \mathbf{Y} implied by the continuous latent variables \mathbf{Z}. Since \mathbf{Z} are unobservable we follow the idea of Hoff (2007) of associating them with the observed data as below.
Given the observed data \mathbf{Y} from a sample of n observations, we constrain the samples from latent variables \mathbf{Z} to belong to the set

$$
\mathcal{D}(\mathbf{Y})=\left\{\mathbf{Z} \in \mathbb{R}^{n \times p}: L_{j}^{r}(\mathbf{Z})<z_{j}^{(r)}<U_{j}^{r}(\mathbf{Z}), r=1, \ldots, n ; j=1, \ldots, p\right\},
$$

where

$$
\begin{equation*}
L_{j}^{r}(\mathbf{Z})=\max \left\{Z_{j}^{(s)}: Y_{j}^{(s)}<Y_{j}^{(r)}\right\} \quad \text { and } \quad U_{j}^{r}(\mathbf{Z})=\min \left\{Z_{j}^{(s)}: Y_{j}^{(r)}<Y_{j}^{(s)}\right\} . \tag{11}
\end{equation*}
$$

Following Hoff (2007) we infer the latent space by substituting the observed data \mathbf{Y} with the event $\mathcal{D}(\mathbf{Y})$ and define the likelihood as

$$
\mathrm{P}\left(\mathbf{Y} \mid K, G, F_{1}, \ldots, F_{p}\right)=\mathrm{P}(\mathbf{Z} \in \mathcal{D}(\mathbf{Y}) \mid K, G) \mathrm{P}\left(\mathbf{Y} \mid \mathbf{Z} \in \mathcal{D}(\mathbf{Y}), K, G, F_{1}, \ldots, F_{p}\right) .
$$

The only part of the observed data likelihood relevant for inference on K is $\mathrm{P}(\mathbf{Z} \in \mathcal{D}(\mathbf{Y}) \mid$ $K, G)$. Thus, the likelihood function is given by

$$
\begin{equation*}
\mathrm{P}(\mathbf{Z} \in \mathcal{D}(\mathbf{Y}) \mid K, G)=\mathrm{P}(\mathbf{Z} \in \mathcal{D}(\mathbf{Y}) \mid K, G)=\int_{\mathcal{D}(\mathbf{Y})} \mathrm{P}(\mathbf{Z} \mid K, G) d Z \tag{12}
\end{equation*}
$$

where $\mathrm{P}(\mathbf{Z} \mid K, G)$ is defined in (1).

BDMCMC algorithm for GCGMs

The joint posterior distribution of the graph G and precision matrix K for the GCGMs is

$$
\begin{equation*}
\mathrm{P}(K, G \mid Z \in \mathcal{D}(\mathbf{Y})) \propto \mathrm{P}(K, G) \mathrm{P}(Z \in \mathcal{D}(\mathbf{Y}) \mid K, G) \tag{13}
\end{equation*}
$$

Sampling from this posterior distribution can be done by using the birth-death MCMC algorithm. Mohammadi et al. (2017) developed and extended the birth-death MCMC algorithm to more general cases of GCGMs. We summarize their algorithm in Algorithm 3. In step 1, the latent variables \mathbf{Z} are sampled conditional on the observed data \mathbf{Y}. The other steps are the same as in Algorithm 2.

```
Algorithm 3 BDMCMC algorithm for GCGMs.
Input: A graph \(G=(V, E)\) and a precision matrix \(K\).
Output: Samples from the joint posterior distribution of \((G, K),(13)\), and waiting times.
    for \(N\) iterations do
        1. Sample the latent data. For each \(r \in V\) and \(j \in\{1, \ldots, n\}\), we update the latent
        values from its full conditional distribution as follows
\[
Z_{r}^{(j)} \mid Z_{V \backslash\{r\}}=z_{V \backslash\{r\}}^{(j)}, K \sim N\left(-\sum_{r^{\prime}} K_{r r^{\prime}} z_{r^{\prime}}^{(j)} / K_{r r}, 1 / K_{r r}\right),
\]
```

truncated to the interval $\left[L_{r}^{j}(\mathbf{Z}), U_{r}^{j}(\mathbf{Z})\right]$ in (11).
2. Sample from the graph. Same as step 1 in Algorithm 2.
3. Sample from the precision matrix. By using Algorithm 1.
end for

Remark: In cases where all variables are continuous, we do not need to sample from latent variables in each iteration of Algorithm 2, since all margins in the Gaussian copula are unique. Thus, for these cases, we transfer our non-Gaussian data to Gaussian, and then we run Algorithm 2; see the example in Section 6.2.

Alternative RJMCMC algorithm

RJMCMC is a special case of the trans-dimensional MCMC methodology (Green 2003). The RJMCMC approach is based on an ergodic discrete-time Markov chain. In graphical models, a RJMCMC algorithm can be designed in such a way that its stationary distribution is the joint posterior distribution of the graph and the parameters of the graph, e.g., (3) for GGMs and (13) for GCGMs.

A RJMCMC can be implemented in various different ways. Giudici and Green (1999) implemented this algorithm only for decomposable GGMs, because of the expensive computation of the normalizing constant $I_{G}(b, D)$. The RJMCMC approach developed by Dobra et al. (2011) and Dobra and Lenkoski (2011) is based on the Cholesky decomposition of the precision matrix. It uses an approximation to deal with the extensive computation of the normalizing constant. To avoid the intractable normalizing constant calculation, Lenkoski (2013) and Wang and Li (2012) implemented a special case of the RJMCMC algorithm, which is based on the exchange algorithm (Murray, Ghahramani, and MacKay 2006). Our implementation of the RJMCMC algorithm in the BDgraph package defines the acceptance probability proportional to the birth/death rates in our BDMCMC algorithm. Moreover, we implement the exact sampling of G-Wishart distribution, as described in Section 3.1. Besides, we use the result of Letac et al. (2017) for the ratio of the normalizing constant of the G-Wishart distribution.

4. The BDgraph environment

The BDgraph package provides a set of comprehensive tools related to Bayesian graphical models; we describe below the essential functions available in the package.

4.1. Posterior sampling

We design the function bdgraph, as the main function of the package, to take samples from the posterior distributions based on both of our Bayesian frameworks (GGMs and GCGMs). By default, the bdgraph function is based on underlying sampling algorithms (Algorithms 2 and 3). Moreover, as an alternative to those BDMCMC sampling algorithms, we implement RJMCMC sampling algorithms for both the Gaussian and non-Gaussian frameworks. By using the following function

```
bdgraph(data, n = NULL, method = "ggm", algorithm = "bdmcmc", iter = 5000,
    burnin = iter / 2, not.cont = NULL, g.prior = 0.5, df.prior = 3,
    g.start = "empty", jump = NULL, save = FALSE, print = 1000, cores = NULL,
    threshold = 1e-8)
```

we obtain a sample from our target joint posterior distribution. bdgraph returns an object of the S3 class 'bdgraph'. There are plot, print and summary methods available for objects of class 'bdgraph'. The input data can be an $(n \times p)$ matrix or a data.frame or a covariance $(p \times p)$ matrix (n is the sample size and p is the dimension); it can also be an object of class 'sim', which is the output of function bdgraph.sim.
The argument method determines the type of methods, GGMs, GCGMs. Option "ggm" is based on Gaussian graphical models (Algorithm 2) that is designed for multivariate Gaussian data. Option "gcgm" is based on the GCGMs (Algorithm 3) that is designed for non-Gaussian data such as, non-Gaussian continuous, discrete or mixed data.
The argument algorithm refers the type of sampling algorithms which could be based on BDMCMC or RJMCMC. Option "bdmcmc" (default) is for the BDMCMC sampling algorithms (Algorithms 2 and 3). Option "rjmcmc" is for the RJMCMC sampling algorithms, which are alternative algorithms. See Mohammadi and Wit (2015, Section 4), Mohammadi et al. (2017, Section 2.2.3).
The argument g.start specifies the initial graph for our sampling algorithm. It could be "empty" (default) or "full". Option "empty" means the initial graph is an empty graph and "full" means a full graph. It also could be an object with S3 class 'bdgraph', which allows users to run the sampling algorithm from the last state of the previous run.
The argument jump determines the number of links that are simultaneously updated in the BDMCMC algorithm.
For parallel computation in C++ which is based on OpenMP (OpenMP Architecture Review Board 2008), users can use the argument cores to specify the number of cores to use for parallel execution.
Note, the package BDgraph has two other sampling functions, bdgraph.mpl and bdgraph.ts which are designed in a similar way as the function bdgraph. The function bdgraph.mpl is for Bayesian model determination in undirected graphical models based on the marginal pseudo-likelihood, for both continuous and discrete variables; for more details see Dobra and Mohammadi (2018). The function bdgraph.ts is for Bayesian model determination in time series graphical models (Tank, Foti, and Fox 2015).

4.2. Posterior graph selection

We design the BDgraph package in such a way that posterior graph selection can be done based on both Bayesian model averaging (BMA), as default, and maximum a posterior proba-
bility (MAP). The functions select and plinks are designed for the objects of class 'bdgraph' to provide BMA and MAP estimations for posterior graph selection.
The function
plinks(bdgraph.obj, round $=2$, burnin $=$ NULL)
provides estimated posterior link inclusion probabilities for all possible links, which is based on BMA estimation. In cases where the sampling algorithm is based on BDMCMC, these probabilities for all possible links $e=(i, j)$ in the graph can be estimated using a RaoBlackwellized estimate (Cappé et al. 2003, Section 2.5) based on

$$
\begin{equation*}
\mathrm{P}(e \in E \mid \text { data })=\frac{\sum_{t=1}^{N} 1\left(e \in E^{(t)}\right) W\left(K^{(t)}\right)}{\sum_{t=1}^{N} W\left(K^{(t)}\right)} \tag{14}
\end{equation*}
$$

where N is the number of iterations and $W\left(K^{(t)}\right)$ are the weights of the graph $G^{(t)}$ with the precision matrix $K^{(t)}$.
The function
select (bdgraph.obj, cut $=$ NULL, vis = FALSE)
provides the inferred graph based on both BMA (the default) and MAP estimators. The inferred graph based on BMA estimation is a graph with links for which the estimated posterior probabilities are greater than a certain cut-point (with default cut $=0.5$). The inferred graph based on MAP estimation is a graph with the highest posterior probability.
Note, for posterior graph selection based on MAP estimation we should save all adjacency matrices by using the option save = TRUE in the function bdgraph. Saving all the adjacency matrices could, however, cause memory problems; to see how we cope with this problem the reader is referred to Appendix A.

4.3. Convergence check

In general, convergence in MCMC approaches can be difficult to evaluate. From a theoretical point of view, the sampling distribution will converge to the target joint posterior distribution as the number of iterations increases to infinity. Because we normally have little theoretical insight about how quickly MCMC algorithms converge to the target stationary distribution we therefore rely on post hoc testing of the sampled output. In general, the sample is divided into two parts: a "burn-in" part of the sample and the remainder, in which the chain is considered to have converged sufficiently close to the target posterior distribution. Two questions then arise: How many samples are sufficient? How long should the burn-in period be?
The plotcoda and traceplot functions are two visualization functions for the objects of class 'bdgraph' that make it possible to check the convergence of the search algorithms in package BDgraph. The function

```
plotcoda(bdgraph.obj, thin = NULL, control = TRUE, main = NULL, ...)
```

provides the trace of the estimated posterior probability of all possible links to check convergence of the search algorithms. Option control is designed such that if control $=$ TRUE
(default) and the dimension (p) is greater than 15 , then 100 links are randomly selected for visualization.
The function
traceplot(bdgraph.obj, acf = FALSE, pacf = FALSE, main = NULL, ...)
provides the trace of the graph size to check convergence of the search algorithms. Option acf is for the visualization of the autocorrelation functions for graph size; option pacf visualizes the partial autocorrelations.

4.4. Comparison and goodness-of-fit

The functions compare and plotroc are designed to evaluate and compare the performance of the selected graph. These functions are particularly useful for simulation studies. With the function

```
compare(target, est, est2 = NULL, est3 = NULL, est4 = NULL, main = NULL,
    vis = FALSE)
```

we can evaluate the performance of the Bayesian methods available in our BDgraph package and compare them with alternative approaches. This function provides several measures such as the balanced F-score measure (Baldi, Brunak, Chauvin, Andersen, and Nielsen 2000), which is defined as follows:

$$
\begin{equation*}
F_{1} \text {-score }=\frac{2 \mathrm{TP}}{2 \mathrm{TP}+\mathrm{FP}+\mathrm{FN}}, \tag{15}
\end{equation*}
$$

where TP, FP and FN are the number of true positives, false positives and false negatives, respectively. The F_{1}-score lies between 0 and 1 , where 1 stands for perfect identification and 0 for no true positives.
The function

```
plotroc(target, est, est2 = NULL, est3 = NULL, est4 = NULL, cut = 20,
    smooth = FALSE, label = TRUE, main = "ROC Curve")
```

provides a ROC plot for visualization comparison based on the estimated posterior link inclusion probabilities.

4.5. Data simulation

The function bdgraph.sim is designed to simulate different types of datasets with various graph structures. The function

```
bdgraph.sim(p = 10, graph = "random", n = 0, type = "Gaussian", prob = 0.2,
    size = NULL, mean = 0, class = NULL, cut = 4, b = 3, D = diag(p),
    K = NULL, sigma = NULL, vis = FALSE)
```

can simulate multivariate Gaussian, non-Gaussian, discrete, binary and mixed data with different undirected graph structures, including "random", "cluster", "scale-free", "lattice",
"hub", "star", "circle", "AR(1)", "AR(2)", and "fixed" graphs. Users can specify the type of multivariate data by option type and the graph structure by option graph. They can determine the sparsity level of the obtained graph by using option prob. With this function users can generate mixed data from "count", "ordinal", "binary", "Gaussian", and "non-Gaussian" distributions. bdgraph.sim returns an object of the S3 class 'sim'. There are plot and print methods available for this class.
There is another function in the BDgraph package with the name graph. sim which is designed to simulate different types of graph structures. The function

```
graph.sim(p = 10, graph = "random", prob = 0.2, size = NULL, class = NULL,
    cut = 4, vis = FALSE)
```

can simulate different undirected graph structures, including "random", "cluster", "scale-free", "lattice", "hub", "star", and "circle" graphs. Users can specify the type of graph structure by option graph. They can determine the sparsity level of the obtained graph by using option prob. bdgraph. sim returns an object of S3 class 'graph'. There are plot and print methods available for this class.

5. An example on simulated data

We illustrate the user interface of the BDgraph package by use of a simple simulation. We perform all the computations on a MacBook Pro with 2.9 GHz Intel Core i7 processor. By using the function bdgraph.sim we simulate 60 observations $(n=60)$ from a multivariate Gaussian distribution with 8 variables $(p=8)$ and "scale-free" graph structure, as below.

```
R> data.sim <- bdgraph.sim(n = 60, p = 8, graph = "scale-free",
+ type = "Gaussian")
R> round(head(data.sim$data, 4), 2)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
$[1]$,	0.72	-0.91	-1.23	-0.16	0.20	-0.47	0.08	1.07
$[2]$,	0.25	-0.11	0.09	0.53	0.10	-0.04	-0.13	-0.67
$[3]$,	-0.42	-0.09	-0.28	-0.42	2.04	0.84	-0.79	1.24
$[4]$,	-0.33	-0.50	0.68	-1.33	-1.15	0.25	-0.35	2.97

Since the generated data are Gaussian, we run the BDMCMC algorithm which is based on Gaussian graphical models. For this we choose method $=$ "ggm", as follows:

```
R> sample.bdmcmc <- bdgraph(bdgraph(data = data.sim, method = "ggm",
+ algorithm = "bdmcmc", iter = 5000, save = TRUE)
```

We choose option save $=$ TRUE to save the samples in order to check convergence of the algorithm. Running this function takes less than one second, as the computational intensive tasks are performed in $\mathrm{C}++$ and interfaced with R .
Since the function bdgraph returns an object of class $S 3$, users can see the summary result as follows

\$selected_g								
			[,3]	[, 4]	[,5]	[,6]	[,7]	[, 8]
[1,]	0	1	1	0	0	0	1	0
[2,]	0	0	0	1	0	0	0	0
[3,]	0	0	0	0	0	1	0	0
[4,]	0	0	0	0	0	0	0	1
[5,]	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0

\$p_links

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
$[1]$,	0	0.51	1.00	0.27	0.21	0.31	0.74	0.11
$[2]$,	0	0.00	0.29	1.00	0.25	0.18	0.49	0.14
$[3]$,	0	0.00	0.00	0.24	0.27	0.79	0.44	0.22
$[4]$,	0	0.00	0.00	0.00	0.32	0.30	0.34	1.00
$[5]$,	0	0.00	0.00	0.00	0.00	0.25	0.40	0.22
$[6]$,	0	0.00	0.00	0.00	0.00	0.00	0.23	0.37
$[7]$,	0	0.00	0.00	0.00	0.00	0.00	0.00	0.19
$[8]$,	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

\$K_hat

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
$[1]$,	3.81	0.33	3.19	-0.09	0.04	0.14	-0.84	0.02
$[2]$,	0.33	4.24	-0.06	-3.43	-0.07	-0.02	0.41	-0.02
$[3]$,	3.19	-0.06	5.54	-0.08	-0.06	-0.75	0.41	0.08
$[4]$,	-0.09	-3.43	-0.08	9.28	-0.15	0.10	-0.18	1.62
$[5]$,	0.04	-0.07	-0.06	-0.15	0.76	-0.06	0.16	-0.04
$[6]$,	0.14	-0.02	-0.75	0.10	-0.06	3.08	0.04	-0.14
$[7]$,	-0.84	0.41	0.41	-0.18	0.16	0.04	5.56	0.04
$[8]$,	0.02	-0.02	0.08	1.62	-0.04	-0.14	0.04	1.21

The summary results are the adjacency matrix of the selected graph (selected_g) based on BMA estimation, the estimated posterior probabilities of all possible links (p_links) and the estimated precision matrix (K_hat).
In addition, the function summary reports a visualization summary of the results as we can see in Figure 3. In the top-left is the graph with the highest posterior probability. The plot in the top-right gives the estimated posterior probabilities of all the graphs which are visited by the BDMCMC algorithm; it indicates that our algorithm visits more than 2000 different graphs. The plot in the bottom-left gives the estimated posterior probabilities of the size of the graphs; it indicates that our algorithm visited mainly graphs with sizes between 4 and 18 links. In the bottom-right is the trace of our algorithm based on the size of the graphs.
The function compare provides several measures to evaluate the performance of our algorithms and compare them with alternative approaches with respect to the true graph structure. To

Selected graph

Posterior probability of graphs size

Posterior probability of graphs

Figure 3: Visualization summary of simulation data based on output of the bdgraph function. The figure in the top-left is the inferred graph with the highest posterior probability. The figure in the top-right gives the estimated posterior probabilities of all visited graphs. The figure in the bottom-left gives the estimated posterior probabilities of all visited graphs based on the size of the graphs. The figure in the bottom-right gives the trace of our algorithm based on the size of the graphs.
evaluate the performance of our BDMCMC algorithm (Algorithm 2) and compare it with that of an alternative algorithm, we also run the RJMCMC algorithm under the same conditions:

```
R> sample.rjmcmc <- bdgraph(data = data.sim, method = "ggm",
+ algorithm = "rjmcmc", iter = 5000, save = TRUE)
```

where the sampling algorithm from the joint posterior distribution is based on the RJMCMC algorithm.
Users can compare the performance of these two algorithms by using:
R> plotroc(data.sim, sample.bdmcmc, sample.rjmcmc, smooth = TRUE)

Figure 4: ROC plot to compare the performance of the BDMCMC and RJMCMC algorithms for a simulated toy example.
which visualizes an ROC plot for both algorithms, BDMCMC and RJMCMC; see Figure 4. We can also compare the performance of those algorithms by using the compare function as follows:

```
R> compare(data.sim, sample.bdmcmc, sample.rjmcmc,
+ main = c("True graph", "BDMCMC", "RJMCMC"))
    True graph BDMCMC RJMCMC
true positive 7 5.000 5.000
true negative 21 20.000 19.000
false positive 0 1.000 2.000
false negative 0 2.000 2.000
F1-score 1 0.769 0.714
specificity 1 0.952 0.905
sensitivity 1 0.714 0.714
MCC 1
```

The results show that for this specific simulated example both algorithms have more or less the same performance; see Mohammadi and Wit (2015, Section 4) and Mohammadi et al. (2017, Section 2.2.3).
In this simulation example, we run both BDMCMC and RJMCMC algorithms for 5,000 iterations, 2,500 of them as burn-in. To check whether the number of iterations is enough and to monitoring the convergence of our both algorithm, we run

R> plotcoda(sample.bdmcmc)
$R>$ plotcoda(sample.rjmcmc)
The results in Figure 5 indicate that our BDMCMC algorithm converges faster than the RJMCMC algorithm.

Figure 5: Plot for monitoring the convergence based on the trace of the estimated posterior probability of all possible links for the BDMCMC algorithm (left) and the RJMCMC algorithm (right).

6. Application to real datasets

In this section we analyze two datasets from genetics and sociology, using the functions available in the BDgraph package. In Section 6.1 we analyze a labor force survey dataset, involving mixed data. In Section 6.2 we analyze human gene expression data, which do not follow the Gaussianity assumption. Both datasets are available in the BDgraph package.

6.1. Application to labor force survey data

Hoff (2007) analyzes the multivariate associations among income, education and family background, using data concerning 1002 males in the U.S. labor force. The dataset is available in the BDgraph package.

```
R> data("surveyData", package = "BDgraph")
```

$R>$ head(surveyData, 5)

[1,]	NA	1	3	3	1	5	59
[2,]	11	0	3	NA	0	7	59
[3,]	8	1	1	NA	0	9	25
[4,]	25	3	2	NA	0	5	55
[5,]	100	3	2	4	3	2	56

Missing data are indicated by NA; in general, the rate of missing data is about 9%, with higher rates for the variables income and pincome. In this dataset we have seven observed variables as follows:

- income: An ordinal variable indicating respondent's income in 1000s of dollars after binning.
- degree: An ordinal variable with five categories indicating respondent's highest educational degree.
- children: A count variable indicating the number of children of the respondent.
- pincome: An ordinal variable with five categories indicating financial status of respondent's parents.
- pdegree: An ordinal variable with five categories indicating highest educational degree of respondent's parents.
- pchildren: A count variable indicating the number of children of respondent's parents.
- age: A count variable indicating respondent's age in years.

Since the variables are measured on various scales, the marginal distributions are heterogeneous, which makes the study of their joint distribution very challenging. However, we can apply to this dataset our Bayesian framework based on the Gaussian copula graphical models. Thus, we run the function bdgraph with option method = "gcgm". For the prior distributions of the graph and precision matrix, as default of the function bdgraph, we place a uniform distribution as an uninformative prior on the graph and a G-Wishart distribution $W_{G}\left(3, I_{7}\right)$ on the precision matrix. We run our function for 10,000 iterations with 7,000 as burn-in.

```
R> sample.bdmcmc <- bdgraph(data = surveyData, method = "gcgm",
+ iter = 10000, burnin = 7000)
R> summary(sample.bdmcmc)
$selected_g
            income degree children pincome pdegree pchildren age
\begin{tabular}{llllllll} 
income & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
degree & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
children & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
pincome & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
pdegree & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
pchildren & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
age & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
$p_links
\begin{tabular}{lrrrrrrr} 
& income & degree & children & pincome & pdegree & pchildren & age \\
income & 0 & 1 & 1.00 & 0.37 & 0.06 & 0.05 & 1.00 \\
degree & 0 & 0 & 0.67 & 0.20 & 1.00 & 0.78 & 0.16 \\
children & 0 & 0 & 0.00 & 0.34 & 0.72 & 1.00 & 1.00 \\
pincome & 0 & 0 & 0.00 & 0.00 & 1.00 & 0.40 & 0.09 \\
pdegree & 0 & 0 & 0.00 & 0.00 & 0.00 & 0.92 & 0.99 \\
pchildren & 0 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 \\
age & 0 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00
\end{tabular}
```


Figure 6: Inferred graph for the labor force survey data based on output from bdgraph. Sign "+" represents a positively correlated relationship between associated variables and "-" represents a negatively correlated relationship.

\$K_hat							
	income	degree	children	pincome	pdegree	pchildren	age
income	1.33	-1.46	-0.54	-0.10	0.00	0.00	-0.33
degree	-1.46	7.63	0.46	0.08	-1.20	0.23	-0.04
children	-0.54	0.46	7.21	0.19	0.26	-0.40	-1.81
pincome	-0.10	0.08	0.19	6.92	-1.09	0.13	0.01
pdegree	0.00	-1.20	0.26	-1.09	1.36	0.20	0.22
pchildren	0.00	0.23	-0.40	0.13	0.20	1.17	0.00
age	-0.33	-0.04	-1.81	0.01	0.22	0.00	1.79

The results of the function summary are the adjacency matrix of the selected graph (selected_g), estimated posterior probabilities of all possible links (p_links) and estimated precision matrix (K_hat).

Figure 6 presents the selected graph, a graph with links for which the estimated posterior probabilities are greater than 0.5. Links in the graph are indicated by signs "+" and "-", which represent positively and negatively correlated relationships between associated variables, respectively.
The results indicate that education, fertility and age have strong associations with income, since there are highly positively correlated relationships between income and those three variables, with posterior probability equal to one for all of them. It is also shown that a

Figure 7: Univariate histograms of the first 6 genes in the human gene expression dataset.
respondent's education and fertility are negatively correlated, with a posterior probability more than 0.67 . The respondent's education is certainly related to their parent's education, since there is a positively correlated relationship, with posterior probability equal to one.
For this dataset, Hoff (2007) estimated the conditional independence between variables by inspecting whether the 95% credible intervals for the associated regression parameters do not contain zero. Our results are the same as those reported in Hoff (2007) except for two links. Our results indicate that there is a strong relationship between parents' education (pdegree) and fertility (child), a link which is not selected by Hoff (2007).

6.2. Application to human gene expression

Here, by using the functions that are available in the BDgraph package, we study the structure learning of the sparse graphs applied to the human gene expression data which were originally described by Stranger et al. (2007). They collected data to measure gene expression in Blymphocyte cells from Utah inhabitants with Northern and Western European ancestry. They considered 60 individuals whose genotypes were available online at ftp://ftp.sanger.ac. uk/pub/genevar. Here the focus was on the 3,125 single nucleotide polymorphisms (SNPs) that were found in the 5^{\prime} UTR (untranslated region) of mRNA (messenger RNA) with a minor allele frequency ≥ 0.1. Since the UTR (untranslated region) of mRNA (messenger RNA) has previously been subject to investigation, it should play an important role in the regulation of gene expression. The raw data were background-corrected and then quantile-normalized across replicates of a single individual and then median-normalized across all individuals. Following Bhadra and Mallick (2013), of the 47,293 total available probes, we consider the 100 most variable probes that correspond to different Illumina TargetID transcripts. The data for these 100 probes are available in our package. To see the data users can run the code

R> data("geneExpression", package = "BDgraph")

Figure 8: The inferred graph for the human gene expression dataset using Gaussian copula graphical models. This graph consists of 176 links with estimated posterior probabilities greater than 0.5.

R> dim(geneExpression)

60100

The data consist of only 60 observations $(n=60)$ across 100 genes $(p=100)$. This dataset is an interesting case study for graph structure learning, as it has been used by Bhadra and Mallick (2013); Mohammadi and Wit (2015); Gu, Cao, Ning, and Liu (2015).
In this dataset, all the variables are continuous but not Gaussian, as can be seen in Figure 7. Thus, we apply Gaussian copula graphical models, using the function bdgraph with option method $=$ "gcgm". For the prior distributions of the graph we use a Bernoulli prior on each link inclusion (4), encourage sparsity by considering $\theta=0.1$, using the function bdgraph with option g.prior $=0.1$. For the prior distributions of the precision matrix, as default of the function bdgraph, we place the G-Wishart distribution $W_{G}\left(3, I_{100}\right)$ on the precision matrix.
We run our function for 10,000 iterations with 7,000 as burn-in as follows:

Posterior Probabilities of all Links

Figure 9: Image visualization of the estimated posterior probabilities of all possible links in the graph on the human gene expression dataset.

```
R> sample.bdmcmc <- bdgraph(data = geneExpression, method = "gcgm",
+ g.prior = 0.1, iter = 10000, burnin = 7000)
```

This takes less than 3 minutes. We use the following code to visualize the graph with estimated posterior probabilities greater than 0.5 .

```
R> select(sample.bdmcmc, cut = 0.5, vis = TRUE)
```

By using option vis $=$ TRUE, the function plots the selected graph. Figure 8 visualizes the selected graph which consists of 176 links with estimated posterior probabilities (14) greater than 0.5 .
The function plinks reports the estimated posterior probabilities of all possible links in the graph. For our data the output of this function is a 100×100 matrix. Figure 9 reports the visualization of that matrix.
Most of the links in our selected graph conform to results in previous studies. For instance, Bhadra and Mallick (2013) found 54 significant interactions between genes, most of which are covered by our method. In addition, our approach indicates additional gene interactions with high posterior probabilities that are not found in previous studies; this result may complement the analysis of human gene interaction networks.

7. Conclusion

We presented the BDgraph package which was designed for Bayesian structure learning in general - decomposable and non-decomposable - undirected graphical models. The package implements recent improvements in computation, sampling and inference of Gaussian graphical models (Mohammadi and Wit 2015; Dobra et al. 2011) for Gaussian data and Gaussian copula graphical models (Mohammadi et al. 2017; Dobra and Lenkoski 2011) for non-Gaussian, discrete and mixed data.
We are committed to maintaining and developing the BDgraph package in the future. Future versions of the package will contain more options for prior distributions of the graph and the precision matrix. One possible extension of our package would be to deal with outliers, by using robust Bayesian graphical modeling using Dirichlet t-distributions (Finegold and Drton 2014; Mohammadi and Wit 2014). The availability of an implementation of this method would be desirable for actual applications.

Acknowledgments

The authors are grateful to the associated editor and reviewers for helpful criticism of the original of both the manuscript and the R package. We would like to thank Sven Baars for the parallel implementation in $\mathrm{C}++$. We also would like to thank Sourabh Kotnala for implementing the package in $\mathrm{C}++$.

References

Abegaz F, Wit E (2015). "Copula Gaussian Graphical Models with Penalized Ascent Monte
Carlo EM Algorithm." Statistica Neerlandica, 69(4), 419-441. doi:10.1111/stan. 12066.
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users' Guide. 3rd edition. Society for Industrial and Applied Mathematics, Philadelphia.

Atay-Kayis A, Massam H (2005). "A Monte Carlo Method for Computing the Marginal Likelihood in Nondecomposable Gaussian Graphical Models." Biometrika, 92(2), 317-335. doi:10.1093/biomet/92.2.317.

Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000). "Assessing the Accuracy of Prediction Algorithms for Classification: An Overview." Bioinformatics, 16(5), 412-424. doi:10.1093/bioinformatics/16.5.412.

Behrouzi P, Arends D, Wit EC (2018). "netgwas: An R Package for Network-Based GenomeWide Association Studies." arXiv 1710.01236, arXiv.org E-Print Archive. URL http: //arxiv.org/abs/1710.01236.

Behrouzi P, Wit EC (2019). "Detecting Epistatic Selection with Partially Observed Genotype Data by Using Copula Graphical Models." Journal of the Royal Statistical Society C, 68(1), 141-160. doi:10.1111/rssc. 12287.

Bhadra A, Mallick BK (2013). "Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis." Biometrics, 69(2), 447-457. doi:10. 1111/biom. 12021.

Cappé O, Robert CP, Rydén T (2003). "Reversible Jump, Birth-and-Death and More General Continuous Time Markov Chain Monte Carlo Samplers." Journal of the Royal Statistical Society B, 65(3), 679-700. doi:10.1111/1467-9868.00409.

Csardi G, Nepusz T (2006). "The igraph Software Package for Complex Network Research." InterJournal, Complex Systems, 1695.

Dobra A, Lenkoski A (2011). "Copula Gaussian Graphical Models and Their Application to Modeling Functional Disability Data." The Annals of Applied Statistics, 5(2A), 969-993. doi:10.1214/10-aoas397.

Dobra A, Lenkoski A, Rodriguez A (2011). "Bayesian Inference for General Gaussian Graphical Models with Application to Multivariate Lattice Data." Journal of the American Statistical Association, 106(496), 1418-1433. doi:10.1198/jasa.2011.tm10465.

Dobra A, Mohammadi R (2018). "Loglinear Model Selection and Human Mobility." The Annals of Applied Statistics, 12(2), 815-845. doi:10.1214/18-aoas1164.

Dyrba M, Grothe MJ, Mohammadi A, Binder H, Kirste T, Teipel SJ, Alzheimer's Disease Neuroimaging Initiative, et al. (2018). "Comparison of Different Hypotheses Regarding the Spread of Alzheimer's Disease Using Markov Random Fields and Multimodal Imaging." Journal of Alzheimer's Disease, 65(3), 731-746. doi:10.3233/jad-161197.

Finegold M, Drton M (2014). "Robust Bayesian Graphical Modeling Using Dirichlet tDistributions." Bayesian Analysis, 9(3), 521-550. doi:10.1214/13-ba856.

Friedman J, Hastie T, Tibshirani R (2008). "Sparse Inverse Covariance Estimation with the Graphical Lasso." Biostatistics, 9(3), 432-441. doi:10.1093/biostatistics/kxm045.

Friedman J, Hastie T, Tibshirani R (2018). glasso: Graphical Lasso- Estimation of Gaussian Graphical Models. R package version 1.10, URL https://CRAN.R-project.org/package= glasso.

Giudici P, Green PJ (1999). "Decomposable Graphical Gaussian Model Determination." Biometrika, 86(4), 785-801. doi:10.1093/biomet/86.4.785.

Green PJ (2003). "Trans-Dimensional Markov Chain Monte Carlo." In PJ Green, NL Hjort, S Richardson (eds.), Highly Structured Stochastic Systems, Oxford Statistical Science Series, pp. 179-198. Oxford University Press.

Gu Q, Cao Y, Ning Y, Liu H (2015). "Local and Global Inference for High Dimensional Gaussian Copula Graphical Models." arXiv 1502.02347, arXiv.org E-Print Archive. URL http://arxiv.org/abs/1502.02347.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag.

Hoff PD (2007). "Extending the Rank Likelihood for Semiparametric Copula Estimation." The Annals of Applied Statistics, 1(1), 265-283. doi:10.1214/07-aoas107.

Hsieh CJ, Sustik MA, Dhillon IS, Ravikumar P (2011). "Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation." In J Shawe-Taylor, RS Zemel, P Bartlett, FCN Pereira, KQ Weinberger (eds.), Advances in Neural Information Processing Systems 24, pp. 2330-2338. Springer-Verlag.

Hsieh CJ, Sustik MA, Dhillon IS, Ravikumar P (2014). "QUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation." Journal of Machine Learning Research, 15(1), 2911-2947.

Jones B, Carvalho C, Dobra A, Hans C, Carter C, West M (2005). "Experiments in Stochastic Computation for High-Dimensional Graphical Models." Statistical Science, 20(4), 388-400. doi:10.1214/088342305000000304.

Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012). "Causal Inference Using Graphical Models with the R Package pcalg." Journal of Statistical Software, 47(11), 1-26. doi:10.18637/jss.v047.i11.

Lauritzen SL (1996). Graphical Models, volume 17. Oxford University Press.
Lawson CL, Hanson RJ, Kincaid DR, Krogh FT (1979). "Basic Linear Algebra Subprograms for Fortran Usage." ACM Transactions on Mathematical Software, 5(3), 308-323. doi: 10.1145/355841. 355847.

Lenkoski A (2013). "A Direct Sampler for G-Wishart Variates." Stat, 2(1), 119-128. doi: 10.1002/sta4.23.

Lenkoski A, Dobra A (2011). "Computational Aspects Related to Inference in Gaussian Graphical Models with the G-Wishart Prior." Journal of Computational and Graphical Statistics, 20(1), 140-157. doi:10.1198/jcgs.2010.08181.

Letac G, Massam H, Mohammadi R (2017). "The Ratio of Normalizing Constants for Bayesian Graphical Gaussian Model Selection." arXiv 1706.04416, arXiv.org E-Print Archive. URL http://arxiv.org/abs/1706.04416.

Meinshausen N, Bühlmann P (2006). "High-Dimensional Graphs and Variable Selection with the Lasso." The Annals of Statistics, 34(3), 1436-1462. doi:10.1214/ 009053606000000281.

Mohammadi A, Abegaz Yazew F, Van den Heuvel E, Wit EC (2017). "Bayesian Modelling of Dupuytren Disease Using Gaussian Copula Graphical Models." Journal of Royal Statistical Society-Series C, 66(3), 629-645. doi:10.1111/rssc. 12171.

Mohammadi A, Wit EC (2014). "Contributed Discussion on Article by Finegold and Drton." Bayesian Analysis, 9(3), 577-579. doi:10.1214/13-ba856d.

Mohammadi A, Wit EC (2015). "Bayesian Structure Learning in Sparse Gaussian Graphical Models." Bayesian Analysis, 10(1), 109-138. doi:10.1214/14-ba889.

Mohammadi R (2019). ssgraph: Bayesian Graphical Estimation Using Spike-and-Slab Priors. R package version 1.8, URL https://CRAN.R-project.org/package=ssgraph.

Mohammadi R, Wit EC (2019). BDgraph: Bayesian Structure Learning in Graphical Models Using Birth-Death MCMC. R package version 2.59, URL https://CRAN.R-project.org/ package=BDgraph.

Muirhead RJ (1982). Aspects of Multivariate Statistical Theory, volume 42. John Wiley \& Sons. doi:10.1002/9780470316559.

Murray I, Ghahramani Z (2004). "Bayesian Learning in Undirected Graphical Models: Approximate MCMC Algorithms." In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 392-399. AUAI Press.

Murray I, Ghahramani Z, MacKay D (2006). "MCMC for Doubly-Intractable Distributions." In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pp. 359-366. AUAI Press, Arlington, Virginia.

Nelsen RB (2007). An Introduction to Copulas. Springer-Verlag.
OpenMP Architecture Review Board (2008). "OpenMP Application Program Interface Version 3.0." URL http://www.openmp.org/mp-documents/spec30.pdf.

Pensar J, Nyman H, Niiranen J, Corander J, others (2017). "Marginal Pseudo-Likelihood Learning of Discrete Markov Network Structures." Bayesian Analysis, 12(4), 1195-1215. doi:10.1214/16-ba1032.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rolfs B, Rajaratnam B, Guillot D, Wong I, Maleki A (2012). "Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation." In Advances in Neural Information Processing Systems, pp. 1574-1582.

Roverato A (2002). "Hyper Inverse Wishart Distribution for Non-Decomposable Graphs and Its Application to Bayesian Inference for Gaussian Graphical Models." Scandinavian Journal of Statistics, 29(3), 391-411. doi:10.1111/1467-9469.00297.

Scutari M (2010). "Learning Bayesian Networks with the bnlearn R Package." Journal of Statistical Software, 35(3), 1-22. doi:10.18637/jss.v035.i03.

Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, et al. (2007). "Population Genomics of Human Gene Expression." Nature Genetics, 39(10), 1217-1224. doi:10.1038/ng2142.

Tank A, Foti N, Fox E (2015). "Bayesian Structure Learning for Stationary Time Series." In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, pp. 872-881. aUAI Press.

Wang H, Li SZ (2012). "Efficient Gaussian Graphical Model Determination under G-Wishart Prior Distributions." Electronic Journal of Statistics, 6, 168-198. doi:10.1214/12-ejs669.

Wit EC, Abbruzzo A (2015a). "Factorial Graphical Models for Dynamic Networks." Network Science, 3(1), 37-57. doi:10.1017/nws.2015.2.

Wit EC, Abbruzzo A (2015b). "Inferring Slowly-Changing Dynamic Gene-Regulatory Networks." BMC Bioinformatics, 16(Suppl 6), S5. doi:10.1186/1471-2105-16-s6-s5.

Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2019). huge: High-Dimensional Undirected Graph Estimation. R package version 1.3.2, URL https://CRAN.R-project.org/ package=huge.

A. Dealing with memory usage restriction

The memory usage restriction is one of the challenges of Bayesian inference for maximum a posterior probability (MAP) estimation and monitoring convergence, especially for highdimensional problems. For example, to compute MAP estimation in our BDgraph package, we must document the adjacency matrices of all the visited graphs by our MCMC sampling algorithms, which may cause memory usage problems in R. Indeed, the function bdgraph in our package for save $=$ TRUE is documented to return all of the adjacency matrices for all iterations after burn-in. For instance, for the case

```
R> iter <- }1000
R> burnin <- }700
R> p <- 100
R> graph <- matrix(1, p, p)
R> print((iter - burnin) * object.size(graph), units = "auto")
```


3.7 Gb

A naive way is to save all the matrices, which leads to high memory usage, as it costs 3.7 gigabytes of memory. To cope with this problem, instead of saving all adjacency matrices we simply transfer the upper triangular part of the adjacency matrix to one single character string; see code below:
$R>$ string_graph <- paste(graph[upper.tri(graph)], collapse = "")
$R>$ print((iter - burnin) * object.size(string_graph), units = "auto")

241.1 Mb

In this efficient way we need only 241.1 megabytes instead of 3.7 gigabytes of memory.

Affiliation:
Reza Mohammadi
Operation Management Section
Faculty of Economics end Business
University of Amsterdam
Amsterdam, Netherlands
E-mail: a.mohammadi@uva.nl
URL: http://www.uva.nl/profile/a.mohammadi

Ernst C. Wit
Institute of Computational Science
Universita della Svizzera Italiana
Lugano, Switzerland
E-mail: e.c.wit@rug.nl
URL: http://www.math.rug.nl/~ernst/

Iournal of Statistical Software
published by the Foundation for Open Access Statistics
May 2019, Volume 89, Issue 3
doi:10.18637/jss.v089.i03
http://www.jstatsoft.org/
http://www.foastat.org/
Submitted: 2015-07-24
Accepted: 2016-04-20

