
JSS Journal of Statistical Software
May 2019, Volume 89, Issue 3. doi: 10.18637/jss.v089.i03

BDgraph: An R Package for Bayesian Structure
Learning in Graphical Models

Reza Mohammadi
University of Amsterdam

Ernst C. Wit
Universita della Svizzera Italiana

Abstract

Graphical models provide powerful tools to uncover complicated patterns in multi-
variate data and are commonly used in Bayesian statistics and machine learning. In this
paper, we introduce the R package BDgraph which performs Bayesian structure learn-
ing for general undirected graphical models (decomposable and non-decomposable) with
continuous, discrete, and mixed variables. The package efficiently implements recent im-
provements in the Bayesian literature, including that of Mohammadi and Wit (2015) and
Dobra and Mohammadi (2018). To speed up computations, the computationally inten-
sive tasks have been implemented in C++ and interfaced with R, and the package has
parallel computing capabilities. In addition, the package contains several functions for
simulation and visualization, as well as several multivariate datasets taken from the liter-
ature and used to describe the package capabilities. The paper includes a brief overview
of the statistical methods which have been implemented in the package. The main part
of the paper explains how to use the package. Furthermore, we illustrate the package’s
functionality in both real and artificial examples.

Keywords: Bayesian structure learning, Gaussian graphical models, Gaussian copula, covari-
ance selection, birth-death process, Markov chain Monte Carlo, G-Wishart, BDgraph, R.

1. Introduction
Graphical models (Lauritzen 1996) are commonly used, particularly in Bayesian statistics and
machine learning, to describe the conditional independence relationships among variables in
multivariate data. In graphical models, each random variable is associated with a node in a
graph and links represent conditional dependency between variables, whereas the absence of
a link implies that the variables are independent conditional on the rest of the variables (the
pairwise Markov property).
In recent years, significant progress has been made in designing efficient algorithms to discover
graph structures from multivariate data (Dobra, Lenkoski, and Rodriguez 2011; Dobra and

https://doi.org/10.18637/jss.v089.i03

2 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Lenkoski 2011; Jones, Carvalho, Dobra, Hans, Carter, and West 2005; Dobra and Mohammadi
2018; Mohammadi and Wit 2015; Mohammadi, Abegaz Yazew, Van den Heuvel, and Wit
2017; Friedman, Hastie, and Tibshirani 2008; Meinshausen and Bühlmann 2006; Murray and
Ghahramani 2004; Pensar, Nyman, Niiranen, Corander, and others 2017; Rolfs, Rajaratnam,
Guillot, Wong, and Maleki 2012; Wit and Abbruzzo 2015a,b; Dyrba et al. 2018; Behrouzi
and Wit 2019). Bayesian approaches provide a principled alternative to various penalized
approaches.
In this paper, we describe the BDgraph package (Mohammadi and Wit 2019) in R (R Core
Team 2019) for Bayesian structure learning in undirected graphical models. The package can
deal with Gaussian, non-Gaussian, discrete and mixed datasets. The package includes various
functional modules, including data generation for simulation, several search algorithms, graph
estimation routines, a convergence check and a visualization tool; see Figure 1. Our pack-
age efficiently implements recent improvements in the Bayesian literature, including those
of Mohammadi and Wit (2015); Mohammadi et al. (2017); Dobra and Mohammadi (2018);
Lenkoski (2013); Letac, Massam, and Mohammadi (2017); Dobra and Lenkoski (2011); Hoff
(2007). For a Bayesian framework of Gaussian graphical models, we implement the method
developed by Mohammadi and Wit (2015) and for Gaussian copula graphical models we use
the method described by Mohammadi et al. (2017) and Dobra and Lenkoski (2011). To make
our Bayesian methods computationally feasible for moderately high-dimensional data, we ef-
ficiently implement the BDgraph package in C++ linked to R. To make the package easy
to use, the BDgraph package uses several S3 classes as return values of its functions. The
package is available under the general public license (GPL ≥ 3) from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/packages=BDgraph.
In the Bayesian literature, the BDgraph package is one of the few R packages which is available
online for Gaussian graphical models and Gaussian copula graphical models. Another R
package is ssgraph (Mohammadi 2019) which is based on the spike-and-slab prior. On the
other hand, more packages seem to be available in the frequentist literature. The existing
packages include huge (Zhao, Liu, Roeder, Lafferty, and Wasserman 2019), glasso (Friedman,
Hastie, and Tibshirani 2018), bnlearn (Scutari 2010), pcalg (Kalisch, Mächler, Colombo,
Maathuis, and Bühlmann 2012), netgwas (Behrouzi, Arends, and Wit 2018), and QUIC
(Hsieh, Sustik, Dhillon, and Ravikumar 2011, 2014).
In Section 2 we illustrate the user interface of the BDgraph package. In Section 3 we explain
some methodological background of the package. In this regard, in Section 3.1 we briefly
explain the Bayesian framework for Gaussian graphical models for continuous data. In Sec-
tion 3.2 we briefly describe the Bayesian framework in the Gaussian copula graphical models
for data that do not follow the Gaussianity assumption, such as non-Gaussian continuous,
discrete or mixed data. In Section 4 we describe the main functions implemented in the BD-
graph package. In addition, we explain the user interface and the performance of the package
by a simple simulation example in Section 5. In Section 6, using the functions implemented
in the BDgraph package, we study two actual datasets.

2. User interface

In the R environment, one can install and load the BDgraph package by using the following
commands:

https://CRAN.R-project.org/packages=BDgraph

Journal of Statistical Software 3

> Continuous

> Discrete

> Mixed

M1: Data

> Binary

> GGMs

> DGMs

> GCGMs

M2: Methods M3: Algorithm M3: Results

> Convergence

> Selection

> Comparison

> Visualization

> BDMCMC

> RJMCMC

> Hill Climbing

bdgraph.sim()

graph.sim()

bdgraph(data,method=”ggm”, algorithm=“bdmcmc”)

bdgraph.mpl(,method=“ggm”,algorithm=“bdmcmc”)

ssgraph(data, method=“ggm”)

plinks(), select(),

compare(),

plotcoda()

Figure 1: Configuration of the BDgraph package which includes three main parts: (M1) data
simulation, (M2) several statistical methods, (M3) several search algorithms, (M4) various
functions to evaluate convergence of the search algorithms, estimation of the true graph,
assessment and comparison of the results and graph visualization.

R> install.packages("BDgraph")
R> library("BDgraph")

By loading the BDgraph package we automatically load the igraph (Csardi and Nepusz 2006)
package, since the BDgraph package depends on this package for graph visualization. The
igraph package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=igraph.
To speed up computations, we efficiently implement the BDgraph package by linking the C++
code to R. The computationally extensive tasks of the package are implemented in parallel
in C++ using OpenMP (OpenMP Architecture Review Board 2008). For the C++ code,
we use the highly optimized LAPACK (Anderson et al. 1999) and BLAS (Lawson, Hanson,
Kincaid, and Krogh 1979) linear algebra libraries on systems that provide them. The use of
these libraries significantly improves program speed.
We design the BDgraph package to provide a Bayesian framework for undirected graph esti-
mation of different types of datasets such as continuous, discrete or mixed data. The package
facilitates a pipeline for analysis by three functional modules; see Figure 1. These modules
are as follows:

Module 1. Data simulation: Function bdgraph.sim simulates multivariate Gaussian, dis-
crete, binary, and mixed data with different undirected graph structures, including
"random", "cluster", "scale-free", "lattice", "hub", "star", "circle", "AR(1)",
"AR(2)", and "fixed" graphs. Users can determine the sparsity of the graph structure
and can generate mixed data, including "count", "ordinal", "binary", "Gaussian",
and "non-Gaussian" variables.

Module 2. Methods: The function bdgraph and bdgraph.mpl provide several estimation
methods regarding to the type of data:

• Bayesian graph estimation for the multivariate data that follow the Gaussianity
assumption, based on the Gaussian graphical models (GGMs); see Mohammadi
and Wit (2015); Dobra et al. (2011).

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=igraph

4 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

• Bayesian graph estimation for multivariate non-Gaussian, discrete, and mixed data,
based on Gaussian copula graphical models (GCGMs); see Mohammadi et al.
(2017); Dobra and Lenkoski (2011).

• Bayesian graph estimation for multivariate discrete and binary data, based on
discrete graphical models (DGMs); see Dobra and Mohammadi (2018).

Module 3. Algorithms: The function bdgraph and bdgraph.mpl provide several sampling
algorithms:

• Birth-death MCMC (BDMCMC) sampling algorithms (Algorithms 2 and 3) de-
scribed in Mohammadi and Wit (2015).

• Reversible jump MCMC (RJMCMC) sampling algorithms desciribed in Dobra and
Lenkoski (2011).

• Hill-climbing (HC) search algorithm desciribed in Pensar et al. (2017).

Module 4. Results: Includes four types of functions:

• Graph selection: The functions select, plinks, and pgraph provide the selected
graph, the posterior link inclusion probabilities and the posterior probability of
each graph, respectively.

• Convergence check: The functions plotcoda and traceplot provide several visu-
alization plots to monitor the convergence of the sampling algorithms.

• Comparison and goodness-of-fit: The functions compare and plotroc provide sev-
eral comparison measures and an ROC plot for model comparison.

• Visualization: plot methods for objects of class ‘sim’ and ‘bdgraph’ provide visu-
alizations of the simulated data and estimated graphs.

3. Methodological background
In Section 3.1, we briefly explain the Gaussian graphical model for multivariate data. Then
we illustrate the birth-death MCMC algorithm for sampling from the joint posterior distri-
bution over Gaussian graphical models; for more details see Mohammadi and Wit (2015). In
Section 3.2, we briefly describe the Gaussian copula graphical model (Dobra and Lenkoski
2011), which can deal with non-Gaussian, discrete or mixed data. Then we explain the birth-
death MCMC algorithm which is designed for the Gaussian copula graphical models; for more
details see Mohammadi et al. (2017).

3.1. Bayesian Gaussian graphical models

In graphical models, each random variable is associated with a node and conditional depen-
dence relationships among random variables are presented as a graph G = (V,E) in which
V = {1, 2, . . . , p} specifies a set of nodes and a set of existing links E ⊂ V × V (Lauritzen
1996). Our focus here is on undirected graphs, in which (i, j) ∈ E ⇔ (j, i) ∈ E. The ab-
sence of a link between two nodes specifies the pairwise conditional independence of those
two variables given the remaining variables, while a link between two variables determines
their conditional dependence.

Journal of Statistical Software 5

In Gaussian graphical models (GGMs), we assume that the observed data follow multivariate
Gaussian distribution Np(µ,K−1). Here we assume µ = 0. Let Z = (Z(1), . . . , Z(n))> be the
observed data of n independent samples, then the likelihood function is

P(Z|K,G) ∝ |K|n/2 exp
{
−1

2tr(KU)
}
, (1)

where U = Z>Z.
In GGMs, conditional independence is implied by the form of the precision matrix. Based
on the pairwise Markov property, variables i and j are conditionally independent given the
remaining variables, if and only if Kij = 0. This property implies that the links in graph
G = (V,E) correspond with the nonzero elements of the precision matrix K; this means that
E = {(i, j)|Kij 6= 0}. Given graph G, the precision matrix K is constrained to the cone PG

of symmetric positive definite matrices with elements Kij equal to zero for all (i, j) /∈ E.
We consider the G-Wishart distribution WG(b,D) to be a prior distribution for the precision
matrix K with density

P(K|G) = 1
IG(b,D) |K|

(b−2)/2 exp
{
−1

2tr(DK)
}

1(K ∈ PG), (2)

where b > 2 are the degrees of freedom, D is a symmetric positive definite matrix, IG(b,D) is
the normalizing constant with respect to the graph G and 1(x) evaluates to 1 if x holds, and
otherwise to 0. The G-Wishart distribution is a well-known prior for the precision matrix,
since it represents the conjugate prior for multivariate Gaussian data as in Equation 1.
For full graphs, the G-Wishart distribution reduces to the standard Wishart distribution,
hence the normalizing constant has an explicit form (Muirhead 1982). Also, for decomposable
graphs, the normalizing constant has an explicit form (Roverato 2002); however, for non-
decomposable graphs, it does not. In that case it can be estimated by using the Monte Carlo
method (Atay-Kayis and Massam 2005), the Laplace approximation (Lenkoski and Dobra
2011), or a recent approximation proposed by Letac et al. (2017). In the BDgraph package,
we design the gnorm function to estimate the log of the normalizing constant by using the
Monte Carlo method proposed Atay-Kayis and Massam (2005).
Since the G-Wishart prior is a conjugate prior to the likelihood (1), the posterior distribution
of K is

P(K|Z, G) = 1
IG(b∗, D∗) |K|

(b∗−2)/2 exp
{
−1

2tr(D
∗K)

}
,

where b∗ = b+ n and D∗ = D + S, that is, WG(b∗, D∗).

Direct sampler from G-Wishart

Several sampling methods from the G-Wishart distribution have been proposed; to review
existing methods see Wang and Li (2012). More recently, Lenkoski (2013) has developed
an exact sampling algorithm for the G-Wishart distribution, borrowing an idea from Hastie,
Tibshirani, and Friedman (2009).
In the BDgraph package, we use Algorithm 1 to sample from the posterior distribution of the
precision matrix. We implement the algorithm in the package as a function rgwish; see the
R code below for illustration.

6 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Algorithm 1 Exact sampling from the precision matrix.
Input: A graph G = (V,E) with precision matrix K and Σ = K−1

Output: An exact sample from the precision matrix.
1: Set Ω = Σ
2: repeat
3: for i = 1, . . . , p do
4: Let Ni ⊂ V be the neighbor set of node i in G. Form ΩNi and ΣNi,i and solve

β̂∗i = Ω−1
Ni

ΣNi,i.
5: Form β̂i ∈ Rp−1 by padding the elements of β̂∗i to the appropriate locations and zeros

in those locations not connected to i in G.
6: Update Ωi,−i and Ω−i,i with Ω−i,−iβ̂i.
7: end for
8: until convergence
9: return K = Ω−1

R> adj <- matrix(c(0, 0, 1, 0, 0, 0, 1, 0, 0), 3, 3)
R> adj

[,1] [,2] [,3]
[1,] 0 0 1
[2,] 0 0 0
[3,] 1 0 0

R> sample <- rgwish(n = 1, adj = adj, b = 3, D = diag(3))
R> round(sample, 2)

[,1] [,2] [,3]
[1,] 2.37 0.00 -2.12
[2,] 0.00 6.15 0.00
[3,] -2.12 0.00 7.26

This matrix is a sample from a G-Wishart distribution with b = 3 and D = I3 as an identity
matrix and a graph structure with adjacency matrix adj.

BDMCMC algorithm for GGMs

Consider the joint posterior distribution of the graph G and the precision matrix K given by

P(K,G | Z) ∝ P(Z | K) P(K | G) P(G). (3)

For the prior distribution of the graph G = (V,E), we consider a Bernoulli prior on each link
inclusion indicator variable as follow

P(G) ∝
(

θ

1− θ

)|E|
, (4)

where |E| indicates the number of links in the graph G (graph size) and parameter θ ∈ (0, 1)
is a prior probability of existing links. For the case θ = 0.5 (the default option of the BDgraph

Journal of Statistical Software 7

package), we will have a uniform distribution over the graph space, implying a non-informative
prior. For the prior distribution of the precision matrix conditional on the graph G, we use a
G-Wishart WG(b,D).
Here we consider a computationally efficient birth-death MCMC sampling algorithm proposed
by Mohammadi and Wit (2015) for Gaussian graphical models. The algorithm is based on a
continuous time birth-death Markov process, in which the algorithm explores the graph space
by adding/removing a link in a birth/death event.
In the birth-death process, for a particular pair of graph G = (V,E) and precision matrix K,
each link dies independently of the rest as a Poisson process with death rate δe(K). Since the
links are independent, the overall death rate is δ(K) = ∑

e∈E δe(K). Birth rates βe(K) for
e /∈ E are defined similarly. Thus the overall birth rate is β(K) = ∑

e/∈E βe(K).
Since the birth and death events are independent Poisson processes, the time between two
successive events is exponentially distributed with mean 1/(β(K) + δ(K)). The time between
successive events can be considered as inverse support for any particular instance of the state
(G,K). The probabilities of birth and death events are

P(birth of link e) = βe(K)
β(K) + δ(K) , for each e /∈ E, (5)

P(death of link e) = δe(K)
β(K) + δ(K) , for each e ∈ E. (6)

The birth and death rates of links occur in continuous time with the rates determined by the
stationary distribution of the process. The BDMCMC algorithm is designed in such a way
that the stationary distribution is equal to the target joint posterior distribution of the graph
and the precision matrix (3).
Mohammadi and Wit (2015, Theorem 3.1) derived a condition that guarantees the above
birth and death process converges to our target joint posterior distribution (3). By following
their theorem we define the birth and death rates, as below,

βe(K) = min
{

P(G+e,K+e|Z)
P(G,K|Z) , 1

}
, for each e /∈ E, (7)

δe(K) = min
{

P(G−e,K−e|Z)
P(G,K|Z) , 1

}
, for each e ∈ E, (8)

in which G+e = (V,E ∪ {e}) and K+e ∈ PG+e and similarly G−e = (V,E \ {e}) and K−e ∈
PG−e . For the computation part related to the ratio of the posterior see Letac et al. (2017).
Algorithm 2 provides the pseudo-code for our BDMCMC sampling scheme which is based
on the above birth and death rates. Note, step 1 of the algorithm is suitable for parallel
computation. In the BDgraph package, we implement this step of the algorithm in parallel
using OpenMP in C++ to speed up the computations.
The BDMCMC sampling algorithm is designed in such a way that a sample (G,K) is obtained
at certain jump moments, {t1, t2, . . .} (see Figure 2). For efficient posterior inference of
the parameters, we use the Rao-Blackwellized estimator, which is an efficient estimator for
continuous time MCMC algorithms (Cappé, Robert, and Rydén 2003, Section 2.5). By using
the Rao-Blackwellized estimator, for example, one can estimate the posterior distribution of
the graphs proportional to the total waiting times of each graph.

8 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Algorithm 2 BDMCMC algorithm for GGMs.
Input: A graph G = (V,E) and a precision matrix K.
Output: Samples from the joint posterior distribution of (G,K), (3), and waiting times.

1: for N iterations do
2: 1. Sample from the graph. Based on birth and death process:
3: 1.1. Calculate the birth rates by (7) and β(K) = ∑

e∈/∈E βe(K).
4: 1.2. Calculate the death rates by (8) and δ(K) = ∑

e∈E δe(K).
5: 1.3. Calculate the waiting time by W (K) = 1/(β(K) + δ(K)).
6: 1.4. Simulate the type of jump (birth or death) by (5) and (6).
7: 2. Sample from the precision matrix. By using Algorithm 1.
8: end for

G"
G#
G$

G%
G&
G'

Pr G data timet' t& t% t$ t# t" t- .Pr G data

G GG

W'

G"
G#
G$

G%
G&
G'

BDMCMC sampling algorithm scheme Estimated graph
distribution

Graph distribution

W&

Figure 2: This image visualizes the Algorithm 2. The left side shows the true posterior
distribution of the graph. The middle panel presents a continuous time BDMCMC sampling
algorithm where {W1,W2, . . .} denote waiting times and {t1, t2, . . .} denote jumping times.
The right side denotes the estimated posterior probability of the graphs in proportion to the
total of their waiting times, according to the Rao-Blackwellized estimator.

3.2. Gaussian copula graphical models

In practice we encounter both discrete and continuous variables; Gaussian copula graphical
modeling has been proposed by Dobra and Lenkoski (2011) to describe dependencies between
such heterogeneous variables. Let Y (as observed data) be a collection of continuous, binary,
ordinal or count variables with the marginal distribution Fj of Yj and F−1

j as its pseudo
inverse. For constructing a joint distribution of Y, we introduce a multivariate Gaussian
latent variable as follows:

Z1, . . . , Zn
iid∼ Np(0,Γ(K)),

Yij = F−1
j (Φ(Zij)), (9)

where Γ(K) is the correlation matrix for a given precision matrix K. The joint distribution
of Y is given by

P (Y1 ≤ Y1, . . . , Yp ≤ Yp) = C(F1(Y1), . . . , Fp(Yp) | Γ(K)), (10)

Journal of Statistical Software 9

where C(·) is the Gaussian copula given by

C(u1, . . . , up | Γ) = Φp

(
Φ−1(u1), . . . ,Φ−1(up) | Γ

)
,

with uv = Fv(Yv) and Φp(·) is the cumulative distribution of the multivariate Gaussian and
Φ(·) is the cumulative distribution of the univariate Gaussian distribution. It follows that
Yv = F−1

v (Φ(Zv)) for v = 1, . . . , p. If all variables are continuous then the margins are
unique; thus zeros in K imply conditional independence, as in Gaussian graphical models
(Hoff 2007; Abegaz and Wit 2015). For discrete variables, the margins are not unique but
still well-defined (Nelsen 2007).
In semiparametric copula estimation, the marginals are treated as nuisance parameters and
estimated by the rescaled empirical distribution. The joint distribution in (10) is then
parametrized only by the correlation matrix of the Gaussian copula. We are interested to
infer the underlying graph structure of the observed variables Y implied by the continuous
latent variables Z. Since Z are unobservable we follow the idea of Hoff (2007) of associating
them with the observed data as below.
Given the observed data Y from a sample of n observations, we constrain the samples from
latent variables Z to belong to the set

D(Y) = {Z ∈ Rn×p : Lr
j(Z) < z

(r)
j < U r

j (Z), r = 1, . . . , n; j = 1, . . . , p},

where

Lr
j(Z) = max

{
Z

(s)
j : Y (s)

j < Y
(r)

j

}
and U r

j (Z) = min
{
Z

(s)
j : Y (r)

j < Y
(s)

j

}
. (11)

Following Hoff (2007) we infer the latent space by substituting the observed data Y with the
event D(Y) and define the likelihood as

P(Y | K,G,F1, . . . , Fp) = P(Z ∈ D(Y) | K,G) P(Y | Z ∈ D(Y),K,G, F1, . . . , Fp).

The only part of the observed data likelihood relevant for inference on K is P(Z ∈ D(Y) |
K,G). Thus, the likelihood function is given by

P(Z ∈ D(Y) | K,G) = P(Z ∈ D(Y) | K,G) =
∫
D(Y)

P(Z | K,G)dZ, (12)

where P(Z | K,G) is defined in (1).

BDMCMC algorithm for GCGMs

The joint posterior distribution of the graph G and precision matrix K for the GCGMs is

P(K,G|Z ∈ D(Y)) ∝ P(K,G)P(Z ∈ D(Y)|K,G). (13)

Sampling from this posterior distribution can be done by using the birth-death MCMC algo-
rithm. Mohammadi et al. (2017) developed and extended the birth-death MCMC algorithm
to more general cases of GCGMs. We summarize their algorithm in Algorithm 3. In step 1,
the latent variables Z are sampled conditional on the observed data Y. The other steps are
the same as in Algorithm 2.

10 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Algorithm 3 BDMCMC algorithm for GCGMs.
Input: A graph G = (V,E) and a precision matrix K.
Output: Samples from the joint posterior distribution of (G,K), (13), and waiting times.

1: for N iterations do
2: 1. Sample the latent data. For each r ∈ V and j ∈ {1, . . . , n}, we update the latent

values from its full conditional distribution as follows

Z(j)
r |ZV \{r} = z

(j)
V \{r},K ∼ N(−

∑
r′

Krr′z
(j)
r′ /Krr, 1/Krr),

truncated to the interval
[
Lj

r(Z), U j
r (Z)

]
in (11).

3: 2. Sample from the graph. Same as step 1 in Algorithm 2.
4: 3. Sample from the precision matrix. By using Algorithm 1.
5: end for

Remark: In cases where all variables are continuous, we do not need to sample from latent
variables in each iteration of Algorithm 2, since all margins in the Gaussian copula are unique.
Thus, for these cases, we transfer our non-Gaussian data to Gaussian, and then we run
Algorithm 2; see the example in Section 6.2.

Alternative RJMCMC algorithm

RJMCMC is a special case of the trans-dimensional MCMC methodology (Green 2003). The
RJMCMC approach is based on an ergodic discrete-time Markov chain. In graphical models,
a RJMCMC algorithm can be designed in such a way that its stationary distribution is the
joint posterior distribution of the graph and the parameters of the graph, e.g., (3) for GGMs
and (13) for GCGMs.
A RJMCMC can be implemented in various different ways. Giudici and Green (1999) imple-
mented this algorithm only for decomposable GGMs, because of the expensive computation of
the normalizing constant IG(b,D). The RJMCMC approach developed by Dobra et al. (2011)
and Dobra and Lenkoski (2011) is based on the Cholesky decomposition of the precision ma-
trix. It uses an approximation to deal with the extensive computation of the normalizing
constant. To avoid the intractable normalizing constant calculation, Lenkoski (2013) and
Wang and Li (2012) implemented a special case of the RJMCMC algorithm, which is based
on the exchange algorithm (Murray, Ghahramani, and MacKay 2006). Our implementation
of the RJMCMC algorithm in the BDgraph package defines the acceptance probability pro-
portional to the birth/death rates in our BDMCMC algorithm. Moreover, we implement
the exact sampling of G-Wishart distribution, as described in Section 3.1. Besides, we use
the result of Letac et al. (2017) for the ratio of the normalizing constant of the G-Wishart
distribution.

4. The BDgraph environment

The BDgraph package provides a set of comprehensive tools related to Bayesian graphical
models; we describe below the essential functions available in the package.

Journal of Statistical Software 11

4.1. Posterior sampling
We design the function bdgraph, as the main function of the package, to take samples from
the posterior distributions based on both of our Bayesian frameworks (GGMs and GCGMs).
By default, the bdgraph function is based on underlying sampling algorithms (Algorithms 2
and 3). Moreover, as an alternative to those BDMCMC sampling algorithms, we implement
RJMCMC sampling algorithms for both the Gaussian and non-Gaussian frameworks. By
using the following function

bdgraph(data, n = NULL, method = "ggm", algorithm = "bdmcmc", iter = 5000,
burnin = iter / 2, not.cont = NULL, g.prior = 0.5, df.prior = 3,
g.start = "empty", jump = NULL, save = FALSE, print = 1000, cores = NULL,
threshold = 1e-8)

we obtain a sample from our target joint posterior distribution. bdgraph returns an object of
the S3 class ‘bdgraph’. There are plot, print and summary methods available for objects of
class ‘bdgraph’. The input data can be an (n × p) matrix or a data.frame or a covariance
(p× p) matrix (n is the sample size and p is the dimension); it can also be an object of class
‘sim’, which is the output of function bdgraph.sim.
The argument method determines the type of methods, GGMs, GCGMs. Option "ggm" is
based on Gaussian graphical models (Algorithm 2) that is designed for multivariate Gaussian
data. Option "gcgm" is based on the GCGMs (Algorithm 3) that is designed for non-Gaussian
data such as, non-Gaussian continuous, discrete or mixed data.
The argument algorithm refers the type of sampling algorithms which could be based on
BDMCMC or RJMCMC. Option "bdmcmc" (default) is for the BDMCMC sampling algo-
rithms (Algorithms 2 and 3). Option "rjmcmc" is for the RJMCMC sampling algorithms,
which are alternative algorithms. See Mohammadi and Wit (2015, Section 4), Mohammadi
et al. (2017, Section 2.2.3).
The argument g.start specifies the initial graph for our sampling algorithm. It could be
"empty" (default) or "full". Option "empty" means the initial graph is an empty graph and
"full" means a full graph. It also could be an object with S3 class ‘bdgraph’, which allows
users to run the sampling algorithm from the last state of the previous run.
The argument jump determines the number of links that are simultaneously updated in the
BDMCMC algorithm.
For parallel computation in C++ which is based on OpenMP (OpenMP Architecture Review
Board 2008), users can use the argument cores to specify the number of cores to use for
parallel execution.
Note, the package BDgraph has two other sampling functions, bdgraph.mpl and bdgraph.ts
which are designed in a similar way as the function bdgraph. The function bdgraph.mpl
is for Bayesian model determination in undirected graphical models based on the marginal
pseudo-likelihood, for both continuous and discrete variables; for more details see Dobra and
Mohammadi (2018). The function bdgraph.ts is for Bayesian model determination in time
series graphical models (Tank, Foti, and Fox 2015).

4.2. Posterior graph selection
We design the BDgraph package in such a way that posterior graph selection can be done
based on both Bayesian model averaging (BMA), as default, and maximum a posterior proba-

12 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

bility (MAP). The functions select and plinks are designed for the objects of class ‘bdgraph’
to provide BMA and MAP estimations for posterior graph selection.
The function

plinks(bdgraph.obj, round = 2, burnin = NULL)

provides estimated posterior link inclusion probabilities for all possible links, which is based
on BMA estimation. In cases where the sampling algorithm is based on BDMCMC, these
probabilities for all possible links e = (i, j) in the graph can be estimated using a Rao-
Blackwellized estimate (Cappé et al. 2003, Section 2.5) based on

P(e ∈ E|data) =
∑N

t=1 1(e ∈ E(t))W (K(t))∑N
t=1W (K(t))

, (14)

where N is the number of iterations and W (K(t)) are the weights of the graph G(t) with the
precision matrix K(t).
The function

select(bdgraph.obj, cut = NULL, vis = FALSE)

provides the inferred graph based on both BMA (the default) and MAP estimators. The
inferred graph based on BMA estimation is a graph with links for which the estimated poste-
rior probabilities are greater than a certain cut-point (with default cut = 0.5). The inferred
graph based on MAP estimation is a graph with the highest posterior probability.
Note, for posterior graph selection based on MAP estimation we should save all adjacency
matrices by using the option save = TRUE in the function bdgraph. Saving all the adjacency
matrices could, however, cause memory problems; to see how we cope with this problem the
reader is referred to Appendix A.

4.3. Convergence check

In general, convergence in MCMC approaches can be difficult to evaluate. From a theoretical
point of view, the sampling distribution will converge to the target joint posterior distribution
as the number of iterations increases to infinity. Because we normally have little theoretical
insight about how quickly MCMC algorithms converge to the target stationary distribution we
therefore rely on post hoc testing of the sampled output. In general, the sample is divided into
two parts: a “burn-in” part of the sample and the remainder, in which the chain is considered
to have converged sufficiently close to the target posterior distribution. Two questions then
arise: How many samples are sufficient? How long should the burn-in period be?
The plotcoda and traceplot functions are two visualization functions for the objects of class
‘bdgraph’ that make it possible to check the convergence of the search algorithms in package
BDgraph. The function

plotcoda(bdgraph.obj, thin = NULL, control = TRUE, main = NULL, ...)

provides the trace of the estimated posterior probability of all possible links to check con-
vergence of the search algorithms. Option control is designed such that if control = TRUE

Journal of Statistical Software 13

(default) and the dimension (p) is greater than 15, then 100 links are randomly selected for
visualization.
The function

traceplot(bdgraph.obj, acf = FALSE, pacf = FALSE, main = NULL, ...)

provides the trace of the graph size to check convergence of the search algorithms. Option acf
is for the visualization of the autocorrelation functions for graph size; option pacf visualizes
the partial autocorrelations.

4.4. Comparison and goodness-of-fit

The functions compare and plotroc are designed to evaluate and compare the performance
of the selected graph. These functions are particularly useful for simulation studies. With
the function

compare(target, est, est2 = NULL, est3 = NULL, est4 = NULL, main = NULL,
vis = FALSE)

we can evaluate the performance of the Bayesian methods available in our BDgraph package
and compare them with alternative approaches. This function provides several measures such
as the balanced F -score measure (Baldi, Brunak, Chauvin, Andersen, and Nielsen 2000),
which is defined as follows:

F1-score = 2TP
2TP + FP + FN , (15)

where TP, FP and FN are the number of true positives, false positives and false negatives,
respectively. The F1-score lies between 0 and 1, where 1 stands for perfect identification and
0 for no true positives.
The function

plotroc(target, est, est2 = NULL, est3 = NULL, est4 = NULL, cut = 20,
smooth = FALSE, label = TRUE, main = "ROC Curve")

provides a ROC plot for visualization comparison based on the estimated posterior link in-
clusion probabilities.

4.5. Data simulation

The function bdgraph.sim is designed to simulate different types of datasets with various
graph structures. The function

bdgraph.sim(p = 10, graph = "random", n = 0, type = "Gaussian", prob = 0.2,
size = NULL, mean = 0, class = NULL, cut = 4, b = 3, D = diag(p),
K = NULL, sigma = NULL, vis = FALSE)

can simulate multivariate Gaussian, non-Gaussian, discrete, binary and mixed data with dif-
ferent undirected graph structures, including "random", "cluster", "scale-free", "lattice",

14 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

"hub", "star", "circle", "AR(1)", "AR(2)", and "fixed" graphs. Users can specify the
type of multivariate data by option type and the graph structure by option graph. They
can determine the sparsity level of the obtained graph by using option prob. With this func-
tion users can generate mixed data from "count", "ordinal", "binary", "Gaussian", and
"non-Gaussian" distributions. bdgraph.sim returns an object of the S3 class ‘sim’. There
are plot and print methods available for this class.
There is another function in the BDgraph package with the name graph.sim which is designed
to simulate different types of graph structures. The function

graph.sim(p = 10, graph = "random", prob = 0.2, size = NULL, class = NULL,
cut = 4, vis = FALSE)

can simulate different undirected graph structures, including "random", "cluster",
"scale-free", "lattice", "hub", "star", and "circle" graphs. Users can specify the
type of graph structure by option graph. They can determine the sparsity level of the ob-
tained graph by using option prob. bdgraph.sim returns an object of S3 class ‘graph’. There
are plot and print methods available for this class.

5. An example on simulated data
We illustrate the user interface of the BDgraph package by use of a simple simulation. We
perform all the computations on a MacBook Pro with 2.9 GHz Intel Core i7 processor. By
using the function bdgraph.sim we simulate 60 observations (n = 60) from a multivariate
Gaussian distribution with 8 variables (p = 8) and "scale-free" graph structure, as below.

R> data.sim <- bdgraph.sim(n = 60, p = 8, graph = "scale-free",
+ type = "Gaussian")
R> round(head(data.sim$data, 4), 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.72 -0.91 -1.23 -0.16 0.20 -0.47 0.08 1.07
[2,] 0.25 -0.11 0.09 0.53 0.10 -0.04 -0.13 -0.67
[3,] -0.42 -0.09 -0.28 -0.42 2.04 0.84 -0.79 1.24
[4,] -0.33 -0.50 0.68 -1.33 -1.15 0.25 -0.35 2.97

Since the generated data are Gaussian, we run the BDMCMC algorithm which is based on
Gaussian graphical models. For this we choose method = "ggm", as follows:

R> sample.bdmcmc <- bdgraph(bdgraph(data = data.sim, method = "ggm",
+ algorithm = "bdmcmc", iter = 5000, save = TRUE)

We choose option save = TRUE to save the samples in order to check convergence of the
algorithm. Running this function takes less than one second, as the computational intensive
tasks are performed in C++ and interfaced with R.
Since the function bdgraph returns an object of class S3, users can see the summary result
as follows

Journal of Statistical Software 15

R> summary(sample.bdmcmc)

$selected_g
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 1 1 0 0 0 1 0
[2,] 0 0 0 1 0 0 0 0
[3,] 0 0 0 0 0 1 0 0
[4,] 0 0 0 0 0 0 0 1
[5,] 0 0 0 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0
[7,] 0 0 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0 0

$p_links
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0.51 1.00 0.27 0.21 0.31 0.74 0.11
[2,] 0 0.00 0.29 1.00 0.25 0.18 0.49 0.14
[3,] 0 0.00 0.00 0.24 0.27 0.79 0.44 0.22
[4,] 0 0.00 0.00 0.00 0.32 0.30 0.34 1.00
[5,] 0 0.00 0.00 0.00 0.00 0.25 0.40 0.22
[6,] 0 0.00 0.00 0.00 0.00 0.00 0.23 0.37
[7,] 0 0.00 0.00 0.00 0.00 0.00 0.00 0.19
[8,] 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

$K_hat
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 3.81 0.33 3.19 -0.09 0.04 0.14 -0.84 0.02
[2,] 0.33 4.24 -0.06 -3.43 -0.07 -0.02 0.41 -0.02
[3,] 3.19 -0.06 5.54 -0.08 -0.06 -0.75 0.41 0.08
[4,] -0.09 -3.43 -0.08 9.28 -0.15 0.10 -0.18 1.62
[5,] 0.04 -0.07 -0.06 -0.15 0.76 -0.06 0.16 -0.04
[6,] 0.14 -0.02 -0.75 0.10 -0.06 3.08 0.04 -0.14
[7,] -0.84 0.41 0.41 -0.18 0.16 0.04 5.56 0.04
[8,] 0.02 -0.02 0.08 1.62 -0.04 -0.14 0.04 1.21

The summary results are the adjacency matrix of the selected graph (selected_g) based on
BMA estimation, the estimated posterior probabilities of all possible links (p_links) and the
estimated precision matrix (K_hat).
In addition, the function summary reports a visualization summary of the results as we can
see in Figure 3. In the top-left is the graph with the highest posterior probability. The plot
in the top-right gives the estimated posterior probabilities of all the graphs which are visited
by the BDMCMC algorithm; it indicates that our algorithm visits more than 2000 different
graphs. The plot in the bottom-left gives the estimated posterior probabilities of the size of
the graphs; it indicates that our algorithm visited mainly graphs with sizes between 4 and 18
links. In the bottom-right is the trace of our algorithm based on the size of the graphs.
The function compare provides several measures to evaluate the performance of our algorithms
and compare them with alternative approaches with respect to the true graph structure. To

16 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Selected graph

Graph with edge posterior probability > 0.5

●●

●

●

●

●

●

●

1
2

3

4

5

6

7

8

0 500 1000 1500 2000
0.

00
00

0.
00

04
0.

00
08

0.
00

12

Posterior probability of graphs

graph

P
r(

gr
ap

h|
da

ta
)

6 8 10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

Posterior probability of graphs size

0 500 1000 1500 2000 2500

6
8

10
12

14
16

18
Trace of graph size

G
ra

ph
 s

iz
e

Figure 3: Visualization summary of simulation data based on output of the bdgraph function.
The figure in the top-left is the inferred graph with the highest posterior probability. The
figure in the top-right gives the estimated posterior probabilities of all visited graphs. The
figure in the bottom-left gives the estimated posterior probabilities of all visited graphs based
on the size of the graphs. The figure in the bottom-right gives the trace of our algorithm
based on the size of the graphs.

evaluate the performance of our BDMCMC algorithm (Algorithm 2) and compare it with that
of an alternative algorithm, we also run the RJMCMC algorithm under the same conditions:

R> sample.rjmcmc <- bdgraph(data = data.sim, method = "ggm",
+ algorithm = "rjmcmc", iter = 5000, save = TRUE)

where the sampling algorithm from the joint posterior distribution is based on the RJMCMC
algorithm.
Users can compare the performance of these two algorithms by using:

R> plotroc(data.sim, sample.bdmcmc, sample.rjmcmc, smooth = TRUE)

Journal of Statistical Software 17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Postive Rate

Tr
ue

 P
os

tiv
e

R
at

e

BDMCMC
RJMCMC

Figure 4: ROC plot to compare the performance of the BDMCMC and RJMCMC algorithms
for a simulated toy example.

which visualizes an ROC plot for both algorithms, BDMCMC and RJMCMC; see Figure 4.
We can also compare the performance of those algorithms by using the compare function as
follows:

R> compare(data.sim, sample.bdmcmc, sample.rjmcmc,
+ main = c("True graph", "BDMCMC", "RJMCMC"))

True graph BDMCMC RJMCMC
true positive 7 5.000 5.000
true negative 21 20.000 19.000
false positive 0 1.000 2.000
false negative 0 2.000 2.000
F1-score 1 0.769 0.714
specificity 1 0.952 0.905
sensitivity 1 0.714 0.714
MCC 1 0.704 0.619

The results show that for this specific simulated example both algorithms have more or less
the same performance; see Mohammadi and Wit (2015, Section 4) and Mohammadi et al.
(2017, Section 2.2.3).
In this simulation example, we run both BDMCMC and RJMCMC algorithms for 5, 000
iterations, 2, 500 of them as burn-in. To check whether the number of iterations is enough
and to monitoring the convergence of our both algorithm, we run

R> plotcoda(sample.bdmcmc)
R> plotcoda(sample.rjmcmc)

The results in Figure 5 indicate that our BDMCMC algorithm converges faster than the
RJMCMC algorithm.

18 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

P
os

te
rio

r
lin

k
pr

ob
ab

ili
ty

Trace of the Posterior Probabilities of the Links

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration
P

os
te

rio
r

lin
k

pr
ob

ab
ili

ty

Trace of the Posterior Probabilities of the Links

Figure 5: Plot for monitoring the convergence based on the trace of the estimated poste-
rior probability of all possible links for the BDMCMC algorithm (left) and the RJMCMC
algorithm (right).

6. Application to real datasets
In this section we analyze two datasets from genetics and sociology, using the functions
available in the BDgraph package. In Section 6.1 we analyze a labor force survey dataset,
involving mixed data. In Section 6.2 we analyze human gene expression data, which do not
follow the Gaussianity assumption. Both datasets are available in the BDgraph package.

6.1. Application to labor force survey data

Hoff (2007) analyzes the multivariate associations among income, education and family back-
ground, using data concerning 1002 males in the U.S. labor force. The dataset is available in
the BDgraph package.

R> data("surveyData", package = "BDgraph")
R> head(surveyData, 5)

income degree children pincome pdegree pchildren age
[1,] NA 1 3 3 1 5 59
[2,] 11 0 3 NA 0 7 59
[3,] 8 1 1 NA 0 9 25
[4,] 25 3 2 NA 0 5 55
[5,] 100 3 2 4 3 2 56

Missing data are indicated by NA; in general, the rate of missing data is about 9%, with higher
rates for the variables income and pincome. In this dataset we have seven observed variables
as follows:

Journal of Statistical Software 19

• income: An ordinal variable indicating respondent’s income in 1000s of dollars after
binning.

• degree: An ordinal variable with five categories indicating respondent’s highest educa-
tional degree.

• children: A count variable indicating the number of children of the respondent.

• pincome: An ordinal variable with five categories indicating financial status of respon-
dent’s parents.

• pdegree: An ordinal variable with five categories indicating highest educational degree
of respondent’s parents.

• pchildren: A count variable indicating the number of children of respondent’s parents.

• age: A count variable indicating respondent’s age in years.

Since the variables are measured on various scales, the marginal distributions are heteroge-
neous, which makes the study of their joint distribution very challenging. However, we can
apply to this dataset our Bayesian framework based on the Gaussian copula graphical models.
Thus, we run the function bdgraph with option method = "gcgm". For the prior distributions
of the graph and precision matrix, as default of the function bdgraph, we place a uniform
distribution as an uninformative prior on the graph and a G-Wishart distribution WG(3, I7)
on the precision matrix. We run our function for 10, 000 iterations with 7, 000 as burn-in.

R> sample.bdmcmc <- bdgraph(data = surveyData, method = "gcgm",
+ iter = 10000, burnin = 7000)
R> summary(sample.bdmcmc)

$selected_g
income degree children pincome pdegree pchildren age

income 0 1 1 0 0 0 1
degree 0 0 1 0 1 1 0
children 0 0 0 0 1 1 1
pincome 0 0 0 0 1 0 0
pdegree 0 0 0 0 0 1 1
pchildren 0 0 0 0 0 0 0
age 0 0 0 0 0 0 0

$p_links
income degree children pincome pdegree pchildren age

income 0 1 1.00 0.37 0.06 0.05 1.00
degree 0 0 0.67 0.20 1.00 0.78 0.16
children 0 0 0.00 0.34 0.72 1.00 1.00
pincome 0 0 0.00 0.00 1.00 0.40 0.09
pdegree 0 0 0.00 0.00 0.00 0.92 0.99
pchildren 0 0 0.00 0.00 0.00 0.00 0.05
age 0 0 0.00 0.00 0.00 0.00 0.00

20 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

 +

 +

 +

 −

 +

 −

 −

 +

 +

 + −

 −

income

degree

children

pincome

pdegree

pchildren

age

Figure 6: Inferred graph for the labor force survey data based on output from bdgraph.
Sign “+” represents a positively correlated relationship between associated variables and “−”
represents a negatively correlated relationship.

$K_hat
income degree children pincome pdegree pchildren age

income 1.33 -1.46 -0.54 -0.10 0.00 0.00 -0.33
degree -1.46 7.63 0.46 0.08 -1.20 0.23 -0.04
children -0.54 0.46 7.21 0.19 0.26 -0.40 -1.81
pincome -0.10 0.08 0.19 6.92 -1.09 0.13 0.01
pdegree 0.00 -1.20 0.26 -1.09 1.36 0.20 0.22
pchildren 0.00 0.23 -0.40 0.13 0.20 1.17 0.00
age -0.33 -0.04 -1.81 0.01 0.22 0.00 1.79

The results of the function summary are the adjacency matrix of the selected graph
(selected_g), estimated posterior probabilities of all possible links (p_links) and estimated
precision matrix (K_hat).
Figure 6 presents the selected graph, a graph with links for which the estimated posterior
probabilities are greater than 0.5. Links in the graph are indicated by signs “+” and “−”,
which represent positively and negatively correlated relationships between associated vari-
ables, respectively.
The results indicate that education, fertility and age have strong associations with income,
since there are highly positively correlated relationships between income and those three
variables, with posterior probability equal to one for all of them. It is also shown that a

Journal of Statistical Software 21

GI_18426974−S

F
re

qu
en

cy

6 8 10 12 14 16

0
10

20
30

40

GI_41197088−S

F
re

qu
en

cy

6 8 10 12 14 16

0
10

20
30

40

GI_17981706−S

F
re

qu
en

cy

6 8 10 12 14 16

0
10

20
30

40

GI_41190507−S

F
re

qu
en

cy

6 8 10 12 14 16

0
10

20
30

40

GI_33356162−S

F
re

qu
en

cy

6 8 10 12 14 16

0
10

20
30

40

Hs.449605−S

F
re

qu
en

cy

6 8 10 12 14 16

0
10

20
30

40

Figure 7: Univariate histograms of the first 6 genes in the human gene expression dataset.

respondent’s education and fertility are negatively correlated, with a posterior probability
more than 0.67. The respondent’s education is certainly related to their parent’s education,
since there is a positively correlated relationship, with posterior probability equal to one.
For this dataset, Hoff (2007) estimated the conditional independence between variables by
inspecting whether the 95% credible intervals for the associated regression parameters do not
contain zero. Our results are the same as those reported in Hoff (2007) except for two links.
Our results indicate that there is a strong relationship between parents’ education (pdegree)
and fertility (child), a link which is not selected by Hoff (2007).

6.2. Application to human gene expression

Here, by using the functions that are available in the BDgraph package, we study the structure
learning of the sparse graphs applied to the human gene expression data which were originally
described by Stranger et al. (2007). They collected data to measure gene expression in B-
lymphocyte cells from Utah inhabitants with Northern and Western European ancestry. They
considered 60 individuals whose genotypes were available online at ftp://ftp.sanger.ac.
uk/pub/genevar. Here the focus was on the 3, 125 single nucleotide polymorphisms (SNPs)
that were found in the 5’ UTR (untranslated region) of mRNA (messenger RNA) with a minor
allele frequency ≥ 0.1. Since the UTR (untranslated region) of mRNA (messenger RNA) has
previously been subject to investigation, it should play an important role in the regulation
of gene expression. The raw data were background-corrected and then quantile-normalized
across replicates of a single individual and then median-normalized across all individuals.
Following Bhadra and Mallick (2013), of the 47, 293 total available probes, we consider the
100 most variable probes that correspond to different Illumina TargetID transcripts. The
data for these 100 probes are available in our package. To see the data users can run the code

R> data("geneExpression", package = "BDgraph")

ftp://ftp.sanger.ac.uk/pub/genevar
ftp://ftp.sanger.ac.uk/pub/genevar

22 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

GI_1842

GI_4119

GI_1798

GI_4119

GI_3335

Hs.4496

GI_3754

Hs.5121

GI_3754

Hs.4495
Hs.4064

GI_1864

Hs.4496
hmm3574

hmm1029

Hs.4496

GI_1109

Hs.5121

GI_3754

hmm3577GI_2138

GI_2775

GI_1351

GI_1302

GI_4504

GI_1199

GI_3335

GI_3753

hmm1028

GI_4266

GI_3491

GI_3137

GI_4265

GI_4119

GI_2351
GI_7661

GI_2748

GI_1655

GI_3422
GI_3165

GI_2775

GI_8923

GI_2007

GI_3079

GI_3107

GI_2789

GI_2430

GI_1974

GI_2861

GI_2776

GI_4507

GI_2146

GI_1421

GI_2789

Hs.1851

GI_4505

GI_3422

GI_2747

GI_4504

GI_2161

GI_2449

GI_1922 GI_2202

GI_9961

GI_2138

GI_2479

GI_3856

GI_2855

GI_2030
GI_1615 Hs.1712

Hs.1363

GI_4502

GI_4504

GI_7657

GI_4247

GI_3754

GI_7662

GI_1332

GI_4505
GI_4135

GI_2037

hmm9615

hmm3587

GI_7019

GI_3753

GI_3134

GI_1864

GI_3040

GI_5454

GI_4035

GI_1837

GI_4507

GI_1460

Figure 8: The inferred graph for the human gene expression dataset using Gaussian copula
graphical models. This graph consists of 176 links with estimated posterior probabilities
greater than 0.5.

R> dim(geneExpression)

60 100

The data consist of only 60 observations (n = 60) across 100 genes (p = 100). This dataset
is an interesting case study for graph structure learning, as it has been used by Bhadra and
Mallick (2013); Mohammadi and Wit (2015); Gu, Cao, Ning, and Liu (2015).
In this dataset, all the variables are continuous but not Gaussian, as can be seen in Figure 7.
Thus, we apply Gaussian copula graphical models, using the function bdgraph with option
method = "gcgm". For the prior distributions of the graph we use a Bernoulli prior on each
link inclusion (4), encourage sparsity by considering θ = 0.1, using the function bdgraph with
option g.prior = 0.1. For the prior distributions of the precision matrix, as default of the
function bdgraph, we place the G-Wishart distribution WG(3, I100) on the precision matrix.
We run our function for 10, 000 iterations with 7, 000 as burn-in as follows:

Journal of Statistical Software 23

Posterior Probabilities of all Links

20

40

60

80

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Image visualization of the estimated posterior probabilities of all possible links in
the graph on the human gene expression dataset.

R> sample.bdmcmc <- bdgraph(data = geneExpression, method = "gcgm",
+ g.prior = 0.1, iter = 10000, burnin = 7000)

This takes less than 3 minutes. We use the following code to visualize the graph with estimated
posterior probabilities greater than 0.5.

R> select(sample.bdmcmc, cut = 0.5, vis = TRUE)

By using option vis = TRUE, the function plots the selected graph. Figure 8 visualizes the
selected graph which consists of 176 links with estimated posterior probabilities (14) greater
than 0.5.
The function plinks reports the estimated posterior probabilities of all possible links in the
graph. For our data the output of this function is a 100 × 100 matrix. Figure 9 reports the
visualization of that matrix.
Most of the links in our selected graph conform to results in previous studies. For instance,
Bhadra and Mallick (2013) found 54 significant interactions between genes, most of which are
covered by our method. In addition, our approach indicates additional gene interactions with
high posterior probabilities that are not found in previous studies; this result may complement
the analysis of human gene interaction networks.

24 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

7. Conclusion
We presented the BDgraph package which was designed for Bayesian structure learning in
general – decomposable and non-decomposable – undirected graphical models. The pack-
age implements recent improvements in computation, sampling and inference of Gaussian
graphical models (Mohammadi and Wit 2015; Dobra et al. 2011) for Gaussian data and
Gaussian copula graphical models (Mohammadi et al. 2017; Dobra and Lenkoski 2011) for
non-Gaussian, discrete and mixed data.
We are committed to maintaining and developing the BDgraph package in the future. Future
versions of the package will contain more options for prior distributions of the graph and the
precision matrix. One possible extension of our package would be to deal with outliers, by
using robust Bayesian graphical modeling using Dirichlet t-distributions (Finegold and Drton
2014; Mohammadi and Wit 2014). The availability of an implementation of this method
would be desirable for actual applications.

Acknowledgments
The authors are grateful to the associated editor and reviewers for helpful criticism of the
original of both the manuscript and the R package. We would like to thank Sven Baars
for the parallel implementation in C++. We also would like to thank Sourabh Kotnala for
implementing the package in C++.

References

Abegaz F, Wit E (2015). “Copula Gaussian Graphical Models with Penalized Ascent Monte
Carlo EM Algorithm.” Statistica Neerlandica, 69(4), 419–441. doi:10.1111/stan.12066.

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum
A, Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users’ Guide. 3rd edition.
Society for Industrial and Applied Mathematics, Philadelphia.

Atay-Kayis A, Massam H (2005). “A Monte Carlo Method for Computing the Marginal
Likelihood in Nondecomposable Gaussian Graphical Models.” Biometrika, 92(2), 317–335.
doi:10.1093/biomet/92.2.317.

Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000). “Assessing the Accuracy of
Prediction Algorithms for Classification: An Overview.” Bioinformatics, 16(5), 412–424.
doi:10.1093/bioinformatics/16.5.412.

Behrouzi P, Arends D, Wit EC (2018). “netgwas: An R Package for Network-Based Genome-
Wide Association Studies.” arXiv 1710.01236, arXiv.org E-Print Archive. URL http:
//arxiv.org/abs/1710.01236.

Behrouzi P, Wit EC (2019). “Detecting Epistatic Selection with Partially Observed Genotype
Data by Using Copula Graphical Models.” Journal of the Royal Statistical Society C, 68(1),
141–160. doi:10.1111/rssc.12287.

https://doi.org/10.1111/stan.12066
https://doi.org/10.1093/biomet/92.2.317
https://doi.org/10.1093/bioinformatics/16.5.412
http://arxiv.org/abs/1710.01236
http://arxiv.org/abs/1710.01236
https://doi.org/10.1111/rssc.12287

Journal of Statistical Software 25

Bhadra A, Mallick BK (2013). “Joint High-Dimensional Bayesian Variable and Covariance
Selection with an Application to eQTL Analysis.” Biometrics, 69(2), 447–457. doi:10.
1111/biom.12021.

Cappé O, Robert CP, Rydén T (2003). “Reversible Jump, Birth-and-Death and More General
Continuous Time Markov Chain Monte Carlo Samplers.” Journal of the Royal Statistical
Society B, 65(3), 679–700. doi:10.1111/1467-9868.00409.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695.

Dobra A, Lenkoski A (2011). “Copula Gaussian Graphical Models and Their Application to
Modeling Functional Disability Data.” The Annals of Applied Statistics, 5(2A), 969–993.
doi:10.1214/10-aoas397.

Dobra A, Lenkoski A, Rodriguez A (2011). “Bayesian Inference for General Gaussian Graph-
ical Models with Application to Multivariate Lattice Data.” Journal of the American Sta-
tistical Association, 106(496), 1418–1433. doi:10.1198/jasa.2011.tm10465.

Dobra A, Mohammadi R (2018). “Loglinear Model Selection and Human Mobility.” The
Annals of Applied Statistics, 12(2), 815–845. doi:10.1214/18-aoas1164.

Dyrba M, Grothe MJ, Mohammadi A, Binder H, Kirste T, Teipel SJ, Alzheimer’s Disease
Neuroimaging Initiative, et al. (2018). “Comparison of Different Hypotheses Regarding the
Spread of Alzheimer’s Disease Using Markov Random Fields and Multimodal Imaging.”
Journal of Alzheimer’s Disease, 65(3), 731–746. doi:10.3233/jad-161197.

Finegold M, Drton M (2014). “Robust Bayesian Graphical Modeling Using Dirichlet t-
Distributions.” Bayesian Analysis, 9(3), 521–550. doi:10.1214/13-ba856.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the
Graphical Lasso.” Biostatistics, 9(3), 432–441. doi:10.1093/biostatistics/kxm045.

Friedman J, Hastie T, Tibshirani R (2018). glasso: Graphical Lasso- Estimation of Gaussian
Graphical Models. R package version 1.10, URL https://CRAN.R-project.org/package=
glasso.

Giudici P, Green PJ (1999). “Decomposable Graphical Gaussian Model Determination.”
Biometrika, 86(4), 785–801. doi:10.1093/biomet/86.4.785.

Green PJ (2003). “Trans-Dimensional Markov Chain Monte Carlo.” In PJ Green, NL Hjort,
S Richardson (eds.), Highly Structured Stochastic Systems, Oxford Statistical Science Series,
pp. 179–198. Oxford University Press.

Gu Q, Cao Y, Ning Y, Liu H (2015). “Local and Global Inference for High Dimensional
Gaussian Copula Graphical Models.” arXiv 1502.02347, arXiv.org E-Print Archive. URL
http://arxiv.org/abs/1502.02347.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag.

https://doi.org/10.1111/biom.12021
https://doi.org/10.1111/biom.12021
https://doi.org/10.1111/1467-9868.00409
https://doi.org/10.1214/10-aoas397
https://doi.org/10.1198/jasa.2011.tm10465
https://doi.org/10.1214/18-aoas1164
https://doi.org/10.3233/jad-161197
https://doi.org/10.1214/13-ba856
https://doi.org/10.1093/biostatistics/kxm045
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=glasso
https://doi.org/10.1093/biomet/86.4.785
http://arxiv.org/abs/1502.02347

26 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Hoff PD (2007). “Extending the Rank Likelihood for Semiparametric Copula Estimation.”
The Annals of Applied Statistics, 1(1), 265–283. doi:10.1214/07-aoas107.

Hsieh CJ, Sustik MA, Dhillon IS, Ravikumar P (2011). “Sparse Inverse Covariance Matrix
Estimation Using Quadratic Approximation.” In J Shawe-Taylor, RS Zemel, P Bartlett,
FCN Pereira, KQ Weinberger (eds.), Advances in Neural Information Processing Systems
24, pp. 2330–2338. Springer-Verlag.

Hsieh CJ, Sustik MA, Dhillon IS, Ravikumar P (2014). “QUIC: Quadratic Approximation
for Sparse Inverse Covariance Estimation.” Journal of Machine Learning Research, 15(1),
2911–2947.

Jones B, Carvalho C, Dobra A, Hans C, Carter C, West M (2005). “Experiments in Stochastic
Computation for High-Dimensional Graphical Models.” Statistical Science, 20(4), 388–400.
doi:10.1214/088342305000000304.

Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012). “Causal Inference
Using Graphical Models with the R Package pcalg.” Journal of Statistical Software, 47(11),
1–26. doi:10.18637/jss.v047.i11.

Lauritzen SL (1996). Graphical Models, volume 17. Oxford University Press.

Lawson CL, Hanson RJ, Kincaid DR, Krogh FT (1979). “Basic Linear Algebra Subprograms
for Fortran Usage.” ACM Transactions on Mathematical Software, 5(3), 308–323. doi:
10.1145/355841.355847.

Lenkoski A (2013). “A Direct Sampler for G-Wishart Variates.” Stat, 2(1), 119–128. doi:
10.1002/sta4.23.

Lenkoski A, Dobra A (2011). “Computational Aspects Related to Inference in Gaussian
Graphical Models with the G-Wishart Prior.” Journal of Computational and Graphical
Statistics, 20(1), 140–157. doi:10.1198/jcgs.2010.08181.

Letac G, Massam H, Mohammadi R (2017). “The Ratio of Normalizing Constants for Bayesian
Graphical Gaussian Model Selection.” arXiv 1706.04416, arXiv.org E-Print Archive. URL
http://arxiv.org/abs/1706.04416.

Meinshausen N, Bühlmann P (2006). “High-Dimensional Graphs and Variable Selec-
tion with the Lasso.” The Annals of Statistics, 34(3), 1436–1462. doi:10.1214/
009053606000000281.

Mohammadi A, Abegaz Yazew F, Van den Heuvel E, Wit EC (2017). “Bayesian Modelling of
Dupuytren Disease Using Gaussian Copula Graphical Models.” Journal of Royal Statistical
Society-Series C, 66(3), 629–645. doi:10.1111/rssc.12171.

Mohammadi A, Wit EC (2014). “Contributed Discussion on Article by Finegold and Drton.”
Bayesian Analysis, 9(3), 577–579. doi:10.1214/13-ba856d.

Mohammadi A, Wit EC (2015). “Bayesian Structure Learning in Sparse Gaussian Graphical
Models.” Bayesian Analysis, 10(1), 109–138. doi:10.1214/14-ba889.

https://doi.org/10.1214/07-aoas107
https://doi.org/10.1214/088342305000000304
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1002/sta4.23
https://doi.org/10.1002/sta4.23
https://doi.org/10.1198/jcgs.2010.08181
http://arxiv.org/abs/1706.04416
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1111/rssc.12171
https://doi.org/10.1214/13-ba856d
https://doi.org/10.1214/14-ba889

Journal of Statistical Software 27

Mohammadi R (2019). ssgraph: Bayesian Graphical Estimation Using Spike-and-Slab Priors.
R package version 1.8, URL https://CRAN.R-project.org/package=ssgraph.

Mohammadi R, Wit EC (2019). BDgraph: Bayesian Structure Learning in Graphical Models
Using Birth-Death MCMC. R package version 2.59, URL https://CRAN.R-project.org/
package=BDgraph.

Muirhead RJ (1982). Aspects of Multivariate Statistical Theory, volume 42. John Wiley &
Sons. doi:10.1002/9780470316559.

Murray I, Ghahramani Z (2004). “Bayesian Learning in Undirected Graphical Models: Ap-
proximate MCMC Algorithms.” In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, pp. 392–399. AUAI Press.

Murray I, Ghahramani Z, MacKay D (2006). “MCMC for Doubly-Intractable Distributions.”
In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pp. 359–366.
AUAI Press, Arlington, Virginia.

Nelsen RB (2007). An Introduction to Copulas. Springer-Verlag.

OpenMP Architecture Review Board (2008). “OpenMP Application Program Interface Ver-
sion 3.0.” URL http://www.openmp.org/mp-documents/spec30.pdf.

Pensar J, Nyman H, Niiranen J, Corander J, others (2017). “Marginal Pseudo-Likelihood
Learning of Discrete Markov Network Structures.” Bayesian Analysis, 12(4), 1195–1215.
doi:10.1214/16-ba1032.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rolfs B, Rajaratnam B, Guillot D, Wong I, Maleki A (2012). “Iterative Thresholding Al-
gorithm for Sparse Inverse Covariance Estimation.” In Advances in Neural Information
Processing Systems, pp. 1574–1582.

Roverato A (2002). “Hyper Inverse Wishart Distribution for Non-Decomposable Graphs
and Its Application to Bayesian Inference for Gaussian Graphical Models.” Scandinavian
Journal of Statistics, 29(3), 391–411. doi:10.1111/1467-9469.00297.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M,
Flicek P, Koller D, et al. (2007). “Population Genomics of Human Gene Expression.” Nature
Genetics, 39(10), 1217–1224. doi:10.1038/ng2142.

Tank A, Foti N, Fox E (2015). “Bayesian Structure Learning for Stationary Time Series.” In
Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, pp. 872–881.
AUAI Press.

Wang H, Li SZ (2012). “Efficient Gaussian Graphical Model Determination under G-Wishart
Prior Distributions.” Electronic Journal of Statistics, 6, 168–198. doi:10.1214/12-ejs669.

https://CRAN.R-project.org/package=ssgraph
https://CRAN.R-project.org/package=BDgraph
https://CRAN.R-project.org/package=BDgraph
https://doi.org/10.1002/9780470316559
http://www.openmp.org/mp-documents/spec30.pdf
https://doi.org/10.1214/16-ba1032
https://www.R-project.org/
https://doi.org/10.1111/1467-9469.00297
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1038/ng2142
https://doi.org/10.1214/12-ejs669

28 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Wit EC, Abbruzzo A (2015a). “Factorial Graphical Models for Dynamic Networks.” Network
Science, 3(1), 37–57. doi:10.1017/nws.2015.2.

Wit EC, Abbruzzo A (2015b). “Inferring Slowly-Changing Dynamic Gene-Regulatory Net-
works.” BMC Bioinformatics, 16(Suppl 6), S5. doi:10.1186/1471-2105-16-s6-s5.

Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2019). huge: High-Dimensional Undi-
rected Graph Estimation. R package version 1.3.2, URL https://CRAN.R-project.org/
package=huge.

https://doi.org/10.1017/nws.2015.2
https://doi.org/10.1186/1471-2105-16-s6-s5
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=huge

Journal of Statistical Software 29

A. Dealing with memory usage restriction
The memory usage restriction is one of the challenges of Bayesian inference for maximum
a posterior probability (MAP) estimation and monitoring convergence, especially for high-
dimensional problems. For example, to compute MAP estimation in our BDgraph package,
we must document the adjacency matrices of all the visited graphs by our MCMC sampling
algorithms, which may cause memory usage problems in R. Indeed, the function bdgraph in
our package for save = TRUE is documented to return all of the adjacency matrices for all
iterations after burn-in. For instance, for the case

R> iter <- 10000
R> burnin <- 7000
R> p <- 100
R> graph <- matrix(1, p, p)
R> print((iter - burnin) * object.size(graph), units = "auto")

3.7 Gb

A naive way is to save all the matrices, which leads to high memory usage, as it costs 3.7
gigabytes of memory. To cope with this problem, instead of saving all adjacency matrices
we simply transfer the upper triangular part of the adjacency matrix to one single character
string; see code below:

R> string_graph <- paste(graph[upper.tri(graph)], collapse = "")
R> print((iter - burnin) * object.size(string_graph), units = "auto")

241.1 Mb

In this efficient way we need only 241.1 megabytes instead of 3.7 gigabytes of memory.

Affiliation:
Reza Mohammadi
Operation Management Section
Faculty of Economics end Business
University of Amsterdam
Amsterdam, Netherlands
E-mail: a.mohammadi@uva.nl
URL: http://www.uva.nl/profile/a.mohammadi

mailto:a.mohammadi@uva.nl
http://www.uva.nl/profile/a.mohammadi

30 BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

Ernst C. Wit
Institute of Computational Science
Universita della Svizzera Italiana
Lugano, Switzerland
E-mail: e.c.wit@rug.nl
URL: http://www.math.rug.nl/~ernst/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

May 2019, Volume 89, Issue 3 Submitted: 2015-07-24
doi:10.18637/jss.v089.i03 Accepted: 2016-04-20

mailto:e.c.wit@rug.nl
http://www.math.rug.nl/~ernst/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v089.i03

	Introduction
	User interface
	Methodological background
	Bayesian Gaussian graphical models
	Direct sampler from G-Wishart
	BDMCMC algorithm for GGMs

	Gaussian copula graphical models
	BDMCMC algorithm for GCGMs
	Alternative RJMCMC algorithm

	The BDgraph environment
	Posterior sampling
	Posterior graph selection
	Convergence check
	Comparison and goodness-of-fit
	Data simulation

	An example on simulated data
	Application to real datasets
	Application to labor force survey data
	Application to human gene expression

	Conclusion
	Dealing with memory usage restriction

