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Abstract

The cgam package contains routines to fit the generalized additive model where the
components may be modeled with shape and smoothness assumptions. The main routine
is cgam and nineteen symbolic routines are provided to indicate the relationship be-
tween the response and each predictor, which satisfies constraints such as monotonicity,
convexity, their combinations, tree, and umbrella orderings. The user may specify con-
strained splines to fit the individual components for continuous predictors, and various
types of orderings for the ordinal predictors. In addition, the user may specify parametri-
cally modeled covariates. Two-way interactions between continuous variables, where the
relationship with the response is constrained to be monotone, are modeled with “warped-
plane splines.” The set over which the likelihood is maximized is a polyhedral convex
cone, and a least-squares solution is obtained by projecting the data vector onto the cone.
For generalized models, the fit is obtained through iteratively re-weighted cone projec-
tions. The cone information criterion (CIC) is provided and may be used to compare
fits for combinations of variables and shapes. The graphical routine plotpersp will plot
an estimated mean surface for a selected pair of predictors, given an object fitted with
cgam. This package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=cgam.

Keywords: constrained generalized additive model, isotonic regression, spline regression, par-
tial linear, iteratively re-weighted cone projection, R, graphical routine.

1. Overview and comparison with other packages

The generalized additive model is a useful and popular data analysis method. Several R (R
Core Team 2019) packages provide estimation and inference for the effects of a set of predictors
on a response variable, through specification of a link function. For example, suppose yi = 1
if the ith observation is a success, and the probability of a success is believed to be a function
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of continuous predictors x1 and x2, a treatment variable x3, and a nominal predictor z with
two levels. The log-odds for the ith observation might be modeled as

ηi = f1(x1i) + f2(x2i) + α0d0i + α1d1i + α2d2i + βzi,

where α0, α1, and α2 represent effects for the placebo and two treatments, and β represents
the effect of the nominal predictor. The glm function in R requires parametric specifications of
the components, and does not allow ordered estimation with ordinal predictors. For example
in the usage

fit <- glm(y ~ x1 + x2 + as.factor(tr) + z, family = binomial)

the functions f1 and f2 are specified as linear in their predictors.
A popular method for fitting such a model with only smoothness assumptions for f1 and f2
is provided with the gam function in the R package mgcv (Wood 2017, 2019), where the usage
might be

fit <- gam(y ~ s(x1) + s(x2) + as.factor(tr) + z, family = binomial)

The package cgam (Meyer and Liao 2019) has similar usage, but provides shape and ordering
options. Suppose that functional forms are not known for f1 and f2; instead we know that
f1 is smooth, increasing, and convex, while f2 is smooth and decreasing. For example,

fit <- cgam(y ~ s.incr.conv(x1) + s.decr(x2) + tree(tr) + z,
family = binomial)

will specify the shapes of f1 and f2, and impose a tree ordering on the treatment variable.
This is appropriate if we can assume that the treatment effects are at least as large as the
placebo effect.
The cgam package also has an option to fit a bivariate isotonic regression function without
additivity assumptions. For example

fit <- cgam(y ~ s.incr.incr(x1, x2) + tree(tr) + z, family = binomial)

will fit a “warped-plane spline” that is increasing in both predictors, using linear constraints
that are necessary and sufficient for monotonicity.
Two other R packages provide fits for constrained models. The package scar (shape constrained
additive regression; Chen and Samworth 2016), provides the maximum likelihood estimator
of the generalized additive regression with shape constraints, but without smoothing. In
this case, the estimated predictor function η is a step function in the predictors that are
constrained to be monotone, and piece-wise linear for components constrained to be convex.
The R package scam (shape constrained additive model; Pya and Wood 2015) uses penalized
splines to fit shape-constrained model components, but it does not include options for ordered
effects for ordinal predictors. The P -splines proposed in Eilers and Marx (1996) are used with
coefficients subject to linear constraints. The shape options for the smoothed terms are similar
to those in cgam, but the penalized likelihood method for estimation uses back-fitting which
is slower than the single cone projection used in cgam.



Journal of Statistical Software 3

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

linear predictor

2

3

4

5

(a)

x1

0.2

0.4

0.6

0.8

x2

0.2

0.4

0.6

0.8

E
st m

ean of y

1

2

3

4

(b)

Figure 1: Estimated doubly-increasing regression surfaces using (a) the scam routine, and (b)
the cgam routine, where the true surface is f(x1, x2) = 4(x1 + x2 − x1x2).

The scam package will fit a bivariate isotonic regression function without additivity assump-
tions, using tensor product cubic splines. However, the constraints are sufficient but not
necessary, and in fact severely over-constrain the fit. In particular, it cannot fit surfaces that
are doubly monotone, but whose rate of increase in x1 is decreasing in x2 or vice-versa. To
demonstrate this, we simulated from the regression surface f(x) = 4(x1 + x2 − x1x2) which
is increasing over the unit square. The sample size is n = 50, and each predictor is uniformly
generated on the unit interval, and errors are i.i.d. normal with zero mean and unit variance.
We use the default settings in scam and cgam to get doubly-increasing fits. An example of
each method is shown in Figure 1 using the same data set.

2. Demonstrations of the routines in the cgam package
We demonstrate the main routines using simulated data sets and real data sets in detailed
examples. For a more complete explanation and demonstration of each routine, see the official
reference manual of this package at https://CRAN.R-project.org/package=cgam. This
package depends on the package coneproj, which conducts the cone projection algorithm (see
Liao and Meyer (2014) for more details).

R> install.packages("cgam")
R> library("cgam")

Loading required package: coneproj

2.1. Fitting a constrained surface to the Rubber data set

The Rubber data set in the package MASS (Venables and Ripley 2002) has 30 observations
and three variables relevant to accelerated testing of tyre rubber, i.e., loss (abrasion loss),
hard (hardness), and tens (tensile strength). Assuming that loss is decreasing in both hard

https://CRAN.R-project.org/package=cgam
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and tens, the effects are additive, and the response is Gaussian, we can model the relationship
as following:

R> data("Rubber", package = "MASS")
R> fit.decr <- cgam(loss ~ decr(hard) + decr(tens), family = gaussian,
+ data = Rubber)

Alternatively, we can model the relationship using splines:

R> fit.s.decr <- cgam(loss ~ s.decr(hard) + s.decr(tens), family = gaussian,
+ data = Rubber)

For a spline-based fit without constraints:

R> fit.s <- cgam(loss ~ s(hard) + s(tens), family = gaussian, data = Rubber)

For each fit, we use the default nsim = 100 to get the CIC parameter. According to the CIC
value of each fit, the smooth and decreasing fit is better than the fit with only smoothness.

R> fit.s.decr$cic

[1] 10.04874

R> fit.s$cic

[1] 10.16878

We can call the routine plotpersp to make a 3D plot of the estimated mean surface based
on fit.decr, fit.s.decr, and fit.s, which is shown in Figure 2.

R> par(mfrow = c(1, 3))
R> plotpersp(fit.decr, hard, tens, th = 120, main = "(a)", ngrid = 31)
R> plotpersp(fit.s.decr, hard, tens, th = 120, main = "(b)", ngrid = 31)
R> plotpersp(fit.s, hard, tens, th = 120, main = "(c)", ngrid = 31)

2.2. Fitting parallel surfaces to the plasma data set

The plasma data set in Nierenberg, Stukel, Baron, Dain, and Greenberg (1989) contains 314
observations of blood plasma beta carotene measurements along with several covariates. High
levels of blood plasma beta carotene are believed to be protective against cancer, and it is of
interest to determine the relationships with covariates. Here we use the logarithm of plasma
level as the response, and choose bmi, the logarithm of dietfat, cholest, fiber, betacaro
and retinol as shape-restricted predictors. In addition, we include smoke and vituse as
categorical covariates.

R> data("plasma", package = "cgam")
R> fit <- cgam(logplasma ~ s.decr(bmi) + s.decr(logdietfat)
+ s.decr(cholest) + s.incr(fiber) + s.incr(betacaro) + s.incr(retinol)
+ factor(smoke) + factor(vituse), data = plasma)



Journal of Statistical Software 5

ha
rd

50

60

70

80tens

120
140

160

180

200

220

E
st m

ean of loss

0

100

200

300

400

(a)

ha
rd

50

60

70

80tens

120
140

160

180

200

220

E
st m

ean of loss

0

100

200

300

400

(b)

ha
rd

50

60

70

80tens

120
140

160

180

200

220

E
st m

ean of loss

0

100

200

300

400

(c)

Figure 2: Demonstration of constrained regression using the cgam routine with the Rubber
data set. (a) the estimated surface is decreasing in both predictors without smoothing. (b)
the estimated surface is smooth and decreasing in both predictors. (c) the estimated surface
is smooth in both predictors without shape constraint.

We can call summary to check the estimate, the standard error, the approximate t value and
the p value for the coefficient of the categorical covariates. The CIC value is also simulated
and returned.

R> summary(fit)

Call:
cgam(formula = logplasma ~ s.decr(bmi) + s.decr(logdietfat) +

s.decr(cholest) + s.incr(fiber) + s.incr(betacaro) + s.incr(retinol) +
factor(smoke) + factor(vituse), data = plasma)

Coefficients:
Estimate StdErr t.value p.value

(Intercept) 4.8519 0.1270 38.2013 <2e-16 ***
factor(smoke)2 0.2063 0.1275 1.6182 0.1068
factor(smoke)3 0.3113 0.1261 2.4685 0.0142 *
factor(vituse)2 -0.0987 0.1003 -0.9835 0.3262
factor(vituse)3 -0.2739 0.0923 -2.9689 0.0032 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.4164)

Null deviance: 174.9801 on 313 degrees of freedom
Residual deviance: 127.1359 on 280.4 observed degrees of freedom
...
CIC: 4.9671
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Figure 3: Demonstration of constrained regression using the cgam function with the plasma
data set. (a) parallel surfaces representing the effects of three levels of smoke in an ascending
order. (b) parallel surfaces representing the effects of three levels of vituse in an ascending
order.

Again, we use plotpersp to show the estimated mean surface based on the fit in Figure 3,
where xlab is bmi, ylab is the logarithm of dietfat, and the effects of the levels of each
categorical covariate are shown in an ascending order. Other shape-restricted predictors are
evaluated at the median value.

2.3. Partial-ordering examples: Tree-ordering and umbrella-ordering

We simulate a data set as a tree-ordering example such that x is a categorical variable with
five levels: x1 = 0 (placebo), x2 = 1, x3 = 2, x4 = 3 and x5 = 4. Each level has 20
observations. We also include a categorical covariate z with two levels “a” and “b”, which
could be a treatment variable people are concerned about, in the model such that when x is
fixed, the mean response is one unit larger if z is “a”. We use cgam to estimate the effect for
each level given z. The fit is shown in Figure 4(a).

R> set.seed(123)
R> n <- 100
R> x <- rep(0:4, each = 20)
R> z <- rep(c("a", "b"), 50)
R> y <- x + I(z == "a") + rnorm(n, 1)
R> fit.tree <- cgam(y ~ tree(x) + factor(z))

The estimated effect of z can be checked by summary.

R> summary(fit.tree)
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Figure 4: Demonstration of constrained regression using the cgam function with a partial
ordering constraint. (a) a tree-ordering fit with a categorical covariate z. (b) an umbrella-
ordering fit.

Coefficients:
Estimate StdErr t.value p.value

(Intercept) 2.1617 0.2289 9.4428 < 2.2e-16 ***
factor(z)b -1.0402 0.1869 -5.5649 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For an umbrella-ordering example, we simulate a data set such that x0 = 0 (mode) and for
x1, x2 ≥ x0, the estimated mean curve is decreasing, while for x1, x2 ≤ x0, it is increasing.
The fit is shown in Figure 4(b).

R> set.seed(123)
R> n <- 20
R> x <- seq(-2, 2, length = n)
R> y <- - x^2 + rnorm(n)
R> fit.umb <- cgam(y ~ umbrella(x))

2.4. Proportional odds model example

We use the “mental impairment” data set mental from Chapter 3 of Agresti (2010) as an
example. The data set comes from a study of mental health for a random sample of 40
adult residents of Alachua County, Florida. Mental impairment is an ordinal response with
4 categories: well, mild symptom formation, moderate symptom formation, and impaired,
which are recorded as 1, 2, 3, and 4. Life event index is a composite measure of the number
and severity of important life events that occurred with the past three years, e.g., birth of a
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Figure 5: Demonstration of the proportional odds model with the mental data set. The
estimated probability that mental impairment is moderate or impaired is plotted against the
life event index at two socio-economic levels. (a) polr fit , and (b) cgam fit.

child, new job, divorce, or death of a family member. It is an integer from 0 to 9. Another
covariate is socio-economic status and it is measured as binary: high = 1, low = 0. We model
the relationship between the latent variable and life event index as monotonically increasing
with socio-economic status as a binary covariate. The increasing fit is compared with the fit
by the polr routine in MASS, and the increasing fit has a smaller residual deviance.

R> data("mental", package = "cgam")
R> fit.polr <- polr(factor(mental) ~ life + ses, data = mental)
R> fit.incr <- cgam(mental ~ incr(life) + ses, data = mental, family = Ord)
R> fit.polr$deviance

[1] 99.0979

R> fit.incr$deviance

[1] 95.86395

For each fit, we can check the estimated probability that the response mental impairment is
in each of the four categories.

R> probs.polr <- fitted(fit.polr)
R> probs.incr <- fitted(fit.incr)
R> head(probs.polr)

1 2 3 4
1 0.6249159 0.2564222 0.07131474 0.04734725
2 0.1150236 0.2518325 0.24398557 0.38915837
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Figure 6: Demonstration of constrained regression using the cgam function with the kyphosis
data set. The surface represents the estimated probability of the response Kyphosis to be
present. (a) surface without smoothing, and (b) smooth surface.

3 0.3902843 0.3502175 0.14495563 0.11454256
4 0.4682289 0.3287373 0.11707594 0.08595788
5 0.2850342 0.3548980 0.18808642 0.17198137
6 0.6962128 0.2146344 0.05428168 0.03487110

R> head(probs.incr)

1 2 3 4
1 0.7236150 0.2048051 0.04540199 0.02617791
2 0.1311317 0.2966802 0.25416212 0.31802593
3 0.2258156 0.3651875 0.21461052 0.19438639
4 0.5138317 0.3258075 0.09792746 0.06243331
5 0.3002185 0.3798198 0.17903211 0.14092958
6 0.7236150 0.2048051 0.04540199 0.02617791

2.5. Binomial response example

We use the kyphosis data set with 81 observations from the gam package to show how cgam
works given a binomial response. In this example, we treat the variable Kyphosis as the
response which is binary, and model the log-odds of Kyphosis as concave in Age (age of child
in months), increasing-concave in Number (number of vertebra involved in the operation), and
decreasing-concave in Start (starting vertebra). The non-smooth fit and the smooth fit are
shown in Figure 6 by plotpersp.

R> data("kyphosis", package = "gam")
R> fit <- cgam(Kyphosis ~ conc(Age) + incr.conc(Number) + decr.conc(Start),
+ family = binomial, data = kyphosis)
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Figure 7: The estimated probability of bronchopulmonary dysplasia as a function of birth
weight. The data are shown as tick marks at the presence (1) and the absence (0) of the
condition. The solid curve is the smoothly decreasing fit, the dashed curve is the linear
log-odds fit, and the dotted curve is the quadratic log-odds fit.

R> fit.s <- cgam(Kyphosis ~ s.conc(Age) + s.incr.conc(Number)
+ s.decr.conc(Start), family = binomial, data = kyphosis)

Next, we consider the bpd data set in the SemiPar package (Wand 2018). It has 223 observa-
tions with two variables: birth weight of babies and BPD, which is a binary variable indicating
the presence of bronchopulmonary dysplasia. It is known that bronchopulmonary dysplasia is
more often found in babies with low birth weight, and we can model the relationship between
the probability of bronchopulmonary dysplasia and birth weight as smoothly decreasing. The
fit is shown in Figure 7. We also include the linear and quadratic log-odds fit in the plot as a
comparison. The linear log-odds fit might overly simplify the underlying relationship, while
the quadratic fit starts increasing at the end although it seems to be better than the linear
fit.

R> data("bpd", package = "SemiPar")
R> fit.s.decr <- cgam(BPD ~ s.decr(birthweight, space = "Q"),
+ family = binomial, data = bpd)

2.6. Poisson response example

Another data set is an attendance data set of 316 high school juniors from two urban high
schools. We use the variable daysabs (days absent) as a Poisson response. The variables math
and langarts are the standardized test scores for math and language arts. A categorical
variable male is also included in this data set, which indicates the gender of a student. With
a priori knowledge that daysabs is decreasing with respect to each continuous predictor, we
can try modeling the relationship between daysabs and math and langarts as decreasing
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with male as a categorical covariate. First, we model the relationship with ordinal basis
functions.

R> fit.cgam <- cgam(daysabs ~ decr(math) + decr(langarts) +
+ factor(male), family = poisson, data = attendance)
R> summary(fit.cgam)

Call:
cgam(formula = daysabs ~ decr(math) + decr(langarts) + factor(male),

family = poisson, data = attendance)

Coefficients:
Estimate StdErr z.value p.value

(Intercept) 1.8715 0.0317 58.9843 < 2.2e-16 ***
factor(male)1 -0.4025 0.0496 -8.1155 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2409.82 on 315 degrees of freedom
Residual deviance: 2100.67 on 298 observed degrees of freedom
CIC: -9.7549

Next, we try modeling the relationship with smooth I-splines.

R> fit.cgam.s <- cgam(daysabs ~ s.decr(math) + s.decr(langarts) + factor(male),
+ family = poisson, data = attendance)
R> summary(fit.cgam.s)

Call:
cgam(formula = daysabs ~ s.decr(math) + s.decr(langarts) + factor(male),

family = poisson, data = attendance)

Coefficients:
Estimate StdErr z.value p.value

(Intercept) 1.8982 0.0309 61.4593 < 2.2e-16 ***
factor(male)1 -0.3988 0.0487 -8.1894 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2409.82 on 315 degrees of freedom
Residual deviance: 2201.237 on 306.4 observed degrees of freedom
CIC: -9.4558
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Figure 8: Demonstration of constrained regression using the cgam function with the
attendance data set. (a) parallel surfaces representing the gender effect in an ascending
order. (b) parallel surfaces representing the gender effect in an ascending order with smooth-
ing.

According to the simulated CIC value of each fit, it is suggested that the non-smooth fit is
better than the fit using smooth I-splines. Moreover, the gender effect is significant in both
fits. The fits are shown in Figure 8.

2.7. Fitting a “doubly-decreasing” surface to the plasma data set

We again use the plasma data set as an example to illustrate the routine s.decr.decr, and
now we assume that the logarithm of plasma is doubly-decreasing in bmi and the logarithm
of dietfat, and the effects of the two predictors are not necessarily additive. We also include
smoke and vituse as two categorical covariates. We can model the relationship as following,
and we choose 10 equally-spaced knots for each predictor with the penalty term to be .505,
which is calculated inside cgam and can be checked as an output:

R> data("plasma", package = "cgam")
R> fit <- cgam(logplasma ~ s.decr.decr(bmi, logdietfat,
+ numknots = c(10, 10)) + factor(smoke) + factor(vituse), data = plasma)
R> fit$pen

[1] 0.5047263

R> summary(fit)

Call:
cgam(formula = logplasma ~ s.decr.decr(bmi, logdietfat,

numknots = c(10, 10)) + factor(smoke) + factor(vituse), data = plasma)

Coefficients:



Journal of Statistical Software 13

bmi

2.8

3.0

3.2

3.4

3.6

3.8

logdietfat

−4.0

−3.5

−3.0

E
st m

ean of logplasm
a

4.5

5.0

5.5

6.0

6.5

(a)

Categorical Variable: Smoke

bmi

2.8

3.0

3.2

3.4

3.6

3.8

logdietfat

−4.0

−3.5

−3.0

E
st m

ean of logplasm
a

4.5

5.0

5.5

6.0

6.5

(a)

Categorical Variable: Smoke

bmi

2.8

3.0

3.2

3.4

3.6

3.8

logdietfat

−4.0

−3.5

−3.0

E
st m

ean of logplasm
a

4.5

5.0

5.5

6.0

6.5

(a)

Categorical Variable: Smoke

bmi

2.8

3.0

3.2

3.4

3.6

3.8

logdietfat
−4.0

−3.5

−3.0

E
st m

ean of logplasm
a

4.0

4.5

5.0

5.5

6.0

(b)

Categorical Variable: Vitamin Use

bmi

2.8

3.0

3.2

3.4

3.6

3.8

logdietfat
−4.0

−3.5

−3.0

E
st m

ean of logplasm
a

4.0

4.5

5.0

5.5

6.0

(b)

Categorical Variable: Vitamin Use

bmi

2.8

3.0

3.2

3.4

3.6

3.8

logdietfat
−4.0

−3.5

−3.0

E
st m

ean of logplasm
a

4.0

4.5

5.0

5.5

6.0

(b)

Categorical Variable: Vitamin Use

Figure 9: Demonstration of constrained regression using the s.decr.decr routine with the
plasma data set. In each plot, the estimated surface is constrained to be decreasing in both
predictors without the assumption of additivity. Parallel surfaces representing the effects of
three levels of (a) smoke and (b) vituse in an ascending order.

Estimate StdErr t.value p.value
(Intercept) 4.0144 0.1237 32.4498 <2e-16 ***
factor(smoke)2 0.2988 0.1251 2.3893 0.0175 *
factor(smoke)3 0.4184 0.1217 3.4372 0.0007 ***
factor(vituse)2 -0.0667 0.1004 -0.6638 0.5073
factor(vituse)3 -0.2757 0.0927 -2.9744 0.0032 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

CIC: 4.9908

With 100 simulations, the CIC value is 4.99 for the doubly-decreasing model, and 4.97 for
the additive model in Section 2.2; this is evidence that the additive model is adequate.

3. Main routines in package cgam
The function cgam is the main routine which implements the constrained generalized additive
regression. For a non-parametrically modeled effect, a shape restriction can be imposed on the
predictor function component with optional smoothing, or a partial ordering can be imposed.
An arbitrary number of parametrically modeled covariates may be included. The user can
also choose an unconstrained smooth fit for one or more of the f`, which is simply the least-
squares estimator using the set of cubic spline basis functions created for convex constraints.
The specification of the model in cgam uses one or more of nineteen symbol functions to
specify the shape, ordering, and smoothness of each f`.
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3.1. Symbolic functions to specify the form of the component functions

To specify an effect that is increasing with a predictor x without smoothing, the function
incr(x) is used in the statement of the cgam routine. Other functions for unsmoothed effects
are decr, conv, conc, incr.conv, incr.conc, decr.conv, decr.conc, tree, and umbrella.
For smooth estimates of the components, the following functions may be used: s.incr,
s.decr, s.conv, s.conc,s.incr.conv, s.incr.conc, s.decr.conv, and s.decr.conc. For
fitting an unconstrained smooth effect, s(x) may be used. Each of these nineteen functions
implements a routine to create the appropriate set of basis functions. The smoothed versions
have options for number and spacing of knots. For example,

s.decr(x, numknots = 10, space = "Q")

will create quadratic spline basis functions with ten knots at equal quantiles of the observed
x values. The default is space = "E" which provides equal spacing. For a data set of
n observations, the number of knots has a default of order n1/9 (n1/7) when cubic spline
(quadratic spline) basis functions are used.
For smooth estimates of monotone surfaces, the functions are: s.incr.incr, s.incr.decr,
s.decr.incr, s.decr.decr, and two predictors are specified. For example,

s.incr.decr(x1, x2)

will specify a warped-plane spline fit that is increasing in x1 and decreasing in x2.

3.2. Basic usage of the main routine: cgam

In the cgam routine, the specification of the model can be one of the four exponential families:
Gaussian, Poisson, binomial and Gamma. The response can also be an ordered categorical
variable, whose distribution does not belong to a single-parameter exponential family, and
cgam implements the proportional odds model in McCullagh (1980). The symbolic functions
are used to specify how the predictors are related to the response. For example,

fit <- cgam(y ~ s.incr.conv(x1) + s(x2, numknots = 5), family = gaussian)

specifies that the response y is from the Gaussian distribution, and E(y) is smoothly increasing
and concave in x1, while component function for x2 is smooth but unconstrained, with five
equally spaced knots.
The user can also specify the parameter nsim to simulate the CIC value of the model. Such
simulations can be time-consuming, so the default is nsim = 100. For example, we can write

fit <- cgam(y ~ s.incr.conv(x1, numknots = 10, space = "Q")
s(x2, numknots = 10, space = "Q"), family = gaussian, nsim = 1000)

For a cgam fit, the main values returned are the estimated systematic component η̂ and the
estimated mean value µ̂, obtained by transforming η̂ by the inverse of the link function. The
CIC value will also be returned if the nsim option is given.
The routine summary provides the estimates, the standard errors, and approximate t values
and p values for the linear terms. A summary table also includes the deviance for the null
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model of a cgam fit, i.e., the model only containing the constant vector and the residual
deviance of a cgam fit.
For the doubly-monotone fit, the user can also choose to use a penalized version by providing
a “large” number of knots for x1 and x2 with a penalty term. For example, we want to
use ten equally spaced knots for each predictor with a penalty parameter to be 0.1 in a
“doubly-decreasing” formula. Then we can write

fit.dd <- cgam(y ~ s.decr.decr(x1, x2, numknots = c(10, 10),
space = c("E", "E")), pen = 0.1)

For a doubly-monotone fit, the main values returned are the estimated mean value µ̂ and
the constrained effective degrees of freedom (EDFC). The generalized cross validation value
(GCV) for the constrained fit is also returned, which could be used to choose the penalty
parameter.

3.3. Basic usage of the graphical routine: plotpersp

This routine is an extension of the generic R graphics routine persp. For a cgam object,
which has at least two non-parametrically modeled predictors, this routine will make a three-
dimensional plot of the fit with a set of two non-parametrically modeled predictors in the
formula, which will be marked as the x and y labs in the plot. If there are more than two
non-parametrically modeled predictors, any other such predictor will be evaluated at the
largest value which is smaller than or equal to its median value. The z lab represents the
estimated regression surface of the mean or the systematic component according to the user’s
choice. If there is any categorical covariate in a cgam model and if the user specifies the
argument categ, a three-dimensional plot with multiple parallel surfaces, which represent
the levels of the categorical covariate in an ascending order, will be created. If categ is not
specified, a three-dimensional plot with only one surface will be created. Each level of a
categorical covariate not used in the plot will be evaluated at its mode.
The basic form of this routine is defined as

plotpersp(object,...)

The argument object represents an object of the ‘cgam’ class with at least two non-parametrically
modeled predictors. When there are more than two non-parametrically modeled predictors
in a cgam formula, the user may choose to write

plotpersp(object, x1, x2,...)

The arguments x1 and x2 represent two non-parametrically modeled predictors in the model.
If the user omits the two arguments, the first two non-parametrically modeled predictors in
the formula will be used.

4. Details for the methodology
The package cgam gives a comprehensive framework for the generalized additive model with
shape and order constraints. We consider models with independent observations from an
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exponential family with density of the form

p(yi; θ, τ) = exp[{yiθi − b(θi)}τ − c(yi, τ)], i = 1, . . . , n, (1)

where the specifications of the functions b and c determine the sub-family of models. The
mean vector µ = E(y) has values µi = b′(θi), and is related to a design matrix of predictor
variables through a link function g(µi) = ηi, i = 1, . . . , n. The link function specifies the
relationship with the predictors; for example, suppose x1, . . . , xL are continuous or ordinal
predictors and z ∈ IRp is a vector of covariates to be parametrically modeled. We specify an
additive model

ηi = f1(x1i) + · · ·+ fL(xLi) + z>i α, (2)

where the parameter vector α ∈ IRp and the functions f`, ` = 1, . . . , L, are to be estimated
simultaneously. The η function is the “systematic component” (McCullagh and Nelder 1989;
Hastie and Tibshirani 1990). We consider the Gaussian, Poisson, binomial and Gamma
families in this package; the default is Gaussian.
When the response is ordered categorical, then its density is not of the form (1) and we cannot
use one link function to specify the relationship between the response and the predictors.
Instead, we use the proportional odds model in McCullagh (1980). Suppose that the response
y has the ordered values 1, 2, . . . ,K, then the model is

logit[P (yi ≤ k |x)] = γk −
L∑
j=1

fj(xji), k = 1, . . . ,K. (3)

The γk’s are called “cut-points” and −∞ = γ0 < γ1 < . . . < γk =∞. An interpretation of the
model is that there is an unobserved latent variable y∗ which has a continuous distribution
F (y∗ − η) where η is a location parameter and we model η by the additive model (2).
The observed yi is in the kth category if and only if y∗i is in (γk−1, γk], which implies that
P (yi ≤ k |x) = F (γk− ηi(x)), and when F is the logistic distribution, we have the model (3).
For modeling smooth constrained f`, there are eight shape choices, i.e., increasing, decreas-
ing, concave, convex, and combinations of monotonicity and convexity. For increasing and
decreasing constraints, we use quadratic I-spline basis functions, and for constraints involving
convexity, cubic C-spline basis functions are used. Example sets of basis functions for seven
equally spaced knots are shown in Figure 10; see Meyer (2008) for details about these spline
bases.
The I-spline basis functions, together with the constant function, span the space of piece-
wise quadratic splines for the given knots. The spline function is increasing if and only if the
coefficients of the basis functions are positive, and decreasing if and only if the coefficients
of the basis functions are negative. The C-spline basis functions, together with the constant
function and the identity function, span the space of piece-wise cubic splines for the given
knots. The spline function is convex if and only if the coefficients of the basis functions are
positive, and concave if and only if the coefficients of the basis functions are negative. If
we also restrict the sign of the coefficient on the identity function, all four combinations of
monotonicity and convexity can be modeled with constrained C-splines.
Define φ` ∈ IRn as φ`,i = f`(x`,i), i = 1, . . . , n, for a continuous predictor x`, and define s`,j ,
j = 1, . . . ,m` to be the spline basis vectors appropriate for the constraints associated with
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Figure 10: Spline basis functions using seven equally spaced knots marked as “×” for a data
set with n = 100 observations with values marked as dots. (a) increasing with each basis
function centered, and (b) convex with each basis function scaled to be orthogonal to 1 and
x.

x`. The constraints are satisfied if φ` ∈ C` where for increasing or decreasing constraints,

C` =

φ ∈ IRn : φ = a01 +
m∑̀
j=1

bjsj , bj ≥ 0, j = 1, . . . ,m`

 ,
and for convex or concave constraints,

C` =

φ ∈ IRn : φ = a01 + a1x+
m∑̀
j=1

bjsj , bj ≥ 0, j = 1, . . . ,m`

 .
For ordinal predictors, constraint cones are defined according to Meyer (2013a). Similar to
the previous case, there are eight shape constraints involving monotonicity and convexity; in
addition, tree and umbrella orderings are options. For these orderings, the estimate of φ` is
in C`, where

C` = {φ` ∈ IRn : A`φ` ≥ 0 and B`φ` = 0},

for constraint matrices A` and B` that are rl1 × n and rl2 × n, respectively. The equality
constraints handle duplicate values of the predictor, and the rows of A` and B` together form
a linearly independent set.
The tree-ordering describes a scenario in which the user assumes that the effect of a categorical
variable on the response, for all but one of the levels, is larger than the effect at that level.
This ordering is useful in the case of several treatment levels and a placebo, where it is
assumed that the treatment effect is at least that of the placebo, but there are no imposed
orderings among the treatments. For implementation in cgam, the level zero is assumed to
be the placebo level.
An umbrella ordering is a unimodal assumption on a categorical variable, where the level of
the maximum effect is given. For implementation in cgam, the level zero is used as this mode;
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other levels are indicated by positive or negative integers. The effects are ordered on either
side of the mode.
See Meyer (2013a) for details about construction of basis vectors w1, . . . ,wm`

, given A` and
B`, so that

C` = {φ` ∈ IRn : φ` = v +
m∑̀
j=1

bjwj , bj ≥ 0, j = 1, . . . ,m`}. (4)

The vector v is in a linear space V` defined by the shape assumptions. If monotonicity
constraints are imposed, V` is the one-dimensional space of constant vectors; for other types
of order constraints, see Meyer (2013a) for the construction and composition of V`.
Then η = φ1 + · · ·+φL +Zβ, where φ` ∈ C` for ` = 1, . . . , L, and the rows of the matrix Z
are zi, i = 1, . . . , n. Each set C` is a polyhedral convex cone, and let Vz be the column space
of Z. Meyer (2013a) showed that C = C1 + · · · + CL + Vz is also a polyhedral convex cone,
where η ∈ C if η = φ1 + · · ·+φL + v with v ∈ Vz and φ` ∈ C`, ` = 1, . . . , L. That paper also
showed how to find a linear space L containing the linear spaces V1, . . . ,VL and the column
space of Z, together with “edge” vectors e1, . . . , em that are orthogonal to L, so that we can
write

C =

η ∈ IRn : η = v +
m∑
j=1

αjej +Zβ, for v ∈ L, αj ≥ 0, j = 1, . . . ,m

 .

4.1. Iteratively re-weighted cone projection

For the Gaussian family, fitting the additive model (2) involves a projection of the data
vector y onto C ⊆ IRn. This is accomplished using the coneB routine of the R package (see
coneproj; Liao and Meyer 2014). For other exponential families, an iteratively re-weighted
cone projection algorithm is used. The negative log-likelihood

L(θ, τ ;y) =
n∑
i=1

{
c(yi, τ)− yiθi − b(θi)

τ

}
is written in terms of the systematic component and minimized over C. Let `(η) be the
negative log likelihood written as a function of η = (η1, . . . , ηn)>. For ηk in C, let

ψk(η) = `(ηk) +∇`(ηk)>(η − ηk) + 1
2(η − ηk)>Qk(η − ηk), (5)

where ∇`(ηk) is the gradient vector and Qk is the Hessian matrix for `(η), both evaluated
at ηk. The iteratively re-weighted algorithm is:

1. Choose a valid starting η0, and set k = 0.

2. Given ηk, minimize ψk(η) over C defined by the model. Then ηk+1 minimizes `(η) over
the line segment connecting the minimizer of ψk(η) and ηk.

3. Set k = k + 1 and repeat Step 2, stopping when a convergence criterion is met.
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Figure 11: A set of linear basis functions for a predictor in two-dimensional isotonic regression
with n = 100 observations with values marked as dots and knots marked as “X”.

At Step 2, coneB is used. At each iteration of the algorithm, the vector µk is computed
where µki = g−1(ηki). If the Hessian matrix is positive definite for all η then the negative
log-likelihood function is strictly convex and µk is guaranteed to converge to the maximum
likelihood estimate µ̂k.
When the response is ordered categorical, we use a two-step procedure similar to the back-
fitting method in Hastie and Tibshirani (1987). At the first step, given an initial valid set
of increasing values of the cut-points γk’s, η is estimated using the previous iteratively re-
weighted cone projection algorithm, and then we update γk’s by the maximum likelihood
estimates. We iterate between the two steps until a convergence criterion is met.

4.2. Two-dimensional monotone regression

For two-dimensional isotonic regression without additivity assumptions, the “warped-plane
spline” (WPS) of Meyer (2016) is implemented in cgam using the function s.incr.incr. The
least-squares model has the form

yi = f(x1i, x2i) + z>i α+ σεi, for i = 1, . . . , n, (6)

where α ∈ IRp, z1, . . . ,zn ∈ IRp contain values of parametrically modeled covariates, and the
εi’s are mean-zero random errors. We know a priori that f is continuous and monotone in
both dimensions; that is, for fixed x1, if x2a ≤ x2b, then f(x1, x2a) ≤ f(x1, x2b), and similarly
for fixed x2, f is non-decreasing in x1. For linear spline basis functions defined in x1 and x2,
the basis functions for the necessary and sufficient constraints are straight-forward and the
fitted surface can be described as a continuous piece-wise warped plane.
Given predictor values x1i, i = 1, . . . , n, we define knots t1,1 < . . . < t1,k1 , where t1,1 ≤min(x1)
and t1,k1 ≥ max(x1) are defined by evaluating the basis functions at the design points, that is,
δ1,l1,i = δ1,l1(x1,i), l1 = 1, . . . , k1. These basis functions span the space of continuous piece-wise
linear functions with given knots, and if we replace δ1,1 with the constant function δ0(x) = 1,
then δ0, δ1,2, . . . , δ1,k1 span the same space. Similarly, spline basis functions δ2,1, . . . , δ2,k2

can be defined with knots t2,1 < . . . < t2,k2 , where t2,1 ≤ min(x2) and t2,k2 ≥ max(x2). An
example of a set of basis functions is in Figure 11. Let the n × (k1 − 1) matrix B1 have as
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columns δ1,2, . . . , δ1,k1 , and let the n × (k2 − 1) matrix B2 have as columns δ2,2, . . . , δ2,k2 .
Finally let the n× (k1 − 1)(k2 − 1) matrix B12 contain the products of basis vectors, so that
column (l1 − 2)(k1 − 1) + l2 − 1 of B12 is the element-wise product of δ1,l1 and δ2,l2 , for
l1 = 2, . . . , k1 and l2 = 2, . . . , k2. The columns of B1, B2, and B12, together with the vector
1, form a linearly independent set if n ≥ k1k2 and there are no “empty cells”.
Let θij = f(x1i, x2j) be the values of the regression function evaluated at the design points.
This is approximated by β01 +B1β1 +B2β2 +B12β3 = Bβ, where B = [1|B1|B2|B12] and
β> = [β0|β>1 |β>2 |β>3 ]. A constraint matrix A will give the necessary and sufficient conditions
for monotonicity of the spline basis functions in both predictors, as Aβ ≥ 0. Here, A is a
k × (k1k2) matrix where k = 2k1k2 − k1 − k2. The constrained least-squares solution is a
projection of y onto the cone

C = {µ ∈ IRn : µ = Bβ +Zα;Aβ ≥ 0}; (7)

the routine coneA in the R package coneproj (Liao and Meyer 2014) is used.
Penalized warped-plane regression is also included in this package. To obtain smoother fits
and to side-step the problem of knot choices, we can use “large” k1 and k2, and penalize the
changes in slopes of the regression surface, which is a warped plane over each knot rectangle
whose slopes can change abruptly from one rectangle to the next. An additional advantage
of penalization is that empty cells are allowed. The sum of the squared differences in slopes
across cells is used as the penalty term, where λ > 0 is a penalty parameter and it will control
the constrained “effective degrees of freedom” (EDFCλ) of the fit. The standard generalized
cross validation (GCV) defined in Chapter 5 of Ruppert, Wand, and Carroll (2003) can be
used to select a penalty parameter:

GCV(λ) =
∑n
i=1[yi − µ̂λ,i]2

(1− EDFCλ/n)2 . (8)

A range of values of λ can be tried and the GCV choice of λ minimizes the criterion. (See
Meyer (2016) for more details.)

4.3. Inference methods

For inference regarding a parameter vector α, an approximately normal distribution can be
derived for

√
n(α̂ − α). Proposition 4 of Meyer (1999) says that there is a subset of edges

e1, . . . , em, indexed by J ⊆ {1, . . . ,m} such that the projection of y onto C coincides with
projection of y onto the linear space spanned by ej , j ∈ J , and the basis vectors for L.
Suppose X0 is a matrix so that the columns of X0 and Z span the linear space L. Then if
P J is the projection matrix for the spaced spanned by ej , j ∈ J and the columns of X0, we
can write

α̂ = [Z>(I − P J)Z]−1Z>(I − P J)y.

Under mild regularity conditions, α̂ is approximately normal with mean zero and covariance
[Z>(I − P J)Z]−1σ2. We estimate σ2 as

σ̂2 = SSR
n− cEDF ,

where SSR is the sum of squared residuals and EDF is the effective degrees of freedom, that
is, the cardinality of J plus the dimension of L. The constant c is between 1 and 2; Meyer and
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Woodroofe (2000) showed this multiplier is appropriate for cone regression. That paper gave
evidence that c = 1.5 is appropriate for unsmoothed isotonic regression; simulations suggest
that for constrained splines, a smaller value gives better estimates of σ2. In the cgam routine,
the default is c = 1.2, but the user can specify c ∈ [1, 2] using the option cpar = 1.5 for
example.
These results are used to construct approximate t and F tests for α; specifically, α̂ is taken
to be approximately normal with mean α and covariance [Z>(I − P J)Z]−1σ̂2. See Meyer
(2018) and Meyer (2016) for detailed conditions under which this is a good approximation.
The cone information criterion (CIC) proposed in Meyer (2013b) for the least-squares model
is generalized to

CIC = − 2
n

log(L) + log
{

2
[
E0(EDF) + d0

]
n− d0 − 1.5E0(EDF) + 1

}
,

where L is the likelihood maximized over the cone C, d0 is the dimension of the linear space
L, and E0(EDF) is the null expected dimension of the face of C on which the projection lands.
To compute E0(EDF), we simulate from (1) and (2) with f` ≡ 0 for ` = 1. . . . , L. In this way
we get the expected degrees of freedom for the constrained model, in the case where the f`
do not contribute to the expected response. This is appropriate for model selection, as the
observed EDF tends to be larger when the predictors are related to the response. See Meyer
(2013b) for more details about using the CIC for model selection.
This criterion is the estimated predictive squared error, similar to the AIC, and is specially
derived for cone projection problems. If the constraints are not known a priori, the CIC
model selection procedure may be used to select not only the variables in a model of the form
(2), but also the nature of their relationships with the response.

5. Speed and utility comparison
To compare the speeds for smooth fitting of regression functions, we simulated 1000 data sets
from two regression models, where the first model has three continuous predictors and the
second model includes one more categorical covariate. We fit isotonic additive models using
cgam, gam and scam. In the first example, x1i, x2i, and x3i, i = 1, . . . , n, were simulated
independently and uniformly on [0, 1] along with independent standard normal errors εi,
i = 1, . . . , n, then, fi = 5(x1/2

1i + x2
2i + x3

3i) and yi = fi + εi; in the second example, x1i’s,
were simulated uniformly on [0, 1], and x2i’s was simulated to have a positive correlation with
x1i’s; x3i’s were simulated uniformly on [0, 1], and a categorical covariate z with values 0
and 1 was simulated such that zi = 1 will be observed more likely for a larger x3i, then,
fi = 5(x1/2

1i + x2
2i + x3

3i) + zi and yi = fi + εi. Four sample sizes were used and the results
showing the average elapsed time per simulation for each routine are given in Figure 12. The
speed comparisons were made on a Mac laptop with a 1.6 GHz dual-core Intel Core i5 CPU.
In addition, we compare the accuracy of each routine in the simulations for the second model
using the square root of mean squared error (SMSE) criterion defined as

SMSE = 1
N

N∑
k=1

√∑n
i=1[f̂ik − fik]2

n
,
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whereN is the number of simulations and n is the sample size in each simulation. Comparisons
are shown in Figure 13, which shows that cgam performs slightly better than scam and gam.
Continuing with the doubly-increasing example in Section 1, we simulated from f(x) = 4(x1+
x2 − x1x2) over the unit square with three sample sizes to compare the speed of cgam and
scam. For each sample size, we did 1000 simulations. When n = 100, the average elapsed
time is about 16 milliseconds by cgam and 7.52 seconds by scam; when n = 500, the time
per call by cgam and scam are about 100 milliseconds and 14.07 seconds; when n = 2000, the
time per call by cgam and scam are about 1.21 and 43.45 seconds.
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