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Abstract

Multivariate time series with long-dependence are observed in many applications such
as finance, geophysics or neuroscience. Many packages provide estimation tools for uni-
variate settings but few are addressing the problem of long-dependence estimation for
multivariate settings. The package multiwave is providing efficient estimation procedures
for multivariate time series. Two semi-parametric estimation methods of the long-memory
exponents and long-run covariance matrix of time series are implemented. The first one
is the Fourier-based estimation proposed by Shimotsu (2007) and the second one is a
wavelet-based estimation described in Achard and Gannaz (2016). The objective of this
paper is to provide an overview of the R package multiwave with its practical application
perspectives.

Keywords: wavelets, multivariate time series, Whittle estimation, long-memory properties,
long-run covariance, R.

1. Introduction

Time series with defined autocovariance functions are said to present long-memory or long-
range dependency when their autocovariance function is decreasing very slowly, slower than
an exponential decay. More precisely, let g(-) be the autocovariance function of a time series
X. X is said to be long-memory if there exists a, 0 < o < 1, such that g(¢) is asymptotically
equivalent to [t|~® when t — +o0o (see Beran 1994 and references therein). This definition
implies that the covariance function is not summable. Equivalently, the spectral density f(-),
if it exists, is such that f(\) is equivalent up to a constant to |A['~% when A — 0F. In this
case, when trying to estimate the expectation using the empirical mean of long-memory time
series, the variance of the estimator is not decreasing to 0 as N~! (where N is the sample
size). Hence it is crucial to take into account the presence of long-memory for defining good
estimators (Beran 1994). In the case of univariate time series, several very efficient approaches
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have been developed and validated. The CRAN Task View “Time Series Analysis” (Hyndman
2019) provides a very exhaustive list of methods and softwares dealing with long-memory time
series for R (R Core Team 2019). Among others, we can cite the packages fracdiff (Haslett and
Raftery 1989; Méchler 2012), arfima (Veenstra and McLeod 2018) and FGN (Veenstra 2012;
McLeod and Veenstra 2014), longmemo (Beran 1994) and forecast (Hyndman and Khandakar
2008). For example, fracdiff is dedicated to simulation of fractional ARIMA time series and
to estimation using regression of the periodogram. longmemo provides real data examples of
time series with long-memory properties.

Approaches for multivariate long-memory time series are less developed. When dealing with
multivariate time series, an important quantity to estimate is the covariance or correlation be-
tween pairs of time series. The effect of the presence of long-memory on this estimation is obvi-
ous, as stated by Robinson (2005). One R package, waveslim (Whitcher 2019), is dedicated to
the wavelet correlation analysis for pairs of random variables (Whitcher, Guttorp, and Percival
2000) but long-range dependence properties are not considered. Sela and Hurvich (2012) pro-
vide R code (freely available at http://pages.stern.nyu.edu/~rsela/VARFI/code.html)
for bivariate long-range dependent time series with parametric estimations. The objective of
this paper is to provide an efficient R package, called multiwave (Achard and Gannaz 2019),
to estimate the long-memory parameters and covariance matrices for multivariate time se-
ries. The estimation procedures are based on a semi-parametric approach, which is robust to
model misspecification. The package is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=multiwave.

The procedures are also suited for dealing with more than two-dimensional data. Indeed
they are based on Whittle approximation which provides a simple function to optimize. This
function can be used for any dimension of the problem. In comparison, regression of the
scalogram or periodogram (Achard, Bassett, Meyer-Lindenberg, and Bullmore 2008) is based
on a linear fit of pairs of time series, and thus there does not exist an easy way to extend to
more than two dimensions.

multiwave package is based on Achard and Gannaz (2016), where we developed a wavelet-
based approach using Whittle approximation for an efficient estimation of the long-memory
parameters and the long-run covariance matrices. In addition, multiwave proposes an imple-
mentation of an alternative method using Fourier decomposition as described in Shimotsu
(2007, code available for MATLAB at http://shimotsu.web.fc2.com/Site/Matlab_Codes.
html).

As described in this paper, multiwave is a very versatile package and opens the way to estima-
tion of the long-memory parameters and the long-run covariance matrices using multivariate
data sets. It is in particular not necessary to assume the stationarity of the time series as is
the case when using Fourier decomposition (Fay, Moulines, Roueff, and Taqqu 2009). The
Whittle approximation is computed using either the coefficients of wavelet decomposition or
the coefficients of Fourier decomposition when the time series are stationary.

The package multiwave is divided in three parts. A first group of functions is dedicated to
the simulation of multivariate long-memory time series; the main function is fivarma. A
second group of functions is implementing the wavelet decomposition, through DWTexact and
associated functions. Finally the computation of the estimators are coded using the Fourier
decomposition in mfw and its derivatives and using the wavelet decomposition in mww and its
derivatives.
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The mathematical background is detailed in a separate Section 2. The rest of the paper is
dedicated to the description of the package multiwave. Simple examples of parametric models
and real data are presented in Section 3 with corresponding functions of multiwave ready to
apply. Core estimation functions using wavelets and Fourier transform are detailed in Sec-
tion 4 along with pieces of code using simulated time series. Finally, practical considerations
are discussed in the three last sections. Section 5 is discussing the practical choices of pa-
rameters. Comparisons between wavelets and Fourier approaches are described in Section 6.
And an application to real data in neuroscience is concluding the paper in Section 7.

2. Theoretical background

As in the univariate case, the definition of long-memory for a p-vector process is based on
the asymptotic behavior of the cross-spectral density in the neighborhood of zero (Moulines,
Roueff, and Taqqu 2007). We consider N observations of a long-memory p-vector process
X ={Xy(k),ke€Z,t=1,...,p}, namely X(1),...X(N). X is said to be a multivariate M (d)
process when for each £ = 1,...,p there exists Dy € N such that the D,th order difference

APrX, is covariance stationary. In addition, let us assume that for any ¢,m = 1,...,p the
generalized cross-spectral density of X, and X, is
1 i — i\ —
f&m()‘) = %Q&m(l —€ M) dé(l - el)\) dmfgm()‘)? A€ [_77771-}7 (1)
with @ = (Q¢)em=1,..p, an Hermitian matrix. The functions ffm() correspond to the

short-memory dynamics of the process. The parameter dy satisfies —1/2 < dy — Dy < 1/2.
More generally, the wavelet-based procedure is available for cross-spectral density satisfying
an approximation

FO) ~ A)QA(d)*, when A—0, with A(d)= diag(|A|"desienVrd/2y ()

where the exponent * denotes the conjugate transpose operator. Here and subsequently ~
means that the ratio of the left- and right-hand sides converges to one. Note that the process
X, is not necessarily stationary.

The long-range dependence parameter measures the power-like rate of decay of the autoco-
variance function. The long-run covariance matrix €2 can be seen as the covariance at low
frequencies between the time series. It gives a quantification of the link between the com-
ponents of the multivariate time series. The long-run covariance parameter of the model
is free from the difference in the autocorrelation behavior of each component. It is linked
with long-run correlations (., /+/QQm.m) ¢m—1...p» Which are also encountered in litera-
ture as power-law coherencies between two time series (Sela and Hurvich 2012) or as fractal
connectivities (Achard et al. 2008).

2.1. A parametric example: FIVARMA

Fractionally integrated vector auto regressive moving average (FIVARMA) processes are para-
metric models with a spectral density satisfying approximation (2). They correspond to Model
A of Lobato (1997). We refer to this paper for a detailed mathematical description.

Let u be a p-dimensional white noise with E[u(t) | 7;_1] = 0 and E[u(t)u(t)’ | F_1] = X,
where F;_; is the o-field generated by {u(s), s < t}, and X is a positive definite ma-
trix. Let (Ag)ren be a sequence of RP*P-valued matrices with Ay the identity matrix and
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S0 lAL||? < co. The discrete Fourier transform of the sequence is denoted A(-), that is
AN = Y20 Are™™. We assume that all the roots of |A(IL)| are outside the closed unit
circle, where IL denotes the lag operator. Let also (By)ren be a sequence in RP*P with By the
identity matrix and Y72 | Bx||> < co. As defined for A, B(-) denotes the discrete Fourier
transform of the sequence, B()\) = Y272, Bje'™.

Let X be defined by

A(L) diag(1 — L)3 X(t) = B(L)u(t). (3)
The spectral density satisfies

Frm(A) ~sor oG e/ 2de—d) ) ~(d-td)

I — 27T ’

with .
Q=AQ0)"'BOZTBL)'AMD)" . (4)

Then X is called a FIVARMA (d, q) process and satisfies approximation (2).

Limits of the model

Note that in definition (3) the operators are applied in a given order, where the lag operator is
taken first. Changing the order of the lag operator and autoregression corresponds to model
B of Lobato (1997) and VARFI models of Sela and Hurvich (2012) where X is obtained with
equation diag(1l — L)d A (L) X(t) = B(L)u(t), with similar notations than above. That is, X
is obtained by fractional integration after autoregression, which is also called cointegration.
The spectral density still satisfies the approximation (2) however the matrix £ may no longer
be Hermitian. Clearly the multiwave package is not built to deal with such cases. We refer to
alternative methods in literature, among others Robinson (2008); Sela and Hurvich (2012);
Shimotsu (2012). Taking into account cointegration is a difficult problem that exceeds the
scope of this paper. Future work is needed to handle this particular case.

2.2. Fourier-based estimation (MFW)

The discrete Fourier transform and the periodogram of X evaluated at frequency A are defined
as in Shimotsu (2007)’s procedure

WF

I7(\) = WF()\)WF(/\)*.

Let A\; = 27j/N, j = 1,...,m, be the Fourier frequencies used in estimation, m € N.

Define A]F(d) = diag ()\?ei(“_Aj)dm). The estimators (&MFW7 QMFW) are minimizers of the

criterion
LMV, Q) =

i {log det (A (d)R(d)A] (@)7) + W ()" (AF(d)Q(d)AF(d)*>_1 WF()\J-)} .

1
miZ
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The solution satisfies

~MFW ~MFW 1 &
d = in 1 log det(2 d)) —2log(2) | — E A

argmin g log det( (d)) o8(2) (mj:1 ]) ’ (5)
QMFW _ QMFW (aMFV\/)’ (6)

m

with @7 (d) = Re (AF(d)7'17(j)AT (@) 1),
=1

1
m J
The dynamics of the frequencies at the neighborhood of the origin is given by the dynamics
of the spectral density around the zero frequency. The form of the criterion is justified by a
second-order approximation of the spectral density matrix (1), rather than the approximation
(2). For an estimation based on the first-order approximation (2), one should replace Af (d)
by A; )(d) = diag (\deind/2).

Shimotsu (2007) established the theoretical performance of this estimation procedure, for both
the long-range dependence parameters and the long-run covariance matrix. It is shown that
the variance for the estimation of the vector d is decreased for the multivariate procedure
with respect to a univariate one. It is worth mentioning that Lobato (1999) developed a
similar estimation procedure, based on a rougher approximation of the cross-spectral density,
Af (d) = diag ()\;i) Interestingly, the quality of estimation for the vector d is similar.
Nevertheless, the estimation of the long-run covariance matrix €2 is biased since it does not
take into account the phase-shift appearing in Af (d). We refer to Lobato (1999) and to
Shimotsu (2007) for a more detailed study of these estimators and their consistency.

2.3. Wavelet-based estimation (MWW)

Wavelets are providing a very efficient tool because of their high flexibility to deal with
nonstationary time series which is particularly useful for real data applications. Their good
performances in comparison to Fourier have already been shown for example in univariate
settings (Fay et al. 2009).

Let (¢(-),%(+)) be respectively a father and a mother wavelets, satisfying regularity conditions,
as stated in Achard and Gannaz (2016).

At a given resolution j > 0, for k& € 7Z, we define the dilated and translated functions
Gjk(-) = 279/2¢(277 - —k) and ;1 (-) = 279/2¢(277 - —k). The wavelet coefficients of the
process X are defined by

W, = / X () k(t)dt >0,k € Z,
R

where X(t) = Y ez X (k)¢(t — k). For given j > 0 and k € Z, W, is a p-dimensional vector
Wi = (Wik(1) Wik(2) ... Wik(p)) where Wiy (6) = fio Xo(t)u i(t)dt.
For any j > 0, the process (W, i)recz is covariance stationary (Achard and Gannaz 2016).

Let 0y, (j) denote the wavelet covariance at scale j between processes X, and X,,, i.e.,
Or.m(j) = COV(W; 1 (£), W (m)) for any position k. Let us introduce the wavelet scalogram

() = W, W/, (7)
keZ
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The wavelet scalogram is the equivalent of the Fourier periodogram. Yet the scalogram is not
normalized, contrary to the periodogram. We also introduce the function K (-), defined as

K@) = [~ W) 6 e (M), ®

The wavelet Whittle procedure is described in Achard and Gannaz (2016). Let Aj;(d) =
diag <2jd, jo<j < jl). Let G(d) denote a p x p-matrix with (¢, m)th element equal to

Grm(d) = £5(0)Q K (dg + dim)cos(m(de — dyn)/2). 9)
The estimators (&MWW, @MWW) are defined by minimization of LYWM(d, G), with

% i lnj logdet (A} ()G(d)A}(d)) + 3 W, (A) (d)G(d)A} (a))
k

Jj=jo

The estimation is here based on a first-order approximation of the spectral density matrix
around 0.

The solutions of this problem satisfy

p
a™v = argming log det(GMWW(d)) + 2log(2 ( Z jnj) (Z ) , (10)

J=jo

¢V ZAW Y ()AY (@), (11)

J]O

where I (j) is the wavelet scalogram at scale j defined in (7). The long-run covariance matrix
can then be estimated by

QW = GIV@) (cos(r(@™Y - BNV 2) K@Y + V). (12)

0 m

This second step in the estimation of the long-run covariance matrix €2 is needed because the
wavelets used in this paper are real and cannot correct the phase-shift (given by (12)). This is
not the case for the Fourier Whittle estimation described in Shimotsu (2007). Fortunately, the
phase-shift can be expressed as a multiplicative cosine term in the covariance of the wavelet
coefficients and a correction is still possible.

Achard and Gannaz (2016) established that the MWW estimators (10) and (12) are consistent
under non-restrictive conditions. The rate of convergence for the estimation of the long-range
parameters d is similar to the MFW estimator and is minimax. We refer to Achard and
Gannaz (2016) for the detailed study of the asymptotic behavior of MWW estimation.
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3. Examples of multivariate long-memory time series

This section is describing specific functions of multiwave for the user to be able to simulate
multivariate long-memory processes. Parametric models are defined and implemented. In
addition a data set containing real data from neuroimaging is provided.

3.1. Simulations of FIVARMA

The multiwave package proposes simulation functions for time series with a spectral density
satisfying approximation (2). The main function is fivarma which computes a parametric
FIVARMA process defined in Section 2.1.

The input parameters of a FIVARMA (q,d,r) process are the covariance matrix % of the
innovation process u, the vector AR (autoregressive) (Aj)r—o,. ¢, Ar € RP*P, the vector MA
(moving average) (Bg)r=o,...r, Bx € RP*P, and the vector of long-range parameters d € R?.
The FIVAR model of Sela and Hurvich (2008) is a subcase, corresponding to MA coefficients
equal to zero. The parameters of fivarma are thus, in order, (N, d, cov_matrix, VAR,
VMA) where cov_matrix = ¥ and VAR and VMA denote respectively the sequences of matrices
(Ak)k=o0,...,q and (By)i=o,...r-

The output of the function fivarma is a list with first the values X(1),X(2),...,X(N) ob-
tained by Equation 3 with u(¢) white noise with centered Gaussian distribution and covariance
3. The second element of the list is the value of the matrix €2 defined in (4).

fivarma is based on two other functions:

e fracdiff applies a vectorial fractional differencing procedure and corresponds to a
FIVARMA(0, d,0).

e varma computes a realization of a multivariate ARMA process and corresponds to the
case d = 0.

Similar functions can be found in other packages (e.g., fracdiff and MST; Tsay 2013) but were
re-implemented in multiwave package.

Example

R> N <- 278

R> d0 <- ¢(0.2, 0.4)

R> rho <- 0.8

R> cov <- matrix(c(1, rho, rho, 1), 2, 2)

R> VMA <- diag(c(0.4, 0.7))

R> VAR <- array(c(0.8, 0.2, 0, 0.6), dim = c(2, 2))

R> resp <- fivarma(N, dO, cov_matrix = cov, VAR = VAR, VMA = VMA)
R> x <- resp$x

R> long run_cov <- resp$long run_cov

R> long _run_cov

[, 1] [, 2]
049383 0.5854938

[1, 1]
] 854938 0.9730806

0.6
(2, 0.5



8 multiwave: Wavelet-Based Multivariate Whittle Estimation

X[, 1]
0
|

-3 -2 -1

0 50 100 150 200 250

X[, 2]

Figure 1: Example for simulating from a FIVARMA model.

R> par(mfrow = c(2, 1), mai = ¢(0.5, 1, 0.5, 0.5))
R> plot(x[, 11, type = "1", 1ty = 1)
R> plot(x[, 21, type = "1", 1ty = 1)

The resulting plot is shown in Figure 1.

3.2. A real data set

In order to describe how parameters can be chosen from a practical point of view, we provide
a real data example (see Section 7).

Noninvasive data recorded from the brain are an example where the proposed methodology is
efficient. The data consist of time series recording signals from the brain: electroencephalog-
raphy (EEG) for the electrical signals, magnetoencephalography (MEG) for the magnetic sig-
nals or functional magnetic resonance imaging (fMRI) for the blood oxygen level dependent
(BOLD) signals. These data are intrinsically correlated because of the known interactions
of the brain areas (also called regions of interest). Furthermore, it has already been shown
that these time series present long-memory features (Maxim, Sendur, Fadili, Suckling, Gould,
Howard, and Bullmore 2005). Other data sets presenting similar features are coming from
finance (e.g., Songsiri and Vandenberghe 2010), where time series are correlated because of
links between companies for example, and they also present long-memory characteristics. In
this section, we observed time series extracted using fMRI facilities. The whole description
of this data sets is detailed in Termenon, Jaillard, Delon-Martin, and Achard (2016). The
data set called brainHCP contains the time series of 1200 points in time and 89 regions of the
brain. Figure 2 displays 6 arbitrary signals from one subject in this data set.
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Figure 2: Plot of 6 arbitrary signals from a subject of the fMRI data set brainHCP.

R> data("brainHCP", package = "multiwave")
R> dim(brainHCP)

[1] 1200 89
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4. Estimating long-memory parameters and the covariance

The objective of this package is to provide the implementation of two sets of methods based
either on Fourier or wavelet decomposition. That is the multivariate Fourier Whittle (MEFW)
and multivariate wavelet Whittle (MWW) estimation procedures. The corresponding func-
tions are respectively called mfw and mww in the package.

The output of the implemented methods consists in the estimation of two quantities, d and
2, where d corresponds to the long-memory parameters of the time series and €2 is reflecting
the coupling between the pairs of time series.

The two functions mfw and mww are implementing the semi-parametric Whittle estimation
using respectively Fourier decomposition and wavelet decomposition in order to estimate d
and .

A fast execution of Fourier-based estimation is given below using the default value used in
Shimotsu (2007) for m, the number of frequencies.

R> N <- nrow(x)
R> m <- floor(N~(0.65))
R> res_mfw <- mfw(x, m)

In addition, the wavelet-based estimation is computed using the following code. res_filter
corresponds to the choice of the wavelet filter. LU fixes respectively the lowest and highest
scales used in the estimation.

R> res_filter <- scaling filter("Daubechies", 8)
R> filter <- res_filter$h

INPUT ouTPUT

: : Long-memory parameters
‘ T T T T T T (’i . 017462
0 50 100 150 200 250 multiwave 024477
~ - ~~ A Long-run covariance
] o 0.61064 0.55949
x ] ~ 10.55949 1.29167

0 50 100 150 200 250

Figure 3: Input and output of the multiwave package in a two-dimensional case.



Journal of Statistical Software

R> LU <- c(2, 11)
R> res_mww <- mww(x, filter, LU)

4.1. Multivariate Fourier Whittle estimation

As a first implementation, it is natural to use Fourier decomposition to approximate the
spectral density of time series.

Package multiwave proposes functions to compute MFW estimators:

e mfw computes the multivariate Fourier Whittle estimators of both the long-range de-
pendence parameters and the long-run covariance matrix.

e mfw_cov_eval computes the multivariate Fourier-based Whittle estimator for the long-
run covariance matrix for a given value of the long-range dependence d.

e mfw_eval returns the value of the multivariate Fourier Whittle criterion with respect
to d at a given value of d.

The functions mfw_cov_eval and mfw_eval are internal functions of mfw. In mfw, we apply
first a minimum search of mfw_eval with respect to d, and mfw_cov_eval is returning the
estimation of € for the estimated value d.

We only detail function mfw hereafter and refer to the package description for the other
functions.

Let X be the p x N-matrix of observations, with general term z,; = X(i),  =1,...,p and
1t =1,...,N. Let m be the number of frequencies used in the MFW procedure. Given x
and m, the function mfw computes the MEW estimators defined by (5) and (6), with the
frequencies \; = 27j/N, j = 1,...,m. The optimization in equation (5) is done using
optimize function of R in one-dimensional settings and a Newton-type algorithm through
nlm function of R otherwise. The initialization of the algorithm is set equal to the vector of
univariate Fourier-based Whittle estimations. Even if it increases the computational time,
such an initialization is important in high-dimensional settings. For example, in the MEG data
set studied in Achard and Gannaz (2016), the optimization is done in R?™. An initialization
at the origin may not be able to reach the minimum even with a high number of iterations,
due to the high dimension.

~MFW
Function mfw returns a list with first the p-dimensional vector d and second the p X p-

matrix QMFW. The quality of the estimation is depending on the parameter m. Theoretical
results show that m must be small enough so that the short-range properties of the time
series do not bias the estimation. On the contrary a too small value will introduce variance
in the estimation since it decreases the number of frequencies used in the procedure. Lobato
(1999), Shimotsu (2007) or Nielsen (2011) propose as default value m = N9, This choice
is discussed in the simulation study in Section 6.

Ezxample

R> N <- 278
R> dO <- c(0.2, 0.4)

11
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R>
R>
R>
R>
R>
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rho <- 0.8

cov <- matrix(c(1, rho, rho, 1), 2, 2)

VMA <- diag(c(0.4, 0.7))

VAR <- array(c(0.8, 0.2, 0, 0.6), dim = c(2, 2))

resp <- fivarma(N, dO, cov_matrix = cov, VAR = VAR, VMA = VMA)

R> x <- resp$x
R> m <- floor(N~(0.65))
R> res_mfw <- mfw(x, m)
R> res_mfw
$d
[1] 0.1669139 0.4601785
$cov

[,1] [,2]
[1,] 0.5678479 0.5645579

(2,

] 0.5645579 1.0308766

4.2. Multivariate wavelet Whittle estimation

The functions applying MWW estimation in package multiwave are the following:

e mww computes the multivariate wavelet Whittle estimators of the long-range dependence
parameters and the long-run covariance matrix.

e mww_cov_eval computes the multivariate wavelet-based Whittle estimator for the long-
run covariance matrix for a given value of the long-range dependence d.

e mww_eval returns the value of the multivariate wavelet Whittle criterion with respect
to d at a given value of d.

mww_cov_eval and mww_eval are internal functions of mww. In mww, we apply first a minimum
search of mww_eval with respect to d, and mww_cov_eval is returning the estimation of €2 for
the estimated value of d. MWW estimation is based on the wavelet transform of time series
and mww needs the definition of a wavelet filter. The computation of a filter and of a wavelet
transform are described below.

Wavelet transform and scalogram

The wavelet decomposition in package multiwave is implemented using an exact discrete
wavelet transform.

o scalingfilter defines the wavelet filter (only Daubechies’ wavelets are available).
e computenj computes the number of wavelet coefficients for each individual scale.

e DWTexact provides the wavelet transform of the data.

e psi_hat_exact gives the Fourier transform of the wavelet function.

K_eval evaluates the value of the integral (8).
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Ezxample

To obtain the wavelet filter of a Daubechies’ wavelet of order 4, that is with 2 vanishing
moments, one should write:

R> res_filter <- scaling filter("Daubechies", 4);
R> filter <- res_filter$h
R> filter

[1] 0.4829629 0.8365163 0.2241439 -0.1294095

Next, given an N-dimensional vector x, the wavelet coefficients of x are given by function
DWTexact:

R> N <- 278

R> d0 <- 0.2

R> resp <- fivarma(N, d0)

R> x <- resp$x

R> resw <- DWTexact(x, filter)
R> xwav <- resw$dwt

R> index <- resw$indmaxband
R> Jmax <- resw$Jmax

R> Jmax

(1] 6

R> index

[1] 127 189 219 233 239 241
R> length(x)

[1] 256

index gives the index of the last coefficient at each scale and Jmax gives the maximal scale.
The vector of coefficients xwav is m-dimensional, with m the maximum of index, equal to
index[Jmax]. The coefficients of the third scale are for example given by:

R> xwav/[seq(index[2] + 1, index[3]), 1]

Finally it is useful to compute the quantity K (d) defined in (8). Thus one needs to recover the
Fourier transform of the wavelet, ¢ (-). This is done using the function psi_hat_exact. Its

inputs are the filter defined previously and an index of precision. It returns (¢ (u;));—1,_ 4.2/

where ¢ is the length of the filter and u; are equally spaced points on the interval [—712‘7 “3(qg—
1)/2; m277%(¢ - 1)/2].

R> res_psi <- psi_hat_exact(filter, J = 10)
R> psih <- res_psi$psih
R> gridh <- res_psi$grid
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where res_psi$grid returns the values of the grid (u;) and res_psi$psih returns the corre-
sponding values of @Z(uz) It is recommended to take J < 15 in practice and the default value
is J = 10. Indeed, a large value of J is increasing the computational time.

Given the function (), we are now able to evaluate K (d) for a given value of d:

R> K <- K_eval(psih, gridh, d0)

Estimation

mww is now described in detail. Let X be the p x N-matrix of observations, with general entries
xp; = Xo(1),£=1,...,pand i =1,...,N. Let LU be the bivariate vector giving the lowest
scale jg and the upper scale j; of the wavelet coefficients used in estimation. Given X and LU,
the function mww computes the MWW estimators defined by (10) and (12). As previously,
the optimization in (10) is done using the optimize function of R in the one-dimensional
settings and using a Newton-type algorithm through the nlm function of R otherwise. The
initialization of the algorithm is set equal to the vector of univariate wavelet-based Whittle
estimations. The reasons are identical to the ones given for the function mfw.

~ MWW
Function mww returns a list with first the p-dimensional vector d and second the p X p-

matrix QMWW. The quality of the estimation is depending on the parameters jo and j;
appearing in (10) and (11). The default value for jy is set to 2 and for j; to the highest
integer lower than log, (V). The critical value to choose for estimation is jo, as can be seen
in the theoretical conditions for consistency (Achard and Gannaz 2016) and in simulations
studies. Similarly to the choice of the parameter m for the MF'W procedure, a compromise
is required between choosing a small value of jp, which would introduce a bias due to the
short-range properties of the time series, and a high value that will reduce the number of
frequencies and thus increase variance.

Ezxample

R> N <- 278

R> d0 <- ¢(0.2, 0.4)

R> rho <- 0.8

R> cov <- matrix(c(1, rho, rho, 1), 2, 2)

R> VMA <- diag(c(0.4, 0.7))

R> VAR <- array(c(0.8, 0.2, 0, 0.6), dim = c(2, 2))
R> resp <- fivarma(N, dO, cov_matrix = cov, VAR = VAR, VMA = VMA)
R> x <- resp$x

R> res_filter <- scaling filter("Daubechies", 8);
R> filter <- res_filter$h

R> LU <- c(2, 8)

R> res_mww <- mww(x, filter, LU)

R> res_mww

$d
[1] 0.01222985 0.32778571
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$cov

[1
[2

(,1] (,2]

,] 0.6614721 0.7003364
,] 0.7003364 1.1873687

If one wants to apply several times the estimation on the same data set, or modifying the
parameters of estimation, it is useful to separate the wavelet transform and the estimation
scheme. Wavelet-based estimation can be evaluated directly on the wavelet transform of the
data using the following functions:

e mww_wav computes the multivariate wavelet Whittle estimators of the long-range de-
pendence parameters and the long-run covariance matrix, given the wavelet transform
of the data.

e mww_wav_cov_eval computes the MWW estimator for the long-run covariance matrix
for a given value of the long-range dependence d, given the wavelet transform of the
data.

o mww_wav_eval returns the value of the multivariate wavelet-based Whittle criterion with
respect to d at a given value of d, for a specific wavelet transform of the data.

We refer to the description of the functions in the package for more details.

Ezxample

The following gives code for data simulation.

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

N <- 278
do <- c(0.2, 0.4)
rho <- 0.8

cov <- matrix(c(1, rho, rho, 1), 2, 2)

VMA <- diag(c(0.4, 0.7))

VAR <- array(c(0.8, 0.2, 0, 0.6), dim = c(2, 2))

resp <- fivarma(N, dO, cov_matrix = cov, VAR = VAR, VMA = VMA)
x <- resp$x

N <- dim(x)[1]

k <- dim(x) [2]

The following code performs wavelet decomposition.

R>

res_filter <- scaling filter("Daubechies", 8)
filter <- res_filter$h
LU <- c(2, 8)
xwav <- matrix(0, N, k)
for (j in 1:k) {
xx <- x[, j]
resw <- DWTexact(xx, filter)
xwav_temp <- resw$dwt
index <- resw$indmaxband

15
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+ Jmax <- resw$Jmax
+ xwav[1:index[Jmax], j] <- xwav_temp
+ }

R> new_xwav <- matrix(0, min(index[Jmax], N), k)

R> if (index[Jmax] < N) {

+ new_xwav[(1:(index[Jmax])), ] <- xwav[(1:(index[Jmax])), ]
+ }

R> xwav <- new_xwav

R> index <- c(0, index)

R> res_psi <- psi_hat_exact(filter, Jmax)

R> psih <- res_psi$psih

R> grid <- res_psi$grid

Next we provide the code for estimation.

R> res_mww_wav <- mww_wav(xwav, index, psih, grid, LU)
R> res_mww_wav

$d
[1] -0.0245506 0.3372074

$cov

[,1] [,2]
[1,] 0.6856003 0.5001938
[2,] 0.5001938 1.0366141

5. Practical choices of parameters for MWW estimation

The MWW procedure implemented in mww depends on mainly two parameters: the choice
of the wavelet bases filter and the choice of the wavelet scales LU. These parameters are
not fixed in the package as the performances of the estimation may be improved by a careful
choice. The possibility to choose the wavelet scales is particularly of interest when dealing with
short-range dependence. We show that a simple graphical representation of the scalogram is
able to guide the user in the choice of the wavelet scales.

5.1. Choice of the wavelet bases

Actually multiwave only proposes Daubechies’ wavelets, which satisfy theoretical properties
of Achard and Gannaz (2016). Other bases are possible but not implemented. The wavelet
bases is imputed wvia the parameter filter in function mww, where filter is obtained by
filter <- scaling filter("Daubechies", 2 * M)$h. The main parameter characteriz-
ing the Daubechies’ bases is thus the number of vanishing moments, M. MWW estimation
presents the advantage to be available even if the time series are nonstationary or with poly-
nomial trends, as soon as maxd < M. For example, for stationary time series, a parameter
M = 1is sufficient (which is equivalent to considering Haar bases). For real data applications,
when nonstationarity or trends are suspected, a higher value of M is necessary.
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As discussed in Fay et al. (2009), when M increases, the quality of estimation (slightly)
decreases. Depending on the data, a compromise is then needed between choosing a large
enough number of vanishing moments M to handle nonstationarity in the data and the quality
of estimation.

On the contrary, MFW estimators are only suited to stationary time series. Some extensions
of Fourier-based estimation were proposed in univariate settings such as tapered Fourier (see,
e.g., Fay et al. 2009 and references therein). For multivariate estimation Nielsen (2011)
proposes an extension of Shimotsu (2007) based on the transform defined in Abadir, Distaso,
and Giraitis (2007). However, this approach gives satisfactory results only for d < 1.5 and we
decided not to implement it in the package for simplicity.

5.2. Choice of wavelet scales

The second parameter we need to tune is LU, which corresponds to the range of scales used
in estimation. LU is a two-dimensional vector, that is LU <- ¢(jO, j1), with jO the lowest
scale and j1 the upper scale. Parameters jO and j1 are respectively jo and j; defined in (10)
and (11) in the estimation procedure.

One advantage of wavelets is to be able to qualitatively evaluate the choice of wavelet scales to
estimate the long-memory parameters and correlation by inspection of the wavelet scalogram.
As mentioned in Abry and Veitch (1998); Fay et al. (2009) for univariate settings, the first
and last scales may have to be discarded from the analysis. The first scale may be affected
by the presence of short-memory phenomena. In the example of the FIVARMA model, this
is driven by the AR and MA coefficients. For the last scales, the impact is different and it
comes from the finite length of the time series. Indeed, as derived in Whitcher et al. (2000),
the variance of the estimator is increasing with the wavelet scales.

The usual log-scalogram diagram used in univariate settings is showing the linear behavior
of the log variance with respect to the wavelet scales (Abry and Veitch 1998). This is also
true for the covariances as shown in Proposition 2 of Achard and Gannaz (2016). For all
k € Z, COV(W; 1(£), W; 1.(m)) is equivalent to 27(4+dm)G, . (d) when j goes to infinity, with
Gm(d) defined in (9). This property is illustrated in Figure 4 with a bivariate FIVARMA
processes, as described in Section 2.1. This figure represents the boxplots of the variance
of the wavelet coefficients of each component of the time series at each scales (Figures 4(a)
and 4(b)). These plots correspond to the usual log-scalogram diagram (Abry and Veitch 1998).
Figure 4(c) displays the analog representation of the covariance between the components.
For both variance and covariance, the points satisfying the above approximation are aligned.
Scales corresponding to non-aligned points should be removed from estimation as can be
seen in Figures 4(a) and 4(c) where the highest frequencies are modified by the presence of
short-range dependence. Thus, one may discard the first scale from estimation to improve its
quality.

Using the results on the wavelet variance and covariance in terms of scales, we showed that the
wavelet correlation is asymptotically constant with respect to the wavelet scales. Indeed, when
J goes to infinity, for all £,;m = 1,...,p, for all k € Z, COR(W;(¢), W;(m)) is equivalent
to Gg’m(d)/\/Gg7g(d>Gm7m(d) (Achard and Gannaz 2016). As for the log-scalogram diagram,
the correlation between wavelet coeflicients with respect to the scales can be plotted and scales
where the observed correlation is not equal to the value obtained for the majority of scales
should be removed from estimation. The wavelet correlation spectrum is a complementary

17
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Figure 4: Boxplots of the log2-variance of the wavelet coefficients at different scales for simu-
lated bivariate FIVARMA(1, (0.4,0.4),1); (a) for the first component and (b) for the second
component. (c¢) Boxplots of the log2-absolute covariance for the same data. The red lines
represent the theoretical linear prediction given by j(d¢+dy,)+10ge(Grm(d)), with £ =m =1
for Figure (a), ¢ = m = 2 for Figure (b) and ¢ = 1, m = 2 for Figure (c). The horizontal axis

corresponds to increasing scales, that is, decreasing frequencies. The indexes of the horizontal
axis display the number of coefficients available. Parameters in FIVARMA model were the

following: the white noise is Gaussian with a covariance equal to 3 = 018 Oi8> , the AR co-
L 0.8 0 . 04 0
efficient is set equal to A = 0.2 0.6 and the MA coefficient is set equal to B = ( 0.2 0. 7) .

Calculation was done on N = 512 observations for 100 replications.

way to qualitatively evaluate the range of scales where the analysis should be carried out.
Figure 5 illustrates this on four different data sets. Four different simulations of bivariate
processes are applied using finite difference processes, FIVAR and FIVARMA processes, as
described in Section 2.1. Figure 5 represents the boxplots of the correlation between wavelet
coeflicients of the two components of the time series at each scales. Again the presence of
short-range dependence alters the highest frequencies (Figures 5(b) and 5(c)). This is also
observed with nonstationarity (Figure 5(d)). The first scales should then be removed from
estimation. This free parameter of the package is particularly useful with the presence of
short-range dependence or nonstationarity. Visual comparison to constant values may be
easier for selection of the correct range of wavelet scale to use in the estimation.

A similar discussion is detailed in Section 7 for a real neuroscience data set. With real data
sets a bootstrap procedure is necessary to obtain boxplots, as will be explained in Section 7.
For the Fourier procedure, the equivalent parameter is the number of frequencies m. However,
wavelets are providing a graphical way to choose the upper and lower scales. To our knowledge,
no equivalent qualitative evaluation for the Fourier procedure is available.
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Figure 5: Boxplots of the correlation of the wavelet coefficients at different scales
for four different simulated data: (a) bivariate FIVARMA(0,(0.4,0.4),0) (b) bivariate
FIVARMA(1, (0.4,0.4),0); (c) bivariate FIVARMA(1, (0.4,0.4),1); and finally, (d) an ex-
ample with nonstationary time series, FIVARMA(0, (0.8,1.2),0). The horizontal red lines
represent the true long-run correlation for each simulation. The horizontal axis corresponds
to increasing scales, that is, decreasing frequencies. The indexes of the horizontal axis display
the number of coefficients available. Parameters in FIVARMA models were, if needed, the

1 .
following: the white noise covariance is set equal to ¥ = 0 8), the AR coefficient is set

0.8 1

0.8 0
0.2 0.6

was done on N = 512 observations for 100 replications.

04 0

equal to A = 02 0.7

and the MA coeflicient is set equal to B = < ) Calculation

5.3. Numerical examples

In order to quantify the quality of the choice of the parameters, numerical examples are
provided. The first tables illustrate the quality of the estimators for a long-memory process
with no short-range dependence. Then, the simulations are complexified by adding short-
range behavior or nonstationarity.

In each example we simulated 1000 Monte Carlo replications of N = 512 observations from
FIVARMA(q, d, r), with dimension p = 2, for a set of different parameter values. Simulations
are done using the function fivarma. MWW estimators are computed using function mww.
The MWW procedure is applied using a Daubechies’ wavelet bases with M = 4 vanishing
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moments. This choice is motivated by the discussion in Section 5.1, because it can handle
different settings, including nonstationary ones.

The quality of estimation is measured via the bias, the standard deviation (std) and the
root mean square error (RMSE) which is equal to v/bias? + std. For clarity, all tables are
displayed in Appendix A.

A reference example

We first consider a simple example, with neither short-range dependence, nor nonstationarity.

Time series were simulated using a bivariate FIVARMA (0, d, 0) with a long-run correlation
1

matrix 2 = (p T) and p = 0.8. The bivariate vector d is chosen in [0,0.5)2, such that the

time series are stationary.

As shown in Figure 5(a), and discussed in Section 5.2, all scales can be kept for estimation.
Table 2 displays results for the MWW estimation of d. This illustrates that multivariate
estimation improves the quality of estimation for d. Indeed, the last column gives the ra-
tio between the RMSEs of the multivariate wavelet-based estimation and of the univariate
wavelet-based estimation (ratio M/U). This ratio is always smaller than 1, that is, multivariate
RMSE is always lower than univariate RMSE.

Short-range dependence

Consider a FIVARMA(1,d,0) obtained with the model described in Section 2.1 and given
by the function fivarma. This case corresponds to a FIVAR model of Sela and Hurvich
(2012). The AR coefficient is taken equal to A = gg 006 and the correlation between

the innovation processes equal to p = 0.8. More precisely let € be a bivariate white noise

1
process with covariance matrix 3 = p i) and let u be the AR(1) process defined by

u(t)+Au(t—1) = e(t). The time series observation X (t) at time ¢ satisfies (1—1L)?X () = u(t).
The matrix € in (4) is equal to

B B 0.3086 0.2392
Q=(I+A)"'2(I+A) = (0.2392 0.3260) '

The corresponding long-run correlation is thus equal to 0.754.

As explained above, the finest scales are influenced by the short-range dependence and they
have to be discarded from the estimation. As can be seen in Figure 5(c), the first two scales
should be removed. We obtained accordingly that the lowest RMSE in estimation is obtained
taking jo = 3.

Numerical results for estimation are given in Tables 4 and 5. We can observe that estimation
of d and Q is still satisfactory. The RMSE is very similar to the previous case with no
short-range behavior.

Nonstationarity

Nonstationary examples are simulated using values of d higher than 0.5. We consider order
1 or 2 of nonstationarity, that is d € [0.5,2.5)2.
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Figure 6: Boxplots of the covariance of the wavelet coefficients at different scales for a bivariate

1 038
08 1
the number of coefficients available. Calculation was done on N = 512 observations for 1000
replications.

FIVARMA(0, (0.2,1.2),0) with 2 = . The index of the horizontal axis displays

The behavior of the wavelet correlations at each scale is illustrated in Figure 5(d). Contrary
to stationary simulations where the optimal choice of j; was equal to jo = 1, the optimal
choice of the parameter jj is jo = 2. Results are given in Tables 6 and 7.

Comparing Tables 2 and 6, the quality of estimation of d is still accurate in nonstationary
settings, with similar values for the RMSE. As for the estimation of 2, Tables 3 and 7 indicate
that MWW still provides a good quality estimation of the long-run covariance matrix. The
quality is slightly lower but still satisfactory.

5.4. Discussion on identifiability

In practical applications, it seems natural to assume that time series have the same order
of stationarity. However, when two time series have long-memory parameters dy and d,,
satisfying dy — d;,, = 1 the long-run covariance matrix €2 is no longer identifiable with the
wavelet-based procedure. Indeed, Proposition 2 in Achard and Gannaz (2016) states that in
this particular case the covariance COV(Wj 1 (¢), Wj(m)) tends to 0 when the scale j tends
to infinity. Figure 6 illustrates this approximation for a bivariate FIVARMA(0, (0.2, 1.2),0),

p

a correlation matrix = 1

and p =0.8.

When d; — d,, = 1, the estimator (12) is no longer defined. In practice, the quantity dy — dp,
cannot be exactly equal to 1. Nevertheless, as dividing by a cosine function of this difference,
a small error in the estimation of (dy, d,,) will lead to an important bias in the estimation
of €y ,. As can be seen in Figure 7, the resulting bias increases in the neighborhood of the
non-identifiable lines dy — d,,, = £1.

When this situation occurs, say when the difference between dy — d,, is between 0.75 and

21
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Figure 7: RMSE in the estimation of the cross-covariance term 215 with respect to
(d1,d2). Estimation was done using the multivariate wavelet Whittle estimator for a bi-
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of Figure (a) (with a different color scale to improve visual quality). Blue lines in Figure (b)
correspond to dy — dy = 1. Calculation was done on N = 512 observations for 1000 replica-
tions.

variate FIVARMA (0, (d1,d2),0) with © = ( . Figure (b) represents an image plot

Without differentiation With differentiation
Q bias std RMSE bias std RMSE
M 0.0935 0.0762 0.1206 0.0349 0.0678 0.0762
Q12 4.1863 7.2103 8.3375 0.0261 0.06 0.0654
Qoo 0.2215 0.0819 0.2362 0.0292 0.07 0.0758
correlation 3.5255 6.2935 7.2137 0.0003 0.0155 0.0155
Table 1: Multivariate wavelet Whittle estimation of € for a Dbivariate

FIVARMA(O0, (0.2, 1.2),0) with p = 0.8, N = 512 with 1000 repetitions. As the memory
parameter of the second component is greater than one, one possibility is to differentiate the
second component. jg is chosen to be equal to 1.

1.25, the estimation of d is not affected. But the user must be careful for the estimation
of €. One solution is to differentiate or integrate one of the two processes. For example,
Table 1 illustrates the non-identifiability of € in a bivariate FIVARMA (0, (0.2 1.2) ,0).

When differentiating the second component (with do = 1.2) the estimator has again good
performances.
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6. MFW estimation and comparison with MWW

The comparison between Fourier-based and wavelet-based approach is presented now. Time
series were simulated using a bivariate FIVARMA (0, d, 0) with a long-run correlation matrix
1

Q= (,0 i) and p = 0.8. The bivariate vector d is chosen in [0,0.5)2, such that the time
series are stationary. In such a setting, Fourier-based estimators are available. For Fourier-
based approach, the parameter to choose is m corresponding to the number of frequencies
taken into account in the estimation. The default value in Shimotsu (2007) is m = N%%. We
also make comparisons with an optimal value computed by minimizing the RMSE.

Estimation of the long-memory parameters

Table 8 gives the results obtained for the estimation of d using the MFW procedure (to be
compared to Table 2 for wavelets). Comparison between Fourier and wavelet-based procedures
is summarized by the ratio between the RMSE given by MWW estimation and the RMSE
given by MFW estimation, denoted by the ratio W/F. Taking the same number of frequencies
as Shimotsu (2007), that is, m = N9 Table 8 shows that the quality of the MWW and
MFW procedures are comparable, even if wavelet-based estimation slightly improves Fourier-
based estimation with such a choice of m.

Next we also consider the number of frequencies leading to the minimal RMSE for MFW
estimation. As can be seen in Table 8, qualities of both procedures are very similar but MFW
estimation then (slightly) surpasses MWW estimation.

Very precise comparisons of Fourier-based and wavelet-based approaches are described in Fay
et al. (2009) for a univariate setting. In particular, it is shown that since the time series
are stationary, the use of Haar bases should improve the MWW quality. The authors indeed
obtained better results with the Haar-based procedure than with the Fourier-based procedure.
To highlight the versatility of wavelet-based procedures, we choose here wavelet bases with
four vanishing moments. A fair comparison with a Fourier-based method should consider
tapered Fourier of order 4 as detailed in Fay et al. (2009). They quantify the influence of
the regularity of the wavelet bases and discuss the comparison with (tapered) Fourier bases.
Similar results are expected to be obtained in the case of multivariate time series, however,
this topic exceeds the scope of this paper.

Estimation of the long-run covariance

Finally, Table 9 displays results for the estimation of € with the MF'W method (to be com-
pared to Table 3 for wavelets). When the MFW estimation is applied with the usual number
m = N65 of frequencies, one can see that the wavelet-based procedure still estimates better
the long-run covariance and the long-run correlation, with a ratio W/F always lower than
0.6 for the estimation of the € terms. When the number of frequencies in the Fourier-based
estimation is chosen optimally, the MFW and MWW procedures behave similarly and none
appears significantly better than the other.

To conclude, the MFW and MWW estimation procedures give very similar results. The
slight improvement of Fourier-based procedure for the estimation of d can be explained by
the choice of the wavelet bases, however wavelets are efficient for a large set of applications,
including time series with trends and nonstationarity features.
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7. Application on real neuroscience data

As already shown in Figure 5 for simulated data, the advantage of representing the wavelet
correlation in terms of scale is to qualitatively determine the scales necessary to estimate the
long-memory parameters and long-range covariance matrix. When dealing with real data,
the bootstrap is providing a way to assess the variability of the estimators. Using the real
data described in Section 3.2, sliding overlapping windows of the time series were extracted
containing 512 points and we repeated the estimation until reaching the final point of the
time series. This is illustrated in Figure 8, where an example of four pairs of fMRI data
from one subject is presented. Boxplots are constructed using the sliding window extractions.
From these plots, and taking into account neuroscientific hypothesis stating that the signal
of interest for resting state is occurring for frequencies below 0.1Hz, we chose to compute the
long-memory parameters between scales 3 and 6.

Figures 9 and 10 display an example of long-memory parameter and long-run correlation
estimated for one subject.
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Figure 8: Boxplots of the correlation of the wavelet coefficients at different scales for real time
series from fMRI data sets: (a) Time series 1 and 2; (b) Time series 13 and 14; (c) Time series
31 and 32; (d) Time series 47 and 48. Boxplots were obtained using sliding windows with
N = 512 points, extracted from two fMRI time series with length equal to 1200 points, from
a single subject. The estimated long parameters d of the two time series are equal. The fMRI
data set is described in Section 7. The index of the horizontal axis displays the number of
coefficients available. The horizontal red lines represent the estimated long-run correlation.
Calculation was done on N = 512 observations for 100 replications using sliding windows
(with overlap).
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Figure 10: Estimation of € from a subject of the fMRI data set brainHCP.

8. Conclusion

The R package multiwave provides a versatile wavelet-based approach, as well as a Fourier-
based approach, for estimating long-memory parameters and long-run covariance matrices
of multivariate time series. The two estimation procedures are based on semi-parametric



26 multiwave: Wavelet-Based Multivariate Whittle Estimation

approaches proposed by Shimotsu (2007) and Achard and Gannaz (2016). The added value
of the package is to provide estimations in long-range dependence multidimensional settings,
which is not proposed presently by any R package to our knowledge. This paper describes
the functions of the package multiwave and discusses some practical points for applications,
including an application on a real data set. A simulation study shows first that multivariate
estimation improves univariate estimation. The advantage of the wavelet-based procedure
with respect to the Fourier-based estimation is its flexibility, allowing to take into account
trends or nonstationarity.
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A. Additional tables

d bias std RMSE  ratio M/U
0.2 —-0.0170 0.0390 0.0425 0.7786
0.0 0.0130 0.0391 0.0412 0.9013
0.2 —0.0313 0.0376 0.0490 0.8960
0.2 —0.0316 0.0378 0.0493 0.8805
0.2 —0.0170 0.0383 0.0419 0.7674
0.4 —0.0442 0.0395 0.0592 0.7902

Table 2: Multivariate Whittle wavelet estimation of d for a bivariate FIVARMA(0, d, 0) with
p = 0.8, N =512 with 1000 repetitions. For the estimation, jo = 1.

d=(0.2,0) d=(02,02) d=(0.2,0.4)
Q bias std RMSE bias std RMSFE bias std RMSE
Q11 0.0417 0.0724 0.0836  0.0343 0.0711 0.0789 0.0417 0.0717 0.0830
Q12 0.0382 0.0657 0.0759 0.0279 0.0626 0.0686 0.0673 0.0684 0.0959

Q29 0.0048 0.0709 0.0710 0.0323 0.0714 0.0784 0.0748 0.0748 0.1057
corr. 0.0191 0.0227 0.0296 0.0010 0.0164 0.0164 0.0194 0.0235 0.0304

Table 3: Wavelet Whittle estimation of € for a bivariate FIVARMA(0,d,0) with p = 0.8,
N =512 with 1000 repetitions. For the estimation, jo = 1.

d bias std RMSE  ratio M/U
0.2 —0.0473 0.1213 0.1302 0.8472
0.0 —0.0371 0.1266 0.1320 0.8511
0.2 —0.0623 0.1209 0.1360 0.8848
0.2 —0.0526 0.1258 0.1364 0.8714
0.2 —0.066 0.1244 0.1408 0.9161
0.4 —0.0584 0.1293 0.1418 0.8935

Table 4: Multivariate Whittle wavelet estimation of d for a bivariate FIVARMA(1,d, 0) with
p = 0.8, N =512 with 1000 repetitions. For the estimation, jo = 3.

d = (0.2,0) d=(02,02) d=(0.2,0.4)
Q bias std RMSE bias std RMSE bias std RMSE
Q1 —0.0067 0.0828 0.0831 0.0024 0.0859 0.0860 0.0050 0.0889 0.0890
Q12 0.0551 0.0828 0.0995 0.0495 0.0794 0.0936 0.0507 0.0875 0.1012

oo 0.1363 0.1310 0.1891 0.1412 0.1384 0.1977 0.1391 0.1426 0.1992
corr. —0.0088 0.0805 0.0810 —0.0386 0.0527 0.0653 —0.0358 0.0985 0.1047

Table 5: Wavelet Whittle estimation of € for a bivariate FIVARMA(1,d,0) with p = 0.8,
N = 512 with 1000 repetitions. For the estimation, jo = 3.
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d bias std RMSE  ratio M/U
1.2 —0.0338 0.0762 0.0834 0.8509
1 —0.0276 0.0725 0.0776 0.8316
1.2 —0.0430 0.0732 0.0849 0.8672
1.2 —0.0411 0.0743 0.0849 0.8591
1.2 —0.0338 0.0741 0.0814 0.8309
1.4 —0.0356 0.0797 0.0873 0.8344
2.2 —0.0421 0.0884 0.0979 0.8718
2 —0.0403 0.0862 0.0951 0.8516
2.2 —0.0503 0.0860 0.0996 0.8875
2.2 —0.0490 0.0823 0.0958 0.8566
2.2 —0.0436 0.0868 0.0971 0.8652
2.4 —0.0429 0.0831 0.0935 0.8400

Table 6: Multivariate Whittle wavelet estimation of d for a bivariate FIVARMA(0, d, 0) with
p = 0.8, N =512 with 1000 repetitions. Nonstationary cases. For the estimation, jo = 2.

d=(121) d=(12,1.2) d= (12,14
Q bias std RMSE bias std RMSE bias std RMSE
Q11 —0.0048 0.1362 0.1363 0.0059 0.1369 0.1370 —0.0047 0.1361 0.1361
Q2 0.0180 0.1168 0.1182 0.0093 0.1155 0.1158 0.0159 0.1266 0.1276
Qoo —0.0027 0.1277 0.1277 0.0042 0.1386 0.1386 —0.0113 0.1487 0.1491
corr 0.0214 0.0475 0.0521 0.0051 0.0286 0.0291 0.0227 0.0506 0.0555
d=(22,2) d=(22,22) d= (22,24
Q bias std RMSE bias std RMSE bias std RMSE
Q1 —0.0383 0.1795 0.1835 —0.0253 0.1789 0.1807 —0.0361 0.1776 0.1812
Q12 —0.0043 0.1565 0.1565 —0.0129 0.1493 0.1498 —0.0097 0.1602 0.1605
Qo —0.0318 0.1776 0.1804 —0.0276 0.1809 0.1830 —0.0481 0.1813 0.1876
corr 0.0251 0.0604 0.0654 0.0087 0.0374 0.0384 0.0249 0.0626 0.0674

Table 7: Wavelet Whittle estimation of € for a bivariate FIVARMA(0,d,0) with p = 0.8,
N = 512 with 1000 repetitions. Nonstationary cases. For the estimation, jo = 2.

m = [NO%] = 57 m = |N"|

d bias std RMSE  W/F n bias std RMSE W/F

0.2  —0.002 0.0576 0.047 0.9050 0.90 —0.0197 0.0271 0.0335 1.2688
0 —0.0009 0.0593 0.0238 1.7294 —0.0033 0.0264 0.0267 1.5475
0.2 -0.0033 0.0574 0.0531 0.9214 0.85 —0.0130 0.0305 0.0332 1.4751
0.2 —0.0031 0.0591 0.0522 0.9434 —0.0123 0.0293 0.0318 1.5502
0.2 0.0008 0.0576 0.0579 0.7239 0.85 —0.0136 0.0308 0.0337 1.2456
0.4 0.0009 0.0595 0.0889 0.6666 —0.0192 0.0299 0.0355 1.6689

Table 8: Multivariate Whittle Fourier estimation of d for a bivariate FIVARMA(0, d, 0) with
p = 0.8, N = 512 with 1000 repetitions depending on the number of frequencies m. |z]
denotes the closest integer smaller than .
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d=(0.2,0) d=1(02,02) d=(0.2,04)
Q bias RMSE — W/F bias RMSE  W/F bias RMSE W/F
Q11 0.0186 0.2027 0.4123  0.0220 0.2036 0.3876  0.0113 0.2010 0.4127
Q1o 00124 01733 04381 0.0197 0.1748 0.3923  0.0149 0.1730 0.5545

Q22 0.0146 0.2138 0.3323 0.0263 0.2163 0.3624 0.0291 0.2162 0.4891
corr. —0.0013 0.0357 0.8298 —0.0004 0.0355 0.4621 —0.0012 0.0359 0.8483

Table 9: Fourier Whittle estimation of € for a bivariate FIVARMA(0,d,0) with p = 0.8,
N = 512 with 1000 repetitions. The number of frequencies is m = |[n"| with n = 0.65 as
chosen in Shimotsu (2007).

d = (0.2,0) d=(02,0.2) d = (0.2,0.4)
n=09 n=0.85 n=0.85
Q bias RMSE  W/F bias RMSE  W/F bias RMSE W/F

Q11 0.0622  0.0940 0.8896 0.0387 0.0832 0.9484 0.0389 0.0833 0.9962
Q12 0.0222 0.0638 1.1907 0.0304 0.0731 0.9380 0.0470 0.0826 1.1615
Qo —0.0031 0.0637 1.1149 0.0373 0.0839 0.9341 0.0812 0.1132 0.9338
corr. —0.0013 0.0163 1.8223 —0.0004 0.0177 0.9237 —0.0012 0.0179 1.6969

Table 10: Fourier Whittle estimation of € for a bivariate FIVARMA(0,d,0) with p = 0.8,
N = 512 with 1000 repetitions. The number of frequencies is m = [n"] with n such that
RMSE of d is minimized.
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