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Abstract

Interest in social segregation measurement has increased strongly over the years and
the number of segregation indices proposed in the literature have become more complex.
However there are only a few software applications that can be employed to analyze social
segregation, and these are usually available as a plug-in/package in geographic information
system (GIS) software or as limited stand-alone application. Thus, the development of
a package which exploits the power and versatility of the R environment for statistical
computing and graphics would be desirable. Also, analysis of the segregation indices
shows that there are ambiguities and errors in the literature, and consequently in the
available software applications. This is an even more important reason why we need
to develop a new tool to bring some order to the world of segregation measurement.
This paper contributes also by proposing an automatic statistical testing methodology for
these indices, using several resampling techniques: randomization tests, bootstrap and
jackknife.
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1. Introduction

Segregation refers to the organizational (school, occupation, health, etc.) or spatial (residen-
tial) separation of social groups. Social segregation is an important issue in modern society
because of its consequences for economic efficiency, social cohesion and equity. Over the past
few decades, the political agendas in several countries have set objectives and introduced
measures to promote socio-spatial diversity, and segregation analyses are being published in
official reports and statistics (Iceland, Weinberg, and Steinmetz 2002; Maurin and Schneider
2015).
Despite the growing use of segregation indices and their increased complexity, few software
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tools are available. Thus, the first objective of this work is to provide a relatively compre-
hensive segregation application which exploits the power and versatility of R, an open-source
and free statistical software package (R Core Team 2019). In parallel, we conduct a thor-
ough analysis of segregation indices which show that there are contradictions, ambiguities
and errors, reflected in existing software tools as well. This is perhaps an even more im-
portant reason to develop a new tool that will bring some order to the world of segregation
measurement. The third major contribution of our paper is the development of an automatic
statistical testing methodology for these indices, which uses several resampling techniques,
such as randomization tests, bootstrap and jackknife.
The segregation measurement debate started after World War II, with the work of several soci-
ologists (Jahn, Schmid, and Schrag 1947; Hornseth 1947; Williams 1948; Shevky and Williams
1949; Cowgill and Cowgill 1951). Then the work of Duncans (Duncan and Duncan 1955a,b)
heralded an era of “peace”, disrupted in the 70’s, by several critical articles (Cortese, Falk, and
Cohen 1976; Winship 1977; Falk, Cortese, and Cohen 1978). A new period of peace followed
publication of Massey and Denton (1988), who empirically and conceptually established a ty-
pology of segregation (the segregation dimensions). The development of computation power
heralded a new era in which spatial interactions were incorporated explicitly into segregation
measurement (Morgan 1983b; Morrill 1991; Wong 1993). A synthesis of this evolution from
aspatial to spatial and from global to local measures is provided in Wong (2016). In the new
millennium, in addition to the development of spatial and local indices, developments have
been made in the direction of multi-group indices (Reardon and Firebaugh 2002; Reardon
and O’Sullivan 2004) and of specific measures for ordered groups (Reardon 2009), income
segregation (Reardon 2011; Reardon and Bischoff 2011) and activity space (Wong and Shaw
2011; Farber, Páez, and Morency 2012; Farber, O’Kelly, Miller, and Neutens 2015). Also,
efforts have been made to respond to the lack of statistical inference methods for segregation
measures, such as bootstrap tests (Boisso, Hayes, Hirschberg, and Silber 1994; Lee, Minton,
and Pryce 2015), randomization tests/Monte Carlo simulations (Feitosa, Câmara, Monteiro,
Koschitzki, and Silva 2007; Tivadar, Schaeffer, Torre, and Bray 2014) and Bayesian inference
(Lee et al. 2015). For a review of these recent topics in segregation measurement, see Yao,
Wong, Bailey, and Minton (2019).
Since “modern” indices are based on spatial information, the first applications were integrated
into geographic information system (GIS) software, with small numbers of indices: ArcInfo 7
(Wong and Chong 1998), ArcView 3.2 (Wong 1996, 2003). Apparicio (2000) developed a
MapInfo application that computes a large number of indices. The main disadvantage of
these types of applications is that they are attached to commercial GIS software and to use
the segregation results in regressions, simulations and further analysis, requires an exportation
procedure. Also, automatization is not possible.
Another family of tools is comprised of stand-alone applications, first proposed by Kon-
stantinidis and Townshend (1999). However, it was Apparicio and colleagues who proposed
two stand-alone applications (Apparicio, Petkevitch, and Charron 2008; Apparicio, Martori,
Pearson, Fournier, and Apparicio 2014) that allow computation of large numbers of indices,
including complex indices based on spatial information and multi-group measures. There
are several important advantages to stand-alone software solutions: Their use is noncommer-
cial and they are user-friendly. The main disadvantage is that they can be used only in a
predefined context, and do not allow data manipulation, integration with other software, or
automatization.
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Name (Language) Integration Indices Authors
(AML-Splus) ArcInfo 7 4 Wong and Chong (1998)
(Avenue) ArcView 3.2 7 Wong (1996, 2003)
(MapBasic) MapInfo 4.5 24 Apparicio (2000)
SEGCALC standalone 18 Konstantinidis and Town-

shend (1999)
Segregation Analyzer (C#) standalone 42 Apparicio et al. (2008)
GSA (Java) standalone 43 Apparicio et al. (2014)
Oasis (R, PostgreSQL/PostGIS,
pl-R, MapServer)

web platform 33 Tivadar et al. (2014)

-seg- (Stata) Stata module 9 Reardon and Firebaugh
(2002)

seg (R) R package 11 Hong, O’Sullivan, and
Sadahiro (2014)

OasisR (R) R package 50 Tivadar (2019)

Table 1: Available software tools for segregation analysis.

The Oasis web platform developed by Tivadar et al. (2014) is novel in not requiring any
software installation, requests are made via the web navigator, and computation is conducted
on distant servers. The user has the possibility of wide segregation analysis on a territory
(including auto-correlation indices, descriptive statistics and web mapping) using either a
historical French data base or their own data. Another original feature of Oasis is that it
allows Monte Carlo simulations (permutation tests) to test the statistical significance of the
indices. However, this tool basically has the same advantages and disadvantages of stand-
alone applications.
Other applications have been developed as statistical software packages, but have a small
number of indices: e.g., Reardon and Firebaugh (2002)’s Stata (StataCorp 2017) module,
and Hong and O’Sullivan (2018)’s R package seg. The R package seg differs in that it is
able to compute more recent, surface-based measures, developed in response to the so-called
modifiable areal unit problem. Similar to package seg, package OasisR (Tivadar 2019) is a
package implemented in R, an open source software environment for statistical computing and
graphics. The main advantage of these tools is that they are flexible, and allow control over
many input parameters. They benefit also from the advantage of integration in statistical
software which provides the possibility of further analysis without exporting results, integra-
tion into other software, automatization, etc. Their main disadvantage is that they require
basic knowledge of programming in statistical software.
The article is structured in two main sections. In Section 2, we provide a brief summary
of segregation measurement, focusing on aspects that are relevant to the present work, i.e.,
definition and computation. Section 3 uses some practical examples to show how to use
OasisR. The article ends with conclusions and further developments.

2. Segregation indices
The objective of this paper is not to provide a comprehensive analysis of segregation indices,
but rather to unravel several errors and ambiguities, and to provide clearer definitions. The
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mathematical formulas are presented in Appendix A.
In line with most of the existing literature, we present the indices developed in OasisR fol-
lowing the five dimensions of segregation defined by Massey and Denton (1988). These
dimensions are: evenness (population distribution across units), exposure (potential con-
tact between individuals), concentration (space occupied by social groups), clustering (pop-
ulation concentration in contiguous spatial units) and centralization (spatial distribution
around the area’s center). There are many critics of this classification. According to some,
the relevance of centralization has diminished due to the contemporary polycentric form of
cities (Brown and Chung 2006), while others believe that the five dimensions could be re-
duced to a two-dimensional continuum: evenness-clustering and isolation-exposure (Reardon
and O’Sullivan 2004), or evenness-concentration and clustering-exposure (Brown and Chung
2006), or separation-location (Johnston, Poulsen, and Forrest 2007). A distinction is made
between one-group indices (segregation of a group compared to the rest of the population),
between group indices (which measure the segregation between pairs of groups), multi-group
indices (which analyze the distribution of several population groups simultaneously) and social
diversity indices (which can be understood as zonal multi-group or local indices).
We compare the results of OasisR with those from two other software implementations. The
geo-segregation analyzer (GSA version 1.1) developed by Apparicio et al. (2014), is the most
complete automatic tool available so far. The application needs an input shape file (data and
maps), and produces 43 indices. The second tool is the R package seg, version 0.5-1, developed
by Hong et al. (2014). It computes 11 indices, most available only for a population composed
of two social groups. For comparison, we used hypothetical segregation patterns with two
groups (Morrill 1991; Wong 1993; Hong et al. 2014). Theoretical examples are available in
OasisR as a data object, adapted from Hong and O’Sullivan (2018). The space is represented
by a 10×10 checkboard, with different distributions of the two social groups in the area.

2.1. Evenness

Evenness refers to the distribution of different groups across spatial units and can be inter-
preted as a form of spatial inequality: The more uneven the group distribution compared to
other social groups, the more segregated is that group. This is the reason why several even-
ness indices are based on a spatial form of the Lorenz inequality curve, also called segregation
curve.

Standard evenness indices

Indices were introduced initially by Jahn et al. (1947) to measure “ecological” segregation
between black and white populations. Duncan and Duncan (1955a) demonstrated the math-
ematical relationships between these indices, and provided a graphical interpretation. They
showed that the information provided by previous indices could be derived from the dissimilar-
ity index Dk1k2 and the social group proportions. The dissimilarity index can be interpreted
as the share of a group k1 that would have to move to achieve an even distribution com-
pared to group k2. Similar to many other indices, the index was defined in the context of a
two-group population (minority vs. majority).
Duncan and Duncan (1955b) adapted the dissimilarity index to a one-group form, known as
Duncan’s segregation index ISk. It measures the dissimilarity between a group k and the
rest of the population. In the case of two group populations, the segregation and dissim-
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Index OasisR GSA seg
Duncan segregation × × –
Duncan dissimilarity × × only for 2 groups
Gini × × –
Gini2 × – –
Atkinson × limited to 3 values of δ –
Gorard × – –
Entropy × errors for 2 groups –

Table 2: Standard evenness indices comparison.

ilarity indices are identical. The Gorard segregation index GSk (Gorard and Taylor 2002)
is a slightly different form which computes the dissimilarity between a group and the total
population. Gorard’s index has some disadvantages (the upper boundary is less than 1, the
index is asymmetric) but has the advantage that unlike dissimilarity based indices it is a
strong composition invariant index.
Another standard one-group index based on the segregation curve is Gk, the spatial version
of the Gini index (Gini 1921) adapted by Duncan and Duncan (1955a). We developed a
between group form of Gini, G2k1k2 , by computing the index for a sub-population formed by
two groups.
The Atkinson index Ak (Atkinson 1970) was adapted to a segregation context by James and
Taeuber (1985), with the mathematical formula corrected by Massey and Denton (1988).
Compared to other indices based on segregation curves, the Atkinson index allows the re-
searcher to decide the weights of the spatial units in different zones of the segregation curve
by introducing an inequality aversion parameter δ with values between 0 and 1. If δ < 0.5,
the spatial units where the minority is underrepresented compared to the average, contribute
more to the segregation. The reverse is valid for δ > 0.5.
The entropy index (or the information index) was proposed by Theil (Theil and Finizza 1971;
Theil 1972) as an index of school segregation for a two-group population. It measures the
departure from evenness as the population weighted average deviation of each spatial unit
from the area’s entropy (or social diversity). In the case of a population with more than two
groups, the local and area entropy need to be calculated for each group as the “minority” and
the rest of the population as the “majority”.
The results obtained using OasisR and GSA are identical apart from the entropy index.
According to its definition, the entropy index for a two group population should have the same
value for both groups. If we take the example of complete segregation from the theoretical
distributions, the index should be equal to 1 (as in OasisR), while GSA provides H1 = 0.75
and H2 = 0.25. Using empirical data with several social groups produces identical results.
The Gorard index is computed only in OasisR, and in the case of the Atkinson index, the user
is limited in GSA to three standard values of the inequality aversion parameter δ (0.1, 0.5 and
0.9). The seg package computes only the dissimilarity index for individual pairs of groups.

Spatial evenness indices

Spatial evenness indices were developed by geographers in response to a major criticism
of standard segregation indices: Although satisfactory for organizational segregation studies,
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they seem less appropriate in a geographical context where segregation is a “separation created
by spatial structure” (Wong 1993, p. 559). For instance, if we make random permutations
of the populations between spatial units, standard evenness indices do not change, but the
social structure of the area is obviously different. Spatial evenness indices are based on the
dissimilarity index, and were defined in the context of a two-group population. The first
developments were made by Jakubs (1981) and Morgan (1983a) but they require complex
linear programming methods.

Morrill (1991) developed a contiguity modified dissimilarity index Dk1k2(adj), where the prob-
ability of contact between groups is modeled via the contiguity matrix: Interactions between
groups emerge if two spatial units are adjacent. In the case of Dk1k2(adj) with a population
formed by more than two groups, an ambiguity arises from the spatial interaction term: It
is not sufficiently clear how the population proportions across spatial units should be com-
puted. In the original paper, the author uses total populations ti while Wong and Chong
(1998) present these totals specifically as the sum of two groups tk1k2

i . This difference has
consequences for the index if the population is composed of more than two groups. The only
detailed generalized formula is that proposed by Apparicio et al. (2008) but it seems incorrect
since the proportions are determined using the entire population. Instead, the partial total
population should be used because Morrill’s index is based on the dissimilarity index which
compares the distributions between each pair of groups independently of the others, and it
seems logical to assume that spatial potential interactions should also take account only of
each pair of groups (see Appendix A).

For the theoretical two group distributions, OasisR, GSA and seg provide identical results. In
the case of more than two groups, Morrill’s index is computed only in OasisR and GSA. The
results in GSA are incorrect since the spatial interaction term is based on population totals
rather than the groups involved in the comparison. An empirical confirmation is provided by
the fact that the result matrix is not symmetrical as it should be (the dissimilarity between
two groups is by construction symmetrical).

Apparicio et al. (2008) adapted the original index to construct d Morrill’s segregation index
ISk(adj) (one-group version of the index). Similar to Duncan’s dissimilarity and segregation
indices, ISk(adj) can be interpreted as the dissimilarity between group k and the rest of the
population, and the use of a group’s proportion within the total population of each unit in
the spatial interaction is correct (see Appendix A). Computation of the index gives the same
results in OasisR and GSA and is not provided in seg.
One limitation of Morrill’s indices is that they take account only of direct interactions between
adjacent spatial units, and it would be interesting to expand these interactions further in
space. One solution would be to go beyond the first order contiguity by generalizing Morrill’s
indices to the kth order contiguity Dk1,k2(Kadj). The contiguity order is considered to have
a negative effect on spatial interactions. Generalized Morrill’s indices are computed only
in OasisR, and we propose two forms for the spatial function: negative exponential and
reciprocal.

Wong (1993) developed two indices for a population with two groups: Dk1k2(w), where spatial
interactions between contiguous spatial units are proportional to the length of the shared
boundary and Dk1k2(s), which also includes the perimeter/area ratio. In Wong’s original
paper both indices have errors in their mathematical definition. The first error is the division
by 2 of the spatial interaction term and the second is the row standardization of the spatial
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Index OasisR GSA seg
Morrill’s segregation × × –
Morrill’s dissimilarity × errors for more than 2 groups only for 2 groups
Generalized Morrill’s × – –
Wong’s segregation × errors –
Wong’s dissimilarity × errors only for 2 groups
User’s spatial matrix definition × – only for 2 groups

Table 3: Comparison of spatial evenness indices.

matrix instead of its overall standardization. Despite these problems, the results provided
by Wong (1993) using the theoretical distributions are correct. If we re-compute the index
according to Wong’s formal definition, the results are not coherent, but if we adapt Morrill’s
index by replacing the contiguity matrix with the shared boundary matrix (as described in
Wong’s article) we obtain identical results.
Hong et al. (2014) obtained the same results for the theoretical examples but the authors do
not provide the mathematical definition of Wong’s indices. On his personal page, Hong (2014)
developed scripts to present the R package seg and similar to OasisR, he defines the spatial
matrix using a global standardization. Wong and Chong (1998) presented improved versions
of the indices formulae, where the proportions in the spatial interaction effect are clearly
defined, but the definition of the spatial interaction matrix seems incorrect since Wong and
Chong (1998) use double standardization of the spatial matrix (row standardization followed
by overall standardization).
Furthermore, there are ambiguities concerning the definition of each spatial unit’s perimeter,
necessary for the computation of Dk1k2(s). To obtain the same results as in Wong (1993) and
Hong et al. (2014), we need to use only the “internal” perimeter of each spatial unit, defined
as the sum of the boundaries shared with other spatial units, and ignore the area’s external
borders. To overcome this issue, in OasisR the user can choose the perimeter definition.
For the theoretical two-group distribution, using the corrected mathematical formula (see
Appendix A) and the “internal” definition of the perimeter, OasisR provides the same results
as the seg package and Wong’s original paper. The results of GSA are incorrect because
the software uses the original wrong mathematical definitions. We also generalized Wong’s
indices to a case with more than two groups, and its one-group form. Apparicio et al. (2008)
define these indices mathematically but these definitions have similar problems to Morrill’s
index generalization, and carry the errors from the original definition. Finally, seg and OasisR
allow the user to compute a modified version of the index using their own definition of the
spatial interaction matrix.

2.2. Exposure

Exposure measures the potential contact between members of the same group (isolation) or
between members of different groups (interaction) as the probability that they live in the
same spatial unit.

Standard exposure indices

The first exposure indices were developed by Shevky and Williams (1949), and were normal-
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Index OasisR GSA seg
Isolation × × ×
Interaction × × ×
Eta2 × × –
Spatial isolation/interaction × – ×
Distance-decay isolation/interaction × errors –

Table 4: Exposure indices comparison.

ized and explained as a probabilistic model by Bell (1954). The notations of these indices
were introduced by Lieberson (1981).
The isolation index xPxk is defined as the probability that a group member shares the same
spatial unit with another member of the same group. Without the computational power of
a computer, it was difficult to calculate the index according to its definition and Bell (1954)
provided an approximate version of the index (see Appendix A for details). Presently, there
are no particular reasons not to compute its exact value xPxk∗ , and in OasisR, the user has
the possibility to choose between the two versions.
The isolation index can be adjusted to control for the effect of population composition, which
has a strong effect on the index value. Bell (1954) also developed the normalized isolation
index (an approximate version) which is equivalent to the correlation ratio Eta2k (White 1986)
and to the mean square contingency or phi square1 for a dichotomous population (Duncan
and Duncan 1955a). Since the index can be computed in different ways (Bell 1954; Coleman
1966; Zoloth 1976), debate emerged over its dimension and interpretation (James and Taeuber
1985; Massey and Denton 1988; Stearns and Logan 1986).
The interaction index xPyk1k2 (Lieberson 1981) is a between group segregation measure which
computes the probability that a member of a group k1 shares the same spatial unit with a
member of group k2. Similar to the isolation index, we can compute its exact or approximate
value. The results of all the approximate standard exposure indices are the same in OasisR,
seg and GSA. The exact versions can be computed only in OasisR.

Spatial exposure indices

Morgan (1983b) developed two exposure indices that take explicit account of the distance
between spatial units, which influences the potential contact between members of the same
social group (distance-decay isolation index DPxxk ) or different groups (distance-decay
interaction index DPxyk1k2). The hypothesis is that people also come into contact outside
of their own spatial units, and the number of potential contacts increases with distance, but
their intensity decreases.
Similar to the other indices based on distance, the use of a gravity exponential function makes
the result sensitive to the distance measure. There are some ambiguities about the definition
of distance within a spatial unit since it could be null or a function of the spatial unit shape
(area, perimeter). In OasisR, the user can choose between different spatial matrix diagonal
definitions: null, 0.6 of the area’s square root, as proposed by White (1983), and a user matrix.
In GSA, the distance within a spatial unit is considered null. Results for the linear definition

1Williams (1948) defined the mean square contingency or phi square as a conversion of chi square for a
population with two groups into an index (from 0 to 1) by dividing it by the total population.
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of the distance are identical in GSA and OasisR. For the gravity version of the index, GSA
results are incorrect: The diagonal of the distance matrix remains null after transforming to
exponential form, and should be at its maximum level as exp(0) = 1 (highest spatial inter-
action). If we compute these indices for theoretical two group patterns using the wrong null
exponential diagonal, we obtain the same results as GSA. For more than two groups, the
results provided by the two applications are different. OasisR and GSA provide metric con-
version options (measure in and measure out), necessary for comparison between studies, and
to avoid situations where indices cannot be computed because of the digital approximations
that rapidly approach zero in the negative exponential distance function. These indices are
not computed in seg.
Reardon and O’Sullivan (2004) develop several spatial indices, including a spatial version
of the exposure/isolation index. The spatial exposure index is computed as the average
percentage of a group within the local environment of each member of another group. The
spatial isolation of a group is simply the spatial exposure of a group to itself. In OasisR
we used only the functions developed by Hong and O’Sullivan (2018) in the seg package,
formatting the output as the other OasisR functions.

2.3. Clustering

In clustering, the more contiguous spatial units occupied by a group (forming an enclave
in the area) the more segregated that group. There are arguments in the literature about
the need for a separate dimension since modern evenness indices take explicit account of the
phenomena of space and clustering (Reardon and O’Sullivan 2004). The distinction between
evenness and spatial clustering might be just an artifact of the reliance on spatial subareas at
some chosen geographical scale of aggregation (evenness at one level of aggregation is strongly
related to clustering at a lower level of aggregation). For Brown and Chung (2006), clustering
and exposure constitute a single dimension since high clustering is a manifestation of low
exposure, and vice versa: If the members of a group are located close to each other, especially
in a large cluster, their exposure to other groups will be reduced.

Proximity measures

The first proximity indices were introduced by White (1983) for two groups, and later gen-
eralized to apply to more than two groups by White (1986): the mean proximity between
the members of the same group Pxxk (one-group index), and between two different groups
Pxyk1k2 (between-group index), and the mean proximity between persons in the area with-
out regard to the group Poo (multi-group index). In the original papers, White proposed
considering the distance within a spatial unit as non-null, and advised a function of the area
(0.6
√
A) but a null diagonal distance matrix is most commonly used in the literature and

computed using software packages (Apparicio et al. 2014; Tivadar et al. 2014). In OasisR,
the user can choose among these options or exploit a user value. These measures can be
determined using a linear function of the distance. The result represents the average distance
between individuals (from the same or different groups). With a gravity form such as the
exponential of the negative distance, the measure becomes an index. As for the other distance
based measures, the exponential function makes the result sensitive to spatial measure units.
Therefore, a metric converter is provided in OasisR.
By using a null distance within spatial units and a linear distance matrix in OasisR, the
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Index OasisR GSA seg
One-group mean proximity × only null diagonal, errors –
Between group mean proximity × only null diagonal, errors –
Multi-group mean proximity × – –
Multi-group mean proximity (between group) × – –
Spatial proximity index (multi-group) × – errors
Spatial proximity index (one-group) × – –
Spatial proximity index (between group) × errors –
Absolute clustering × only contiguity, errors –
Relative clustering × only null diagonal –
Relative clustering (linear) × – –

Table 5: Proximity measures and clustering indices comparison.

results for Pxxk and Pxyk1k2 are the same as for GSA2. In relation to the other distance-
based indices, their gravity form is incorrect in GSA: The diagonal for the negative exponential
distance matrix is null but should be equal to 1. If we use this incorrect spatial definition,
we obtain the same results for Pxxk but different ones for Pxyk1k2 . There is probably an
additional error in the GSA computation, as the result matrix is not symmetric as it should
be (the spatial proximity is identical if we permute the groups). Moreover, we tested the
mathematical properties that these indices should respect for two group populations (White
1983); they hold only for OasisR. The seg package does not compute these measures.
Based on proximity measures, White (1983) computes a segregation statistic called spatial
proximity which is simply the average of one-group proximities, weighted by the fraction of
each group in the population. The initial index was defined for the case of two groups which
created certain ambiguities related to its nature (between group or multi-group index) since
the result is the same SP = SP1,2 . White (1986) generalized the index to more than two
groups by using the multi-group form of the index but with an error in the mathematical
definition since the populations are squared. In contrast, Apparicio et al. (2008) keep the
between group definition if the population includes more than two groups, and compute the
index ignoring the rest of the population. This means also that the mean proximity between
persons regardless of group should have a between group form Pook1k2 , as used to compute
SPk1k2 . The spatial proximity index is computed using only the gravity form, but can also
be used with linear distance in the opposite interpretation. If we compute the gravity form
of the spatial proximity index using the wrong null diagonal, we obtain the same result as
with the seg package (which computes only the multi-group form) and GSA (which provides
only the between group version). The index can also be computed as the one-group version
SPk, which compares the proximity among the members of a group Pxxk and the average
proximity of the population Poo.

Clustering indices

Massey and Denton (1988) propose two clustering measures. The absolute clustering index
ACLk expresses the average number of members of groups in nearby spatial units as a pro-
portion of the total population in those proximate spatial units. Spatial interactions can

2GSA does not provide results for P oo.
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be computed using the contiguity matrix, although the ACLk index could produce negative
values despite Massey and Denton (1988)’s claim that its values always range between 0 and
1. The problem arises from missing information about the particular form of the contiguity
matrix: Contiguity between a spatial unit and itself should be equal to 1 (Konstantinidis and
Townshend 1999). As in White (1983), the index also has a gravity form (exponential of the
negative distance), and it is recommended to use a non-null diagonal of the spatial interaction
matrix as a function of the area. Using the gravity form, the index is subject to the same
issue of sensitivity to the distance measure.
GSA provides only the contiguity form of the index, and the results appear incorrect, inde-
pendent of the contiguity matrix diagonal definition (0 or 1). We used a very simple case
of a theoretical 2×2 grid, where the first cell is inhabited exclusively by the minority, and
all other cells include the majority. With a null contiguity matrix diagonal, the index has
aberrant values (negative or superior to 1), and with a diagonal equal to 1, the index should
be 0 for both groups which is not the case for GSA.
The relative clustering index RCLk1k2 is a between-group index based on White’s proximity
measures which compares the average distance between the members of one group to the
average distance between the members of another group. The index is computed using only
the gravity form but we can easily adapt the index to linear distance. If we use the wrong null
diagonal in the distance matrix for the exponential form of the index, the results in OasisR
are similar to GSA.

2.4. Concentration

According to Massey and Denton (1988, p. 289) “the concentration refers to relative amount
of physical space occupied by a group”. The first index to measure spatial concentration is the
Delta index ∆k, proposed by Hoover (1941) and adapted by Duncan, Cuzzort, and Duncan
(1961). This is a dissimilarity index between the distribution of a group and the distribution
of available space. Massey and Denton (1988) developed an absolute concentration index
ACOk, by comparing the average area inhabited by a group to the average land area they
would inhabit under maximum spatial concentration (if they were all located in the smallest
areal units). The relative concentration index RCOk1k2 (Massey and Denton 1988) takes
the ratio of one group concentration to another group concentration, and compares it to the
maximum possible ratio that would be obtained if the first group was maximally concentrated
and the second minimally concentrated. The index is standardized to obtain values between
−1 and 1, but in contrast to what Massey and Denton (1988) claim, the index can be smaller
than −1. Moreover, Egan, Anderton, and Weber (1998) identify several mathematical and
conceptual problems with that index which is why RCOk1k2 is no longer used in Census
Bureau analyses (Iceland et al. 2002). In its mathematical formula, intermediary sums do
not have the indices required to identify the maximum/minimum concentrations for each
group which can lead to ambiguities. In the original paper, these parameters are presented
as “defined as before”, but they should differ from one group to another (see Appendix A).
It is impossible to compute concentration indices for the theoretical distributions (the de-
nominator is null since spatial units have the same size). Thus, we use empirical examples
for comparisons between OasisR and GSA. For one-group indices (∆k and ACOk) the results
are identical while for relative concentration only some of the results are the same. There is
an error in GSA since the matrix should not be symmetric.
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Index OasisR GSA seg
Delta × × –
Absolute concentration × × –
Relative concentration × errors –

Table 6: Concentration indices comparison.

2.5. Centralization

According to Massey and Denton (1988), centralization is the degree to which a group is
spatially located near the center of an area. The first true centralization index was developed
by Duncan and Duncan (1955b) to introduce some spatiality into segregation measuring. The
index was presented as a one-group index, so we describe it as Duncan’s absolute central-
ization index. The literature uses the relative centralization index RCEk1k2 , adapted and
proposed by Massey and Denton (1988)3 which measures the extent of one group’s centraliza-
tion relative to another. These centralization indices are particular forms of the Gini index,
and measure the localization unevenness of two groups around a specific point (the center)
by ordering spatial units according to their distance from the center. Massey and Denton
(1988) introduced an absolute centralization index ACEk which compares the spatial distri-
bution of a group to the distribution of available land around the area’s center. Since ACEk

computation needs information on area, the results can sometimes contradict RCEk1k2 . For
this reason, in OasisR, we also compute the mathematical adaptation of RCEk1k2 , to corre-
spond to Duncan and Duncan (1955b)’s original description (DCEk). With the exception of
Duncan’s centralization index, provided only by OasisR, the results of the other indices are
similar to GSA.
One of the reasons why centralization lost popularity in the literature was that this dimension
has little meaning in relation to increasingly polycentric and sprawling modern cities. To
resolve this issue, we adapt the centralization indices to a polycentric spatial configuration.
The option retained is to compute the distance between spatial units and each center, and
to take account only of the distance to the closest point. This method is implemented in
OasisR by the RCEPoly, ACEPoly, and ACEDuncanPoly functions. According to Folch and
Rey (2016), we can spatially limit the effect of centrality. We consider two options: defining
a parameter k as the number of nearest neighbors affected by each center, or choosing the
distance of influence kdist. The constrained version of the index can be computed only for the
indices developed by Duncan and Duncan (1955b) (RCEPolyK and ACEDuncanPolyK).

2.6. Other measures: Diversity, multi-group and local indices

Social diversity indices
Diversity indices measure the level of social diversity in an area, without taking account of
the spatial distribution of different groups. Shannon-Wiener index HSW (Shannon 1948) is
based on the entropy concept and measures the heterogeneity of a population from perfect
homogeneity (0) to maximum heterogeneity (natural logarithm of the number of groups). The
normalized version HSW is obtained by dividing it by its maximum. Simpson’s interaction

3There is a minor error in Massey’s mathematical formula since the sums should start from 2 (Massey and
Denton 1988, p. 292).
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Index OasisR GSA seg
Relative centralization × × –
Polycentric relative centralization × – –
Constrained/local relative centralization × – –
Duncan’s absolute centralization × – –
Duncan’s polycentric absolute centralization × – –
Duncan’s constrained/local absolute centralization × – –
Massey’s absolute centralization × × –
Massey’s polycentric absolute centralization × – –

Table 7: Centralization indices comparison.

Index OasisR GSA seg
Diversity index × – –
Normalized diversity index × – –
Simpson’s index × – –
Multi-group dissimilarity × × ×
Multi-group Gini × × –
Multi-group normalized exposure × × ×
Multi-group information theory index × × ×
Multi-group relative diversity × × ×
Multi-group squared coefficient of variation × × –
Deviational ellipse index – × –
Spatial multi-group dissimilarity × × ×
Spatial multi-group relative diversity index × – ×
Spatial multi-group information theory index × – ×
Ordinal information theory index × – –
Ordinal variation ratio index × – –
Ordinal square root index × – –
Ordinal absolute difference index × – –
Rank-order information theory index × – –
Rank-order variation ratio index × – –
Rank-order square root index × – –
Poulsen typologies – × ×
Location quotient × × –
Local diversity × – –
Local entropy × × –
Local Simpson × – –

Table 8: Diversity, multi-group and local indices comparison.

index IS measures the probability that individuals selected randomly from the area (regardless
of their location), do not belong to the same social group (Simpson 1949). These indices are
available only in OasisR.
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Multi-group indices

We treat multi-group segregation indices separately since their appearance in the literature is
later, and only some can be attributed to standard dimensions of segregation. These indices
analyze the distribution of several population groups simultaneously. Reardon and O’Sullivan
(2004) define a general approach to measuring spatial multi-group segregation for several in-
dices: multi-group normalized exposure index P ∗ (James and Taeuber 1985; Reardon and
Firebaugh 2002) and a set of general multi-group spatial/clustering indices: multi-group in-
formation theory index H∗ (Theil 1972; Reardon and Firebaugh 2002)4, multi-group relative
diversity index RD∗ (Carlson 1992; Reardon 1998), and multi-group dissimilarity index D∗
(Morgan 1975; Sakoda 1981). Other multi-group indices provided in OasisR are multi-group
Gini index G∗ (Reardon 1998) and the squared coefficient of variation C∗ (Reardon and Fire-
baugh 2002). Spatial versions of certain multi-group indices (dissimilarity, information theory
and relative divesirty) were developed by Reardon and O’Sullivan (2004). For these spatial
versions of multi-group indices, we formatted only the output of an existing function in the seg
package. The results obtained in OasisR, GSA and seg are identical if the indices are available.
In addition to the previous measures, we developed functions in order to compute two spe-
cific types of multi-group segregation indices. Using the variation ratio approach described in
Reardon and Firebaugh (2002); Reardon (2009) proposes four indices adapted to the partic-
ular case of groups defined by ordered categories: ordinal information theory index, ordinal
variation ratio index, ordinal square root index, and ordinal absolute difference index. Rear-
don, Firebaugh, O’Sullivan, and Matthews (2006) and then Reardon (2011) and Reardon
and Bischoff (2011), developed rank-ordered indices (rank-order information theory index,
rank-order variation ratio index, and rank-order square root index), adapted from the ordinal
methodology, to analyze segregation using a continuous variable (but not necessarily one that
is interval-scaled) such as income. In practice, data on income distribution is available in
classes ordered by income thresholds. Empirically, the methodology includes the following
steps: First, for each threshold, we compute the corresponding ordinal segregation indices
(ordered information theory, variation ratio, and square root index) between those above and
below the income threshold; second, we fit a polynomial regression model to approximate the
information theory/variation ratio/square root function; third we use the model’s estimated
coefficients to compute an estimate of the rank-order indices. All these outputs are included
in OasisR.

Local indices

Local indices can be mapped which allow us to identify spatial patterns in the area. First, the
location quotient LQk

i (Isard 1960) identifies spatial units where a group is over-represented
or under-represented. Moreover, the social diversity indices can be computed at the local
level. The local entropy index H2i which is equivalent to HSW (Theil 1972; Theil and
Finizza 1971), measures social diversity within each spatial unit (H2i = 0 for a homogeneous
population and H2i = 1 for maximal diversity, when all groups are equal in size). The results
are identical in OasisR and GSA. We can adapt the local level Shannon’s diversity index
and Simpson’s interaction index which are available only in OasisR. GSA provides Poulsen’s
typology (Poulsen, Johnston, and Forrest 2010, 2011) which is not developed in OasisR.

4Similar to the entropy index, computation of the multi-group version ignores the local entropy if a group
is missing.
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2.7. Resampling tests
In contrast to other tools, OasisR offers functions that allow the statistical testing of in-
dices using resampling techniques (randomization tests, bootstrap and jackknife) based on
individual or unit sampling.

Random population distribution as comparison
The idea that segregation should be analyzed as the deviation from a random pattern rather
than from a complete theoretical desegregation was introduced at the end of the 1970s by
Cortese et al. (1976) and Winship (1977). Winship (1977) considers the binomial distribution
as a natural model for random segregation, while Cortese et al. (1976) and Falk et al. (1978)
suggest using a hypergeometric distribution. Assuming these statistical hypotheses, it is
possible to parameterize Duncan’s dissimilarity index distribution but a generalization for
other segregation indices is not feasible. In a more recent paper, Ransom (2000) examines
the sampling distributions of dissimilarity and Gini indexes by deriving their exact sampling
distributions, and developing asymptotic inference procedures. Allen, Burgess, Davidson,
and Windmeijer (2015) developed this framework further, and show that the use of bootstrap
methods can improve test procedures.
Resampling methods are valid, nonparametric alternatives to conventional inferential statis-
tics. These methods are particularly interesting in the context of segregation analysis, because
the data used often are a sample of the total population, and even if the analyst has data on
the entire population, there is a risk of data collection and manipulation errors. Resampling
allows us to create simulated distributions of the indices as the basis for testing different null
hypotheses which depend on the resampling technique and the sampling unit (individual or
spatial unit).

Randomization tests
Permutation tests (also called randomization tests or exact tests) are statistical significance
tests in which the distribution of the test statistic under the null hypothesis is obtained
by calculating all possible values of the statistic under rearrangements of the labels on the
observed data. If the number of possible combinations is too high, we can use asymptotically
equivalent tests such as Monte Carlo permutation (or approximate permutation or random
permutation) tests. First, we generate random population distributions, and for each replicate
we compute the index which gives us the simulated reference distribution. This allows us to
compute a pseudo p value that is equal to 1 minus the relative rank of the index in the
reference distribution (Anselin 2003) which can be interpreted as a statistical significance test
of the hypothesis that the segregation index is the result of random processes.
In the case of individual sampling units, each individual makes a random draw without re-
placement among spatial units, according to a probability vector. Location probability can
be identical or constrained, e.g., by unit population (Cortese et al. 1976), or by area (Tivadar
et al. 2014). As in Findlay and Findlay (1984) and Carrington and Troske (1997), we gener-
ate random localization patterns by resampling directly from the original data (aggregation
of individual independent random draws) instead of sampling with theoretical distribution
(Boisso et al. 1994; Tivadar et al. 2014). If we set sampling on spatial units (Feitosa et al.
2007; Tivadar et al. 2014), we have a similar framework to the permutation test developed in
spatial auto-correlation analysis (Anselin 1995). Random localization is obtained from per-
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mutations of entire populations among spatial units which allows us to test the significance
of the spatial component of the index.

Bootstrapping
Because segregation measures are often computed from sample data, distributional informa-
tion required to test hypotheses can be obtained by the bootstrap method (Efron 1979) used
to estimate the distributions of a statistic by resampling with replacement from the data set.
These distributions can be examined in order to establish a probability that the statistic’s
value will include the value implied under the null hypothesis. Thus, bootstrap techniques
allow us to construct confidence intervals around the original point estimate, using Efron’s
percentage method (Efron 1979).
If we consider individual sampling, the construction of bootstrap distributions is achieved by
using resampling directly from the original data – the alternative being to use draws from
a theoretical distribution as in Boisso et al. (1994). The method is appropriate especially if
the initial data are based on a population sample. If the initial data are based on a sample
of units, then bootstrap sampling should be applied at the unit level. This technique can be
employed for spatial segregation analysis (Lee et al. 2015), but seems more appropriate for
the analysis of organizational segregation (Carrington and Troske 1997).

Jackknife
Although temporally jackknife preceded bootstrap (Quenouille 1956; Tukey 1958), the method
is similar to the bootstrap, and is used in statistical inference mainly to estimate the bias
and standard error (variance) of a statistic. The simulated index distribution is obtained by
systematically recomputing the statistic, excluding one or more observations at a time from
the sample set.
Jackknife with individual sampling seems less useful in the context of segregation analysis, but
is a particularly interesting method in the case of unit sampling because it allows detection
of replicates that represent outliers. If a significant inferior outlier is found in the index
reference distribution, this means that without a specific spatial unit, the segregation level
would be significantly lower and implies that this spatial unit is playing a significant role
in segregation. To our knowledge, the jackknife technique has been used in the segregation
literature only by Massey (1978) in order to estimate dissimilarity index variances. OasisR
allows several automatic standard outlier detection techniques, such as boxplot and standard
deviation methods, and different score methods (normal, t Student and chi-squared scores)
and the median absolute deviation method, based on functions developed in the outliers
package (Komsta 2011).

Bayesian inference
Lee et al. (2015) proposed a new method for estimating the dissimilarity index and quantifying
its uncertainty, based on a Bayesian hierarchical modeling approach (with inference based
on Markov chain Monte Carlo simulation). The authors consider two distinct models: a
globally smooth model (binomial generalized linear mixed model, where the set of random
effects are spatially auto-correlated) and a locally smooth model which allows geographically
adjacent areal units to have very similar or very different minority proportions. In both
cases an estimate and a 95% credible interval for the dissimilarity index can be obtained, by
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Figure 1: Theoretical examples.

computing the posterior predictive distribution of the index. The model was implemented
using the CARBayes package (Lee 2013) in the R software environment. This methodology
represents an opportunity for future developments applying the Bayesian spatial modeling
approach to other segregation measures.

3. Using OasisR
The R functions developed were designed to address many different situations in the easiest
way possible. For all OasisR aspatial segregation functions, the only input required is the
population distribution table within units. The table should not include row totals (unit total
populations) which could be interpreted as a supplementary social group. For spatial indices,
a second necessary input is spatial data, which can be provided in three ways (see the example
below). Many functions have specific parameters, but their input is not obligatory since by
adopting their default values, functions compute the usual form of indices. For a detailed
description of the parameters, see the OasisR manual (Tivadar 2019). Generally, the output
of segregation functions is a numeric value for multi-group indices, a vector of each group’s
index value for one-group indices, and a numeric matrix for between group indices. Values
are rounded to four digits.
As support, we use a very simple 10×10 grid theoretical example which is used in many
studies (Morrill 1991; Wong 1993; Lee et al. 2015; Hong et al. 2014); the data are provided by
the package. From the various available distributions (Hong 2014), we chose two situations:
one with complete segregation of the minority, and one with a particular social groups mix.
The population in the dark gray cells is formed only of minority members, in the white cells
it is formed only of majority members, and in the light gray ones the population contains
a mix of the two groups. In each cell, we consider that the total population number is 100
individuals. For more complex examples, see Appendix B.
To compute an aspatial segregation index, the script is basic since we need to use the function
name and a distribution table:

R> A <- segdata@data[, 1:2]
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R> DIDuncan(A)

[,1] [,2]
[1,] 0 1
[2,] 1 0

In the case of spatial indices, there are three ways to introduce spatial data in OasisR. The
first solution is to provide a spatial R object, using the spatobj argument. It is possible also
to import a shapefile, by using two arguments: (1) folder, to provide the path where the
shapefile is located on the drive, and (2) shape, the name of the shapefile (without an exten-
sion). The shape import uses the readOGR function in the rgdal package (Bivand, Keitt, and
Rowlingson 2019). Finally, spatial information can be provided directly as vectors/matrices
of contiguity, common boundaries, areas, distances, etc. This spatial information can be com-
puted within OasisR because the package includes geographical functions based on the spdep
(Bivand, Pebesma, and Gómez-Rubio 2013; Bivand 2019) and rgeos (Bivand and Rundel
2019) packages, with appropriate output for the segregation functions.

R> foldername <- system.file("extdata", package = "OasisR")
R> shapename <- "segdata"
R> areavector <- area(segdata)
R> Delta(A, spatobj = segdata)

[1] 0.75 0.25

R> Delta(A, folder = foldername, shape = shapename)

OGR data source with driver: ESRI Shapefile
Source: "C:/R/win-library/3.3/OasisR/extdata", layer: "segdata"
with 100 features
It has 19 fields
[1] 0.75 0.25

R> Delta(A, a = areavector)

[1] 0.75 0.25

Certain supplementary arguments emerge for specific indices. For example, in the Atkinson
function, inequality aversion can be set via the delta argument. The argument variant spec-
ifies which variant of Wong’s indices is chosen: variant = "w" or variant = "s". Section 2.3
showed that certain proximity measures can be computed as multi-group, between group or
one-group indices. The user can choose the index type via the argument itype. In the case of
exposure indices xPxk and xPyk1k2 , the logical argument exact determines whether indices
are computed using the approximate or exact definition. The functions spatmultiseg and
rankorderseg have several arguments specific to the seg package. For rank-ordered measures,
polorder gives the order of the of polynomial regression model.

R> B <- segdata@data[, 7:8]
R> xPy(B)



Journal of Statistical Software 19

[,1] [,2]
[1,] 0.7500 0.2500
[2,] 0.0789 0.9211

R> xPy(B, exact = TRUE)

[,1] [,2]
[1,] 0.7475 0.2525
[2,] 0.0797 0.9203

Spatial segregation functions based on distance have particular arguments. Spatial interac-
tions can be defined via the fdist argument: "l" for the linear and "e" for the exponential
inverse function of distance. Other distance functions can be used by introducing a user
distance matrix in the R functions, and by setting a linear function. Metric conversions are
based on the conv_unit function in the birk package (Birk 2016), with distin and distout
the respective arguments for the input and output measures. Argument diagval defines the
distance within a spatial unit: "0" for the null diagonal and "a" for White’s formula (0.6
square root of the area). Other versions can be used by introducing a user distance matrix
in the function. Examples of how to use these functions are provided in Appendix B. Indices
based on the contiguity matrix have a supplementary logical argument queen, to choose the
criterion used for contiguity matrix computation: TRUE for queen and FALSE for rook (by
default). For centralization indices, the user must introduce the argument center which is
the number of the spatial unit in the table representing the area’s center . For polycentric
versions, the input must be a vector. For measures based on the generalized contiguity matrix
(K-order matrix), two arguments can shape spatial interactions: argument K represents the
order of the contiguity matrix (equal to 2 by default), and argument f designates the function
used for the distance decay effect, the negative exponential (by default) or reciprocal func-
tion. Argument ptype determines whether Wong’s indices are computed using only internal
boundaries (ptype = "int") or all the borders of the spatial units (ptype = "all"). For
the absolute clustering index ACL, it is possible to define the spatial interactions matrix that
will be used, based on the spatmat argument: "c" for contiguity matrix (by default) and "d"
for the distance matrix.
With the help of function ResampleTest the user can conduct all the statistical tests based
on sampling, as described in the previous section. The main inputs of the function are the
population distribution table x, the name of the function to be tested fun, the simulation type
simtype ("Boot" to generate bootstrap replications, "Jack" to generate jackknife replications
and "MonteCarlo" for a randomization test using Monte Carlo simulations), the number of
simulations nsim (equal to 99 by default), the sampling unit used: sampleunit = "unit"
when the sampling is based on spatial/organizational units and sampleunit = "ind" for
individual sampling). In the bootstrapping technique, the argument perc is a vector with the
percentiles to be displayed in the output, and the argument samplesize gives the size of the
sample used for bootstrapping. If null, the sample size equals the number of spatial units (in
the case of unit sampling), or the total population (in the case of individual sampling). For
jackknife simulations, there are two specific arguments. When the argument outl is TRUE the
function provides the outliers obtained by jackknife iterations. Argument outmeth defines
the outlier detection method: boxplot, standard deviation, normal scores, t Student scores,
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chi-squared scores and median absolute deviation. Estimations based on scoring methods
are obtained from the outliers package. If outliers are detected, the argument sdtimes is
used as a multiplication factor of the standard deviation used to detect outliers, and QRrange
determines the boxplot thresholds as the multiplication of IQR (inter quartile range). The
argument proba is used for random location processes that are not equiprobable (a vector
of probabilities should be provided). If the jackknife technique is employed, proba indicates
the probability (confidence interval) for scoring tests. If the argument setseed is set to
TRUE, a zero seed is set for the random number generator, which is useful to have replicable
simulations. In addition, specific arguments such as geographical data and other arguments
presented above, should be introduced to allow the segregation function to be tested.
The ResampleTest output is a list of several objects: index name, simulation type, summary
statistics of the simulations, simulated values of the index, simulated population distribution.
If outliers detection is used, additional objects are included: outliers matrix and outliers values
as list and plot. The ResampleTest output can be used by the ResamplePlot function to plot
the main results. Certain additional graphic arguments can be used to customize the output:
the colors and the legend (position, format and character size). Here we provide a simple
script to test the spatial component of Morrill’s index; for more examples, see Appendix B.

R> ISDuncan(A)

[1] 1 1

R> ISMorrill(A, spatobj = segdata)

[1] 0.9444 0.9444

R> set.seed(1234)
R> test <- ResampleTest(A, fun = "ISMorrill", spatobj = segdata,
+ simtype = "MonteCarlo", sampleunit = "unit", nsim = 999)
R> test$Summary

Var ISMorrill Mean Rank P.Value
1 1 0.9444 0.6206 1000 0.001
2 2 0.9444 0.6206 1000 0.001

R> ResamplePlot(test)

4. Conclusions
OasisR is a package implemented in the R software which allows computation of many segrega-
tion indices. It was designed to respond to a range of applications in the easiest way possible.
This package has the advantage that it is implemented in R which allows total control of the
input arguments, most of which have default values that correspond to the standard use of
indices. This feature enables less experienced users to conduct segregation analysis with ease.
Moreover, there is the possibility to develop further analysis within R, to automate the scripts
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and to integrate the analysis into other software packages. Another advantage compared to
other segregation tools, is its noncommercial use which makes it available to a wide range of
individuals who can download it for free directly from the Comprehensive R Archive Network
(CRAN) where it is available at https://CRAN.R-project.org/package=OasisR. Since it
is an open source package, it can be improved by the scientific community.
As we saw in Section 2, one of the most important benefits of OasisR is that it clarifies many
ambiguities concerning definition of the segregation indices by providing proper computation
and the possibility to choose among the different forms of the indices in the literature.
Another important contribution is the development of several resampling methods which
allow testing of the statistical significance of indices. Three distinct types of simulations are
provided: randomization tests, bootstrapping, and jackknife. Additionally, graphic functions
are provided for a better visualization of results. It is clear that is still work to do in this
field, and especially concerning the application of Bayesian inference.
The OasisR package is currently in its third version. Despite optimization efforts, more work
is needed to improve this aspect regarding certain complex indices whose computation can
take time, especially in the case of big study zones.
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A. Indices definition and use in OasisR
The table in this appendix gives an overview on indices definition and use. The following
notation is used in the table:

n – number of spatial units;

xki – population of group k in spatial unit i;

Xk – population of group k in the area;

ti – total population in spatial unit i;

T – total population in the area;

tk1,k2
i = xk1

i + xk2
i – population of groups k1 and k2 in spatial unit i;

T k1,k2 = Xk1 +Xk2 – population of groups k1 and k2 in the area;

pki – proportion of population k in spatial unit i;

P k – proportion of population k in the area;

pk1,k2
i = x

k1
i

x
k1
i +xk2

i

– proportion of group k1 in the population k1 and k2 in spatial unit i;

P k1,k2 = Xk1
Xk1 +Xk2 – proportion of group k1 in the population k1 and k2 in the area;

δ – inequality aversion parameter for Atkinson index;

Per i – perimeter of spatial unit i;

Ai – area of spatial unit i;

A – total area of the zone;

cij – elements of contiguity matrix;

c̄ij – elements of contiguity matrix, where c̄ii = 1;

cλij – elements of λ order contiguity matrix;

bij – elements of shared boundaries matrix;

dij – elements of distance matrix;

f(dij) – function of spatial interaction, based on the distance between centroids of spatial
units i and j. Usually two forms are used: linear f(dij) = dij and exponential f (dij) =
exp (−βdij), where β is a distance decay parameter;

f(λ) – function of contiguity interaction, similar to distance interaction. We propose two
forms: reciprocal f(λ) = 1/λ and exponential f (λ) = exp (−βλ), where β is a distance
decay parameter;

R – a spatial region;
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q – points within the region;

τq – population density at point q;

τkq – population density of group k at point q;

τ̃kq – population density of group k in the local environment of point q;

πkq – proportion in group k at point q;

π̃kq – proportion in group k in the local environment of point q;

p̂, q̂ – percentile ranks in the population of interest corresponding to a continuous variable
(such as income);

nk1 – rank of spatial unit where the sum of all ti equals or exceeds Xk (from 1 to nk1), spatial
units being ordered by geographic size;

nk2 – rank of spatial unit where the sum of all ti equals or exceeds Xk (from n to nk2), spatial
units being ordered by geographic size;

T k1 – sum of all ti from spatial unit 1 to spatial unit nk1;

T k2 – sum of all ti from spatial unit nk2 to spatial unit n;

X̃k
i – the cumulative percentage of the k group population through the ith spatial unit, spatial

units being ordered by distance to the center (standard version of centralization) or to
the closest center (polycentric version);

t̃ki – the cumulative percentage of total population through the ith spatial unit, spatial units
being ordered by distance to the center (standard version of centralization) or to the
closest center (polycentric version);

ñ – the magnitude of the centrality effect: ñ = n for unconstrained centralization, and ñ < n
for local/constrained centralization indices.
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( ∑ ñ i=

2
X̃
k i−

1
t̃ i
) −( ∑
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B. Examples of OasisR functions
To allow a better understanding of the OasisR functions, we provide several examples which
demonstrate certain subtleties of their use. Similarly to the main article, we use the same
theoretical examples based on a 10×10 checkboard, with two possible population distributions.
We start with a short script which analyzes the Atkinson index sensitivity to inequality
aversion parameter changes (distribution B):

R> delta.list <- seq(0.1, 0.9, by = 0.1)
R> result <- rep(0, 9)
R> for (i in 1:length(delta.list)) {
+ result[i] <- Atkinson(B, delta = delta.list[i])[1]
+ }
R> result

[1] 0.8538 0.8672 0.8827 0.9005 0.9211 0.9442 0.9687 0.9901 0.9997

The next example illustrates the variation of the generalized adjusted dissimilarity index as
a function of the contiguity order k (distribution A).

R> result <- rep(0, 11)
R> for (k in 1:11) {
+ result[k] <- DIMorrillK(A, spatobj = segdata, K = k)[1, 2]
+ }
R> result
R> plot(result, type = "l")

[1] 0.9444 0.9022 0.8775 0.8646 0.8581 0.8552 0.8541 0.8536 0.8535 0.8534
[11] 0.8534

The perimeter definition (ptype = "int" for internal boundaries – by default, vs. ptype =
"all" for entire borders of spatial units) matters for the adjusted boundary and perimeter
area ratio dissimilarity index Dk1k2(s).

R> DIWong(A, spatobj = segdata, variant = "s", ptype = "int")

[,1] [,2]
[1,] 0.0000 0.9472
[2,] 0.9472 0.0000

R> DIWong(A, spatobj = segdata, variant = "s", ptype = "all")

[,1] [,2]
[1,] 0.0000 0.9444
[2,] 0.9444 0.0000

Similarly, the diagonal definition of the distance matrix has an impact on the value of distance-
based indices:
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R> DPxy(A, spatobj = segdata, diagval = "0")

[,1] [,2]
[1,] 0.7882 0.2118
[2,] 0.0706 0.9294

R> DPxy(A, spatobj = segdata, diagval = "a")

[,1] [,2]
[1,] 0.7688 0.2312
[2,] 0.0771 0.9229

As we reduce the effect of the distance by increasing the distance decay parameter, the
minority spatial isolation reaches its maximum:

R> result <- rep(0, 11)
R> for (k in 1:11) {
+ result[k] <- DPxy(A, spatobj = segdata, diagval = "0", beta = k)[1, 1]
+ }
R> plot(result, type = "l")
R> result

[1] 0.7882 0.9234 0.9725 0.9905 0.9968 0.9989 0.9996 0.9999 0.9999 1.0000
[11] 1.0000

Certain clustering indices, such as the spatial proximity index, can be defined as multi-group,
one-group and between group measures:

R> SP(A, spatobj = segdata, diagval = "a", itype = "multi")

[1] 1.6636

R> SP(A, spatobj = segdata, diagval = "a", itype = "one")

[1] 2.9909 1.2212

R> SP(A, spatobj = segdata, diagval = "a", itype = "between")

[,1] [,2]
[1,] 1.0000 1.6636
[2,] 1.6636 1.0000

To compare gravitational distance-based measures, we need to pay attention to distance units
which strongly influence results:

R> ACL(A, spatobj = segdata, spatmat = "d", diagval = "a")
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[1] 0.6636 0.6636

R> ACL(A, spatobj = segdata, spatmat = "d", diagval = "a", distin = "m",
+ distout = "km")

[1] 9e-04 9e-04

Suppose that the area has two centers, located in the 3rd row and 8th column (28th polygon
in the data base), and symmetrically in the 8th row and 3rd column (73rd polygon). The
local effect of the constrained polycentric relative centralization index will depend on the area
included by the number of closest neighbors to the center:

R> result <- rep(0, 25)
R> for (k in 1:25) {
+ result[k] <- RCEPolyK(A, spatobj = segdata, center = c(28, 83),
+ K = k)[1, 2]
+ }
R> plot(result, type = "l")

After seeing some interesting examples of segregation functions, we show some statistical tests
enabled by the OasisR package, using resampling methods. We provide an example of the
permutation test in the main paper; here we develop examples of bootstrapping and jackknife
techniques. If the outl parameter is set to TRUE, the ResampleTest function automatically
produces a boxplot for outlier detection.

R> xtest <- ResampleTest(B, fun = "ISDuncan", simtype = "Boot",
+ sampleunit = "unit", spatobj = segdata)
R> xtest$Summary

Var ISDuncan 5th_percentile Median 95th_percentile BootSE
1 1 0.8421 0.7847 0.8414 0.8909 0.003246122
2 2 0.8421 0.7847 0.8414 0.8909 0.003246122

R> xtest <- ResampleTest(B, fun = "xPx", simtype = "Jack",
+ sampleunit = "unit", spatobj = segdata, outl = TRUE)
R> xtest$Summary

Var xPx 5th_percentile Median 95th_percentile JackBias JackSE
1 1 0.7500 0.7391 0.75 0.7553 -0.003564 0.04559334
2 2 0.9211 0.9200 0.92 0.9238 -0.005544 0.01579764
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Figure 3: Outliers detection.
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