
JSS Journal of Statistical Software
May 2019, Volume 89, Issue 8. doi: 10.18637/jss.v089.i08

GPareto: An R Package for Gaussian-Process-Based
Multi-Objective Optimization and Analysis

Mickaël Binois
Mines Saint-Étienne

Victor Picheny
INRA

Abstract

The GPareto package for R provides multi-objective optimization algorithms for ex-
pensive black-box functions and an ensemble of dedicated uncertainty quantification meth-
ods. Popular methods such as efficient global optimization in the mono-objective case
rely on Gaussian processes or kriging to build surrogate models. Driven by the predic-
tion uncertainty given by these models, several infill criteria have also been proposed in a
multi-objective setup to select new points sequentially and efficiently cope with severely
limited evaluation budgets. They are implemented in the package, in addition with Pareto
front estimation and uncertainty quantification visualization in the design and objective
spaces. Finally, it attempts to fill the gap between expert use of the corresponding meth-
ods and user-friendliness, where many efforts have been put on providing graphical post-
processing, standard tuning and interactivity.

Keywords: kriging, Pareto front, efficient global optimization, uncertainty quantification.

1. Introduction

Numerical modeling of complex systems is now an essential process in fields as diverse as
natural sciences, engineering, quality or economics. Jointly with modeling efforts, methods
have been developed for the exploration and analysis of corresponding simulators, in partic-
ular when runs are time consuming. A popular approach in this case is to rely on surrogate
models to alleviate the computational expense. Many surrogate models are used in prac-
tice: polynomials, splines, support vector regression, radial basis functions, random forests
or Gaussian processes (GP). They may be integrated in various optimization strategies, see,
e.g., Wang and Shan (2007), Santana-Quintero, Montano, and Coello (2010), Tabatabaei,
Hakanen, Hartikainen, Miettinen, and Sindhya (2015) and references therein. We focus here
on GP-based strategies, which have been recognized as very well-suited for sequential designs

https://doi.org/10.18637/jss.v089.i08

2 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

of experiments, and in particular in an optimization context (Jones, Schonlau, and Welch
1998; Jones 2001).
The GPareto package (Binois and Picheny 2019) proposes Gaussian-Process based sequential
strategies to solve multi-objective optimization (MOO) problems in a black-box, numerically
expensive simulator context. More precisely, it considers the case of models with multiple
outputs, y(1)(x), . . . , y(q)(x) (where y(i) : X ⊂ Rd → R), that are optimized simultaneously
over a box-constrained domain X. Typically, outputs (or objectives) are conflicting (e.g.,
quality versus quantity, etc.), so there exists no solution where all objectives are minimized
at once. The goal is then to identify the set of optimal compromise solutions, called a Pareto
set (Collette and Siarry 2003). Defining that a point x∗ dominates another point x if all its
objectives are better (which we denote by x � x∗ in the following), the Pareto set X∗ is the
subset of the non-dominated points in X:

∀x∗ ∈ X∗, ∀x ∈ X,∃k ∈ {1, . . . , q} such that y(k)(x∗) ≤ y(k)(x).

The image of the Pareto set in the objective space, y(1)(X∗), . . . , y(q)(X∗), is called the Pareto
front, which is useful to practitioners to select solutions (see Figure 3 for an illustration). In
practice, the Pareto set is usually not finite, and optimization strategies aim at providing a
finite set that represents X∗ well.
In general, numerical optimization has motivated a substantial activity in the R (R Core
Team 2019) community: see for instance the CRAN Task View on “Optimization and Math-
ematical Programming” (Theussl, Schwendinger, and Borchers 2019) or the recent special
issue in the Journal of Statistical Software (Varadhan 2014). However, most works are ded-
icated to mono-objective optimization with large budgets. For small budgets, the packages
DiceOptim (Roustant, Ginsbourger, and Deville 2012; Ginsbourger, Picheny, and Roustant
2016) and tgp (Gramacy 2007; Gramacy and Taddy 2010) propose GP-based techniques, but
for mono-objective problems only. There are a few packages on MOO in general: nsga2R
(Tsou 2013), emoa (Mersmann 2012), mopsocd (Naval 2013), goalprog (Novomestky 2008)
and mco (Mersmann 2014), which provide tools and algorithms such as NSGA-II (nondomi-
nated sorting genetic algorithm II) implementations (Deb, Pratap, Agarwal, and Meyarivan
2002) or hypervolume computations (see Section 2.2). As for methods available for expensive
black-box functions optimization, the package SPOT (Bartz-Beielstein and Zaefferer 2012)
seems to be the only alternative to GPareto.
On the other hand, GP-based MOO has recently generated a substantial activity in the sta-
tistical and optimization communities, with focuses either on sampling strategies (Ponweiser,
Wagner, Biermann, and Vincze 2008; Wagner, Emmerich, Deutz, and Ponweiser 2010; Sven-
son 2011; Emmerich, Deutz, and Klinkenberg 2011; Picheny 2015; Zuluaga, Sergent, Krause,
and Püschel 2013) or on uncertainty quantification (Bhardwaj, Dasgupta, and Deb 2014; Ca-
landra, Peters, and Deisenroth 2014; Binois, Ginsbourger, and Roustant 2015a). GPareto
aims at filling this gap by making most of the recent approaches available in a unified imple-
mentation to both MOO experts and end-users. To this end, a substantial effort has been
given to provide graphical visualization and standard tuning, and many entry-points ranging
from high-level interfaces to specific method tuning have been made available.
GPareto is built upon the DiceKriging (Roustant et al. 2012) package dedicated to Gaussian
process modeling. Several associated packages deal with various related problems, in particu-
lar DiceOptim (mono-objective optimization) and KrigInv (algorithms for inversion problems;
Chevalier, Picheny, and Ginsbourger 2014; Chevalier, Picheny, Ginsbourger, and Azzimonti

Journal of Statistical Software 3

2018). GPareto shares many aspects with those packages. Package GPareto is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
GPareto. The package includes a suitable version of this document as a vignette along with
the full PDF documentation.
The remainder of this paper reviews briefly the methods available in the package, describes
important implementation aspects and functionalities, and provides illustrations through a
few examples. Finally, the optimization performances are compared to the state-of-the-art
approaches on a small benchmark.

2. Method

2.1. Principles of Gaussian-process based optimization

We recall here very briefly the scheme common to most GP-based (mono- or multi-objective)
optimization, as in the famous EGO algorithm (efficient global optimization) proposed in the
seminal article of Jones et al. (1998).

The mono-objective case

Let y be the output of the numerical model of interest and x ∈ Rd the inputs to be optimized
over. Considering for now that y is a scalar, it is assumed to be a realization of a Gaussian
process F (x) with mean µ(x) and covariance c(x,x′) known up to some parameters.

Step 1: Generate an initial set of n observations: y1 = y(x1), . . . , yn = y(xn). Typically,
{x1, . . . ,xn} are chosen using a space-filling design. A classical rule-of-thumb is to use
n = 10× d.

Step 2: Fit the GP model to the data, by estimating the mean µ(x) and covariance c(x,x′).
Typically, a parametric form is assumed for those functions, whose parameters are ad-
justed, e.g., by using maximum likelihood estimation. The GP model is the distribution
of Y (x) conditional on the observations y1, . . . , yn, with plugged-in mean µ and covari-
ance c.

Step 3: A new point xn+1 is chosen as the maximizer of a so-called infill criterion which is
based on the GP model. This step requires running an inner optimization loop to find
the best point over Rd.

Step 4: A new observation yn+1 = y(xn+1) is obtained by running the simulator and the
GP model is updated by conditioning on yn+1. At this step, the estimates of µ and c
might be updated.

Steps 3 and 4 are repeated until the simulation budget is exhausted or when a stopping
criterion is met.
There are many R packages to perform Step 1, see for instance planor (Kobilinsky, Bouvier,
and Monod 2018), DiceDesign (Dupuy, Helbert, and Franco 2015), or lhs (Carnell 2019).
For Step 2, GPareto relies on the DiceKriging package, which offers a choice of mean and
covariance functions. The model parameters estimation is based on maximum likelihood, see
Roustant et al. (2012) for details.

https://CRAN.R-project.org/package=GPareto
https://CRAN.R-project.org/package=GPareto

4 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

Step 3 defines the sampling strategy, as the infill criterion determines the balance between
exploration (search for new solutions) and exploitation (local improvement around existing
observations). The EGO algorithm is based on the so-called expected improvement (EI)
criterion. The improvement is defined as the difference between the current minimum of the
observations and the new function value, such that for a GP model, EI is the conditional
expectation of the improvement provided by a new observation Y (x):

EI(x) = E
[
max

(
0, min

1≤i≤n
(yi − Y (x))

) ∣∣∣Y (x1) = y1, . . . , Y (xn) = yn

]
,

which has a closed form expression (see Jones et al. 1998, for calculations).

Noisy objectives
In many optimization problems, the objective cannot be evaluated exactly but through a
“noisy” procedure, that is, one only has access to measurements of the form fi = y(xi) + εi.
A classical hypothesis, adopted here, is to assume independent Gaussian centered noise, that
is: εi ∼ N (0, τ2

i). GP modeling naturally adapts to this case (see for instance Ankenman,
Nelson, and Staum 2010), and the package DiceKriging offers options to take noise into
account.
However, the EGO algorithm may not be used directly; Picheny, Wagner, and Ginsbourger
(2013) provide a review of the extensions that have been proposed to handle noisy objectives.
Within those, the re-interpolation approach of Forrester, Keane, and Bressloff (2006) is at-
tractive, since it amounts to building a secondary noiseless GP that can be directly used with
EGO. As shown in Koch, Wagner, Emmerich, Bäck, and Konen (2015), this approach can be
readily applied to the multi-objective case, and is implemented in GPareto.

The multi-objective case
When multiple objectives are considered (y has values in Rq), Steps 2 and 3 need to be modi-
fied. Let us remark first that it is possible to go back to a scalar problem and apply standard
methods, for instance by relying on objectives aggregation (Knowles 2006; Zhang, Liu, Tsang,
and Virginas 2010) or modeling desirability functions (Henkenjohann and Kunert 2007). How-
ever, these have been found to be relatively poor solutions in practice (Henkenjohann and
Kunert 2007; Svenson 2011).
GPareto focuses on approaches where GP models are fitted independently to each objective.
Although it is possible to account for correlation between the different objectives, for instance
using co-kriging models (e.g., Álvarez, Rosasco, and Lawrence 2011), experimental results in
Svenson (2011) and Kleijnen and Mehdad (2014) suggested that it provides little benefit
compared to the additional complexity.
Choosing infill points from a set of GP models is a complex question (see Section 2.2). Within
GPareto, we focus on approaches that compute a single infill criterion from the list of models.
Hence, Step 3 is identical to the mono-objective case, provided that an adequate infill criterion
is used.

2.2. Review of surrogate-based and Bayesian multi-objective optimization
In the mono-objective case, the expected improvement criterion evaluates the potential gain
of an additional point in terms of the expected decrease over the best observation so far.

Journal of Statistical Software 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f1

f 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f1

f 2
Figure 1: Comparison of additive-epsilon (left, arrows) and hypervolume (right, filled areas)
improvements for two possible new observations (green and blue) to the current Pareto front
(red points). The reference point for hypervolume computations is the black crossed circle.
In terms of epsilon improvement, the green point is more interesting as it is farther away from
the Pareto front, but the blue point is better in terms of volume increment.

In a similar fashion, a multi-objective improvement function can be defined by estimating
the expected “progress” brought by a new observation (relatively to the current set of non-
dominated observations Pn).
This leaves room to put the focus either on a good coverage, on extremities, or on convergence
toward the actual Pareto front, for which specific metrics, such as the hypervolume or epsilon
indicators, have been proposed (see, e.g., Svenson 2011; Emmerich et al. 2011). Specifically,
the hypervolume improvement is the increment of the volume contained between the Pareto
front and a reference point in the objective space, when a non-dominated point is added. The
epsilon increment is the smallest scalar that must be added to components of a new point
(in the objective space) such that it is dominated by the current Pareto front. An illustrative
example is given in Figure 1.
These indicators, among others, have been used to define generalizations of the expected
improvement. Empirical comparisons showed the clear superiority of some approaches to
others (Svenson 2011; Wagner et al. 2010), but no global consensus on a particular improve-
ment function. In GPareto, two infill criteria derived from this point of view are available:
the expected hypervolume improvement (EHI; Emmerich et al. 2011) and expected maximin
improvement (EMI; Svenson and Santner 2016, related to the epsilon indicator). See the
corresponding references for the technical details.
Two alternatives have been included in GPareto as well. First, in the SMS-EGO approach
(S-metric selection EGO; Ponweiser et al. 2008; Wagner et al. 2010), the improvement is
calculated as the hypervolume added to the current Pareto front by the lower confidence
bound of the prediction at x, hence it is closely related, but not equal to the EHI. To avoid
large plateaus of zero improvement, an adaptive penalization is provided in regions where the
lower confidence bound is dominated.
Finally, the stepwise uncertainty reduction (SUR) criterion of Picheny (2015) is in turn con-

6 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

cerned with the probability of non-domination (also called probability of improvement), that
is, the probability of a point not to be dominated by the current Pareto set: P(x 6� Xn). Intu-
itively, regions in the design space with non-null probabilities indicate a potential improvement
for the Pareto front, and the improvement considered is the reduction of the average of this
probability over the design space.
These sequential infill criteria share the common trait that they do not provide a continuous
representation of the Pareto front but only consider the current set of non-dominated obser-
vations. This point is addressed in the following with a quantification of the uncertainty on
both the Pareto set and front.

2.3. Uncertainty quantification

With limited evaluation budgets, the non-dominated solutions in the objective and variable
spaces may not give a very precise or dense approximation of the Pareto front and set.
However, the Gaussian process framework allows us to overcome this limitation by providing
an uncertainty quantification of the optimization results.

Pareto front (objective space)

One straightforward idea is to use the surrogate models to give an estimate of the Pareto
front, as is done, e.g., in Calandra et al. (2014). While being fast, this approach is very
dependent on the quality of the surrogates and there is no measure of uncertainty associated.
In Binois et al. (2015a), an alternative relying on conditional simulations of Gaussian process
models is detailed, which provides an estimate of the Pareto front and an associated measure
of uncertainty.
In short, it exploits the capacity of the GP models to generate different possible realizations
S

(1)
1 , . . . , S

(q)
1 , . . . , S

(1)
N , . . . , S

(q)
N for the outputs conditioned by the observations, i.e., condi-

tional simulations, see Figure 2. For each path, a Pareto front is obtained (say, P(1), . . . ,P(N)).
Then, the set of fronts are used to define an average set P̄ estimating the true Pareto front
while the deviation from this set is used as a measure of uncertainty. Note that handling sets
of conditional Pareto fronts as performed in Binois et al. (2015a) requires the use of random
closed sets theory (Molchanov 2005); in particular, the estimator and uncertainty measure
used are the Vorob’ev expectation and deviation, respectively. Visually, representing the de-
viation for each random Pareto front directly illustrates which parts of the Pareto front are
precisely known or not (see Figure 5).
As described in Binois et al. (2015a), the current version of this approach requires conditional
simulations on discrete sets of inputs (for instance, a grid or a space-filling sample, which is
the solution adopted in GPareto, see Section 3.3). This set must be large to ensure that no
important potential solution is missed, which makes this approach computationally intensive.

Pareto set (variable space)

In a similar fashion, returning a smooth estimate of the entire Pareto set X∗ may be useful
to practitioners. We propose here to rely on two complementary approaches.
First, conditional simulations can be used here: From each set of GP realizations, the Pareto
set X∗i can be obtained. Then, the sets X∗1, . . . ,X∗N can be used to estimate a density, e.g.,
using kernel density estimation.

Journal of Statistical Software 7

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

x

f 1

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10
15

20

x
f 2

0 5 10 15

−
15

−
5

0
5

10
15

20

f1

f 2

Figure 2: Left and center: three conditional (i.e., interpolating at observations) simulations
of objectives f1 and f2, respectively, based on GP modeling. Right: corresponding images in
the objective space. Pareto sets and fronts are shown in bold.

A complementary measure is the probability for a given point in the variable space to be non-
dominated by the current set of observations, P(x 6� Xn). This probability can be expressed
in closed form (Keane 2006), so that it can be computed on a grid for instance to display
the dominated and non-dominated regions in the variable space. The amount of intermediate
probability values (not zero or one) quantifies the uncertainty on the Pareto set (Picheny
2015).
Note that both approaches require extensive sampling over the design space, which makes
them computationally intensive.

3. Package overview and options

3.1. Architecture

The structure of the package reflects its main orientations: multi-objective optimization and
associated quantification of uncertainty. In particular, readers familiar with the DiceOptim
and KrigInv packages will find a very similar set of functions ranging from high-level interfaces
to lower level criteria. Additional helper functions are also provided as well as test functions.

3.2. Functions related to the sequential design of experiments

As described in Section 2.1, Gaussian-process based optimization can be separated into four
steps. Depending on the characteristics of the problem at hand, several levels of control are
available. For the sake of clarity, we start by describing the highest-level functionalities before
detailing routines that enable more control on the optimization process or may be integrated
in other procedures.

User-friendly wrapper: easyGParetoptim

This is a simple interface to multi-objective optimization that perform all steps described in
Section 2.1, which does not require much knowledge on the specificities of Gaussian process
based optimization. If no additional control parameters are set, all Steps 1–4 are performed
according to default values.

8 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

The minimal arguments for easyGParetoptim are the following, common with many opti-
mization methods in R, such as optim:

• fn, this is the multi-objective function that returns the values of the objectives at a
given design;

• budget, the maximal number of evaluations of the expensive black-box function fn;

• lower, upper, vectors giving the limits of the domain for optimization.

A design of experiments may be passed using the argument par and corresponding values
provided with values; otherwise a maximin LHS design is constructed from DiceDesign.
Noisy objectives can be handled with the argument noise.var, which stands for the noise
variance. We assume here that the user has prior knowledge of the variance. The two main
options are to provide a vector of size q (constant noise) or a function (same arguments as
fn) if the noise depends on x.
Additional tuning of the inner procedures are available using the control list, in particular the
criterion (method) and the optimization routine of the acquisition function (inneroptim). By
default, easyGParetoptim uses "SMS" as criterion, with "pso" as inner-optimization routine.
Both choices have been made to favor speed while ensuring robustness. They are also the
default choice for the following GParetoptim routine.

GParetoptim

This function handles Steps 3 and 4, hence assuming that users have performed a design of
experiments and built surrogate models at their convenience, which they provide in the argu-
ment model. Besides fn, lower, upper and noise.var shared with easyGParetoptim, more
parameters are directly exposed, such as crit for selecting the infill criteria or cov.reestim
to decide whether or not hyperparameters are updated after adding new observations. More
flexibility is given using control parameters, optim_control for the optimization of the infill
criterion and crit_control for parameters of the latter, that are useful for the following
crit_optimizer function.

crit_optimizer

Optimizing the criteria, also known as acquisition functions, is quite complicated due to their
multi-modality: see Figure 5 for an illustration. Besides, in general, no derivative expressions
are available and there are large plateaus. On top of that, the attraction basin of the global
optimum of the infill criterion may have a very small volume in the variable space (see
Roustant et al. 2012, for the illustration of this problem). Nonetheless, acquisition functions
are typically much cheaper to evaluate than the objective functions and intensive optimization
can be carried out.
Three solutions to perform this inner optimization are provided in GPareto:

1. the user can provide a set of candidate points with optimcontrol in crit_optimizer
and GParetoptim (hence reducing the problem to a discrete search);

2. the default optimization routine is genoud (Mebane and Sekhon 2011), a genetic algo-
rithm;

Journal of Statistical Software 9

3. the psoptim optimization method (Bendtsen 2012), a particle swarm algorithm is also
provided;

and the corresponding tuning parameters may be passed to optimcontrol. Passing any other
optimization method is also possible, given that it works as the standard optim method in R
from package stats.

Criteria functions

Four criteria are available in GPareto:

• crit_SMS for the SMS-EGO criterion (Ponweiser et al. 2008; Wagner et al. 2010; based
on the MATLAB, The MathWorks Inc. 2018, source code of the authors);

• crit_EHI for the expected hypervolume improvement criterion (Emmerich et al. 2011;
based on the MATLAB source code of the authors for the bi-objective case);

• crit_EMI for the expected maximin improvement criterion (Svenson and Santner 2016;
Svenson 2011);

• crit_SUR for the expected excursion volume reduction criterion (Picheny 2015).

The crit_SMS criterion has an analytical expression for any number of objectives while the
one for crit_EHI has this only for the bi-objective case. There is a semi-analytical1 formula
for crit_EMI for two objectives. Note that the formula for crit_EHI is coded using Rcpp
(Eddelbuettel and François 2011; Eddelbuettel 2013), which offers considerable speed-up over
an R implementation.
With m > 2, computations of crit_EMI and crit_EHI rely on sample average approximation
(SAA; Shapiro 2003), as proposed, e.g., in Svenson (2011). The principle is to take samples
from the posterior distribution of Y(x), i.e., Y(x)(1), . . . ,Y(x)(p), and take the average of
the improvement function over these samples: EI(Y(x))|An ≈ 1

p

p∑
j=1

I(Y(j)(x)). Note that a

large sample size p is often needed to obtain a good approximation, which is at the cost of
computational time. By default, the number of SAA samples nb.samp is set to 50.
crit_SUR requires integrating some quantities over the design space X, which must be done
numerically, making this criterion computationally intensive. Similarly to theKrigInv package
(Chevalier et al. 2014), several alternatives to select integration points are provided using the
function integration_design_optim, including uniformly distributed random points, quasi
Monte Carlo sequences, as well as importance sampling schemes (as described in Picheny
2015). For now crit_SUR is available for two and three objectives.
In terms of complexity, both crit_EHI with m > 2 and crit_SMS use hypervolume compu-
tations provided in the emoa package (much more frequently for the first one, which is thus
slower). Those have an exponential complexity in the number of objectives and also depend
on the number of points in the Pareto front. For crit_EMI the complexity mainly depends on
the number of sample points for the SAA approximation and linearly in the number of objec-
tives, it is more affordable than crit_EHI for more than two objectives. For crit_SUR, the

1Numerical quadrature is needed for some 1-dimensional integrals, see Svenson (2011).

10 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

Name Indicator Analytical m Cost Scaling Parametersdependent

crit_EHI Hypervolume m = 2 Any + to Yes refPoint,
only +++ nb.samp (m > 2)

crit_EMI Additive-ε No Any ++ Yes nb.samp (m > 2)

crit_SMS Hypervolume Yes Any + Yes refPoint

crit_SUR Probability of No m ≤ 3 +++ No integration
non-domination points

Table 1: Summary of the characteristics of infill criteria available in GPareto. The compu-
tational costs are given for a bi-objective example. Note that the cost of crit_EHI is low
in this case but increases exponentially with the output dimension. SURcontrol is a list of
parameters depending on the integration strategy chosen.

complexity is essentially related to the integration over the input domain which can become
cumbersome with many variables.
Importantly, except for crit_SUR, these criteria depend on the relative scaling of the objec-
tives, i.e., multiplying one objective by a constant modifies the results. Scaling may be per-
formed by the user, e.g., from the maximum and minimum values observed for each objective
as in Parr (2012) or Svenson (2011). In addition, crit_EHI and crit_SMS need a reference
point for bounding hypervolume computations. If no reference point is given by the user,
with refPoint, we set it to Ri = max

yj∈Pn

(
y

(i)
j

)
+ max

(
1, 0.2×

(
max

yj∈Pn

(
y

(i)
j

)
− min

yj∈Pn

(
y

(i)
j

)))
,

1 ≤ i ≤ m, extending for non-scaled objectives the method of Ponweiser et al. (2008) and
references therein. The scaling and additional parameters are some of the drawbacks of
multi-objective infill criteria, as discussed in Wagner et al. (2010) and Svenson (2011).
A brief comparison of the different criteria is given in Table 1.
Test functions are provided in GPareto, such as problems in the MOP (Van Veldhuizen and
Lamont 1999), ZDT (Zitzler, Deb, and Thiele 2000) and DTLZ (Deb, Thiele, Laumanns, and
Zitzler 2005) test suites.

3.3. Functions related to uncertainty quantification and post-processing

User-friendly wrapper: plotGPareto

Results given by easyGParetoptim or GParetoptim can be visualized using the plotGPareto
function. The default output of this function is to display only the points visited during
optimization along with optimal points. Depending on the number of objectives, the Pareto
front approximation is a simple plot (two objectives), a perspective view of the Pareto front
(three) or a representation in parallel coordinates (more than three; Inselberg 2009).
Then, three different outputs are possible to improve insight on the algorithm results. These
can be obtained either by setting some options of plotGPareto or directly by calling the
corresponding functions:

Journal of Statistical Software 11

• an estimation of the Vorob’ev expectation giving the expected location of the Pareto
front along with a visualization of the corresponding uncertainty (option UQ_PF = TRUE
or with CPF and plotSymDevFun);

• an estimation of the density of Pareto optimal points in the variable space (option
UQ_dens = TRUE or with ParetoSetDensity);

• a visualization of the probability of non-domination in the variable space (option UQ_PF
= TRUE or with plot_uncertainty).

Uncertainty quantification on Pareto front

The entry function is the creator of the ‘CPF’ class (for conditional Pareto front), which deals
with computing the probability for a target in the objective space to be dominated, also
known as the attainment function, Vorob’ev expectation (VE) and Vorob’ev deviation (VD),
from a grid discretization. It takes as main arguments:

• fun1sims, fun2sims, the sets of conditional simulations for both objectives, that can
be computed for instance using the simulate function of DiceKriging;

• response, the known objective values.

The empirical attainment function is calculated on a grid in the objective space from the
CPF sets given by the conditional simulations. Taking advantage of the regularity of the grid
to compute volumes, the Vorob’ev expectation is computed quickly by dichotomy. Then the
Vorob’ev deviation is a sum of hypervolume indicator values. The plot method for ‘CPF’
objects displays the attainment function in gray-scale, and possibly the VE. In addition,
the plotSymDefFun function can be used to display the spread of conditional simulations of
Pareto fronts around the Vorob’ev expectation. See Binois et al. (2015a) for details.

Uncertainty quantification on Pareto set

The function plot_uncertainty, based on the print_uncertainty_nd function of the Krig-
Inv package (Chevalier et al. 2014), draws contour lines of the probability of non-domination.
In dimension larger than two, contour lines are drawn for each couple of two variables repre-
senting either the average, maximum or minimum of the probability over the other variables.
The function ParetoSetDensity relies from one end on conditional simulations of the objec-
tives given by the simulate function of DiceKriging, and on the other end on a kernel density
estimation of the probability of belonging to the Pareto set. It returns an object of class ‘kde’
from the package ks (Duong 2019). This object can be displayed in small dimension (which
is done by plotGPareto), or may be used to sample points.

Search for target designs

Finally, GPareto allows the user to search for additional points corresponding to a particular
target in the objective space. Given a target point (for instance, a location along the estimated
Pareto front based on the Vorob’ev expectation), the function getDesign returns the closest
design, that is, the design that maximizes the probability of dominating the target in the

12 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

variable space. This step requires running an optimization algorithm, which can be tuned
similarly to crit_optimizer using an optimcontrol argument.

3.4. Some technical aspects

Fast objectives

Motivated by applications where some objective functions are computable at a negligible cost
compared to other objectives, GPareto offers an option for MOO in case of co-existing cheap-
and expensive-to-evaluate objectives. As an example, in structural mechanics one objective is
typically the mass (which is directly derived from the design variables) and the other depends
on the response of the system, hence involving a finite element model. To ensure compatibility
with the infill criteria, fast objectives are wrapped in the ‘fastfun’ class which mimics the
behavior of methods such as predict or update. Then predicting the value at a new point
amounts to evaluating the fast function, which returns the corresponding value with a zero
prediction variance, exactly like what happens for already evaluated points. They may be
used with the cheapfn argument in easyGParetoptim, GParetoptim and crit_optimizer.

Numerical stability

Another computational challenge with kriging, discussed, e.g., in Roustant et al. (2012), is the
numerical non-invertibility of covariance matrices. It usually happens whenever design points
are too close. This is especially troublesome in optimization since, when converging, points
are likely to be added close to each other2. In GPareto, preventing this problem is achieved
with the checkPredict function. Before evaluating the selected criterion, checkPredict
tests whether the new point x is too close to existing ones, with a tunable threshold that can
be passed as argument. Three options are available to define when designs are considered as
“too close”:

• minimal Euclidean distance in the input space: min
1≤i≤n

d(x,xi);

• ratio of the predictive variance sn(x)2 over the variance parameter for stationary kernels;

• minimal canonical distance coupled with kn: min
1≤i≤n

√
kn(x,x)− 2kn(x,xi) + kn(xi,xi).

The first two options are also used in KrigInv and DiceOptim, respectively. The first one is
less computationally demanding but also less robust.
Moreover, to improve stability of the update of already existing models with new observations,
it is possibly attempted twice. First, an update with re-estimation of the hyperparameters
is performed. Then, if it has failed, a new update is tested with the old hyperparameters. If
this is still insufficient to train the model with all observations, the user may try to remove
some points or apply the jitter technique consisting in adding a small constant to the diagonal
of the covariance matrix to improve its condition number, see, e.g., Roustant et al. (2012).
Replacing two close observations by one observation and its estimated directional derivative
as proposed in Osborne (2010) is another appealing solution.

2Repeating the same observations exactly, when there is no noise, is prevented since the criteria EHI, EMI
and SUR are equal to zero for an existing design, while it is penalized with SMS.

Journal of Statistical Software 13

4. Illustrating examples using GPareto
This section shows the different functionalities of GPareto on three classical toy examples.

4.1. Two objectives, unidimensional example

We consider the following simple 1-dimensional bi-objective optimization problem from the
literature, see, e.g., Van Veldhuizen and Lamont (1999), re-scaled to [0, 1], to illustrate the
different steps of the procedure and the key concepts of GP-based multi-objective optimiza-
tion:

MOP2(x) =
{
f1 = 1− exp

(
(1− x)2)

f2 = 1− exp
(
(1 + x)2)

We first define the initial design of experiments (design.init, six points evenly spaced be-
tween zero and one) and compute the corresponding set of observations response.init,
which we use to build two kriging models with DiceKriging’s km function and put them into
a single list (model):

R> design.init <- matrix(seq(0, 1, length.out = 6), ncol = 1)
R> response.init <- MOP2(design.init)
R> mf1 <- km(~ 1, design = design.init, response = response.init[, 1])
R> mf2 <- km(~ 1, design = design.init, response = response.init[, 2])
R> model <- list(mf1, mf2)

Then, we call the main function GParetoptim to perform seven optimization steps using the
EHI criterion. Note that EHI requires a reference point as a parameter, which corresponds to
an upper bound for each objective (here [2, 2], if not provided, it is estimated at each iteration,
see Section 3.2). The other mandatory inputs are the GP models model, the objective function
fn, number of steps (nsteps) and the design bounds (lower and upper).

R> res <- GParetoptim(model = model, fn = MOP2, crit = "EHI", nsteps = 7,
+ lower = 0, upper = 1, critcontrol = list(refPoint = c(2, 2)))

Starting optimization with :
The criterion EHI
The solver genoud

Ite / Crit / New x / New y
1 / 0.0603 / 0.5 / 0.632 0.632
2 / 0.04 / 0.745 / 0.000325 0.98
3 / 0.0361 / 0.252 / 0.981 4.57e-05
4 / 0.0154 / 0.453 / 0.756 0.483
5 / 0.0154 / 0.547 / 0.483 0.756
6 / 0.0089 / 0.651 / 0.146 0.923
7 / 0.00904 / 0.349 / 0.924 0.144

By default, GParetoptim prints the points chosen and their corresponding evaluations, along
with the value of the sampling criterion. The criterion here decreases almost monotonically,

14 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Objective 1

x

f 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Objective 2

x

f 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Initial and real Pareto front

f1

f 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

1.
2

Initial GP model 1

x

y 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

1.
2

Initial GP model 2

x

y 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
03

0.
06

EHI criterion

X

cr
it

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Final GP model 1

x

y 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Final GP model 2

x

y 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Final Pareto front

f1

f 2

Figure 3: Summary of the optimization procedure on the 1-dimensional example. Top: ob-
jective functions are in black, with design points in blue. The red points show the Pareto set.
The right figure shows the problem in the objective space (f1 vs. f2 for all x). The red line
shows all the Pareto-optimal solutions of the problem and the blue line is the current Pareto
front based on the six observations. Middle: GP models corresponding to both objectives
based on the initial observations and corresponding acquisition criterion (expected hypervol-
ume improvement) that is maximized to select the next observation. Bottom: GP models at
the end of the optimization process and Pareto front returned by the method.

since as the exploration progresses the remaining improvement (hypervolume gain obtained
by a new observation) decreases. Figure 3 illustrates the results of this 1-dimensional problem,
and shows the ability of the GP models to accurately learn functions on target regions (the
Pareto set) based on a few observations.

4.2. Two objectives, two dimensions example

We consider now the more complex optimization problem (P1) given in Parr (2012):

P1(x) =

 f1 =
(
x2 − 5.1(x1/(2π))2 + 5

πx1 − 6
)2

+ 10
((

1− 1
8π

)
cos(x1) + 1

)
f2 = −

√
(10.5− x1)(x1 + 5.5)(x2 + 0.5)− (x2−5.1(x1/(2π))2−6)2

30 − (1− 1
8π) cos(x1)+1

3

with x1 ∈ [−5, 10] and x2 ∈ [0, 15] (re-scaled to [0, 1]2 in GPareto). In particular, the first

Journal of Statistical Software 15

0 50 100 150 200 250 300

−
35

−
30

−
25

−
20

−
15

−
10

−
5

Pareto Front

f1

f 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto Set

x1
x 2

Figure 4: Actual Pareto front and set for (P1).

objective is the Branin-Hoo function that introduces multi-modality.
We use this example to show three important features of the package:

• the possibility to access different steps of the EGO strategy;

• the use of ‘fastfun’ objects and;

• the post-processing functionalities.

On this analytical example, it is possible to display the true Pareto front and set using the
plotParetoGrid function:

R> plotParetoGrid(P1)

The graphical output is shown in Figure 4.
As in the previous example, we first build an initial set of (seven) observations and a list of
two GP models:

R> set.seed(1)
R> d <- 2
R> ninit <- 7
R> fun <- P1
R> design <- lhsDesign(ninit, d, seed = 42)$design
R> response <- t(apply(design, 1, fun))
R> mf1 <- km(~ ., design = design, response = response[, 1])
R> mf2 <- km(~ ., design = design, response = response[, 2])
R> model <- list(mf1, mf2)

Now, we call directly the function crit_optimizer to choose the next point to evaluate using
the SUR criterion. Here, the optimcontrol input is used to choose the genoud algorithm for

16 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

the criterion optimization. The critcontrol input allows us to choose the integration points
for the criterion, here a regular 21× 21 grid.

R> x.grid <- seq(0, 1, length.out = 21)
R> test.grid <- expand.grid(x.grid, x.grid)
R> SURcontrol <- list(integration.points = test.grid)
R> omEGO1 <- crit_optimizer(crit = "SUR", model = model, lower = c(0, 0),
+ upper = c(1, 1), critcontrol = list(SURcontrol = SURcontrol),
+ optimcontrol = list(method = "genoud", pop.size = 20,
+ int.seed = 2, unif.seed = 3))

Now, let us assume that f2 is considerably faster to evaluate than f1. We split the objective
into two separate functions, fun1 and fun2, and we replace the second GP model by a
‘fastfun’ object:

R> fun1 <- function(x) P1(x)[, 1]
R> fun2 <- function(x) P1(x)[, 2]
R> fastmf2 <- fastfun(fn = fun2, design = design, response = response[, 2])
R> model2 <- list(mf1, fastmf2)

The script to search for the next observation is identical.
In Figure 5, we show the initial set of observations and the next point to evaluate according
to each setup. For illustration purposes, the contour lines of the criteria are also computed.
We see that using the ‘fastfun’ object (hence, additional information), the SMS criterion
points clearly to a narrower region, which is in addition quite different from the ones given
by the other setup. On both cases, the inner optimization loops successfully find the global
maxima of the criteria surfaces.
Now, we apply ten steps of SUR, first with two regular objectives, then with the fastfun
setting:

R> sol <- GParetoptim(model = model, fn = fun, crit = "SUR", nsteps = 7,
+ lower = c(0, 0), upper = c(1, 1), optimcontrol = list(method = "pso"),
+ critcontrol = list(SURcontrol = list(distrib = "SUR", n.points = 100)))
R> solFast <- GParetoptim(model = list(mf1), fn = fun1, cheapfn = fun2,
+ crit = "SUR", nsteps = 7, lower = c(0, 0), upper = c(1, 1),
+ optimcontrol = list(method = "pso"),
+ critcontrol = list(SURcontrol = list(distrib = "SUR", n.points = 100)))

Then, we generate the post-treatment processes using plotGPareto. The graphical outputs
are given in Figure 6. Optional parameters f1lim and f2lim are used to fix bounds for the
top graphs to allow better comparison.

R> lim1 <- seq(-50, 240, length.out = 101)
R> lim2 <- seq(-35, 0, length.out = 101)
R> plotGPareto(sol, UQ_PF = TRUE, UQ_PS = TRUE, UQ_dens = TRUE,
+ control = list(f1lim = lim1, f2lim = lim2))

Vorob'ev deviation: 345.9885

Journal of Statistical Software 17

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SUR Criterion

x1

x 2

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SUR Criterion (fastfun)

x1
x 2

Figure 5: SUR criterion with regular setup (left) and fastfun setup (right). The red crosses
show the optimal sampling points according to the criteria, found using genoud (left) and
pso (right), respectively.

R> plotGPareto(solFast, UQ_PF = TRUE, UQ_PS = TRUE, UQ_dens = TRUE,
+ control = list(f1lim = lim1, f2lim = lim2))

Vorob'ev deviation: 212.198

First, we see the interest of using the ‘fastfun’ class when some objectives are cheap to
compute: The Pareto front obtained this way is much more accurate (Figure 6, top), in
particular for low values of the second objective.
Interestingly, the two Vorob’ev expectations are similar, and provide a very good prediction of
the actual Pareto front (Figure 4), except for the lowest values of the first objective. However,
the Vorob’ev deviations (gray areas) show a higher local uncertainty for this part of the front.
Overall the Vorob’ev deviation values (346 and 212, respectively) indicate a substantially
better confidence on the predicted Pareto front using fastfun.
The probability and density plots (Figure 6, second and third rows, respectively) provide
complementary information on the Pareto set (input space). The probability plots indicate
interesting (white) and uninteresting (black) regions, as well as uncertain ones (gray), but do
not provide a clear insight on the Pareto set. Here, on both cases, the large gray areas show
that additional observations may be beneficial, which is consistent with the large difference
between the current Pareto front and the Vorob’ev expectation (Figure 6, top). On the other
hand, the densities provide rather accurate estimates of the Pareto set, in particular for the
fastfun setup.
Finally, one may want to extract points from the Vorob’ev expectation of the Pareto front
(that is, the input realizing a particular trade-off) that have not been observed yet. To this
end, the getDesign function returns the most probable design given a target in the objective
space, and can be called as follow:

18 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

0.0

0.2

0.4

0.6

0.8

1.0

−50 0 50 100 150 200

−35

−30

−25

−20

−15

−10

−5

0

Symmetric deviation function

f1

f 2

0.0

0.2

0.4

0.6

0.8

1.0

−50 0 50 100 150 200

−35

−30

−25

−20

−15

−10

−5

0

Symmetric deviation function

f1

f 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Probability of non−domination

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Probability of non−domination

x[, 1]

x[, 2]

D
ensity function

x[, 1]

x[, 2]

D
ensity function

Figure 6: Graphical outputs of optimization runs in terms of Pareto front (top), probability of
non-domination (middle) and density of Pareto optimal points (bottom) when both objectives
are expensive (left column) or when the second is cheap, using the cheapfn argument (middle).

Journal of Statistical Software 19

R> newPoint <- getDesign(model = sol$lastmodel, target = c(42, -26),
+ lower = c(0, 0), upper = c(1, 1), optimcontrol = list(method = "pso"))
R> newPoint

$par
X1 X2

[1,] 0.3740874 0.6885245

$value
[,1]

[1,] 0.5994085

$mean
[1] 39.20015 -26.34771

$sd
[1] 5.6782595 0.3087762

Here, we have chosen a target [42,−26] that is on the Vorob’ev expectation, where the uncer-
tainty is small but where no observation is near (Figure 6, top left). The getDesign output
is a list with the value of the design (par), the value of the criterion, i.e., the probability
that the newPoint objective is not dominated by the target (value, here 60%) and the GP
prediction of each objective (mean) with the associated uncertainty (sd). Here, the value of
the second objective reaches the target with large confidence, but the first objective value is
quite uncertain.

4.3. Four variables, three objectives

Here we consider the DTLZ2 optimization problem (Deb et al. 2005) with four variables and
three objectives:

DTLZ2(x) =

f1 = (1 + g(x)) cos(x1

π
2) cos(x2

π
2)

f2 = (1 + g(x)) cos(x1
π
2) sin(x2

π
2)

f3 = (1 + g(x)) sin(x1
π
2)

with g(x)) =
4∑
i=3

(
xi −

1
2

)2
,

whose Pareto front is concave.
This time we simply use easyGParetoptim to solve the problem without having to train or
prepare models.

R> res <- easyGParetoptim(fn = DTLZ2, budget = 50, lower = rep(0, 4),
+ upper = rep(1, 4))

Then, we visualize the output using plotGPareto. Note that with dimensions larger than
two and more than two objectives, only the Pareto front visualization and the probability
plots are available. For the latter, we changed the grid size parameter (resolution) and the
number of integration points (nintegpoints) to avoid overly costly figures.

20 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0.1 0.15

 0.15

 0.2

 0.2

 0.2

 0.2

 0.2

 0.25

 0.25 0.3

 0.3

 0.3

 0.3

 0.35

 0
.3

5

 0.35

 0.4 0.45 0.5

 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0.1

 0.1 0.2

 0.2

 0
.3

 0
.3

 0.4

 0.4

 0.5

 0.5

 0.6

 0.7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0.1 0.1

 0.1

 0
.2

 0.2

 0
.3

 0.3 0.4

 0.4

 0.5

 0.5

 0.6

 0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0
.0

5 0.05

 0.1

 0.1 0.15

 0.15

 0.2

 0
.2

 0.25

 0.25

 0.3

 0
.3

 0.35

 0
.4

 0.45

 0.5

 0
.5

 0.55

 0.6

 0.65

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0.05 0.05

 0.1

 0.1

 0
.1

5

 0.15

 0.2

 0
.2

 0
.2

5

 0.25

 0
.3

 0
.3

 0

.3
5

 0.4

 0.45 0.45

 0.5

 0.5

 0.55

 0.55

 0.6

 0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0.1

 0.1
 0.2

 0.3

 0.4
 0.5

 0.6

 0.7

 0
.8

 0.9

Figure 7: Perspective view of the Pareto front (left) and uncertainty in the variable space
(right) for Example 3.

R> plotGPareto(res, UQ_PS = TRUE, control = list(lower = rep(0, 4),
+ upper = rep(1, 4), nintegpoints = 200, option = "mean",
+ resolution = 25))

The graphical outputs are shown in Figure 7. From the definition of DTLZ2, the optimal
value for both x3 and x4 is 1/2. This is clearly visible on the probability of non-domination
graphs: The (x3, x4) surface (bottom right) is unimodal with its maximum at (0.5, 0.5), the
other graphs show a ridge at 0.5 for one of the variables. From this representation, optimal
sets for x1 and x2 are more difficult to observe.

5. Comparison with other MOO packages
GPareto is primarily designed to tackle costly problems (time-wise), thus with very small
budgets of evaluations along with a moderate number of variables, as is standard in com-
puter experiments. It then holds that the cost of the optimization process remains negligible
compared to running an experiment. Since the computational cost is cubic in the number
of observations, dedicated methods exist when it becomes prohibitive, see, e.g., Gramacy
(2016). In this section, we show on three test problems that on this setup, our package can
significantly outperform other approaches.
As competitors, we chose two algorithms from different packages: the state-of-the-art evolu-
tionary algorithms NSGA-II from mco, and the surrogate-based approach SMS-EMOA from
SPOT. All tests have been run on a desktop with 8 threads on a 4-core hyper-threaded
3.60GHz processor, with 32GB of RAM. Results may vary slightly depending on the platform
characteristics, in particular on the linear algebra library used.

Journal of Statistical Software 21

0 50 100 150 200

−
35

−
25

−
15

f1

f 2
NSGA−II (200)
NSGA−II (2000)
SMS−EMOA (40)
easyGParetoptim (20)
Vorob'ev expectation

Figure 8: Comparison of four algorithms to find the Pareto front of Example 2.

5.1. Two objectives, two dimensions problem

To emphasize the interest over classical evolutionary algorithms, we compare the solutions
obtained with a NSGA-II (Deb et al. 2002), run with budgets of either 200 and 2000 evalua-
tions (and a population size set to 20 and 100, respectively) to the solutions obtained using
GPareto with a budget of 20 evaluations. SMS-EMOA (Beume, Naujoks, and Emmerich
2007) is also run with a budget of 40 evaluations. The Pareto fronts are given in Figure 8.
All four approaches provide relatively similar results. We see that with 200 evaluations,
NSGA-II has not converged yet. With more evaluations, NSGA-II provides a smoother Pareto
front than the surrogate-based approaches. However, the approximation given by GPareto
using the Vorob’ev expectation based on 20 evaluations is almost as good as the results with
2000 evaluations.

5.2. Two objectives, four variables problem

Now, we compare the performance of GPareto with SPOT and mco, as well as different
strategies within GPareto:

• SUR, SMS, EHI and EMI with easyGParetoptim from GPareto;

• SMS-EMOA from SPOT;

• NSGA-II from mco for reference, using a population size of 20.

We consider the classical bi-objective ZDT3 problem (Zitzler et al. 2000), defined here in
[0, 1]4:

ZDT3(x) =
{
f1 = x1
f2 = g(x)h(x) with

h(x) = 1−

√
x1
g(x) −

(
x1
g(x)

)
sin(10πx1)

g(x) = 1 + 3
4∑
i=2

xi

whose Pareto front is disconnected.

22 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

0 10 20 30 40

0
1

2
3

4
5

Hypervolume error

n

EHI
EMI
SMS
SUR
SMSEMOA
NSGA (x5)

Figure 9: Evolution of hypervolume error with respect to a reference Pareto front for problem
ZDT3 for various infill criteria over 25 repetitions. Curves are for the median performance
and dotted lines denote the first and third quartiles. For NSGA-II, the number of observations
is to be multiplied by five.

Comparisons are based on the averaged value of the hypervolume error, defined as the hyper-
volume difference with a reference Pareto front (obtained with a NSGA-II run with a very
large number of evaluations). For a fair comparison between infill criteria for GPareto, initial
designs of experiments and models are the same for all (using the seed control argument of
easyGParetoptim). Each strategy is run 25 times, and the results are given in Figure 9 in
terms of median first and third quartiles performance. These results on the dynamics are
complemented by final runtime and mean performance in Table 2.
All the GPareto approaches perform relatively similarly, EHI, EMI and SUR being the most
efficient (in particular at early iterations) and SMS the worst (in particular for the last
iterations). On average, the hypervolume error converges quickly to values close to zero.
Note that achieving exactly zero would take a very long time due to the different number of
points between the GPareto based approaches and the reference Pareto front.
SMS-EMOA starts to decrease the hypervolume difference sooner, but with a high variance:
This is due to the default size of the initial design of experiments, which is smaller. Overall,
it is significantly outperformed by GPareto’s EHI, EMI and SUR. Despite a budget five times
larger, NSGA-II is not as efficient as the other approaches, but is much faster to run.

5.3. Three objectives, six dimensions problem

The last benchmark problem is a three objectives problem created with two multi-modal
functions that are classically used for testing surrogate based methods (Dixon and Szegö
1978) and a linear objective, defined over [0, 1]6:

P2(x) =

f1 = ackley(x)
f2 = hartman(x)
f3 = ∑d

i=1(xi)

Journal of Statistical Software 23

Problem Algorithm Average time (s) Hypervolume error

1

EHI 59 0.18± 0.22
EMI 84 0.18± 0.15
SMS 57 0.63± 0.28
SUR 251 0.20± 0.16

SMS-EMOA 9 1.03± 1.02

2

EHI 347 23.0± 2.79
EMI 333 22.5± 3.45
SMS 188 22.2± 3.37
SUR 2054 22.0± 2.75

SMS-EMOA 99 21.2± 5.17

Table 2: Summary of the results over 25 runs: average running time and final hypervolume
error (mean and standard deviation). The best mean performances are highlighted in bold.

with:

ackley(x) = −20 exp

−0.2

√√√√ 1
n

d∑
i=1

x2
i

− exp
[

1
n

d∑
i=1

cos (2πxi)
]

+ 20 + exp(1)

hartman(x) = −1
1.94

2.58 +
4∑
i=1

Ci exp

− 6∑
j=1

aji (xj − pji)2

 ,

C =

1.0
1.2
3.0
3.2

 , a =

10.0 0.05 3.0 17.0
3.0 10.0 3.50 8.0
17.0 17.0 1.70 0.05
3.50 0.10 10.0 10.0
1.70 8.0 17.0 0.10
8.0 14.0 8.0 14.0

, p =

0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743
0.8283 0.1004 0.3047 0.1091
0.5886 0.9991 0.6650 0.0381

.

The larger number of variables is more challenging, especially with a moderate budget of
evaluations. The last objective is treated as cheap-to-evaluate with GPareto, although this
has not a significant impact on the comparison with SMS-EMOA since this objective is very
simple to model anyway. The experimental setup is the same as the one used for the previous
problem, except the population for NSGA-II which is set to 24.
The results are given in Figure 10 and Table 2, which also reports computing times. Note
that the NSGA-II results are omitted from Table 2, as it uses a different number of observa-
tions. Again, all the strategies perform somehow similarly, SMS-EMOA being slightly best
on average, but with a greater variability.
On the two benchmarks the best performance is reached for SUR, closely followed by EHI.
However, as reported in Table 2, both require substantially longer computational times (SUR
in particular), and should be chosen whenever the objectives are very expensive. The relatively
small difference with the other infill criteria (EMI and SMS) indicate that the latter may
be used if optimization time becomes non-negligible, and is the current default criterion in
GPareto.

24 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

0 10 20 30 40 50 60

15
20

25
30

35
40

Hypervolume error

n

EHI
EMI
SMS
SUR
SMSEMOA
NSGA (x4)

Figure 10: Evolution of hypervolume error with respect to a reference Pareto front for the
problem (P2). Representation is similar to Figure 9 except that for NSGA-II, where the
number of observations is to be multiplied by 4.

Overall, the two problems illustrate the clear superiority of GP-based approaches compared
to metaheuristics when simulation budgets are small.

6. Concluding remarks
This paper introduces the R package GPareto dedicated to multi-objective optimization of
expensive-to-evaluate functions. This package implements several state-of-the-art Bayesian
optimization algorithms to solve these problems based on Gaussian process models. For
small budget scenarii, those approaches have been shown to outperform significantly classical
algorithms such as NSGA-II.
In addition, post-processing routines are proposed to enhance the feedback on the problem
both in the variable and objective spaces (e.g., Pareto set and front uncertainty quantifi-
cation). We believe that these features are somehow unique to GP-based strategies, and
constitute an important asset of these approaches.
Emphasis has also been put on making these methods available to practitioners not familiar
with this research domain, in particular by providing an entry point similar to the optim()
routine and automated post-processing analysis. Meanwhile, tuning parameters have been
kept exposed for experts. This enables for instance the use of the infill criteria in GPareto
with other packages to build the Gaussian process models, as the recent GPfit (MacDonald,
Ranjan, and Chipman 2015) or kergp (Deville, Ginsbourger, and Roustant 2018) packages,
or may facilitate benchmarking new strategies.
Future developments of GPareto include implementing more methods in C++ with Rcpp to
improve evaluation times and possibly options to benefit from parallel computation archi-
tecture (batch-sequential strategies). Last but not least, GPareto could benefit from recent
works on high-dimensional Bayesian optimization using random embeddings to alleviate the

Journal of Statistical Software 25

limitation in terms of number of variables, see Wang, Zoghi, Hutter, Matheson, and de Freitas
(2013); Binois, Ginsbourger, and Roustant (2015b).

Acknowledgments
Part of this work has been conducted within the frame of the ReDice Consortium, gath-
ering industrial (CEA, EDF, IFPEN, IRSN, Renault) and academic (Ecole des Mines de
Saint-Etienne, INRIA, and the University of Bern) partners around advanced methods for
Computer Experiments. The authors would like to thank Yves Deville (Alpestat), David
Ginsbourger (University of Bern) and Olivier Roustant (Mines Saint-Étienne) for their feed-
back and suggestions of improvements on the package, as well as two anonymous reviewers
for their useful comments.

References

Álvarez MA, Rosasco L, Lawrence ND (2011). “Kernels for Vector-Valued Functions: A
Review.” Foundations and Trends in Machine Learning, 4(3), 195–266. doi:10.1561/
2200000036.

Ankenman B, Nelson BL, Staum J (2010). “Stochastic Kriging for Simulation Metamodeling.”
Operations Research, 58(2), 371–382. doi:10.1287/opre.1090.0754.

Bartz-Beielstein T, Zaefferer M (2012). “A Gentle Introduction to Sequential Parameter
Optimization.” Technical report, Bibliothek der Fachhochschule Köln. URL http://opus.
bsz-bw.de/fhk/volltexte/2012/19.

Bendtsen C (2012). pso: Particle Swarm Optimization. R package version 1.0.3, URL https:
//CRAN.R-project.org/package=pso.

Beume N, Naujoks B, Emmerich M (2007). “SMS-EMOA: Multiobjective Selection Based on
Dominated Hypervolume.” European Journal of Operational Research, 181(3), 1653–1669.
doi:10.1016/j.ejor.2006.08.008.

Bhardwaj P, Dasgupta B, Deb K (2014). “Modelling the Pareto-Optimal Set Using B-Spline
Basis Functions for Continuous Multi-Objective Optimization Problems.” Engineering Op-
timization, 46(7), 912–938. doi:10.1080/0305215x.2013.812727.

Binois M, Ginsbourger D, Roustant O (2015a). “Quantifying Uncertainty on Pareto Fronts
with Gaussian Process Conditional Simulations.” European Journal of Operational Re-
search, 243(2), 386–394. doi:10.1016/j.ejor.2014.07.032.

Binois M, Ginsbourger D, Roustant O (2015b). “A Warped Kernel Improving Robustness in
Bayesian Optimization via Random Embeddings.” In C Dhaenens, L Jourdan, MEMarmion
(eds.), Learning and Intelligent Optimization, volume 8994 of Lecture Notes in Computer
Science, pp. 281–286. Springer-Verlag.

Binois M, Picheny V (2019). GPareto: Gaussian Processes for Pareto Front Estimation and
Optimization. R package version 1.1.3, URL https://CRAN.R-project.org/package=
GPareto.

https://doi.org/10.1561/2200000036
https://doi.org/10.1561/2200000036
https://doi.org/10.1287/opre.1090.0754
http://opus.bsz-bw.de/fhk/volltexte/2012/19
http://opus.bsz-bw.de/fhk/volltexte/2012/19
https://CRAN.R-project.org/package=pso
https://CRAN.R-project.org/package=pso
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1080/0305215x.2013.812727
https://doi.org/10.1016/j.ejor.2014.07.032
https://CRAN.R-project.org/package=GPareto
https://CRAN.R-project.org/package=GPareto

26 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

Calandra R, Peters J, Deisenroth MP (2014). “Pareto Front Modeling for Sensitivity Analysis
in Multi-Objective Bayesian Optimization.” In NIPS Workshop on Bayesian Optimization
2014.

Carnell R (2019). lhs: Latin Hypercube Samples. R package version 1.0.1, URL https:
//CRAN.R-project.org/package=lhs.

Chevalier C, Picheny V, Ginsbourger D (2014). “KrigInv: An Efficient and User-Friendly
Implementation of Batch-Sequential Inversion Strategies Based on Kriging.” Computational
Statistics & Data Analysis, 71, 1021–1034. doi:10.1016/j.csda.2013.03.008.

Chevalier C, Picheny V, Ginsbourger D, Azzimonti D (2018). KrigInv: Kriging-Based Inver-
sion for Deterministic and Noisy Computer Experiments. R package version 1.4.1, URL
https://CRAN.R-project.org/package=KrigInv.

Collette Y, Siarry P (2003). Multiobjective Optimization: Principles and Case Studies.
Springer-Verlag. doi:10.1007/978-3-662-08883-8.

Deb K, Pratap A, Agarwal S, Meyarivan T (2002). “A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
doi:10.1109/4235.996017.

Deb K, Thiele L, Laumanns M, Zitzler E (2005). “Scalable Test Problems for Evolutionary
Multiobjective Optimization.” In A Abraham, L Jain, R Goldberg (eds.), Evolutionary
Multiobjective Optimization, Advanced Information and Knowledge Processing, pp. 105–
145. Springer-Verlag.

Deville Y, Ginsbourger D, Roustant O (2018). kergp: Gaussian Process Laboratory. R package
version 0.4.0, URL https://CRAN.R-project.org/package=kergp.

Dixon LCW, Szegö GP (1978). Towards Global Optimisation 2. North Holland.

Duong T (2019). ks: Kernel Smoothing. R package version 1.11.4, URL https://CRAN.
R-project.org/package=ks.

Dupuy D, Helbert C, Franco J (2015). “DiceDesign and DiceEval: Two R Packages for
Design and Analysis of Computer Experiments.” Journal of Statistical Software, 65(11),
1–38. doi:10.18637/jss.v065.i11.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag, New
York.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Emmerich MT, Deutz AH, Klinkenberg JW (2011). “Hypervolume-Based Expected Improve-
ment: Monotonicity Properties and Exact Computation.” In 2011 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 2147–2154.

Forrester AIJ, Keane AJ, Bressloff NW (2006). “Design and Analysis of “Noisy” Computer
Experiments.” AIAA Journal, 44(10), 2331–2339. doi:10.2514/1.20068.

https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs
https://doi.org/10.1016/j.csda.2013.03.008
https://CRAN.R-project.org/package=KrigInv
https://doi.org/10.1007/978-3-662-08883-8
https://doi.org/10.1109/4235.996017
https://CRAN.R-project.org/package=kergp
https://CRAN.R-project.org/package=ks
https://CRAN.R-project.org/package=ks
https://doi.org/10.18637/jss.v065.i11
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.2514/1.20068

Journal of Statistical Software 27

Ginsbourger D, Picheny V, Roustant O (2016). DiceOptim: Kriging-Based Optimization
for Computer Experiments. R package version 2.0, URL https://CRAN.R-project.org/
package=DiceOptim.

Gramacy R (2007). “tgp: An R Package for Bayesian Nonstationary, Semiparametric Non-
linear Regression and Design by Treed Gaussian Process Models.” Journal of Statistical
Software, 19(9), 1–46. doi:10.18637/jss.v019.i09.

Gramacy R (2016). “laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian
Processes in R.” Journal of Statistical Software, 72(1), 1–46. doi:10.18637/jss.v072.i01.

Gramacy R, Taddy M (2010). “Categorical Inputs, Sensitivity Analysis, Optimization and
Importance Tempering with tgp Version 2: An R Package for Treed Gaussian Process
Models.” Journal of Statistical Software, 33(6), 1–48. doi:10.18637/jss.v033.i06.

Henkenjohann N, Kunert J (2007). “An Efficient Sequential Optimization Approach Based on
the Multivariate Expected Improvement Criterion.” Quality Engineering, 19(4), 267–280.
doi:10.1080/08982110701621312.

Inselberg A (2009). Parallel Coordinates: Visual Multidimensional Geometry and Its Appli-
cations. Springer-Verlag. doi:10.1007/978-0-387-68628-8.

Jones DR (2001). “A Taxonomy of Global Optimization Methods Based on Response Sur-
faces.” Journal of Global Optimization, 21(4), 345–383. doi:10.1023/a:1012771025575.

Jones DR, Schonlau M, Welch WJ (1998). “Efficient Global Optimization of Expensive
Black-Box Functions.” Journal of Global Optimization, 13(4), 455–492. doi:10.1023/a:
1008306431147.

Keane AJ (2006). “Statistical Improvement Criteria for Use in Multiobjective Design Opti-
mization.” AIAA Journal, 44(4), 879–891. doi:10.2514/1.16875.

Kleijnen JPC, Mehdad E (2014). “Multivariate Versus Univariate Kriging Metamodels for
Multi-Response Simulation Models.” European Journal of Operational Research, 236(2),
573–582. doi:10.1016/j.ejor.2014.02.001.

Knowles J (2006). “ParEGO: A Hybrid Algorithm with On-Line Landscape Approximation
for Expensive Multiobjective Optimization Problems.” IEEE Transactions on Evolutionary
Computation, 10(1), 50–66. doi:10.1109/tevc.2005.851274.

Kobilinsky A, Bouvier A, Monod H (2018). planor: An R Package for the Automatic Gen-
eration of Regular Fractional Factorial Designs. R package version 1.4-1, URL https:
//CRAN.R-project.org/package=planor.

Koch P, Wagner T, Emmerich MTM, Bäck T, Konen W (2015). “Efficient Multi-Criteria
Optimization on Noisy Machine Learning Problems.” Applied Soft Computing, 29, 357–
370. doi:10.1016/j.asoc.2015.01.005.

MacDonald B, Ranjan P, Chipman H (2015). “GPfit: An R Package for Fitting a Gaussian
Process Model to Deterministic Simulator Outputs.” Journal of Statistical Software, 64(12),
1–23. doi:10.18637/jss.v064.i12.

https://CRAN.R-project.org/package=DiceOptim
https://CRAN.R-project.org/package=DiceOptim
https://doi.org/10.18637/jss.v019.i09
https://doi.org/10.18637/jss.v072.i01
https://doi.org/10.18637/jss.v033.i06
https://doi.org/10.1080/08982110701621312
https://doi.org/10.1007/978-0-387-68628-8
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1023/a:1008306431147
https://doi.org/10.1023/a:1008306431147
https://doi.org/10.2514/1.16875
https://doi.org/10.1016/j.ejor.2014.02.001
https://doi.org/10.1109/tevc.2005.851274
https://CRAN.R-project.org/package=planor
https://CRAN.R-project.org/package=planor
https://doi.org/10.1016/j.asoc.2015.01.005
https://doi.org/10.18637/jss.v064.i12

28 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

Mebane Jr WR, Sekhon JS (2011). “Genetic Optimization Using Derivatives: The rgenoud
Package for R.” Journal of Statistical Software, 42(11), 1–26. doi:10.18637/jss.v042.
i11.

Mersmann O (2012). emoa: Evolutionary Multiobjective Optimization Algorithms. R package
version 0.5-0, URL https://CRAN.R-project.org/package=emoa.

Mersmann O (2014). mco: Multiple Criteria Optimization Algorithms and Related Functions.
R package version 1.0-15.1, URL https://CRAN.R-project.org/package=mco.

Molchanov IS (2005). Theory of Random Sets. Springer-Verlag.

Naval P (2013). mopsocd: Multi-Objective Particle Swarm Optimization with Crowding Dis-
tance. R package version 0.5.1, URL https://CRAN.R-project.org/package=mopsocd.

Novomestky F (2008). goalprog: Weighted and Lexicographical Goal Programming and Opti-
mization. R package version 1.0-2.

Osborne M (2010). Bayesian Gaussian Processes for Sequential Prediction, Optimisation and
Quadrature. Ph.D. thesis, Oxford University New College.

Parr JM (2012). Improvement Criteria for Constraint Handling and Multiobjective Optimiza-
tion. Ph.D. thesis, University of Southampton.

Picheny V (2015). “Multiobjective Optimization Using Gaussian Process Emulators via
Stepwise Uncertainty Reduction.” Statistics and Computing, 25(6), 1265–1280. doi:
10.1007/s11222-014-9477-x.

Picheny V, Wagner T, Ginsbourger D (2013). “A Benchmark of Kriging-Based Infill Criteria
for Noisy Optimization.” Structural and Multidisciplinary Optimization, 48(3), 607–626.
doi:10.1007/s00158-013-0919-4.

Ponweiser W, Wagner T, Biermann D, Vincze M (2008). “Multiobjective Optimization on a
Limited Budget of Evaluations Using Model-Assisted S-Metric Selection.” In G Rudolph,
et al. (eds.), PPSN X, volume 5199 of LNCS, pp. 784–794. Springer-Verlag.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Roustant O, Ginsbourger D, Deville Y (2012). “DiceKriging, DiceOptim: Two R Packages for
the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization.”
Journal of Statistical Software, 51(1), 1–55. doi:10.18637/jss.v051.i01.

Santana-Quintero LV, Montano AA, Coello CAC (2010). “A Review of Techniques for Han-
dling Expensive Functions in Evolutionary Multi-Objective Optimization.” In Y Tenne,
CK Goh (eds.), Computational Intelligence in Expensive Optimization Problems, volume 2
of Adaptation Learning and Optimization, pp. 29–59. Springer-Verlag, Berlin, Heidelberg.
doi:10.1007/978-3-642-10701-6_2.

Shapiro A (2003). “Monte Carlo Sampling Methods.” In Handbooks in Operations Re-
search and Management Science, volume 10, pp. 353–425. Elsevier. doi:10.1016/
s0927-0507(03)10006-0.

https://doi.org/10.18637/jss.v042.i11
https://doi.org/10.18637/jss.v042.i11
https://CRAN.R-project.org/package=emoa
https://CRAN.R-project.org/package=mco
https://CRAN.R-project.org/package=mopsocd
https://doi.org/10.1007/s11222-014-9477-x
https://doi.org/10.1007/s11222-014-9477-x
https://doi.org/10.1007/s00158-013-0919-4
https://www.R-project.org/
https://doi.org/10.18637/jss.v051.i01
https://doi.org/10.1007/978-3-642-10701-6_2
https://doi.org/10.1016/s0927-0507(03)10006-0
https://doi.org/10.1016/s0927-0507(03)10006-0

Journal of Statistical Software 29

Svenson J, Santner T (2016). “Multiobjective Optimization of Expensive-to-Evaluate De-
terministic Computer Simulator Models.” Computational Statistics & Data Analysis, 94,
250–264. doi:10.1016/j.csda.2015.08.011.

Svenson JD (2011). Computer Experiments: Multiobjective Optimization and Sensitivity Anal-
ysis. Ph.D. thesis, The Ohio State University.

Tabatabaei M, Hakanen J, Hartikainen M, Miettinen K, Sindhya K (2015). “A Survey on
Handling Computationally Expensive Multiobjective Optimization Problems Using Sur-
rogates: Non-Nature Inspired Methods.” Structural and Multidisciplinary Optimization,
52(1), 1–25. doi:10.1007/s00158-015-1226-z.

The MathWorks Inc (2018). MATLAB – The Language of Technical Computing, Version
R2018b. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/.

Theussl S, Schwendinger F, Borchers HW (2019). CRAN Task View: Optimization and
Mathematical Programming. Version 2019-04-20, URL https://CRAN.R-project.org/
view=Optimization.

Tsou CS (2013). nsga2R: Elitist Non-Dominated Sorting Genetic Algorithm Based on R. R
package version 1.0, URL https://CRAN.R-project.org/package=nsga2R.

Van Veldhuizen DA, Lamont GB (1999). “Multiobjective Evolutionary Algorithm Test Suites.”
In Proceedings of the 1999 ACM Symposium on Applied Computing, pp. 351–357.

Varadhan R (2014). “Numerical Optimization in R: Beyond optim.” Journal of Statistical
Software, 60(1), 1–3. doi:10.18637/jss.v060.i01.

Wagner T, Emmerich M, Deutz A, Ponweiser W (2010). “On Expected-Improvement
Criteria for Model-Based Multi-Objective Optimization.” In R Schaefer, C Cotta,
J Kołodziej, G Rudolph (eds.), Parallel Problem Solving from Nature, PPSN XI, vol-
ume 6238 of Lecture Notes in Computer Science, pp. 718–727. Springer-Verlag. doi:
10.1007/978-3-642-15844-5_72.

Wang GG, Shan S (2007). “Review of Metamodeling Techniques in Support of Engineering
Design Optimization.” Journal of Mechanical Design, 129(4), 370–380. doi:10.1115/1.
2429697.

Wang Z, Zoghi M, Hutter F, Matheson D, de Freitas N (2013). “Bayesian Optimization in
High Dimensions via Random Embeddings.” In IJCAI, pp. 1778–1784.

Zhang Q, Liu W, Tsang E, Virginas B (2010). “Expensive Multiobjective Optimization by
MOEA/D With Gaussian Process Model.” IEEE Transactions on Evolutionary Computa-
tion, 14(3), 456–474. doi:10.1109/tevc.2009.2033671.

Zitzler E, Deb K, Thiele L (2000). “Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results.” Evolutionary Computation, 8(2), 173–195. doi:10.1162/
106365600568202.

Zuluaga M, Sergent G, Krause A, Püschel M (2013). “Active Learning for Multi-Objective
Optimization.” In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pp. 462–470.

https://doi.org/10.1016/j.csda.2015.08.011
https://doi.org/10.1007/s00158-015-1226-z
http://www.mathworks.com/products/matlab/
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/package=nsga2R
https://doi.org/10.18637/jss.v060.i01
https://doi.org/10.1007/978-3-642-15844-5_72
https://doi.org/10.1007/978-3-642-15844-5_72
https://doi.org/10.1115/1.2429697
https://doi.org/10.1115/1.2429697
https://doi.org/10.1109/tevc.2009.2033671
https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202

30 GPareto: Gaussian-Process-Based Multi-Objective Optimization and Analysis in R

Affiliation:
Mickaël Binois
Mines Saint-Étienne
EMSE-FAYOL, CNRS UMR 6158, LIMOS
42023 Saint-Étienne, France
E-mail: mickael.binois@mines-stetienne.fr

Victor Picheny
MIAT, Université de Toulouse, INRA
31326 Castanet-Tolosan, France
E-mail: victor.picheny@inra.fr

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
May 2019, Volume 89, Issue 8 Submitted: 2016-03-11
doi:10.18637/jss.v089.i08 Accepted: 2018-02-27

mailto:mickael.binois@mines-stetienne.fr
mailto:victor.picheny@inra.fr
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v089.i08

	Introduction
	Method
	Principles of Gaussian-process based optimization
	The mono-objective case
	Noisy objectives
	The multi-objective case

	Review of surrogate-based and Bayesian multi-objective optimization
	Uncertainty quantification
	Pareto front (objective space)
	Pareto set (variable space)

	Package overview and options
	Architecture
	Functions related to the sequential design of experiments
	User-friendly wrapper: easyGParetoptim
	GParetoptim
	crit optimizer
	Criteria functions

	Functions related to uncertainty quantification and post-processing
	User-friendly wrapper: plotGPareto
	Uncertainty quantification on Pareto front
	Uncertainty quantification on Pareto set
	Search for target designs

	Some technical aspects
	Fast objectives
	Numerical stability

	Illustrating examples using GPareto
	Two objectives, unidimensional example
	Two objectives, two dimensions example
	Four variables, three objectives

	Comparison with other MOO packages
	Two objectives, two dimensions problem
	Two objectives, four variables problem
	Three objectives, six dimensions problem

	Concluding remarks

