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Abstract

Matrix decompositions are fundamental tools in the area of applied mathematics,
statistical computing, and machine learning. In particular, low-rank matrix decompo-
sitions are vital, and widely used for data analysis, dimensionality reduction, and data
compression. Massive datasets, however, pose a computational challenge for traditional
algorithms, placing significant constraints on both memory and processing power. Re-
cently, the powerful concept of randomness has been introduced as a strategy to ease
the computational load. The essential idea of probabilistic algorithms is to employ some
amount of randomness in order to derive a smaller matrix from a high-dimensional data
matrix. The smaller matrix is then used to compute the desired low-rank approximation.
Such algorithms are shown to be computationally efficient for approximating matrices with
low-rank structure. We present the R package rsvd, and provide a tutorial introduction
to randomized matrix decompositions. Specifically, randomized routines for the singular
value decomposition, (robust) principal component analysis, interpolative decomposition,
and CUR decomposition are discussed. Several examples demonstrate the routines, and
show the computational advantage over other methods implemented in R.

Keywords: dimension reduction, randomized algorithm, low-rank approximations, singular
value decomposition, principal component analysis, CUR decomposition, R.

1. Introduction
In the era of “big data”, vast amounts of data are being collected and curated in the form of
arrays across the social, physical, engineering, biological, and ecological sciences. Analysis of
the data relies on a variety of matrix decomposition methods which seek to exploit low-rank
features exhibited by the high-dimensional data. Indeed, matrix decompositions are often the
workhorse algorithms for scientific computing applications in the areas of applied mathematics,
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Figure 1: First, randomness is used as a computational strategy to derive a smaller matrix
B from A. Then, the low-dimensional matrix is used to compute an approximate matrix
decomposition. Finally, the near-optimal (high-dimensional) factors may be reconstructed.

statistical computing, and machine learning. Despite our ever-increasing computational
power, the emergence of large-scale datasets has severely challenged our ability to analyze
data using traditional matrix algorithms. Moreover, the growth of data collection is far
outstripping computational performance gains. The computationally expensive singular value
decomposition (SVD) is the most ubiquitous method for dimensionality reduction, data
processing and compression. The concept of randomness has recently been demonstrated as
an effective strategy to easing the computational demands of low-rank approximations from
matrix decompositions such as the SVD, thus allowing for a scalable architecture for modern
“big data” applications. Throughout this paper, we make the following assumption: the data
matrix to be approximated has low-rank structure, i.e., the rank is smaller than the ambient
dimension of the measurement space.

1.1. Randomness as a computational strategy

Randomness is a fascinating and powerful concept in science and nature. Probabilistic
concepts can be used as an effective strategy for designing better algorithms. By the deliberate
introduction of randomness into computations (Motwani and Raghavan 1995), randomized
algorithms have not only been shown to outperform some of the best deterministic methods,
but they have also enabled the computation of previously infeasible problems. The Monte
Carlo method, invented by Stan Ulam, Nick Metropolis and John von Neumann, is among the
most prominent randomized methods in computational statistics as well as one of the “best”
algorithms of the 20th century (Cipra 2000).
Over the past two decades, probabilistic algorithms have been established to compute matrix
approximations, forming the field of randomized numerical linear algebra (Drineas and Mahoney
2016). While randomness is quite controversial, and is often seen as an obstacle and a nuisance,
modern randomized matrix algorithms are reliable and numerically stable. The basic idea
of probabilistic matrix algorithms is to employ a degree of randomness in order to derive
a smaller matrix from a high-dimensional matrix, which captures the essential information.
Thus, none of the “randomness” should obscure the dominant spectral information of the data
as long as the input matrix features some low-rank structure. Then, a deterministic matrix
factorization algorithm is applied to the smaller matrix to compute a near-optimal low-rank
approximation. The principal concept is sketched in Figure 1.



Journal of Statistical Software 3

3000 x 2000 5000 x 3000 10000 x 5000

sv
d

pro
pack

RSpectr
a

irlb
a

rsv
d

sv
d

pro
pack

RSpectr
a

irlb
a

rsv
d

sv
d

pro
pack

RSpectr
a

irlb
a

rsv
d

0

20

40

60

80

100

120

S
p
e
e
d
u
p
 o

ve
r 

b
a
s
e
 s

v
d

Figure 2: Runtime speedups (relative performance) of fast SVD algorithms compared to the
base svd() routine in R. Here, the dominant k = 20 singular values and vectors are computed
for random low-rank matrices with varying dimension m×n. Note, here we are using Microsoft
Open 3.5.1 which provides the Intel MKL for parallel mathematical computing (using 4 cores).

Several probabilistic strategies have been proposed to find a “good” smaller matrix, and we
refer the reader to the surveys by Mahoney (2011), Liberty (2013), and Halko, Martinsson,
and Tropp (2011b) for an in-depth discussion, and theoretical results. In addition to computing
the singular value decomposition (Sarlos 2006; Martinsson, Rokhlin, and Tygert 2011) and
principal component analysis (Rokhlin, Szlam, and Tygert 2009; Halko, Martinsson, Shkolnisky,
and Tygert 2011a), it has been demonstrated that this probabilistic framework can also be
used to compute the pivoted QR decomposition (Duersch and Gu 2017), the pivoted LU
decomposition (Shabat, Shmueli, Aizenbud, and Averbuch 2018), and the dynamic mode
decomposition (Erichson, Brunton, and Kutz 2018).

1.2. The rsvd package: Motivation and contributions

The computational costs of applying deterministic matrix algorithms to massive data matrices
can render the problem intractable. Randomized matrix algorithms are becoming increasingly
popular as an alternative, and implementations are available in a variety of programming
languages and machine learning libraries. For instance, Voronin and Martinsson (2016) provide
high performance, multi-core and GPU accelerated randomized routines in C.
The rsvd package (Erichson 2019) aims to fill the gap in R (R Core Team 2019), providing the
following randomized routines:

• Randomized singular value decomposition: rsvd().
• Randomized principal component analysis: rpca().
• Randomized robust principal component analysis: rrpca().
• Randomized interpolative decomposition: rid().
• Randomized CUR decomposition: rcur().

The routines are, in particular, efficient for matrices with rapidly decaying singular values.
Figure 2 compares the computational performance of the rsvd() function to other existing
SVD routines in R, which are discussed in more detail in Section 3.5. Specifically, for computing
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the dominant k singular values and vectors, the randomized singular value decomposition
function rsvd() results in significant speedups over other existing SVD routines in R. See
Section 3.8 for a more detailed performance evaluation.
The computational benefits of the randomized SVD translates directly to principal component
analysis (PCA), since both methods are closely related. Further, the randomized SVD can be
used to accelerate the computation of robust principal component analysis (RPCA). More
generally, the concept of randomness allows also one to efficiently compute modern matrix
decompositions such as the interpolative decomposition (ID) and CUR decomposition. While
the performance of the randomized algorithms depends on the actual shape of the matrix,
we can state (as a rule of thumb) that significant computational speedups are achieved if the
target rank k is about 3-6 times smaller than the smallest dimension min{m,n} of the matrix.
The speedup for tall and thin matrices is in general less impressive than for “big” fat matrices.
The rsvd package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=rsvd. Thus, to install and load within R simply use:

R> install.packages("rsvd")
R> library("rsvd")

Alternatively, the package can be obtained via github: https://github.com/erichson/rSVD.

1.3. Organization

The remainder of this paper is organized as follows. First, Section 2 outlines the advocated
probabilistic framework for low-rank matrix approximations. Section 3 briefly reviews the
singular value decomposition and the randomized SVD algorithm. Then, the rsvd() function
and its computational performance are demonstrated. Section 4 first describes the principal
component analysis. Then, the randomized PCA algorithm is outlined, followed by the
demonstration of the corresponding rpca() function. Section 5 outlines robust principal
component analysis, and describes the randomized robust PCA algorithm as well as the rrpca()
function. Section 6 gives a high-level overview of the interpolative and CUR decomposition.
Finally, concluding remarks and a roadmap for future developments are presented in Section 7.

1.4. Notation

In the following we give a brief overview of some notation used throughout this manuscript.
Scalars are denoted by lower case letters x, and vectors both in Rn and Cn are denoted as
bold lower case letters x = [x1, x2, . . . , xn]>. Matrices are denoted by bold capital letters A
and the entry at row i and column j is denoted as A(i, j). This notation is convenient for
matrix slicing, for instance, A(1 : i, :) extracts the first 1, 2, . . . , i rows, and A(:, 1 : j) extracts
the first 1, 2, . . . , j columns. The transpose of a real matrix is denoted as A>, and without
loss of generality, we restrict most of the discussion in the following to real matrices. Further,
the column space (range) of A is denoted as col(A), and the row space as row(A).
The spectral or operator norm of a matrix is defined as the largest singular value σmax of A,
i.e., the square root of the largest eigenvalue λmax of the positive-semidefinite matrix A>A:

‖A‖2 =
√
λmax(A>A) = σmax(A) = max

x6=0

‖Ax‖2
‖x‖2

.

https://CRAN.R-project.org/package=rsvd
https://CRAN.R-project.org/package=rsvd
https://github.com/erichson/rSVD
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The Frobenius norm is defined as the square root of the sum of the absolute squares of its
elements, which is equal to the square root of the matrix trace of A>A:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1
|A(i, j)|2 =

√
trace(A>A).

2. Probabilistic framework for low-rank approximations
Assume that a matrix A ∈ Rm×n has rank r, where r ≤ min{m,n}. Then, in general, the
objective of a low-rank matrix approximation is to find two smaller matrices such that:

A ≈ E F,
m× n m× r r × n (1)

where the columns of the matrix E ∈ Rm×r span the column space of A, and the rows of
the matrix F ∈ Rr×n span the row space of A. The factors E and F can then be used to
summarize or to reveal some interesting structure in the data. Further, the factors can be
used to efficiently store the large data matrix A. Specifically, while A requires mn words of
storage, E and F require only mr + nr words of storage.
In practice, most data matrices do not feature a precise rank r. Rather we are commonly
interested in finding a rank-k matrix Ak, which is as close as possible to an arbitrary input
matrix A in the least-square sense. We refer to k as the target rank in the following.
In particular, modern data analysis and scientific computing largely rely on low-rank approxi-
mations, since low-rank matrices are ubiquitous throughout the sciences. However, in the era
of “big data”, the emergence of massive data poses a significant computational challenge for
traditional deterministic algorithms.
In the following, we advocate the probabilistic framework, formulated by Halko et al. (2011b),
to compute a near-optimal low-rank approximation. Conceptually, this framework splits the
computational task into two logical stages:

• Stage A: Construct a low dimensional subspace that approximates the column space of
A. This means, the aim is to find a matrix Q ∈ Rm×k with orthonormal columns such
that A ≈ QQ>A is satisfied.

• Stage B: Form a smaller matrix B := Q>A ∈ Rk×n, i.e., restrict the high-dimensional
input matrix to the low-dimensional space spanned by the near-optimal basis Q. The
smaller matrix B can then be used to compute a desired low-rank approximation.

The first computational stage is where randomness comes into the play, while the second stage
is purely deterministic. In the following, the two stages are described in detail.

2.1. The generic randomized algorithm

Stage A: Computing the near-optimal basis
First, we aim to find a near-optimal basis Q for the matrix A such that

A ≈ QQ>A (2)
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Figure 3: Geometric illustration of the orthogonal projection operator P. A vector x ∈ Rm is
restricted to the column space of A, where Px ∈ col(A).

is satisfied. The desired target rank k is assumed to be k � min{m,n}. Specifically, P := QQ>
is a linear orthogonal projector. A projection operator corresponds to a linear subspace, and
transforms any vector to its orthogonal projection on the subspace. This is illustrated in
Figure 3, where a vector x is confined to the column space col(A).
The concept of random projections can be used to sample the range (column space) of the input
matrix A in order to efficiently construct such a orthogonal projector. Random projections
are data agnostic, and constructed by first drawing a set of k random vectors {ωi}ki=1, for
instance, from the standard normal distribution. Probability theory guarantees that random
vectors are linearly independent with high probability. Then, a set of random projections
{yi}ki=1 is computed by mapping A to low-dimensional space:

yi := Aωi for i = 1, 2, . . . , k. (3)

In other words, this process forms a set of independent randomly weighted linear combinations
of the columns of A, and reduces the number of columns from n to k. While the input matrix
is compressed, the Euclidean distances between the original data points are approximately
preserved. Random projections are also well known as the Johnson-Lindenstrauss (JL)
transform (Johnson and Lindenstrauss 1984), and we refer to Ahfock, Astle, and Richardson
(2017) for a recent statistical perspective.
Equation 3 can be efficiently executed in parallel. Therefore, let us define the random test
matrix Ω ∈ Rn×k, which is again drawn from the standard normal distribution, and the
columns of which are given by the vectors {ωi}. The samples matrix Y ∈ Rm×k, also denoted
as sketch, is then obtained by post-multiplying the input matrix by the random test matrix

Y := AΩ. (4)

Once Y is obtained, it only remains to orthonormalize the columns in order to form a natural
basis Q ∈ Rm×k. This can be efficiently achieved using the QR-decomposition Y =: QR, and
it follows that Equation 2 is satisfied.

Stage B: Compute the smaller matrix
Now, given the near-optimal basis Q, we aim to find a smaller matrix B ∈ Rk×n. Therefore,
we project the high-dimensional input matrix A to low-dimensional space

B := Q>A. (5)
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Figure 4: Points in a high-dimensional space are projected into low-dimensional space, while
the geometric structure is preserved in an Euclidean sense.

Geometrically, this is a projection (i.e., a linear transformation) which takes points in a
high-dimensional space into corresponding points in a low-dimensional space, illustrated in
Figure 4. This process preserves the geometric structure of the data in an Euclidean sense,
i.e., the length of the projected vectors as well as the angles between the projected vectors
are preserved. This is, due to the invariance of inner products (Trefethen and Bau 1997).
Substituting Equation 5 into 2 yields then the following low-rank approximation

A ≈ Q B.
m× n m× k k × n

This decomposition is referred to as the QB decomposition. Subsequently, the smaller matrix
B can be used to compute a matrix decomposition using a traditional algorithm.

2.2. Improved randomized algorithm

The basis matrix Q often fails to provide a good approximation for the column space of the
input matrix. This is because most real-world data matrices do not feature a precise rank r,
and instead exhibit a gradually decaying singular value spectrum. The performance can be
considerably improved using the concept of oversampling and the power iteration scheme.

Oversampling

Most data matrices do not feature an exact rank, which means that the singular values
{σi}ni=k+1 of the input matrix A are non-zero. As a consequence, the sketch Y does not
exactly span the column space of the input matrix. Oversampling can be used to overcome
this issue by using l := k+ p random projections to form the sketch, instead of just k. Here, p
denotes the number of additional projections, and a small number p = {5, 10} is often sufficient
to obtain a good basis that is comparable to the best possible basis (Martinsson 2016).
The intuition behind the oversampling scheme is the following. The sketch Y is a random
variable, as it depends on the drawing of a random test matrix Ω. Increasing the number
of additional random projections allows one to decrease the variation in the singular value
spectrum of the random test matrix, which subsequently improves the quality of the sketch.

Power iteration scheme

The second method for improving the quality of the basis Q involves the concept of power
sampling iterations (Rokhlin et al. 2009; Halko et al. 2011b; Gu 2015). Instead of obtaining
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Figure 5: Singular value spectrum of a low-rank (r = 30) matrix before and after preprocessing.
The computation of power iterations enforce a more rapid decay of singular values.

the sketch Y directly, the data matrix A is first preprocessed as

A(q) := (AA>)qA, (6)

where q is an integer specifying the number of power iterations. This process enforces a more
rapid decay of the singular values. Thus, we enable the algorithm to sample the relevant
information related to the dominant singular values, while unwanted information is suppressed.
Let A = UΣV> be the singular value decomposition. It is simple to show that A(q) :=
(AA>)qA = UΣ2q+1V>. Here, U and V are orthonormal matrices whose columns are the
left and right singular vectors of A, and Σ is a diagonal matrix containing the singular values
in descending order. Hence, for q > 0, the modified matrix A(q) has a relatively fast decay of
singular values even when the decay in A is modest. This is illustrated in Figure 5, showing
the singular values of a 50× 50 low-rank matrix before (red) and after computing q = {1, 2, 3}
power iterations. Thus, substituting Equation 6 into 4 yields an improved sketch

Y := A(q)Ω.

When the singular values of the data matrix decay slowly, as few as q = {1, 2, 3} power
iterations can considerably improve the accuracy of the approximation. The drawback of the
power scheme is that q additional passes over the input matrix are required.
Algorithm 1 shows a direct implementation of the power iteration scheme. Due to potential
round-off errors, however, this algorithm is not recommended in practice.
The numerical stability can be improved by orthogonalizing the sketch between each iteration.
This scheme is shown in Algorithm 2, and denoted as subspace iteration (Halko et al. 2011b;
Gu 2015). The pivoted LU decomposition can be used as an intermediate step instead of the
QR decomposition as proposed by Rokhlin et al. (2009). Algorithm 3 is computationally more
efficient, while slightly less accurate.

2.3. Random test matrices

The probabilistic framework above essentially depends on the random test matrix Ω used
for constructing the sketch Y. Specifically, we seek a matrix with independent identically
distributed (i.i.d.) entries from some distribution, which ensures that its columns are linearly
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Algorithm 1 Direct implementation of the power scheme.
Input: Input matrix A, the sketch Y, and parameter q.
function power_iterations(A,Y, q)
(1) for j = 1, . . . , q perform q power iterations
(2) Y = A>Y
(3) Y = AY
Return: Y ∈ Rm×k

Algorithm 2 Subspace iterations.
Input: Input matrix A, the sketch Y, and q.
function sub_iterations(A,Y, q)
(1) for j = 1, . . . , q perform q iterations
(2) [Q,∼] = qr(Y) economic QR
(3) [Q,∼] = qr(A>Q) economic QR
(4) Y = AQ
Return: Y ∈ Rm×k

Algorithm 3 Normalized power iterations.
Input: Input matrix A, the sketch Y, and q.
function norm_iterations(A,Y, q)
(1) for j = 1, . . . , q perform q iterations
(2) [L,∼] = lu(Y) pivoted LU
(3) [L,∼] = lu(A>L) pivoted LU
(4) Y = AL
Return: Y ∈ Rm×k

independent with high probability. Some popular choices for constructing the random test
matrix are:

• Gaussian. The default choice to construct a random test matrix is to draw entries from
the standard normal distribution, N (0, 1). The normal distribution is known to have
excellent performance for sketching in practice. Further, the theoretical properties of the
normal distribution enable the derivation of accurate error bounds (Halko et al. 2011b).

• Uniform. A simple alternative is to draw entries from the uniform distribution, U(−1, 1).
While the behavior is similar in practice, the generation of uniform random samples is
computationally more efficient.

• Rademacher. Yet another approach to construct the random test matrix is to draw
independent Rademacher entries. The Rademacher distribution is a discrete probability
distribution, where the random variates take the values +1 and −1 with equal probability.
Rademacher entries are simple to generate, and they are cheaper to store than Gaussian
and uniform random test matrices (Tropp, Yurtsever, Udell, and Cevher 2018).
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Currently, the rsvd package only supports standard dense random test matrices; however,
dense matrix operations can become very expensive for large-scale applications. This is
because it takes O(mnk) time to apply an n × k dense random test matrix to any m × n
dense input matrix. Structured random test matrices provide a computationally more efficient
alternative (Woolfe, Liberty, Rokhlin, and Tygert 2008), reducing the costs to O(mn log(k)).
Very sparse random test matrices are even simpler to construct (Li, Hastie, and Church 2006),
yet slightly less accurate. These can be applied to any m× n dense matrix in O(m nnz(Ω))
using sparse matrix multiplication routines, where nnz() denotes the non-zero entries in the
sparse random test matrix.

3. Randomized singular value decompositions
The SVD provides a numerically stable matrix decomposition that can be used to obtain
low-rank approximations, to compute the pseudo-inverses of non-square matrices, and to find
the least-squares and minimum norm solutions of a linear model. Further, the SVD is the
workhorse algorithm behind many machine learning concepts, for instance, matrix completion,
sparse coding, dictionary learning, PCA and robust PCA. For a comprehensive technical
overview of the SVD we refer to Golub and Van Loan (1996), and Trefethen and Bau (1997).

3.1. Brief historical overview

While the origins of the SVD can be traced back to the late 19th century, the field of
randomized matrix algorithms is relatively young. Figure 6 shows a short time-line of some
major developments of the singular value decomposition. Stewart (1993) gives an excellent
historical review of the five mathematicians who developed the fundamentals of the SVD,
namely Eugenio Beltrami (1835–1899), Camille Jordan (1838–1921), James Joseph Sylvester
(1814–1897), Erhard Schmidt (1876–1959) and Hermann Weyl (1885–1955). The development
and fundamentals of modern high-performance algorithms to compute the SVD are related
to the seminal work of Golub and Kahan (1965) and Golub and Reinsch (1970), forming the
basis for the EISPACK, and LAPACK SVD routines.
Modern partial singular value decomposition algorithms are largely based on Krylov methods,
such as the Lanczos algorithm (Calvetti, Reichel, and Sorensen 1994; Larsen 1998; Lehoucq,
Sorensen, and Yang 1998; Baglama and Reichel 2005). These methods are accurate and are
particularly powerful for approximating structured, and sparse matrices.
Randomized matrix algorithms for computing low-rank matrix approximations have gained
prominence over the past two decades. Frieze, Kannan, and Vempala (2004) introduced the
“Monte Carlo” SVD, a rigorous approach to efficiently compute the approximate low-rank SVD
based on non-uniform row and column sampling. Sarlos (2006), Liberty, Woolfe, Martinsson,
Rokhlin, and Tygert (2007) and Martinsson et al. (2011) introduced a more robust approach
based on random projections. Specifically, the properties of random vectors are exploited
to efficiently build a subspace that captures the column space of a matrix. Woolfe et al.
(2008) further improved the computational performance by leveraging the properties of highly
structured matrices, which enable fast matrix multiplications. Eventually, the seminal work
by Halko et al. (2011b) unified and expanded previous work on the randomized singular
value decomposition and introduced state-of-the-art prototype algorithms to compute the
near-optimal low-rank singular value decomposition.
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Figure 6: A timeline of major singular value decomposition developments.

3.2. Conceptual overview

Given a real matrix A ∈ Rm×n with m ≥ n, the singular value decomposition takes the form

A = UΣV>.

The matrices U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n are orthonormal so
that U>U = I and V>V = I. The left singular vectors in U provide a basis for the range
(column space), and the right singular vectors in V provide a basis for the domain (row space)
of the matrix A. The rectangular diagonal matrix Σ ∈ Rm×n contains the corresponding
non-negative singular values σ1 ≥ . . . ≥ σn ≥ 0, describing the spectrum of the data.
The so called “economy” or “thin” SVD computes only the left singular vectors and singular
values corresponding to the number (i.e., n) of right singular vectors

A = UΣV = [u1, . . . ,un]diag(σ1, . . . , σn)[v1, . . . ,vn]>.

If the number of right singular vectors is small (i.e., n � m), this is a more compact
factorization than the full SVD. The “economy” SVD is the default form of the base svd()
function in R.
Low-rank matrices feature a rank that is smaller than the dimension of the ambient measure-
ment space, i.e., r is smaller than the number of columns and rows. Hence, the singular values
{σi : i ≥ r + 1} are zero, and the corresponding singular vectors span the left and right null
spaces. The concept of the “economy” SVD of a low-rank matrix is illustrated in Figure 7.
In practical applications matrices are often contaminated by errors, and the effective rank of a
matrix can be smaller than its exact rank r. In this case, the matrix can be well approximated
by including only those singular vectors which correspond to singular values of a significant
magnitude. Hence, it is often desirable to compute a reduced version of the SVD

Ak := UkΣkVk = [u1, . . . ,uk]diag(σ1, . . . , σk)[v1, . . . ,vk]>,

where k denotes the desired target rank of the approximation. In other words, this reduced
form of the SVD allows one to express A approximately by the sum of k rank-one matrices

Ak ≈
k∑

i=1
σiuiv>i .

Choosing an optimal target rank k is highly dependent on the task. One can either be
interested in a highly accurate reconstruction of the original data, or in a very low dimensional
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=

Figure 7: Schematic of the “economy” SVD for a rank-r matrix, where m ≥ n.

representation of dominant features in the data. In the former case k should be chosen close
to the effective rank, while in the latter case k might be chosen to be much smaller.
Truncating small singular values in the deterministic SVD gives an optimal approximation of
the corresponding target rank k. Specifically, the Eckart-Young theorem (Eckart and Young
1936) states that the low-rank SVD provides the optimal rank-k reconstruction of a matrix in
the least-square sense

Ak := argmin
rank(A′

k
)=k
‖A−A′k‖.

The reconstruction error in both the spectral and Frobenius norms is given by

‖A−Ak‖2 = σk+1(A) and ‖A−Ak‖F =

√√√√√min(m,n)∑
j=k+1

σ2
j (A).

For massive datasets, however, the truncated SVD is costly to compute. The cost to compute
the full SVD of an m× n matrix is of the order O(mn2), from which the first k components
can then be extracted to form Ak.

3.3. Randomized algorithm

Randomized algorithms have been recently popularized, in large part due to their “surprising”
reliability and computational efficiency (Gu 2015). These techniques can be used to obtain an
approximate rank-k singular value decomposition at a cost of O(mnk). When the dimensions
of A are large, this is substantially more efficient than truncating the full SVD.
We present details of the randomized low-rank SVD algorithm, which comes with favorable
error bounds relative to the optimal truncated SVD, as presented in the seminal paper by Halko
et al. (2011b), and further analyzed and implemented in Voronin and Martinsson (2016).
Let A ∈ Rm×n be a low-rank matrix, and without loss of generality m ≥ n. In the following,
we seek the near-optimal low-rank approximation of the form

A ≈ UkΣkV>k ,
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Figure 8: Conceptual architecture of the randomized singular value decomposition (rSVD).
First, a natural basis Q is computed in order to derive the smaller matrix B. Then, the SVD
is efficiently computed using this smaller matrix. Finally, the left singular vectors U may be
reconstructed from the approximate singular vectors Ũ by the expression in Equation 7.

where k denotes the target rank. Instead of computing the singular value decomposition
directly, we embed the SVD into the probabilistic framework presented in Section 2. The
principal concept is sketched in Figure 8.
Specifically, we first compute the near-optimal basis Q ∈ Rm×l using the randomized scheme as
outlined in detail above. Note that we allow for both oversampling (l = k+ p), and additional
power iterations q, in order to obtain the near-optimal basis matrix. The matrix B ∈ Rl×n is
relatively small if l� n, and it is obtained by projecting the input matrix to low-dimensional
space, i.e., B := Q>A. The full SVD of B is then computed using a deterministic algorithm

B = ŨΣV>.

Thus, we efficiently obtain the first l right singular vectors V ∈ Rn×l as well as the corresponding
singular values Σ ∈ Rl×l. It remains to recover the left singular vectors U ∈ Rm×l from the
approximate left singular vectors Ũ ∈ Rl×l by pre-multiplying by Q

U ≈ QŨ. (7)
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Algorithm 4 A randomized QB decomposition algorithm.
Input: Input matrix A with dimensions m× n, and target rank k < min{m,n}.
Optional: Parameters p and q to control oversampling, and the power scheme.

function rqb(A, k, p, q)

(1) l = k + p slight oversampling
(2) Ω = rnorm(n, l) generate random test matrix
(3) Y = AΩ compute sketch
(4) Y = sub_iterations(A,Y, q) optional: compute power scheme via Algorithm 2
(9) [Q,∼] = qr(Y) form orthonormal basis
(10) B = Q>A project to low-dimensional space

Return: Q ∈ Rm×l, B ∈ Rl×n

The justification for the randomized SVD can be sketched as follows

A ≈ QQ>A = QB = QŨΣV> = UΣV>.

Algorithm 5 presents an implementation using the randomized QB decomposition in Al-
gorithm 4. The approximation quality can be controlled via oversampling and additional
subspace iterations. Note that if an oversampling parameter p > 0 has been specified, the
desired rank-k approximation is simply obtained by truncating the left and right singular
vectors and the singular values.
The randomized singular value decomposition has several practical advantages:

• Lower communication costs. The randomized algorithm presented here requires
few (at least two) passes over the input matrix. By passes we refer to the number of
sequential reads of the entire input matrix. This aspect is crucial in the area of “big data”
where communication costs play a significant role. For instance, the time to transfer the
data from the hard-drive into fast memory can be substantially more expensive than
the theoretical costs of the algorithm would suggest. Recently, Tropp et al. (2018) have
introduced an interesting set of new single pass algorithms, reducing the communication
costs even further.

• Highly parallelizable. Randomized algorithms are highly scalable by design. This is
because the computationally expensive steps involve matrix-matrix operations, which
are very efficient on parallel architectures. Hence, modern computational architectures
such as multi-threading and distributed computing, can be fully exploited.

• General applicability. Randomized matrix algorithms work for matrices with arbitrary
rates of singular value decay. The approximation for matrices with rapid singular value
decay approaches that of the optimal truncated SVD, with high probability (Martinsson
2016; Gu 2015).
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Algorithm 5 A randomized SVD algorithm.
Input: Input matrix A with dimensions m× n, and target rank k < min{m,n}.
Optional: Parameters p and q to control oversampling, and the power scheme.

function rsvd(A, k, p, q)

(1) [Q,B] = rqb(A, k, p, q) randomized QB decomposition via Algorithm 4
(2) [Ũ,Σ,V] = svd(B) compute economic SVD
(3) U = QŨ recover left singular vectors

Return: U(:, 1 : k) ∈ Rm×k, Σ(1 : k, 1 : k) ∈ Rk×k and V(:, 1 : k) ∈ Rn×k

Remark 1. In general we achieve a good computational performance, if the target rank is
much smaller than the ambient dimensions of the input matrix, e.g., k < min{m,n}/4.
Remark 2. As default values for the oversampling and the power iteration scheme we recommend
the parameters p = 10 and q = 2, respectively.

3.4. Theoretical performance

Let us consider the low-rank matrix approximation QB, where B := Q>A. From the Eckart-
Young theorem (Eckart and Young 1936) it follows that the smallest possible error achievable
with the best possible basis matrix Q is

‖A−QB‖2 = σk+1(A),

where σk+1(A) denotes the k + 1 largest singular value of the matrix A.
In Algorithm 5 we compute the full SVD of B, so it follows that ‖A−Ak‖2 = ‖A−QB‖2,
where Ak = UkΣkV>k . Following Martinsson (2016), the randomized algorithm for computing
the low-rank matrix approximation has the following expected error:

E‖A−Ak‖2 ≤
[
1 +

√
k

p− 1 + e
√
k + p

p
·
√
min{m,n} − k

] 1
2q+1

σk+1(A). (8)

Here, the operator E denotes the expectation with respect to a Gaussian test matrix Ω, and
Euler’s number is denoted as e. Further, it is assumed that the oversampling parameter p is
greater or equal to two.
From this error bound it follows that both the oversampling (parameter p) and the power
iteration scheme (parameter q) can be used to control the approximation error. With increasing
p the second and third term on the right hand side tend towards zero, i.e., the bound approaches
the theoretically optimal value of σk+1(A). The parameter q accelerates the rate of decay
of the singular values of the sampled matrix, while maintaining the same eigenvectors. This
yields better performance for matrices with otherwise modest decay. Equation 8 is a simplified
version of one of the key theorems presented by Halko et al. (2011b), who provide a detailed
error analysis of the outlined probabilistic framework. Further, Witten and Candes (2015)
provide sharp error bounds and interesting theoretical insights.
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3.5. Existing functionality for SVD in R

The svd() function is the default option to compute the SVD in R. This function provides
an interface to the underlying LAPACK SVD routines (Anderson, Bai, Bischof, Blackford,
Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, and Sorensen 1999). These routines
are known to be numerical stable and highly accurate, i.e., full double precision.
In many applications the full SVD is not necessary; only the truncated factorization is required.
The truncated SVD for an m× n matrix can be obtained by first computing the full SVD,
and then extracting the k dominant components to form Ak. However, the computational
time required to approximate large-scale data is tremendous using this approach.
Partial algorithms, largely based on Krylov subspace methods, are an efficient class of
approximation methods to compute the dominant singular vectors and singular values. These
algorithms are particularly powerful for approximating structured or sparse matrices. This
is because Krylov subspace methods only require certain operations defined on the input
matrix A such as matrix-vector multiplication. These basic operations can be computed very
efficiently, if the input matrix features some structure like sparsity. The Lanczos algorithm
and its variants are the most popular choice to compute the approximate SVD. Specifically,
they first find the dominant k eigenvalues and eigenvectors of the symmetric matrix A>A as

A>AVk = VΣ2
k,

where Vk are the k dominant right singular vectors, and Σ2
k are the corresponding squared

singular values. Depending on the dimensions of the input matrix, this operation can also be
performed on AA>. See, for instance, Demmel (1997) and Martinsson (2016) for details on
how the Lanczos algorithm builds the Krylov subspace, and subsequently approximates the
eigenvalues and eigenvectors.
The relationship between the singular value decomposition and eigendecomposition can then be
used to approximate the left singular vectors as Uk = AVkΣ−1 (see also Section 4.2). However,
computing the eigenvalues of the inner product A>A is not generally a good idea, because
this process squares the condition number of A. Further, the computational performance
of Krylov methods depends on factors such as the initial guess for the starting vector, and
additional steps used to stabilize the algorithm (Gu 2015). While partial SVD algorithms
have the same theoretical costs as randomized methods, i.e., they require O(mnk) floating
point operations, they have higher communication costs. This is because the matrix-vector
operations do not permit data reuse between iterations.
The most competitive partial SVD routines in R are provided by the svd (Korobeynikov and
Larsen 2019), RSpectra (Qiu, Mei, Guennebaud, and Niesen 2019), and the irlba (Baglama
and Reichel 2005) packages. The svd package provides a wrapper for the PROPACK
SVD algorithm (Larsen 1998). The RSpectra package is inspired by the software pack-
age ARPACK (Lehoucq et al. 1998) and provides fast partial SVD and eigendecompositon
algorithms. The irlba package implements implicitly restarted Lanczos bidiagonalization
methods for computing the dominant singular values and vectors (Baglama and Reichel
2005). The advantage of this algorithm is that it avoids the implicit computation of the inner
product A>A or outer product AA>. Thus, this algorithm is more numerically stable if A is
ill-conditioned.



Journal of Statistical Software 17

3.6. The rsvd() function

The rsvd package provides an efficient routine to compute the low-rank SVD using Algorithm 5.
The interface of the rsvd() function is similar to the base svd() function:

rsvd(A, k, nu = NULL, nv = NULL, p = 10, q = 2, sdist = "normal")

The first mandatory argument A passes the m× n input data matrix. The second mandatory
argument k defines the target rank, which is assumed to be chosen smaller than the ambient
dimensions of the input matrix. The rsvd() function achieves significant speedups for target
ranks chosen to be k < min{m,n}/4. Similar to the svd() function, the arguments nu and
nv can be used to specify the number of left and right singular vectors to be returned.
The accuracy of the approximation can be controlled via the two tuning parameters p and q.
The former parameter is used to oversample the basis, and is set by default to p = 10. This
setting guarantees a good basis with high probability in general. The parameter q can be used
to compute additional power iterations (subspace iterations). By default this parameter is
set to q = 2, which yields a good performance in our numerical experiments, i.e., the default
values show an optimal trade-off between speed and accuracy in standard situations. If the
singular value spectrum of the input matrix decays slowly, more power iterations are desirable.
Further, the rsvd() routine allows one to choose between a standard normal, uniform and
Rademacher random test matrices. The different options can be selected via the argument
sdist = c("normal", "unif", "rademacher").
The resulting model object is itself a list. It contains the following components:

• d: k-dimensional vector containing the singular values.
• u: m× k matrix containing the left singular vectors.
• v: n× k matrix containing the right singular vectors. Note that v is not returned in its

transposed form, as it is often returned in other programing languages.
More details are provided in the corresponding documentation, see ?rsvd.

3.7. SVD example: Image compression

The singular value decomposition can be used to obtain a low-rank approximation of high-
dimensional data. Image compression is a simple, yet illustrative example. The underlying
structure of natural images can often be represented by a very sparse model. This means
that images can be faithfully recovered from a relatively small set of basis functions. For
demonstration, we use the following 1600× 1200 grayscale image:

R> data("tiger", package = "rsvd")
R> image(tiger, col = gray(0:255 / 255))

A grayscale image may be thought of as a real-valued matrix A ∈ Rm×n, where m and n are
the number of pixels in the vertical and horizontal directions, respectively. To compress the
image we need to first decompose the matrix A. The singular vectors and values provide
a hierarchical representation of the image in terms of a new coordinate system defined by
dominant correlations within rows and columns of the image. Thus, the number of singular
vectors used for approximation poses a trade-off between the compression rate (i.e., the number
of singular vectors to be stored) and the reconstruction fidelity. In the following, we use the
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arbitrary choice k = 100 as target rank. First, the R base svd() function is used to compute
the truncated singular value decomposition:

R> k <- 100
R> tiger.svd <- svd(tiger, nu = k, nv = k)

The svd() function returns three objects: u, v and d. The first two objects are m× k and
n× k arrays, namely the truncated left and right singular vectors. The vector d is comprised
of the min{m,n} singular values in descending order. Now, the dominant k = 100 singular
values are retained to approximate/reconstruct (Ak := UkDkV>k ) the original image:

R> tiger.re <- tiger.svd$u %*% diag(tiger.svd$d[1:k]) %*% t(tiger.svd$v)
R> image(tiger.re, col = gray(0:255 / 255))

The normalized root mean squared error (nrmse) is a common measure for the reconstruction
quality of images, computed as:

R> nrmse <- sqrt(sum((tiger - tiger.re) ** 2 ) / sum(tiger ** 2))

Using only k = 100 singular values/vectors, a reconstruction error as low as 12.1% is achieved.
This illustrates the general fact that natural images feature a very compact representation.
Note, that the singular value decomposition is also a numerically reliable tool for extracting
a desired signal from noisy data. The central idea is that the small singular values mainly
represent the noise, while the dominant singular values represent the desired signal.
If the data matrix exhibits low-rank structure, the provided rsvd() function can be used as a
plug-in function for the base svd() function, in order to compute the near-optimal low-rank
singular value decomposition:

R> tiger.rsvd <- rsvd(tiger, k = k)

Similar to the base SVD function, the rsvd() function returns three objects: u, v and d.
Again, u and v are m× k and n× k arrays containing the approximate left and right singular
vectors and the vector d is comprised of the k singular values in descending order. Optionally,
the approximation accuracy of the randomized SVD algorithm can be controlled by the two
parameters p and q, as described in the previous section. Again, the approximated image and
the reconstruction error can be computed as:

R> tiger.re <- tiger.rsvd$u %*% diag(tiger.rsvd$d) %*% t(tiger.rsvd$v)
R> nrmse <- sqrt(sum((tiger - tiger.re) ** 2) / sum(tiger ** 2))

The reconstruction error is about 0.122, i.e., close to the optimal truncated SVD. Figure 9
presents the visual results using both the deterministic and randomized SVD algorithms. By
visual inspection, no significant differences can be seen between (b) and (d). However, the
quality suffers by omitting subspace iterations in (c).
Table 1 shows the performance for different SVD algorithms in R. The rsvd() functions
achieves an average speedup of about 4–7 over the svd() function. The svds() and irlba()
functions achieve speedups of about 1.5. The computational gain of the randomized algorithm
becomes more pronounced with increased matrix dimension, e.g., images with higher resolution.
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(a) Original image. (b) SVD (nrmse = 0.121).

(c) rSVD using q = 0 (nrmse = 0.165). (d) rSVD using q = 2 (nrmse = 0.122).

Figure 9: Subplot (a) shows the original image, and subplots (b), (c) and (d) show the
reconstructed images using the dominant k = 100 components. The reconstruction quality of
randomized SVD with power iterations in (d) is nearly as good as of the deterministic SVD.

Package Function Parameters Time (s) Speedup Error
base svd() nu = nv = 100 0.37 * 0.121
svd propack.svd() neig = 100 0.55 0.67 0.121
RSpectra svds() k = 100 0.25 1.48 0.121
irlba irlba() nv = 100 0.24 1.54 0.121
rsvd rsvd() k = 100, q = 0 0.03 12.3 0.165
rsvd rsvd() k = 100, q = 1 0.052 7.11 0.125
rsvd rsvd() k = 100, q = 2 0.075 4.9 0.122
rsvd rsvd() k = 100, q = 3 0.097 3.8 0.121

Table 1: Summary of algorithm runtimes (averaged over 20 runs) and errors. The randomized
routines achieve substantial speedups, while attaining similar reconstruction errors with q ≥ 1.

The trade-off between accuracy and speed of the partial SVD algorithms depends on the
precision parameter tol, and we set the tolerance parameter for all algorithms to tol = 1e-5.

3.8. Computational performance

In the following we evaluate the performance of the randomized SVD routine and compare it
to other SVD routines available in R. To fully exploit the power of randomized algorithms we
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Figure 10: Runtimes for computing rank k = 20 approximations for varying matrix dimensions.

use the enhanced R distribution Microsoft R Open 3.4.3. This R distribution is linked with
multi-threaded LAPACK libraries, which use all available cores and processors. Compared
to the standard CRAN R distribution, which uses only a single thread (processor), the
enhanced R distribution shows significant speedups for matrix operations. For benchmark
results, see https://mran.microsoft.com/documents/rro/multithread/. However, we see
also significant speedups when using the standard CRAN R distribution. Note that different R
distributions and/or the use of different numerical linear algebra libraries can show a distinct
computational performance across different computational environments with slightly different
results.
A machine with Intel Core i7-7700K CPU Quad-Core 4.20GHz, 64GB fast memory, and
operating-system Ubuntu 17.04 is used for all computations. The microbenchmark package is
used for accurate timing (Mersmann, Beleites, Hurling, and Friedman 2018).
To compare the computational performance of the SVD algorithms, we consider low-rank
matrices with varying dimensions m and n, and intrinsic rank r = 200, generated as:

R> A <- matrix(rnorm(m * r), m, r) %*% matrix(rnorm(r * n), r, n)

Figure 10 shows the runtime for low-rank approximations (target-rank k = 20) and varying
matrix dimensions m×n, where the second dimension is chosen to be n := 0.75 ·m. While the
routines of the RSpectra and irlba packages perform best for small dimensions, the computa-
tional advantage of the randomized SVD becomes pronounced with increasing dimensions. We
now investigate the performance of the routines in more detail. Figures 11, 12, and 13 show
the computational performance for varying matrix dimensions and target ranks. The elapsed
time is computed as the median over 20 runs. The speedups show the relative performance
compared to the base svd(), i.e., the average runtime of the svd() function is divided by the
runtime of the other SVD algorithms. The relative reconstruction error is computed as

‖A−Ak‖F
‖A‖F

,

where Ak := UkΣkV>k is the rank-k matrix approximation.
The rsvd() function achieves substantial speedups over the other SVD routines. Here, the
oversampling parameter is fixed to p = 10, but it can be seen that additional power iterations

https://mran.microsoft.com/documents/rro/multithread/
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Figure 11: Computational performance for a dense 3000× 2000 low-rank matrix.
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Figure 12: Computational performance for a dense 5000× 3000 low-rank matrix.

improve the approximation accuracy. This allows the user to control the trade-off between
computational time and accuracy, depending on the application. Note that we have set the
precision parameter of the RSpectra, irlba and propack routines to tol = 1e-5.
Figure 14 show the computational performance for sparse matrices with about 5% non-
zero elements. The RSpectra, and propack routines are specifically designed for sparse and
structured matrices, and show considerably better computational performance.
Note that the random sparse matrices do not feature low-rank structure; hence, the large
relative error. Still, the randomized SVD shows a good trade-off between speedup and accuracy.

4. Randomized principal component analysis
Dimensionality reduction is a fundamental concept in modern data analysis. The idea is
to exploit relationships among points in high-dimensional space in order to construct some
low-dimensional summaries. This process aims to eliminate redundancies, while preserving
interesting characteristics of the data (Burges 2010). Dimensionality reduction is used to
improve the computational tractability, to extract interesting features, and to visualize data
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Figure 13: Computational performance for a dense 10000× 5000 low-rank matrix.
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Figure 14: Computational performance for a sparse 10000× 5000 matrix.

which are comprised of many interrelated variables. The most important linear dimension
reduction technique is principal component analysis (PCA), originally formulated by Pearson
(1901) and Hotelling (1933). PCA plays an important role, in particular, due to its simple
geometric interpretation. Jolliffe (2002) provides a comprehensive introduction to PCA.

4.1. Conceptual overview

Principal component analysis aims to find a new set of uncorrelated variables. The so called
principal components (PCs) are constructed such that the first PC explains most of the
variation in the data; the second PC most of the remaining variation and so on. This property
ensures that the PCs sequentially capture most of the total variation (information) present
in the data. In practice, we often aim to retain only a few number of PCs which capture
a “good” amount of the variation, where “good” depends on the application. The idea is
depicted for two correlated variables in Figure 15. Figure 15a illustrates the two principal
directions of the data, which span a new coordinate system. The first principal direction is the
vector pointing in the direction which accounts for most of the variability in data. The second
principal direction is orthogonal (perpendicular) to the first one and captures the remaining
variation in the data. Figure 15b shows the original data using the principal directions as a
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(a) Original (standardized) data. (b) Rotated data.

Figure 15: PCA seeks to find a new set of uncorrelated variables. Plot (a) shows some
two-dimensional data, and its two principal directions. Plot (b) shows the new principal
components. Geometrically, the PCs are simply a rotation and reflection of the original data,
so that the first component accounts for most of the variation in the data, now.

new coordinate system. Compared to the original data, the histograms indicate that most of
the variation is now captured by just the first principal component, while less by the second
component.
To be more formal, assume a data matrix X ∈ Rm×n with m observations and n variables
(column-wise, mean-centered). Then, the principal components can be expressed as a weighted
linear combination of the original variables

zi := Xwi,

where zi ∈ Rm denotes the ith principal component. The vector wi ∈ Rn is the ith principal
direction, where the elements of wi = [w1, . . . , wn]> are the principal component coefficients.
The problem is now to find a suitable vector w1 such that the first principal component z1
captures most of the variation in the data. Mathematically, this problem can be formulated
either as a least square problem or as a variance maximization problem (Cunningham and
Ghahramani 2015). The two views are illustrated in Figure 16. This is, because the total
variation equals the sum of the explained and unexplained variation (Jolliffe 2002), illustrated
in Figure 17.
We follow the latter view, and maximize the variance of the first principal component z1 = Xw1
subject to the normalization constraint ‖w‖22 = 1

w1 := argmax
‖w‖2

2=1
VAR(Xw), (9)

where VAR denotes the variance operator. We can rewrite Equation 9 as

w1 := argmax
‖w‖2

2=1

1
m− 1‖Xw‖22 = argmax

‖w‖2
2=1

w>( 1
m− 1X>X)w. (10)
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Figure 16: Principal component analysis can be formulated either as a variance maximization
or as a least square minimization problem. Both views are equivalent.
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Figure 17: The Pythagorean theorem provides a geometrical explanation for the relationship
between the two views: The PCs can be obtained by either maximizing the variance or by
minimizing the unexplained variation (squared residuals) of the data.

We note that the scaled inner product X>X forms the sample covariance matrix

C := 1
m− 1X>X.

C corresponds to the sample correlation matrix if the columns of X are both centered and
scaled. We substitute C into Equation 10

w1 := argmax
‖w‖2

2=1
w>Cw.

Next, the method of Lagrange multipliers is used to solve the problem. First, we formulate
the Lagrange function

L(w1, λ1) = w>1 Cw1 − λ1(w>1 w1 − 1).
Then, we maximize the Lagrange function by differentiating with respect to w1

∂L(w1, λ1)
∂w1

= Cw1 − λ1w1,

which leads to the well known eigenvalue problem. Thus, the first principal direction for the
mean centered matrix X is given by the dominant eigenvector w1 of the covariance matrix
C. The amount of variation explained by the first principal component is expressed by the
corresponding eigenvalue λ1. More generally, the subsequent principal component directions
can be obtained by computing the eigendecompositon of the covariance or correlation matrix

CW = WΛ.
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The columns of W ∈ Rn×n are the eigenvectors (principal directions) which are orthonormal,
i.e., W>W = WW> = I. The diagonal elements of Λ ∈ Rn×n are the corresponding
eigenvalues. The matrix W can also be interpreted as a projection matrix that maps the
original observations to new coordinates in eigenspace. Hence, the n principal components
Z ∈ Rm×n can be more concisely expressed as

Z := XW.

Since the eigenvectors have unit norm, the projection should be purely rotational without any
scaling; thus, W is also denoted as rotation matrix.

PCA whitening

In some situations, the scaled eigenvectors

L := WΛ0.5

provide a more insightful interpretation of the data. L ∈ Rn×n is denoted as a loading matrix
and provides a factorization of the covariance (correlation) matrix

C = LL> = WΛW>.

Thus, the loadings have the following two interesting properties:

• The squared column sums equal the eigenvalues.

• The squared row sums equal the variable’s variance.

Further, the loading matrix L can be used to compute the n whitened principal components

Zwhite := XL.

Essentially, whitening rescales the principal components so that they have unit variance. This
process is also called sphering (Kessy, Lewin, and Strimmer 2018). In other words, whitening
scales the ith principal component by the corresponding eigenvalue 1/

√
λi as

zwhite := zi√
λi
.

This is best illustrated by revisiting the above example shown in Figure 15. In Figure 18 we
show both the rotated and the whitened version of the data.

Dimensionality reduction

In practice, we often seek a useful low-dimensional representation to reveal the coherent
structure of the data. Choosing a “good” target-rank k, i.e., the number of PCs to retain, is a
subtle issue and often domain specific. Little is gained by retaining too many components.
Conversely, a bad approximation is produced if the number of retained components is too
small. Fortunately, the eigenvalues tell us the amount of variance captured by keeping only k
components given by ∑k

i=1 λi∑n
i=1 λi

.



26 Randomized Matrix Decompositions Using R

(a) Rotated data. (b) Rotated and whitened data.

Figure 18: Plot (a) shows the principal components and plot (b) shows the whitened principal
components. The whitened components are uncorrelated and have unit variance.

Thus, PCs corresponding to eigenvalues of small magnitude account only for a small amount
of information in the data.
Many different heuristics, like the scree plot and Kaiser criterion, have been proposed to
identify the optimal number of components (Jolliffe 2002). A computational intensive approach
to determine the optimal number of components is via cross-validation approximations (Josse
and Husson 2012), while a mathematically refined approach is the optimal hard threshold
method for singular values, formulated by Gavish and Donoho (2014). An interesting Bayesian
approach to estimate the intrinsic dimensionality of a high-dimensional dataset was recently
proposed by Bouveyron, Latouche, and Mattei (2017).

4.2. Randomized algorithm

The singular value decomposition provides a computationally efficient and numerically stable
approach for computing the principal components. Specifically, the eigenvalue decomposition
of the inner and outer dot product of X = UΣV> can be related to the SVD as

X>X = (VΣU>)(UΣV>) = VΣ2V>, (11a)
XX> = (UΣV>)(VΣU>) = UΣ2U>. (11b)

It follows that the eigenvalues are equal to the squared singular values. Thus, we recover the
eigenvalues of the sample covariance matrix C := (m− 1)−1X>X as Λ = (m− 1)−1Σ2.
The left singular vectors U correspond to the eigenvectors of the outer product XX>, and
the right singular vectors V correspond to the eigenvectors of the inner product X>X. This
allows us to define the projection (rotation) matrix W := V.
Having established the connection between the singular value decomposition and principal
component analysis, it is straight forward to show that the principal components can be
computed as

Z := XW = UΣV>W = UΣ.
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Algorithm 6 A randomized PCA algorithm.
Input: Centered/scaled input matrix X with dimensions m× n, and target rank
k < min{m,n}.
Optional: Parameters p and q to control oversampling, and the power scheme.

function rpca(X, k, p, q)

(1) [U,Σ,W] = rsvd(X, k, p, q) randomized SVD (Algorithm 5)
(2) Λ = Σ2/(m− 1) recover eigenvalues
(3) Z = UΣ optional: compute k principal components

Return: W ∈ Rn×k, Λ ∈ Rk×k and Z ∈ Rm×k

The randomized singular value decomposition can then be used to efficiently approximate
the dominant k principal components. This approach is denoted as randomized principal
component analysis, first introduced by Rokhlin et al. (2009), and later by Halko et al.
(2011a). Szlam, Kluger, and Tygert (2017) provide some additional interesting implementation
details for large-scale applications. Algorithm 6 presents an implementation of the randomized
PCA. The approximation accuracy can be controlled via oversampling and additional power
iterations as described in Section 2.2.

4.3. Existing functionality for PCA in R

The prcomp() and princomp() functions are the default options for performing PCA in R.
The prcomp() routine uses the singular value decomposition and the princomp() function
uses the eigenvalue decomposition to compute the principal components (Venables and Ripley
2002). Other options in R are the PCA routines of the ade4 (Dray and Dufour 2007) and
FactoMineR (Lê, Josse, and Husson 2008) packages, which provide extended plot and summary
capabilities. All these routines, however, are based on computationally demanding algorithms.
In many applications, only the dominant principal components are required. In this case,
partial algorithms are an efficient alternative to constructing low-rank approximations, as
discussed in Section 3. For instance, the irlba package provides a computationally efficient
routine for computing the dominant principal components using the implicitly restarted
Lanczos method (Baglama, Reichel, and Lewis 2019).
Another class of methods are incremental PCA algorithms, also denoted as online PCA. These
techniques are interesting if the data matrix is not entirely available to start with, i.e., the
algorithms allow one to update the decomposition with each new arriving observation in time.
Cardot and Degras (2015) give an overview of online PCA algorithms and the corresponding
routines are provided via the onlinePCA package (Degras and Cardot 2016). Similarly, the
idm package provides an incremental PCA algorithm (D’Enza, Markos, and Buttarazzi 2018).

4.4. The rpca() function

The rpca() function provides an efficient routine for computing the dominant principal
components using Algorithm 6. This routine is in particular relevant if the information in
large-scale data matrices can be approximated by the first few principal components.
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The interface of the rpca() function is similar to the prcomp() function:

rpca(A, k, center = TRUE, scale = TRUE, retx = TRUE, p = 10, q = 2)

The first mandatory argument A passes the m× n input data matrix. Note, that the analysis
can be affected if the variables have different units of measurement. In this case, scaling
is required to ensure a meaningful interpretation of the components. The rpca() function
centers and scales the input matrix by default, i.e., the analysis is based on the implicit
correlation matrix. However, if all of the variables have same units of measurement, there is
the option to work with either the covariance or correlation matrix. In this case, the choice
largely depends on the data and the aim of the analysis. The default options can be changed
via the arguments center and scale. The second mandatory argument k sets the target rank,
and it is assumed that k is smaller than the ambient dimensions of the input matrix. The
principal components are returned by default; otherwise the argument retx can be set to
FALSE to not return the PCs. The parameters p and q are described in Section 3.6.
The resulting model object is a list and contains the following components:

• rotation: n× k matrix containing the eigenvectors.
• eigvals: k-dimensional vector containing the eigenvalues.
• sdev: k-dimensional vector containing the standard deviations of the principal compo-

nents, i.e., the square root of the eigenvalues.
• x: m× k matrix containing the principal components (rotated variables).
• center, scale: the numeric centering and scalings used (if any).

Utility functions

The rpca() routine comes with methods that can be used to summarize and display the model
information. These are similar to the prcomp() function. The summary() function provides
information about the explained variance, standard deviations, proportion of variance as well
as the cumulative proportion of the computed principal components. The print() function
can be used to print the eigenvectors (principal directions). The plot() function can be used
to visualize the results, using the ggplot2 package (Wickham 2009).

4.5. PCA example: Handwritten digits

Handwritten digit recognition is a widely studied problem (Lecun, Bottou, Bengio, and Haffner
1998). In the following, we use a downsampled version of the MNIST (Modified National
Institute of Standards and Technology) database of handwritten digits. The data are obtained
from http://yann.lecun.com/exdb/mnist and can be loaded from the command line:

R> data("digits", package = "rsvd")
R> label <- as.factor(digits[, 1])
R> digits <- digits[, 2:785]

The data matrix is of dimension 12000× 785. Each row corresponds to a digit between 0 and
3. The first column is comprised of the class labels, while the following 784 columns record
the pixel intensities for the flattened 28× 28 image patches. Figure 21a shows some of the
digits. In R the first digit can be displayed as:

http://yann.lecun.com/exdb/mnist


Journal of Statistical Software 29

0.2

0.4

0.6

0.8

0 10 20 30 40

Principal components

C
u
m

m
u
la

ti
ve

 p
ro

p
o
rt

io
n

Figure 19: Cumulative proportion of the variance explained by the principal components. The
first 40 PCs explain about 82% of the total variation in the data.

R> digit <- matrix(digits[1, ], nrow = 28, ncol = 28)
R> image(digit[, 28:1], col = gray(255:0 / 255))

The aim of principal component analysis is to find a low-dimension representation which
captures most of the variation in the data. PCA helps to understand the sources of variability
in the data as well as to understand correlations between variables. The principal components
can be used for visualization, or as features to train a classifier. A common choice is to retain
the dominant 40 principal components for classifying digits, using the k-nearest neighbor
algorithm (Lecun et al. 1998). Those can be efficiently approximated using the rpca()
function:

R> digits.rpca <- rpca(digits, k = 40, center = TRUE, scale = FALSE)

The target rank is defined via the argument k. By default, the data are mean centered and
standardized, i.e., the correlation matrix is implicitly computed. Here, we set scale = FALSE,
since the variables have the same units of measurement, namely pixel intensities. The analysis
can be summarized using the summary() function. The screeplot function can be used to
visualize the cumulative proportion of the variance captured by the principal components:

R> ggscreeplot(digits.rpca, type = "cum")

Figure 19 shows the corresponding plot. Next, the PCs can be plotted in order to visualize
the data in low-dimensional space:

R> ggindplot(digits.rpca, groups = label, ellipse = TRUE, ind_labels = FALSE)

The so-called individual factor map, using the first and second principal component, is shown
in Figure 20a. The plot helps to reveal some interesting patterns in the data. For instance, 0’s
are distinct from 1’s, while 3’s share commonalities with all the other classes. Further, the
correlation between the original variables and the PCs can be visualized:

R> ggcorplot(digits.rpca, alpha = 0.3, top.n = 10)

The correlation plot, also denoted as variables factor map, is shown in Figure 20b. It shows
the projected variables in eigenspace. This representation of the data gives some insights into
the structural relationship (correlation) between the variables and the principal components.
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(a) Individuals factor map. (b) Variables factor map.

Figure 20: Plotting functionality to visualize the PCs: (a) shows the individuals factor map,
overlaid with ellipses for each class; (b) shows the variables factor map.

In order to quantify the quality of the dimensionality reduction, we can compute the relative
error between the low-rank approximation and the original data. Recall, that the dominant
k principal component were defined as Zk := XWk. Hence, we can approximate the input
matrix as X ≈ ZkW>

k :

R> digits.re <- digits.rpca$x %*% t(digits.rpca$rotation)

Since the procedure has centered the data, we need to add the mean pixel values back:

R> digits.re <- sweep(digits.re, 2, digits.rpca$center, FUN = "+")

The relative error can then be computed:

R> norm(digits - digits.re, "F") / norm(digits, "F")

The relative error is approximately 32.8%. Figure 21b and 21c show the samples of the
reconstructed digits using both the prcomp() and rpca() function. By visual inspection,
there is virtually no noticeable difference between the deterministic and the randomized
approximation.
Runtimes and relative errors for different PCA functions in R are listed in Table 2. The
randomized algorithm is much faster than the prcomp() function, while attaining near-optimal
results. Both the dudi.pca() and PCA() functions are slower than the base prcomp() function.
This is because we are using the MKL (math kernel library) accelerated R distribution Microsoft
R Open 3.4.1. The timings can vary compared to using the standard R distribution.

Handwritten digit recognition

The principal component scores can be used as features to efficiently train a classifier. This
is because PCA assumes that the interesting information in the data are reflected by the
dominant principal components. This assumption is not always valid, i.e., in some applications
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Package Function Parameters Time (s) Speedup Error
base prcomp() rank. = 40 0.56 * 0.327
FactoMineR PCA() ncp = 40 0.97 0.57 0.327
ade4 dudi.pca() nf = 40 0.91 0.61 0.327
irlba prcomp_irlba() n = 40 0.47 1.2 0.327
rsvd rpca() k = 40 0.37 1.5 0.328

Table 2: Summary of the computational performance of different PCA functions.

(a) Handwritten digits. (b) Deterministic. (c) Randomized.

Figure 21: Handwritten digits, and its low-rank approximations using k = 40 components.

it can be the case that the variance corresponds to noise rather than to the underlying signal.
The question is, how good are the randomized principal components suited for this task? In
the following, we use a simple k-nearest neighbor (kNN) algorithm to classify handwritten
digits in order to compare the performance. The idea of kNN is to find the closest point (or
set of points) to a given target point (Hastie, Tibshirani, and Friedman 2009). There are
two reasons to use PCA for dimensionality reduction: (a) kNN is known to perform poorly
in high-dimensional space, due to the “curse of dimensionality” (Donoho 2000); (b) kNN is
computational expensive when high-dimensional data points are used for training.
First, we split the dataset into a training and a test set using the caret package (Kuhn 2008).
We aim to create a balanced split of the dataset, using about 80% of the data for training:

R> library("caret")
R> trainIndex <- createDataPartition(label, p = 0.8, list = FALSE)

We then compute the dominant k = 40 randomized principal components of the training set:

R> train.rpca <- rpca(digits[trainIndex, ], k = 40, scale = FALSE)

We can use the predict() function to rotate the test set into low-dimensional space:

R> test.x <- predict(train.rpca, digits[-trainIndex, ])

The base class package provides a kNN algorithm, which we use for classification:

R> library("class")
R> knn.1 <- knn(train.rpca$x, test.x, label[trainIndex], k = 1)
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kNN using randomized PCs

kNN using deterministic PCs

98.9 99.0 99.1 99.2 99.3 99.4
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Figure 22: Performance of digits classification over 50 random splits. There is no significant
difference in terms of the accuracy between using the randomized and deterministic PCs.

The test images are simply assigned to the class of the single nearest neighbor. The performance
can be quantified by computing the accuracy, i.e., the number of correctly classified digits
divided by the total number of predictions made:

R> 100 * sum(label[-trainIndex] == knn.1) / length(label[-trainIndex])

For comparison, the above steps can be repeated with the additional argument rand = FALSE
or using the prcomp() function. Both the randomized PCA and the deterministic PCA
algorithms achieve an accuracy of about 99.18%. Figure 22 shows the performance.

5. Randomized robust principal component analysis
Thus far, we have viewed matrix approximations as a factorization of a given matrix into
a product of smaller (low-rank) matrices, as formulated in Equation 1. However, there is
another interesting class of matrix decompositions, which aim to separate a given matrix
into low-rank, sparse and noise components. Such decompositions are motivated by the need
for robust methods which can more effectively account for corrupt or missing data. Indeed,
outlier rejection is critical in many applications as data is rarely free of corrupt elements.
Robustification methods decompose data matrices as follows:

A ≈ L + S + E,
m× n m× n m× n m× n

where L ∈ Rm×n denotes the low-rank matrix, S ∈ Rm×n the sparse matrix, and E ∈ Rm×n

the noise matrix. Note that the sparse matrix S represents the corrupted entries (outliers)
of the data matrix A. In the following we consider only the special case A = L + S,
i.e., the decomposition of a matrix into its sparse and low-rank components. This form
of additive decomposition is also denoted as robust principal component analysis (RPCA),
and its remarkable ability to separate high-dimensional matrices into low-rank and sparse
component makes RPCA an invaluable tool for data science. The additive decomposition
is, however, different from classical robust PCA methods known in the statistical literature.
These techniques are concerned with computing robust estimators for the empirical covariance
matrix, for instance, see the seminal work by Hubert, Rousseeuw, and Vanden Branden (2005)
and Croux and Ruiz-Gazen (2005).
While traditional principal component analysis minimizes the spectral norm of the recon-
struction error, robust PCA aims to recover the underlying low-rank matrix of a heavily
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corrupted input matrix. Candès, Li, Ma, and Wright (2011) proved that it is possible to
exactly separate such a data matrix A ∈ Rm×n into both its low-rank and sparse components,
under rather broad assumptions. This is achieved by solving a convenient convex optimization
problem called principal component pursuit (PCP). The objective is to minimize a weighted
combination of the nuclear norm ‖ · ‖∗ := ∑

i σi and the `1 norm ‖ · ‖1 := ∑
ij |mij | as

min
L,S
‖L‖∗ + λ‖S‖1 subject to A− L− S = 0,

where λ is an arbitrary balance parameter which puts some weight on the sparse error term
in the cost function. Typically λ is chosen to be λ = max{n,m}−0.5. The PCP concept is
mathematically sound, and has been applied successfully to many applications like video
surveillance and face recognition (Wright, Ganesh, Rao, Peng, and Ma 2009). Robust PCA is
particular relevant if the underlying model of the data naturally features a low-rank subspace
that is polluted with sparse components. The concept of matrix recovery can also be extended
to the important problem of matrix completion.
The biggest challenge for robust PCA is computational efficiency, especially given the iterative
nature of the optimization required. Bouwmans, Sobral, Javed, Jung, and Zahzah (2017) have
identified more than 30 related algorithms to the original PCP approach, aiming to overcome
the computational complexity, and to generalize the original algorithm.

5.1. The inexact augmented Lagrange multiplier method

A popular choice to compute RPCA, due to its favorable computational properties, is the
inexact augmented Lagrange multiplier (IALM) method (Lin, Chen, and Ma 2013). This
method formulates the following Lagrangian function

L(L,S,Z, µ) = ‖L‖∗ + λ‖S‖1 + 〈Z,A− L− S〉+ µ

2 ‖A− L− S‖2F , (12)

where µ and λ are positive scalars, and Z the Lagrange multiplier. Further, 〈·, ·〉 is defined as
〈A,B〉 := trace(A>B). The method of augmented Lagrange multipliers can be used to solve
the optimization problem (Bertsekas 1999). Lin et al. (2013) have proposed both an exact and
inexact algorithm to solve Equation 12. Here, we advocate the latter approach. Specifically,
the inexact algorithm avoids solving the problem

Li+1,Ei+1 = argmin
L,E

L(L,E,Zi, µk),

by alternately solving the following two sub-problems at step i:

Li+1 = argmin
L
L(L,Ei,Zi, µk),

and
Ei+1 = argmin

E
L(Li+1,E,Zi, µk).

For details, we refer the reader to Lin et al. (2013).

5.2. Randomized algorithm

The singular value decomposition is the workhorse algorithm behind the IALM method. Thus,
the computational costs can become intractable for “big” datasets. However, randomized SVD
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Algorithm 7 A randomized robust PCA algorithm.
Input: Input matrix A with dimensions m× n, and λ to put weight on the sparse error term.
Optional: Parameters p and q to control oversampling, and the power scheme.

function rrpca(A, λ, p, q)

(1) k = 2 initialize target rank
(2) µ = 1.25 · ‖A‖2 initialize µ
(3) Z = A · dual_norm(A)−1 initialize Lagrange multiplier
(4) S = matrix(0,m, n) initialize sparse matrix
(5) repeat
(6) [U,Σ,V] = rsvd(A− S + Z · µ−1, k, p, q) randomized SVD using Algorithm 5
(7) k, l = predict_rank(Σ, µ−1) predicted rank, and updated target rank
(8) Σl = soft_thres(diag(Σ)(1 : l), µ−1) soft threshold top l singular values
(9) L = U(:, 1 : l)ΣlV(:, 1 : l)> update low-rank matrix
(10) S = soft_thres(A− L + Z · µ−1, λ · µ−1) update sparse matrix via soft thresholding
(11) Z = Z + (A− L− S) · µ update Lagrange multiplier
(12) update µ
(13) until some convergence criterion is reached

Return: L ∈ Rm×n, and S ∈ Rm×n

Remark 3. Lin et al. (2013) provide details on how to predict the rank in Step (6).
Remark 4. Our randomized RPCA algorithm automatically switches from the randomized
SVD to the deterministic SVD, if the target rank is predicted to be k > min{m,n}/4.

can be used to substantially ease the computational burden of the IALM method. Algorithm 7
outlines the randomized implementation.

5.3. Existing functionality for robust PCA in R

Only few R packages provide robust PCA routines. For comparison, we consider the rpca
package (Sykulski 2015). The provided RPCA function implements the algorithm described
by Candès et al. (2011). This algorithm is highly accurate. However, a large number of
iterations is required for convergence.

5.4. The rrpca() function

The rrpca() function implements the inexact augmented Lagrange multiplier method. The
interface of the rrpca() function takes the form of:

rrpca(A, lambda = NULL, maxiter = 50, tol = 1.0e-5, p = 10, q = 2,
trace = FALSE, rand = TRUE)

The first mandatory argument A passes the m× n input data matrix. The second argument
lambda is used to put some weight on the sparse error term in the cost function. By default λ
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is set to λ = max{n,m}−0.5. The next two parameters maxiter, and tol are used to control
the stopping criterion of the algorithm. The routine stops either if a specified maximal number
of iterations, or if a certain tolerance level is reached. The parameters p and q are described in
Section 2. The argument rand can be used to switch between the deterministic and randomized
algorithms. By default the randomized algorithm is selected (i.e., the randomized SVD is used).
Setting this argument rand = FALSE selects the deterministic algorithm (i.e., the deterministic
SVD is used). To print out progress information, the argument trace can be set TRUE.
The resulting model object is a list and contains the following components:

• L: m× n matrix containing the low-rank component.
• S: m× n matrix containing the sparse component.

5.5. Robust PCA example: Grossly corrupted handwritten digits

To demonstrate the randomized robust PCA algorithm, we consider a grossly corrupted subset
of the handwritten digits dataset. We first extract a subset comprising only twos:

R> data("digits", package = "rsvd")
R> two <- subset(digits[, 2:785], digits[, 1] == 2)

Then, we corrupt the data using salt and pepper noise, i.e., we draw i.i.d. uniform entries in
the interval [0, 255] and sparsify the matrix so that about 10% nonzero elements are retained:

R> m <- nrow(two); n <- ncol(two)
R> S <- matrix(runif(m * n, 0, 255), nrow = m, ncol = n)
R> S <- S * matrix(rbinom(m*n, size = 1, prob = 0.1), nrow = m, ncol = n)

The digits are then corrupted as follows:

R> two_noisy <- two + S
R> two_noisy <- ifelse(two_noisy > 255, 255, two_noisy)

Note, the last line ensures that the pixel intensities remain in the interval [0, 255]. Samples of
the corrupted digits are shown in Figure 23a. Robust PCA is now used for matrix recovery
(denoising) by separating the data into a low-rank and sparse component:

R> two.rrpca <- rrpca(two_noisy, trace = TRUE, rand = TRUE)

Figure 23c and 23d shows samples of the low-rank component L and the sparse component S.
For comparison, Figure 23b shows samples of the low-rank component which are computed
using the deterministic routine (rand = FALSE).
Table 3 summarizes the computational results. The randomized routine does not show a
computational advantage in this case. The reasons are twofold. First, the dataset requires
a relatively large target rank to approximate the data accurately, i.e., in this example the
predicted rank-k of the IALM algorithm for the final iteration is 232. Secondly, the data
matrix is tall and thin (i.e., the ratio of rows to columns is large). For both of theses reasons,
the performance of the deterministic algorithm remains competitive. The advantage of the
randomized algorithms becomes pronounced for higher-dimensional problems which feature
low-rank structure.
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(a) Noisy digits. (b) Deterministic L. (c) Randomized L. (d) Randomized S.

Figure 23: Separation of noisy handwritten digits into a low-rank and a sparse component.

Package Function Parameters Time (s) Speedup Error Iterations
rpca rpca() max.iter = 50 11.88 * 0.265 50
rsvd rrpca() rand = FALSE 6.33 1.8 0.328 27
rsvd rrpca() rand = TRUE 5.56 2.1 0.329 27

Table 3: Summary of the computational performance of different RPCA functions.

It appears that the rpca() routine of the rpca package is more accurate, while computationally
less attractive (the algorithm converges slowly). However, using the relative error for comparing
the algorithms might be misleading since we do not know the ground truth. The relative
error is computed using the original data as baseline, which contains some perturbations itself.
Clearly, the advocated IALM algorithm removes not only the salt and paper noise, but also
shadows, specularities, and saturations from the digits. This seems to be favorable, yet it
leads to a larger relative error. Thus, to better compare the algorithms we perform a small
simulation study using synthetic data. By superimposing a low-rank matrix with a sparse
component, the ground truth is known. First, the low-rank component is generated:

R> m <- 300; n <- 300; k <- 5
R> L1 <- matrix(rnorm(m * k), nrow = m, ncol = k)
R> L2 <- matrix(rnorm(n * k), nrow = k, ncol = n)
R> L <- L1 %*% L2

The sparse component with about 20% nonzero i.i.d. uniform entries in the interval [−500, 500]
is generated from:

R> S <- matrix(runif(m * n, -500, 500), nrow = m, ncol = n)
R> S <- S * matrix(rbinom(m * n, size = 1, prob = 0.2), nrow = m, ncol = n)

The data matrix is then constructed by superimposing the low-rank and sparse components:

R> A <- L + S



Journal of Statistical Software 37

Deterministic RPCA

Randomized RPCA

RPCA using the rpca package with max iterations set to 50

RPCA using the rpca package with max iterations set to 100
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Figure 24: Matrix recovery performance of different RPCA algorithms.

Figure 24 shows the performance of the RPCA algorithms over 50 runs. Both the randomized
and deterministic routines provided by the rsvd package show a better performance than the
rpca package, when the maximum number of iterations is set to 50. In addition, we show the
performance after 100 iterations for the RPCA algorithms from the rpca package.

6. Additional functionality
Principal components analysis seeks a set of new components which are formed as weighted
linear combinations of the input data. This approach allows one to efficiently approximate
and summarize the data, however, interpretation of the resulting components can be difficult.
For instance, in a high-dimensional data setting it is cumbersome to interpret the large
number of weights (loadings) required to form the components. While in many applications
the eigenvectors have distinct meanings, the orthogonality constraints may not be physical
meaningful in other problems. Thus, it is plausible to look for alternative factorizations
which may not provide an optimal rank-k approximation, but which may preserve useful
properties of the input matrix, such as sparsity and non-negativity as well as allowing for
easier interpretation of its components. Such properties may be found in the CUR and the
interpolative decompositions (ID), which are both tools for computing low-rank approximations.

6.1. Randomized CUR decomposition

Mahoney and Drineas (2009) introduced the CUR matrix decomposition, as an interest-
ing alternative to traditional approximation techniques such as SVD and PCA. The CUR
decomposition admits a factorization of the form

A ≈ C U R,
m× n m× k k × k k × n

where the components of the matrix C ∈ Rm×k and R ∈ Rk×n are formed by small subsets of
actual columns and rows, respectively. The matrix U ∈ Rk×k is formed so that ‖A−CUR‖F
is small. The CUR factorization is illustrated in Figure 25.
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=

Figure 25: Schematic of the rank-k CUR decomposition of an m× n matrix. The components
are formed by small subsets of actual columns and rows of the input matrix.

The low-rank factor matrices C and R are interpretable, since their components maintain the
original structure of the data. This allows one to fully leverage any field-specific knowledge
about the data, i.e., experts have often a clear understanding about the actual meaning of
certain columns and rows. However, the CUR decomposition is not unique, and different com-
putational strategies lead to different subsets of columns and rows, for instance, see Mahoney
and Drineas (2009) and Boutsidis and Woodruff (2017). Thus, the practical meaning of the
selected rows and columns should always be carefully examined depending on the problem
and its objective.
Note, that the rank-k SVD (Ak = UkΣkV>k ) of a general m× n matrix A yields an optimal
approximation of rank k to A, in the sense that ‖A − Ak‖ ≤ ‖A −Mk‖ for any rank k
matrix Mk, both in the operator (spectral) and Frobenius norms. However, if A is a sparse
matrix, the m× k and n× k factors Uk and Vk are typically dense. Even though the low-rank
SVD is optimal for a given rank k, the choice of rank may be limited to relatively low values
with respect to min(m,n) for sparse matrices, in order to achieve any useful compression
ratios. Of course, the usefulness of the SVD is not limited to compression; but the utility
of a low-rank approximation is greatly reduced once the storage size of the factors exceeds
that of the original matrix. The CUR decomposition provides an interesting alternative for
compression, since its components preserve sparsity.
The rCUR package provides an implementation in R (Bodor, Csabai, Mahoney, and Solymosi
2012). The rsvd package implements both the deterministic and randomized CUR decompo-
sition, following the work by Voronin and Martinsson (2017). Specifically, the interpolative
decomposition is used as an algorithmic tool to form the factor matrices C and R. Algorithm 8
outlines the computational steps of the rcur() routine as implemented in the rsvd package.

6.2. The rcur() function

The rcur() function provides the option to compute both the deterministic and the randomized
CUR decomposition via Algorithm 8. The interface of the rcur() function is as follows:

rcur(A, k, p = 10, q = 0, idx_only = FALSE, rand = TRUE)

The first mandatory argument A passes the m× n input data matrix. The second mandatory
argument k sets the target rank, which is required to be k < min{m,n}. The parameters
p and q are described in Section 2. The argument rand can be used to switch between the
deterministic and the randomized algorithm. The latter is used by default, and is more efficient
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Algorithm 8 A randomized CUR decomposition algorithm.
Input: Input matrix A with dimensions m× n, and target rank k < min{m,n}.
Optional: Parameters p and q to control oversampling, and the power scheme.

function rcur(A, k, p, q)

(1) [C,Z, J ] = rid(A, k, p, q) randomized column ID (Algorithm 10)
(2) [∼,S, P ] = qr(C>) pivoted QR decomposition
(3) I = P (1 : k) extract top k row indices
(4) R = A(I, :) extract k rows from input matrix
(5) R† = pinv(R) compute pseudoinverse
(6) U = ZR† compute well-conditioned matrix
Return: C ∈ Rm×k, U ∈ Rk×k and R ∈ Rk×n

Remark 5. The deterministic rank-k CUR decomposition is computed by replacing the rid()
function with the deterministic id() function, described in Algorithm 9.

for large-scale matrices. The argument idx_only can be set to TRUE in order to return only
the column and row index sets which is more memory efficient than returning C and R.
The resulting model object is a list containing the following components:

• C: m× k matrix containing the column skeleton.
• R: k × n matrix containing the row skeleton.
• U: k × k matrix.
• C.idx: k-dimensional vector containing the column index set.
• R.idx: k-dimensional vector containing the row index set.

6.3. Randomized interpolative decomposition

The interpolative decomposition yields a low-rank factorization of the form

A ≈ C Z.
m× n m× k k × n

The factor matrix C ∈ Rm×k is formed by a small number of columns, while Z ∈ Rk×n is a
well-conditioned matrix containing the identity. C is also denoted as a skeleton matrix, and Z
as the interpolation matrix.
The question is how to choose “interesting” columns of A to form C? For certain datasets (such
as images), one may choose the k columns corresponding to highest brightness/contrast, or
highest amount of variation or detail. As an example, in a photograph of a building structure,
the structure portion would be more critical than the ground or sky. Of course, a general
method is needed to pick k columns from a matrix. In linear algebra, such a method exists:
pivoting. Following Halko et al. (2011b), we advocate the QR factorization with pivoting

A P = Q S,
m× n n× n m× r r × n

where r := min{m,n}. P is the permutation matrix, which simply dictates the re-arrangement
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Algorithm 9 An interpolative decomposition algorithm.
Input: Input matrix A with dimensions m× n, and target rank k < min{m,n}.

function id(A, k)

(1) [∼,S, P ] = qr(A) pivoted QR decomposition
(2) S† = pinv(S(1 : k, 1 : k)) compute pseudoinverse
(3) T = S†S(1 : k, (k + 1) : n) compute expansions coefficients
(4) Z = matrix(0, k, n) create empty k × n matrix
(5) Z(:, P ) = cbind(diag(k),T) ordered expansions coefficients, using pivots P
(6) J = P (1 : k) extract top k column indices from pivots
(7) C = A(:, J) extract k columns from input matrix

Return: C ∈ Rm×k, Z ∈ Rk×n, and J ∈ Nk

Remark 6. The QR decomposition returns the permutation matrix P in form of a vector
P ∈ Rn. This vector contains the indices such that P = I(:, P ), where I ∈ Rn×n denotes the
identity matrix. Thus, J is comprised of the k dominant pivots.

of the columns of A. The matrix Q has orthonormal columns, and S is upper triangular.1
Because, the pivoted QR decomposition is an iterative algorithm, it can be stopped after k
iterations to obtain only the k dominant pivots. Thus, the column subset used to form C is
simply based on the pivoting strategy used in the QR factorization. The computational steps
required to compute the ID are outlined in Algorithm 9.
The procedure can be considerably accelerated by means of randomization. Specifically, we
can first compute the randomized QB decomposition via Algorithm 4. Then, the smaller
matrix B is used to compute the ID decomposition. The computational steps are outlined
in Algorithm 10. For a detailed discussion, and theoretical results we refer to Voronin and
Martinsson (2016), and Voronin and Martinsson (2017). Therein, it is also described how the
factor matrix Z can be efficiently constructed. Note, however, that our algorithm differs from
the implementation by Voronin and Martinsson (2016). We compute the ID based on the
matrix B (obtained as described in Section 2). In our experiments, this approach shows to be
more accurate, while slightly more computational demanding.

6.4. The rid() function

The rid() function provides the option to compute both the deterministic and the randomized
interpolative decomposition via Algorithms 9 and 10. The interface of the rid() function
takes the following functional form:

rid(A, k, mode = "col", p = 10, q = 0, idx_only = FALSE, rand = TRUE)

The first mandatory argument A passes the m× n input data matrix. The second mandatory
argument k sets the desired target rank, which is required to be k < min{m,n}. The argument
mode = c("col", "row") determines whether the column or row ID should be computed.

1Here, we denote the upper triangular matrix as S, since R is occupied by the CUR decomposition.
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Algorithm 10 A randomized interpolative decomposition algorithm.
Input: Input matrix A with dimensions m× n, and target rank k < min{m,n}.
Optional: Parameters p and q to control oversampling and the power scheme.

function rid(A, k, p, q)

(1) [∼,B] = rqb(A, k, q, p) randomized QB decomposition via Algorithm 4
(2) [∼,Z, J ] = id(B, k) column ID via Algorithm 9
(3) C = A(:, J) extract k columns from input matrix

Return: C ∈ Rm×k, V ∈ Rk×n, and J ∈ Nk

Remark 7. The row ID can be computed by transposing the input matrix, i.e., A>.

The parameters p and q are described in Section 2. The argument rand can be used to switch
between the deterministic and randomized algorithms. By default the randomized algorithm
is selected, and setting this argument rand = FALSE selects the deterministic algorithm.
The resulting model object is a list and contains the following components:

• C: m× k matrix containing the column skeleton, if mode = "col".
• R: k × n matrix containing the row skeleton, if mode = "row".
• Z: k × n or m× k matrix (depending on mode), which is well-conditioned.
• idx: k-dimensional vector containing the column or row index set.

7. Conclusion
Dimensionality reduction and the related concept of low-rank matrix approximations are
fundamental algorithmic tools in machine learning and computational statistics. However, high-
dimensional data pose a growing computational challenge for traditional matrix algorithms. In
fact, the exponential growth rate of data is far outstripping advances in computational power,
even of modern computational architectures. Thus, in the era of “big data”, the modern
computational paradigm of randomized methods for linear algebra provides an attractive
method for scalable, tractable computations. The price to pay is the trade-off between the
approximation accuracy and computational costs. In fact, randomized methods are highly
scalable, and can be used to tackle problems which are infeasible otherwise. The different
flavors of both deterministic and randomized methods are illustrated in Figure 26. Thus,
randomized algorithms should be the default choice for applications which involve low-rank
matrices and do not require approximations with full double precision.
Certainly, the randomized singular value decomposition is the most prominent and ubiquitous
randomized algorithm. This algorithm comes with strong theoretical error bounds, and
the approximation quality can be controlled via oversampling, and power iterations. The
computational advantage can be substantial compared to other SVD routines in R, provided
the target rank k is relatively small. While the performance of randomized methods depends on
the actual shape of the matrix, we can state (as a rule of thumb) that significant computational
speedups are achieved if the target rank k is at least 3–6 times smaller than the ambient
dimensions of the measurement space. The speedup for tall and thin matrices is in general
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Figure 26: Trade-off between accuracy and scalability. Randomized methods for linear algebra
allowing for a scalable architecture for modern “big data” applications.

less impressive than for fat matrices. In addition, the R package rsvd provides several other
randomized matrix decomposition routines, which are all designed for mid-sized problems, i.e.,
the input matrix is assumed to fit into fast memory. To fully exploit the power of randomized
methods, we recommend to use the enhanced R distribution Microsoft R Open which allows
one to use all of the computational resources available.
Future developments of the rsvd package will use randomized methods to compute linear
discriminant analysis, principal component regression, canonical correlation analysis, and
matrix completion problems. Another important direction is to better integrate the Matrix
package, for instance, to provide efficient routines which allow to deal better with large-scale
sparse matrices (Bates and Maechler 2019).
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