
JSS Journal of Statistical Software
July 2019, Volume 90, Issue 1. doi: 10.18637/jss.v090.i01

Efficient Code for Second Order Analysis of Events
on a Linear Network

Suman Rakshit
Curtin University

Adrian Baddeley
Curtin University

Gopalan Nair
The University of
Western Australia

Abstract

We describe efficient algorithms and open-source code for the second-order statistical
analysis of point events on a linear network. Typical summary statistics are adaptations
of Ripley’s K-function and the pair correlation function to the case of a linear network,
with distance measured by the shortest path in the network. Simple implementations
consume substantial time and memory. For an efficient implementation, the data structure
representing the network must be economical in its use of memory, but must also enable
rapid searches to be made. We have developed such an efficient implementation in C with
an R interface written as an extension to the R package spatstat. The algorithms handle
realistic large networks, as we demonstrate using a database of all road accidents recorded
in Western Australia.

Keywords: geometric correction,K-function, pair correlation function, point process, R, shortest-
path distance, spatstat.

1. Introduction
The study of events that occur along a network of lines, such as traffic accidents recorded on a
road network, requires the development of advanced statistical techniques and computational
algorithms (Okabe and Sugihara 2012; Ver Hoef, Peterson, and Theobald 2006; Baddeley,
Rubak, and Turner 2015, Chapter 17). Because a linear network is not a homogeneous space,
even elementary statistical tools can be difficult to implement. Kernel smoothing of point
events, which is simple to define and very fast to compute in two dimensions (Diggle 1985), is
mathematically complicated and can be extremely time-consuming to perform on a network
(Okabe, Satoh, and Sugihara 2009). Similar difficulties arise in second-order (correlation)
analysis of point patterns, which is straightforward in two dimensions using Ripley’s K-
function (Ripley 1977) and the pair correlation function (Okabe and Yamada 2001; Ang,
Baddeley, and Nair 2012; Baddeley, Jammalamadaka, and Nair 2014).

https://doi.org/10.18637/jss.v090.i01

2 Efficient Code for Analyzing Events on a Linear Network

Figure 1: Traffic accidents (red dots) recorded in the year 2011 on the entire road network
(black lines) of the state of Western Australia.

This geometrical complexity militates against the statistical analysis of real data sets of
moderate size. Figure 1 shows the locations of road accidents recorded on the road network
in the state of Western Australia for the year 2011. In this area, about 2000 km across, the
network consists of 115, 169 road segments and there are 14, 562 accident locations. Kernel
smoothing and second-order analysis of these accident data are prohibitively expensive (both
in computer time and memory) using current implementations of these methods (Baddeley
et al. 2015, Chapter 17; Okabe and Sugihara 2012) as we demonstrate below. Figure 2 shows
a much smaller data set that can easily be handled with simple R code (R Core Team 2019):
It contains 116 points on a network with 503 line segments. For kernel smoothing on a
network, a fast algorithm capable of handling very large data sets was recently developed by
McSwiggan, Baddeley, and Nair (2016) and is now implemented in the R package spatstat
(Baddeley et al. 2015) as the function density.lpp.

In this paper, the main focus is the second-order (correlation) analysis of point patterns on a
linear network. We develop efficient algorithms and open-source code for computing general
second-order summary functions which include the K-function and pair correlation function.

Suppose we have observed point events x1, . . . , xp on a linear network L. Let dL(xi, xj) denote
the shortest-path distance between data points xi and xj in the network. The objective is to

Journal of Statistical Software 3

Figure 2: Chicago crime data. Street address locations of 116 crimes recorded in a two-week
period around the University of Chicago. Extracted from a report in the Chicago Weekly
News, 2002 and analyzed in Ang et al. (2012).

calculate second-order summary statistics of the general form

S(r) =
p∑

i=1

∑
j 6=i

h(xi, dL(xi, xj), r), r ≥ 0, (1)

where h is a chosen function. A simple example of Equation 1 is the empirical cumulative
distribution function of the shortest-path distances

F̂ (r) = 1
p(p− 1)

p∑
i=1

∑
j 6=i

I(dL(xi, xj) ≤ r), (2)

where I(A) is the indicator that equals 1 when A is true, and 0 otherwise. Other examples
of the general form (1) include the observed network K-function (Okabe and Yamada 2001;
Okabe and Sugihara 2012, Chapter 6), empirical estimators of the geometrically-corrected
network K-function and pair correlation function (Ang et al. 2012), and various generaliza-
tions involving spatially-varying weights, auxiliary variables and local statistics (Ang et al.
2012; Baddeley et al. 2014; Boots and Okabe 2007). A detailed description of these estimators
and their applications can be found in Baddeley et al. (2015, Chapter 17). Computation of
the summary statistics of the form (1) is important, not only for exploratory data analysis,
but also for fitting models to point pattern data by maximum composite likelihood (Guan
2006; Tanaka, Ogata, and Stoyan 2008; Baddeley et al. 2015, Chapter 12).
Simple code for calculating any statistic of the form (1) is available in the R package spatstat
(Baddeley and Turner 2005; Baddeley et al. 2015). Table 1 (under the column heading
Adjacency matrix) shows the computation time (in seconds) and the total memory (sum of
all memory allocation requests) used by this implementation to compute the geometrically-
correctedK-function (Ang et al. 2012, Equation 12) for three small example data sets supplied
in the spatstat package.

4 Efficient Code for Analyzing Events on a Linear Network

Algorithm
Adjacency matrix Linked list

Data set Points Lines Time Memory Time Memory
spiders 48 203 0.1 20 0.1 0.07
chicago 116 503 0.3 180 4.0 0.16
dendrite 566 639 5.0 2853 34.0 0.70

Table 1: Performance comparison of two algorithms for computing the geometrically-corrected
K-function. Adjacency matrix: Algorithm M using adjacency matrices, described in Sec-
tion 4, as implemented in spatstat; Linked list: Algorithm L using linked lists, described in
Sections 5–6, as implemented in the supplied package spatstat.Knet. Row names refer to
three example data sets supplied in the spatstat package. Column headings are as follows:
Points: Number of data points; Lines: Number of line segments; Time: Elapsed computa-
tion time in seconds, reported by system.time; Memory: Sum of all memory allocations in
megabytes, reported by the function profmem in package profmem (Bengtsson 2018).

Extrapolating to the Western Australian road accident data (Figure 1), under simple assump-
tions, gives a predicted computation time of at least 2 hours and total memory allocation of
at least 1.4 terabytes. On a standard PC, such large amounts of memory are not available,
and the algorithm will not run successfully.
For the simplest case of the network K-function (Okabe and Yamada 2001, Equation 7),
which is equivalent to the computing in Equation 2, an efficient algorithm has been described
by Okabe and Yamada (2001); see also Okabe and Sugihara (2012, Chapter 6). The code is
not open-source, although compiled executables are available (Okabe, Okunuki, and Shiode
2006).
This paper presents an alternative, open-source, C implementation for computing any statistic
of the general form introduced in Equation 1. Detailed pseudocode is included; the full
source code is available within the R package spatstat.Knet (Rakshit and Baddeley 2019)
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=spatstat.Knet. Our implementation uses a simple data structure and efficient
code, which are easily adaptable to different choices of the function h in Equation 1 including
the geometrically-corrected K-function (Section 3.2). This implementation adapts many of
the ideas of Okabe and Yamada (2001), including the key concept of the (extended) shortest-
path tree.
The traffic accident data in Figure 1 have been included as a data set named wacrashes in
the spatstat.Knet package. The following code can be used to create Figure 1.

R> library("spatstat.Knet")
R> data("wacrashes", package = "spatstat.Knet")
R> plot(wacrashes, cols = "red", cex = 0.5, main = " ")

Figure 2 can be plotted as follows

R> plot(unmark(chicago), cols = "blue", pch = 16, main = " ")

Section 2 introduces necessary mathematical and computational structures such as adjacency
matrices and linked-lists, for representing linear networks and events on networks. Section 3

https://CRAN.R-project.org/package=spatstat.Knet
https://CRAN.R-project.org/package=spatstat.Knet

Journal of Statistical Software 5

gives some notation associated with the shortest-path distance on a network, different versions
of the K-function, and their current implementation in spatstat. Section 4 describes the
existing algorithm, which we call Algorithm M, for computing the K-function using the
adjacency matrix. Sections 5 and 6 present a new algorithm, which we dub Algorithm L,
using linked-lists. Section 7 gives a worked example of the key part of Algorithm L. Timings,
as a function of the number of observed points on the network, are reported in Section 8. The
Western Australian road accident data are analyzed in Section 9. We end with a discussion.

2. Representation of events on a linear network
In this section, we introduce the terminology associated with a linear network (Section 2.1),
describe the traditional adjacency-matrix and adjacency-list data structures that are used for
storing simple networks (Section 2.2), and propose a new data structure for storing point
patterns on a linear network (Section 2.3).

2.1. Linear networks

A straight line segment in the two-dimensional plane with endpoints v and v′ is the set
s = {tv + (1 − t)v′ : 0 ≤ t ≤ 1}. The length of s is `(s) = ‖v − v′‖, the Euclidean distance
between its endpoints.
A linear network is the union L =

⋃n
i=1 si of a finite collection of straight line segments

s1, . . . , sn; the total length of the network is |L| =
∑n

i=1 `(si). The representation of L as
a union of line segments is not unique: we assume that a representation is chosen so that
any two distinct segments si, sj with j 6= i either do not intersect, or intersect at a common
endpoint of si and sj . Then the network can be considered as an embedded planar graph,
whose vertices are the endpoints of the segments.
In a planar graph setting, it is common to refer the line segments as edges and their endpoints
as nodes. However, we make a small distinction between a segment and an edge, which will be
explained in the next subsection. The set of nodes (vertices) is denoted by V = {v1, . . . , vm}
and the set of segments by S = {s1, . . . , sn}. Both V and S are indexed sets with the
subscript of an element representing its integer identifier in the set. Therefore, though the
nodes vi ∈ L ⊂ R2, we often use the labeling 1, . . . ,m to denote m nodes. In what follows,
without loss of generality, we assume i < j in the representation [vi, vj] of a segment in S.

2.2. Data structure for storing a network

Given a spatial linear network L we can construct a weighted undirected graph G = (V,E),
where V is the set of nodes as before, and E is the set of weighted edges. Each weighted
edge is an ordered triple (v, v′, w), where v and v′ are endpoints of some segment s ∈ S and
w is the positive weight associated with the segment s; in this paper, we take the weight to
be the segment length w = `(s). More details on the connection between linear networks and
weighted graphs can be found in Kolaczyk and Csárdi (2014).
Note that, corresponding to each segment s = [v, v′] ∈ S, there are two weighted edges
(v, v′, w) and (v′, v, w) in G. In the ordered representation (v, v′, w) of an edge, we shall refer
to v as the starting node and v′ as the ending node. Because all algorithms in this paper are
developed assuming such double representation of the segments, in what follows, we use data

6 Efficient Code for Analyzing Events on a Linear Network

Figure 3: A weighted undirected graph (left) with circles representing nodes with node identi-
fiers, and the corresponding weighted adjacency matrix (right) with positive values indicating
the weights.

structures that store information about all 2n weighted edges. Two standard data structures
for representing a weighted graph are the adjacency list and adjacency matrix (see Cormen,
Leiserson, Rivest, and Stein 2009, p. 589), which are discussed below.

Adjacency matrix

The (weighted) adjacency matrix of G is the m ×m matrix A = (aij) in which aij is equal
to the weight of the edge joining vertices i and j, or aij = ∞, if there is no such edge.
Note that aij is finite if and only if i ∼ j, i.e., i and j are adjacent to each other. The left
panel of Figure 3 shows an example of an undirected graph, and the right panel shows the
corresponding adjacency matrix with V = {1, . . . , 4} and E = {(1, 2, 7.0), (2, 1, 7.0), (2, 4, 4.2),
(4, 2, 4.2), (1, 4, 6.0), (4, 1, 6.0), (3, 4, 5.1), (4, 3, 5.1), (1, 3, 5.0),(3, 1, 5.0)}.
When a network is represented by its adjacency matrix, software coding becomes relatively
straightforward for computing functions on the network. For example, the task of finding
the immediate neighbors (or adjacent nodes) of a given node can easily be implemented by
extracting the relevant row of the adjacency matrix and finding all finite entries. However,
the main drawback of the adjacency matrix is the high memory usage when it is represented
as a full matrix with m2 entries. For the Western Australian road network, shown in Figure 1,
there are m = 88, 512 nodes; since m2 > 232, the full adjacency matrix would exceed the array
size limits in many 32-bit software systems, and would be too large to fit into random-access
memory (RAM) on a typical 64-bit PC.
For a weighted undirected graph constructed from a road network, the adjacency matrix is
usually sparse in the sense that the number of edges is much less thanm(m−1), the maximum
possible number of finite entries in the matrix. In such cases one can use a sparse matrix
representation (Wilkinson and Reinsch 1971; Tewarson 1973; Pissanetzky 1984; Golub and
Van Loan 1996). In a sparse representation of an adjacency matrix A, only the finite positive
entries of A are recorded, essentially as a list of triples (i, j, aij) giving the endpoints and
weight associated with each weighted edge in G. This reduces the storage requirement to the
minimum possible. Table 2 compares the memory storage requirements of the full and sparse
matrix representations for four example networks, as reported by the R utility object.size.

Journal of Statistical Software 7

Network data Full matrix Sparse matrix
spiders 314 33
chicago 1389 60
dendrite 4899 112
wacrashes NA 9238

Table 2: Memory storage requirements (kb) for linear networks using the adjacency matrix
representation in the spatstat package, with or without sparse matrix encoding. Network
data are example network data sets provided in the spatstat and spatstat.Knet packages.

Element Description
data Pointer to a data object that is stored in the list.
next Pointer to the next list entry in the linked-list.

Table 3: Components of a linked-list entries and their description.

data

next

data

next

data

next

data

next null

Figure 4: A linked-list.

Computations involving sparse matrices are supported by fast code in low-level languages,
usually Fortran libraries (Dongarra, Moler, Bunch, and Stewart 1979; Anderson et al. 1999)
with interfaces to higher-level languages such as R (Koenker and Ng 2003; Bates and Maechler
2019). However, most of the functionality provided by sparse matrix libraries is for linear
algebra, rather than graph topology. Furthermore, the representation of a graph structure
by an unstructured list of edges (i, j, aij) leads to computational inefficiencies. For example,
the task of finding the immediate neighbors of a given node i∗ requires a search through the
entire list to find all entries (i, j, aij) where either i = i∗ or j = i∗. This can be accelerated by
sorting the list appropriately, but the data structure is inherently inefficient for our purposes.

Adjacency list

Hopcroft and Tarjan (1973) advocated the adjacency list representation for graphs in terms of
linked-lists. A linked-list is a standard data structure for representing a list of objects which
are related in some way, e.g., nodes that are all connected to a given node or road accidents
recorded on the same road segment. Each entry in a linked-list is a pair of pointers, namely,
data and next, whose description is given in Table 3. The end of the list is indicated by
assigning a null value to the pointer to the next entry (see Figure 4). List entries can easily
be inserted or deleted at any position by changing the relevant pointers, so that linked-list
data structures are well suited to applications where the connections between the list entries
are required to be changed frequently (Cormen et al. 2009, p. 236; Louden 1999, Chapter 5).
The adjacency list representation of a weighted graph G consists of a list of m linked-lists,
one linked-list for each node in the graph. The linked-list corresponding to a particular node
stores all its adjacent nodes, along with the associated edge weights. Recall that each line
segment s = [v, v′] in L corresponds to two weighted edges in G; the edges (v, v′, `(s)) and
(v′, v, `(s)) appear, respectively, in the adjacency lists for nodes v and v′.

8 Efficient Code for Analyzing Events on a Linear Network

Figure 5: Adjacency list representation of the graph in Figure 3.

Figure 5 shows the adjacency list representation of the graph in Figure 3. The first column
represents the list of four nodes, and for a given node, the corresponding row represents the
linked-list containing its adjacent nodes along with the edge weights. For ease of illustration,
in Figure 5 we omitted the next elements of the linked-list structures and the crooked arrows
in Figure 4 representing pointers were replaced with the straight arrows.
For sparse graphs, the adjacency list representation is compact, utilizing only O(n + m)
space for storing the graph, and is more efficient than the adjacency matrix representation
for implementing graph searching algorithms (Cormen et al. 2009; Even 1979; Tarjan 1983).
An adjacency matrix representation is efficient only when the graph is dense, i.e., when the
number of edges n is of the same order as m2 (see Cormen et al. 2009; Even 1979).

2.3. Events on a network

A data set of events on a linear network L will be represented as x = {x1, . . . , xp}, where
xi ∈ L is the location of the ith event on the network, and p ≥ 0 is the total number of points,
which is not fixed in advance. Figure 6 depicts a simple illustrative example of data giving
the spatial locations {x1, . . . , x5} of events along a network.
Although the planar Cartesian coordinates are sufficient to locate point events, the data
structure will be more computationally efficient if it makes an explicit connection between
the point event and the segment on which it lies. This can be done using the elements x, y,
seg and tp corresponding to a point event; description of these elements are given in Table 4.
The coordinate system with both (x, y) and (seg, tp) is mathematically redundant, but
allows efficient addressing of different databases of spatial information. In road accident anal-
ysis, some explanatory variables, such as shoulder width, road curvature, and road condition,
are part of a database of road information. For any event on the network, it is convenient
to query this database using the road name or number (i.e., seg) and position along the
road (i.e., tp). Other explanatory variables, such as terrain elevation, are spatially-referenced
images, which are most conveniently queried using spatial coordinates (x, y).
There is an important distinction between explanatory variables and ‘marks’, which could be
part of the database. An explanatory variable is potentially observable at any spatial location:
examples are terrain height and road width. A mark, such as crash severity or the number
of passengers, is an additional attribute of the observed event. For simplicity of presentation,
this paper does not consider marks.

Journal of Statistical Software 9

1

2

x13.0

3

x2

4.0

4

5

x3

x4

4.0

3.0
x52.0

Figure 6: Illustrative example data set of events on a network. Circles are nodes of the
network; boxes are event locations; real numbers are segment lengths (distances between
nodes).

Element Description
(x, y) Planar Cartesian coordinates of the point event.

seg Integer label of the segment containing the event.
tp Relative distance of the point event along the segment; tp values 0 and 1,

respectively, correspond to the starting node and ending node of the segment.

Table 4: Elements for storing information about a point event.

Data structure for a linear network with events

For efficient statistical investigation of the point patterns on a linear network, we have devel-
oped a data structure that extends the adjacency list representation by including storage for
events and additional data about them. The elementary components of this data structure,
namely Adjlist, sNode, and aNode, are sketched in Figure 7, and Table 5 provides a brief
description of the members of these different components. Figure 7 also includes the Crash
structure, which is used for storing point events.
The sNode objects are used for storing all the nodes in a weighted graph. For a given node
in V , the node member of sNode stores the integer identifier of the node, and the members
d and parent are used for storing, respectively, the shortest-path distance estimates and
information about some relevant nearest node while computing the shortest path route from
some source point in the network (see Procedure 1 in Section 5 for details).
For a given node v ∈ V , the Adjlist object connects v to all its adjacent nodes and keeps
track of the resulting edges. The data member is a pointer to the sNode object that stores
the starting node v, and the adjacent member is a pointer that keeps reference of the start
of the linked-list that stores all the adjacent nodes of v. In each entry of this linked-list, the
data member is a pointer to the aNode structure that contains the integer identifier of the
adjacent node and all information about the edge connecting v to that adjacent node.

10 Efficient Code for Analyzing Events on a Linear Network

node

parent

d

data

adjacent

seg

tp

node

eid

weight

crashlist

Adjlist Crash
sNode

aNode

Figure 7: Different components of the data structure representing a network.

Component Description
sNode

node Integer identifier of a given starting node
parent Pointer to the parent node in the shortest-path route
d Shortest-path distance from some source

aNode
node Integer identifier of a given ending node
eid Integer identifier of the edge
weight Length of the edge
crashlist List of point events (Crash structures) on the edge.

Adjlist
data Pointer to the starting node (sNode object) of an edge
adjacent Pointer to the beginning of the list of all adjacent edges

corresponding to the starting node

Table 5: Components of the adjacency list data structure for storing events on a network.

At the top level, the entire network is accessed as a linked-list whose entries correspond to
the nodes of the network. Figure 8 shows the data structure representing the network and
events in Figure 6. The first column of the figure shows five linked-list entries corresponding
to the five nodes in the network. For this top level linked-list, the data member of the ith
list entry (i = 1, . . . , 5) points to an Adjlist object, which holds all the information related
to the ith (starting) node vi and its outgoing edges. The third column in Figure 8 shows the
use of sNode structures by Adjlist structures for storing information about the nodes of the
network.
Columns four to six in Figure 8 show the use of the aNode structure in representing the
adjacent nodes (corresponding to the weighted edges) of the network graph in Figure 6. Due to
space limitations, we have omitted eid from the aNode structure in the figure. The crashlist
is again a linked-list of Crash structures (see Figure 7, right) containing information about
each point event on a given edge. The members seg and tp of the Crash structure are
described in Table 4.

Time complexity of creating the data structure

Recall that for a network with point events on it, m,n, and p are the numbers of nodes,
segments, and events respectively. In order to build the data structure (in Figure 8) for a
network, first we insert all the nodes in the top level linked-list. The time complexity of this

Journal of Statistical Software 11

data

next

data

adjacent

node: 1

parent

d

data

next

node: 2

weight: 3.0

crashlist:
x1 data

next

node: 3

weight: 4.0

crashlist:
x2 data

next

node: 5

weight: 2.0

crashlist:
x5

null

data

next

data

adjacent

data

next

node: 1

weight: 3.0

crashlist:
x1 data

next

node: 4

weight: 4.0

crashlist:
x3, x4

null

data

next

data

adjacent

data

next

node: 1

weight: 4.0

crashlist:
x2 data

next

node: 4

weight: 3.0

crashlist:
—

null

data

next

data

adjacent

data

next

node: 2

weight: 4.0

crashlist:
x3, x4 data

next

node: 3

weight: 3.0

crashlist:
—

null

data

next

data

adjacent

data

next

node: 1

weight: 2.0

crashlist:
x5

null

null

node: 2

parent

d

node: 3

parent

d

node: 4

parent

d

node: 5

parent

d

Figure 8: Data structure representing the network and events in Figure 6.

operation is O(m). Then for each segment si, i = 1, . . . , n, two weighted edges are inserted,
so in total we insert 2n network edges in the data structure. Every edge in our representation
is a line segment of a given length joining a starting node and an adjacent node. For a given
segment s = [v, v′], we insert the nodes v′ and v, respectively, in the adjacency lists of the
nodes v and v′. The time complexity of this operation is O(n), and for each segment insertion
we spend O(m) time to search the nodes in the top level linked-list. Consequently, it easily
follows that the time complexity of inserting all the edges in the network is O(nm).

3. Inter-event distances and the K-function
In this section, we first introduce further terminology related to a linear network and point
pattern data, then describe the K-functions introduced by Okabe and Yamada (2001) and

12 Efficient Code for Analyzing Events on a Linear Network

Figure 9: A disc in the shortest-path metric, on the Chicago street network. Open circle:
center point. Bold lines: disc of radius 425 feet around the center point. Filled circles: disc
endpoints counted by the function m(u, r).

Ang et al. (2012) for analyzing such data, and finally provide examples of the current im-
plementation (using adjacency matrix data structure) of these functions in the R package
spatstat (Baddeley et al. 2015).

3.1. Shortest path distance

A path between two points w and w′ on a linear network L is a sequence π = (w0, w1, . . . , wN)
of points joining w0 = w to wN = w′ such that each line segment [wi, wi+1] (i = 0, . . . , N−1) is
a subset of some edge of the network. For most purposes w1, . . . , wN−1 can be taken as nodes
of the network. The length of the path is the sum of the step lengths, `(π) =

∑N
i=1 ‖wi−wi−1‖.

The shortest-path distance dL(w,w′) between w and w′ is the minimum of the lengths of all
possible paths from w to w′. If there are no paths from w to w′ (implying that the network
is not path-connected) then we define dL(w,w′) =∞.
The disc of radius r > 0, with center u ∈ L, is the set of all points v in the network that
lie no more than a distance r from the location u, by the shortest path: bL(u, r) = {v ∈ L :
dL(u, v) ≤ r}. Figure 9 gives the street network around the University of Chicago (Ang et al.
2012). Bold lines show the disc of radius 425 feet centered at the location marked by the
open circle.
The perimeter cL(u, r) = {v ∈ L : dL(u, v) = r} is the set of points lying exactly r units away
from u by the shortest path. The perimeter count

m(u, r) = #cL(u, r) (3)

is the number of points on the perimeter cL(u, r). Points contributing to the countm(u, r) are
displayed as filled-circle in Figure 9. Note that a segment of bL(u, r) may terminate without

Journal of Statistical Software 13

contributing to m(u, r) if its terminal endpoint lies at a distance less than r from u. Two
such cases are visible in Figure 9.
A subnetwork L̃ of L is a linear network with a collection of line segments S̃ ⊂ S and set of
nodes Ṽ ⊆ V . If the network L̃ is path-connected (i.e., if any two points on L̃ can be joined
by a path inside L̃), we call it a connected subnetwork.

3.2. K-functions on a linear network

A standard tool for the analysis of point patterns in two-dimensional space is the well-known
K-function introduced by Ripley (1977). Several counterparts and generalizations of this
function have been defined for linear networks (Okabe and Yamada 2001; Boots and Okabe
2007; Ang et al. 2012).
Suppose we are given a linear network L with observed events x = {x1, . . . , xp}. Okabe and
Yamada (2001) defined the (empirical) network K-function as

K̂net(r) = |L|
p(p− 1)

p∑
i=1

∑
j 6=i

I(dL(xi, xj) ≤ r). (4)

As explained in Ang et al. (2012), a severe drawback of K̂net(r) is its dependence on the
network geometry, even for a completely random point pattern. This makes it difficult to
compare point patterns on different networks.
Ang et al. (2012) proposed the following geometrically-corrected empirical networkK-function:

K̂L(r) = |L|
p(p− 1)

p∑
i=1

∑
j 6=i

I(dL(xi, xj) ≤ r)
m(xi, dL(xi, xj)) , (5)

where the m-function in the denominator, defined in (3), is the weight to compensate for the
network geometry. The empirical function K̂L(r) is given as an estimator of the theoretical
K-function KL(r) (Ang et al. 2012, p. 598) and it is shown that KL(r) = r (r > 0) for a
homogeneous Poisson process. This property can be used to compare any point pattern to
a completely random point pattern. It is also permissible to compare K-functions obtained
from different networks (Ang et al. 2012).
Ang et al. (2012) also introduced a version of (5) for inhomogeneous point processes:

K̂ih
L (r) = 1∑p

i=1 1/λ̂(xi)

p∑
i=1

∑
j 6=i

I(dL(xi, xj) ≤ r)
λ̂(xi)λ̂(xj)m(xi, dL(xi, xj))

, (6)

where λ̂(·) is some estimate of the spatially varying intensity function of the point process on L.
In the analysis of two-dimensional point patterns, it is standard practice to restrict the com-
putation of K(r) to distances r that are less than a specified maximum rmax. This is due
to the fact that bias and variance increase dramatically with r and that there is usually a
maximum expected range of spatial dependence (Baddeley et al. 2015, Chapter 7). The same
statements are true on a linear network. For example, in the Western Australian accident
data, any spatial dependence between accident events is unlikely to extend over more than
a few kilometers. Accordingly, we adopt the same practice: our algorithms are designed to
evaluate the K-functions (4)–(6) for 0 ≤ r ≤ rmax, where rmax is considerably smaller than

14 Efficient Code for Analyzing Events on a Linear Network

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00
12

00

r (feet)

K
L
(r

)

K̂L(r)
KL

theo(r)

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

r (feet)

K
L
(r

)

K̂L, inhom(r)
KL, inhom

theo (r)

Figure 10: Homogeneous (left) and inhomogeneous (right) geometrically-correctedK-function
estimates for the chicago crime data. Solid line: empirical estimate of K-function. Dashed
line: theoretical K-function for completely random pattern.

R = minu∈L maxv∈L dL(u, v), called the inradius of the network L. We show in Section 8 that
this restriction substantially increases the computational efficiency.

3.3. Existing implementations of K-function

For computing the network K-functions (4)–(6), the R package spatstat at present offers
the only open source capabilities, to our knowledge. The spatstat function linearK com-
putes K̂net and K̂L when the arguments correction="none" and correction="Ang" are
provided, respectively; the default value for the argument correction is "Ang". The function
linearKinhom computes the inhomogeneous K-function K̂ih

L when the intensity estimates λ̂
are provided. See Baddeley et al. (2015, Chapter 17).
Figure 10 shows the homogeneous and inhomogeneous K-functions computed and plotted by
the following R code:

R> library("spatstat.Knet")
R> X <- unmark(chicago)
R> plot(linearK(X))
R> fit <- lppm(X ~ polynom(x, y, 2))
R> plot(linearKinhom(X, fit))

At the time of writing, linear networks in spatstat are represented using adjacency matrices,
and a matrix-based algorithm, which we refer to as Algorithm M, is used to compute the
network K-functions (4)–(6). This is described in Section 4.

4. Algorithm M, using adjacency matrix
If the data set is small, or computer memory is unlimited, then it is possible to use the
adjacency matrix representation of the network (Section 2.2) and a relatively straightforward
algorithm can be used to compute second-order summary statistics of the form (1). This

Journal of Statistical Software 15

approach is followed in the spatstat package at the time of writing (spatstat versions 1.23-0
to 1.51-0). In this section, we give details of this approach for computing the geometrically-
corrected K-function (5). Algorithms for (4) and (6) can be obtained as simple modifications.

4.1. Algorithm M specification

The algorithm is described in four sequential steps (M1)–(M4).

(M1) Shortest-path distances between nodes

The first step is to compute the matrix of shortest-path distances dij = dL(vi, vj) between
each pair of nodes. Recall that the adjacency matrix (aij) has entries aij = ‖vi − vj‖, if vi

and vj are joined by an edge and aij = ∞, otherwise. The algorithm initializes dij = aij ,
then iteratively applies the update

dij := min{dik + dkj : vk ∼ vi}, (7)

where v ∼ v′ denotes a pair of nodes joined by an edge. This update is similar to the
‘relaxation’ step used in the famous Dijkstra shortest-path algorithm (Gallo and Pallottino
1988). This iterative procedure finishes after a finite time, giving the matrix (dij). Careful
coding is needed to avoid numerical error associated with floating-point comparisons, which
could otherwise cause the iterations to continue indefinitely.

(M2) Shortest-path distances between events

Next, for each pair (xi, xj) of events, the algorithm computes the shortest-path distance hij =
dL(xi, xj) as follows. We identify the segments si and sj containing xi and xj , respectively.
If si = sj then hij = ‖xi−xj‖. Otherwise, we find the endpoints v, v′ of si and the endpoints
w,w′ of sj , and then compute

hij = min{hvw, hvw′ , hv′w, hv′w′}, (8)

where

hvw = ‖xi − v‖+ dL(v, w) + ‖w − xj‖,
hvw′ = ‖xi − v‖+ dL(v, w′) + ‖w′ − xj‖,
hv′w = ‖xi − v′‖+ dL(v′, w) + ‖w − xj‖, and
hv′w′ = ‖xi − v′‖+ dL(v′, w′) + ‖w′ − xj‖

are the path lengths of the shortest paths from xi to xj passing through the specified end-
points.

(M3) Counting points on the disc perimeter

The shortest-path distance matrix hij (i, j = 1, . . . , p) described above provides the necessary
data for the network K-function (4). The geometrically corrected function (5) requires ad-
ditional computation of the weighting factors mij = m(xi, hij) for each pair (i, j). For any
arbitrary point u on the network and a given distance r, the steps to compute m(u, r) are as
follows:

16 Efficient Code for Analyzing Events on a Linear Network

Figure 11: The bold lines give part of the disc bL(u, r) relevant to scenarios 3(a) (left) and
3(b) (right) of step M3 for counting perimeter points.

1. Find the endpoints v, v′ of the segment containing u.

2. For each node vk compute the shortest-path distance from u,

tk = dL(u, vk) = min{‖u− v‖+ dL(v, vk), ‖u− v′‖+ dL(v′, vk)}.

Since v and v′ are nodes of the network, the values dL(v, vk) and dL(v′, vk) can readily
be extracted from the shortest-path distance matrix (dij).

3. For all nodes vk for which tk ≤ r, i.e., for all nodes lying inside bL(u, r), consider all
adjacent line segments of vk of the form [vk, vk′], [vk, vk′′], etc. These are all the line
segments that may contain a point of cL(u, r). Now, any one of the following two
scenarios may arise while investigating the segment [vk, vk′]:

(a) if dL(u, vk′) = tk′ ≥ r then vk′ lies outside bL(u, r). Hence [vk, vk′] crosses the
perimeter of the disc, and contains one perimeter point. This is illustrated in the
left panel of Figure 11. The bold line in the figure gives a part of bL(u, r) where
tk < r, vk ∼ vk′ , and tk′ > r. This gives one perimeter point on [vk, vk′].

(b) if tk′ < r then vk′ lies inside bL(u, r). Consider c = ‖vk − vk′‖− (r− tk)− (r− tk′).
Then [vk, vk′] contains 0, 1 or 2 perimeter points according as c < 0, c = 0 or c > 0
respectively. This is illustrated in the right panel of Figure 11. The bold line in
the figure gives a part of bL(u, r) where tk < r, vk ∼ vk′′ , tk′′ < r. In this case
c > 0, giving two perimeter points on [vk, vk′′].

(M4) Computation of K-functions

The final step is to compute the Okabe-Yamada network K-function K̂net defined in (4) or the
geometrically corrected K-function K̂L defined in (5). For K̂net, we simply compute all the
pairwise shortest-path distances hij , form a histogram, compute the cumulative distribution
function of the distances, and renormalize to obtain (4). For K̂L, we compute pairs (h,w)
of distances h = hij and corresponding weights w = 1/m(xi, hij), compute the weighted
histogram, cumulate and renormalize to obtain (5).

Journal of Statistical Software 17

4.2. Implementation in spatstat

Algorithm M was implemented in the R package spatstat. The initial implementation of steps
M1–M4 was coded in the R language using the basic facilities for matrix operations. This is
very convenient for testing and cross-testing purposes, but is slow and memory-hungry. The
algorithm was later accelerated by re-coding the update (stepM1) and the perimeter-counting
rule (step M3) in C to achieve the speeds reported in Table 1.
At the time of writing, spatstat represents a linear network using an adjacency matrix which
may be either sparse or full (using the Matrix package of Bates and Maechler (2019) for sparse
matrices). The sparse representation is memory efficient, even for the Western Australian
data. However, the Algorithm M requires computation of the full matrix (dij) of distances
between all pairs of nodes. Hence the fundamental limitation of this algorithm is the O(m2)
storage requirement.
In Section 5 and 6, we develop a new algorithm for computing summary statistics of the
general form (1), in particular (4)–(6).

5. Tree structures for the new algorithm
As explained in Section 4, Algorithm M computes the shortest-path distances between events
by first computing the matrix (dij) of pairwise distances between nodes. The new algorithm,
which we refer to as Algorithm L, avoids this memory-intensive task of computing the dis-
tance matrix (dij); instead, it computes the shortest-path distances from xi (i = 1, . . . , p) to
other events in the network by performing a network search starting at the source point xi.
Searching a graph is a standard procedure, which is generally accomplished by constructing
a tree from the source point, taking it as the root node (Cormen et al. 2009). In this section,
we describe some important tree structures used in developing Algorithm L. A pseudocode
for the Algorithm L is presented in the Section 6.
The adjacency list algorithm divides the problem of computing a network statistic of the
general form (1) into sub-problems. In order to develop this idea for the network K-function
K̂L defined in (5), we use the concept of the local K-function (Getis and Franklin 1987; Anselin
1995, Baddeley et al. 2015, Chapter 7) adapted to linear networks. The network K-function
can be decomposed as

K̂L(r) = 1
p

p∑
i=1

K̂L(xi, r), (9)

where
K̂L(xi, r) = |L|

(p− 1)
∑
j 6=i

I(dL(xi, xj) ≤ r)
m(xi, dL(xi, xj)) (i = 1, . . . , p) (10)

are the local K-functions. Hence the computation of K̂L reduces to the computation of p
local K-functions.
Here we introduce some important graphical structures for the new algorithm. For the com-
putation of local K-functions in (10), we need the notions of “breakpoint”, “shortest-path
tree”, and “extended shortest-path tree” introduced by Okabe and Yamada (2001). The next
three subsections give, respectively, a method of constructing an extended shortest-path tree
(using a shortest-path tree and breakpoints) based on a subnetwork, a procedure for con-

18 Efficient Code for Analyzing Events on a Linear Network

Figure 12: Shortest path tree (solid black line) starting from crash point x1 in Figure 6.
Six-pointed star represents a breakpoint. Arrows indicate the two different paths of equal
length from x1 to the breakpoint b(3,4); arrow direction shows the travel path.

structing such a subnetwork from the original network, and the time complexity analysis of
this procedure.

5.1. Shortest-path tree, breakpoints, and extended shortest-path tree

For a given starting point u ∈ L, a breakpoint (corresponding to u) is defined as a point v ∈ L
for which the shortest path from u to v is not unique, i.e., there exist two different paths from
u to v which achieve the minimum possible path length. There can only be finitely many
breakpoints for any starting point u ∈ L.
Let L∗u be the subset of L formed by the union of all segments which do not contain a
breakpoint corresponding to u. Then L∗u is a directed weighted graph without any loops, and
is equivalent to a tree rooted at u, called the shortest-path tree. A data structure representing
the shortest-path tree L∗u can be built by first including all the nodes in the network along
with the additional node representing the root u of the tree and then recursively adding
adjacent edges to an adjacency-list data structure.
Figure 12 gives a topologically equivalent representation of the network in Figure 6, and the
bold lines in it represent the shortest-path tree rooted at the point event x1. The segment
[v3, v4] contains the breakpoint b(3,4), so this segment is not included in the shortest-path tree.
When there is a breakpoint corresponding to some u ∈ L, an extended shortest-path tree can
be constructed as follows. For each segment s = [vi, vj] that contains a breakpoint b(i,j), two
new nodes b′(i,j), b

′′
(i,j) are created with the same spatial coordinates as b(i,j) but are treated as

distinct nodes. Then the two weighted edges corresponding to s are replaced by the two new
edges (vi, b

′
(i,j), ‖vi−b′(i,j)‖) and (vj , b

′′
(i,j), ‖vj−b′′(i,j)‖), which are treated as having no common

intersection. These edges are added to the shortest-path tree L∗u by inserting b′(i,j) and b′′(i,j)
in the adjacency lists of vi and vj , respectively. Continuing the process for all breakpoints
of u, the final tree, denoted as L∗∗u , thus obtained is called the extended shortest-path tree

Journal of Statistical Software 19

Figure 13: Extended shortest-path tree from point event x1 in Figure 6. Six-pointed stars
represent terminal nodes, which are duplicates of the breakpoints. Solid black lines represent
the shortest-path tree in Figure 12.

rooted at u. The extended shortest-path tree is a one-to-one representation of all minimal
paths starting from u in L.
Figure 13 shows the extended shortest-path tree corresponding to Figure 12. The segment
[v3, v4] has been replaced by the edges (v3, b

′
(3,4), ‖v3 − b′(3,4)‖) and (v4, b

′′
(3,4), ‖v4 − b′′(3,4)‖).

To compute the local K-functions (10), first an extended shortest-path tree, L∗∗xi
, needs to be

constructed from xi for i = 1, . . . , p. Then, K̂L(xi, r) can be computed for any r ≤ txi(L∗∗xi
),

where for a connected subnetwork L̃(⊂ L) and u ∈ L̃, tu(L̃) is defined by

tu(L̃) = max{dL(u, v) : v ∈ L̃}. (11)

Note that txi(L∗∗xi
) (denoted by t∗xi

hereafter) is the maximum possible shortest-path distance
from xi to any point on L∗∗xi

. However, as discussed in Section 3.2, in the case of a large
network, the computation of K̂L(xi, r) is restricted to distances r < rmax, for a prespecified
value rmax < min{t∗x1 , . . . , t

∗
xp
}.

5.2. Local subnetwork

Since the local K-functions K̂L(xi, r) (i = 1, . . . , p) are restricted to r ∈ [0, rmax), we do
not require to construct the extended shortest-path trees based on the entire network L.
Here we note a straightforward but important fact that |L∗∗xi

| = |bL(xi, t
∗
xi

)|. Hence, for the
computation of the local K-function K̂L(xi, r) (0 ≤ r < rmax), it is sufficient to consider an
extended shortest-path tree based on any connected subnetwork L̃ such that bL(xi, rmax) ⊂ L̃.
Accordingly, for each i = 1, . . . , p, we construct a local connected subnetwork L(xi, rmax)
corresponding to xi as follows. First, we insert all the nodes that are within a distance
rmax from xi by the shortest path. Next, we insert all the edges connected to these nodes
and all the nodes corresponding to the endpoints of these edges (if not already inserted). It
can be shown that L(xi, rmax) is the smallest connected subnetwork of L with the property
bL(xi, rmax) ⊂ L(xi, rmax).

20 Efficient Code for Analyzing Events on a Linear Network

Figure 14: Execution time (in minutes) of Algorithm L for computing K̂L(r) for the 2011
accident data on the Western Australian road network with different rmax values (in meters).

The use of these local subnetworks in the construction of the extended shortest-path trees
greatly reduces the computing time for the K-function. This is evident in Figure 14 which
plots the computation time of the K-function K̂L(r) against different rmax values for the
Western Australian network data.

5.3. Procedure for constructing local subnetwork

The following algorithm to construct L(x, rmax) corresponding to a point event x ∈ x is a
modification of Dijkstra’s shortest-path algorithm (Gallo and Pallottino 1988).

Procedure 1 (Local subnetwork construction).

Input data: Network-graph L and the point event x.

1. Identify the segment [v1, v2] that contains x.

2. Insert x as the (m+ 1)th node in L, where m is the number of nodes in L.

3. Delete both weighted edges corresponding to the segment [v1, v2].

4. Insert two new edges (x, v1, ‖x− v1‖) and (x, v2, ‖x− v2‖) in L.

5. Create an empty graph L(x).

6. Assign a distance value to d in the sNode structure of every node in L: set it to zero for
x and infinity for all other nodes. Label all the nodes with color white signifying they
are all unvisited. Assign the parent member of every node a label equal to NULL.

7. Select the white node with the minimum distance d. If there is no white node, go to Step
13.

8. If the minimum distance is greater than rmax, go to Step 13.

Journal of Statistical Software 21

9. Change the unvisited status of the selected node by changing its color label to black. The
corresponding value of d is the shortest-path distance from x to this node.

10. Insert the black node and all its adjacent edges in L(x).

11. Suppose that the most recently visited node is v. Then the reason we are in this step is
because dL(x, v) < rmax. Let vadj denote the adjacent node under consideration.

(a) If the current distance value d of vadj (from x) is smaller than dL(x, v)+dL(v, vadj),
then do nothing and move to the next adjacent node if one exists.

(b) If there are no adjacent nodes left to be scanned, move to Step 12.
(c) On the other hand, if d corresponding to vadj is greater than dL(x, v) + dL(v, vadj),

set d = dL(x, v) + dL(v, vadj), and assign node v to the parent component of vadj.

12. Repeat Steps 7 to 11.

13. Restore L to its original form after it was changed in Steps 2–4.

When Procedure 1 terminates, the empty graph L(x) becomes L(x, rmax), and every node
that are within rmax distance from x in this subnetwork stores its shortest-path distance from
x and reference to its parent node in the shortest-path route. The shortest-path distances
from x to these nodes in L(x, rmax) play a very important role in the computation of the
m-function (3), the denominator in (10).

5.4. Time complexity in computing local subnetwork

Let mx denote the number of nodes that are within a distance rmax from x by shortest path
and nx denote the number of edges in L(x, rmax). At the center of Procedure 1 is a single
conditional loop (Steps 7–11) that iterates mx times, once for each of the mx nodes. The
conditional loop is originally set to iterate over allm nodes in the network L with the condition
given in Step 8 of the Procedure 1 to exit the loop. Because the nodes that we encounter
after first mx iterations all have shortest-path distances (from x) more than rmax, the loop
terminates after mx iterations.
Each iteration starts by selecting the node with the smallest shortest-path estimate among
the nodes labeled as white, and the node is selected by traversing through m nodes in L and
checking their distance estimates. This part of the iteration is O(mmx).
Next, we visit the nodes adjacent to the selected node. As we visit each adjacent node, we
update the distance estimates d and the parent label parent of the adjacent node (Step 11).
The update process for an adjacent node vadj of v requires the distance estimate corresponding
to vadj . It is obtained by going through m nodes in the node-list. For all the mx nodes, we go
through the node-list nx times, once for each of the edges in L(x, rmax). Consequently, this
part of the iteration is O(mnx). Therefore, the main conditional loop overall isO(m(mx+nx)).

6. Algorithm L, using adjacency list
In this section, we describe Algorithm L for computing the geometrically-correctedK-function
(5) based on the adjacency list structure in Figure 8 and the concepts developed in Section 5.

22 Efficient Code for Analyzing Events on a Linear Network

Implementations for (4) and (6) are simple modifications of this algorithm. One feature of our
algorithm is that it computes K̂L(r) on a finite grid of distance values 0 ≤ r1, . . . , rl ≤ rmax
without additional computational cost. This efficiency is achieved by computing interval
sums (defined in (12)), which are related to the local K-functions, for every point event in
the network; details are in Section 6.1.
After constructing the extended shortest-path tree from the root node xi, two remaining steps
in the computation of K̂L(r) are:

(1) computing the weights 1/m(xi, dL(xi, xj)) corresponding to the neighboring point events
xj of xi, and

(2) computing the interval sums for a specified grid of distance values by performing a
search from the root node xi.

Section 6.2 outlines the computational details of m(x, r), required in (1) for x ∈ x, and
Section 6.3 provides a depth-first search algorithm (Cormen et al. 2009; Even 1979; Tarjan
1983) for computing the interval sums in (2). The pseudocode for Algorithm L is given in
Section 6.4.

6.1. Interval sums

Although K̂L(r) is a function of a continuous argument r, in practice we compute it on a
finite grid with stepsize ε, obtaining K̂L(rj), where rj = jε, for j = 0, . . . , l; l = brmax/εc is
the largest integer less than or equal to rmax/ε.
For x ∈ x and j = 1, . . . , l, let

Ij(x) =
∑

y∈x\{x}

I(rj−1 < dL(x, y) ≤ rj)
m(x, dL(x, y)) (12)

be the interval sums corresponding to x. In what follows we assume I0(x) = 0 for all x ∈ x,
corresponding to locations without multiple events. Then the local K-function and the K-
function can be expressed as

(p− 1)K̂L(x, ri)
|L|

=
i∑

j=0
Ij(x) (13)

p(p− 1)K̂L(ri)
|L|

=
∑
x∈x

i∑
j=0

Ij(x) (14)

for i = 1, . . . , l.
An alternative way of expressing the K-function, by interchanging the sums in (14), is

p(p− 1)K̂L(ri)
|L|

=
i∑

j=0

∑
x∈x

Ij(x) for i = 1, . . . , l. (15)

An intuitive way to compute the K-function is to use (14) by first computing the local K-
functions using (13). However, it is more efficient to do this by summing the computed values

Journal of Statistical Software 23

Figure 15: Top: the extended shortest-path tree from point event x1 in Figure 6, restricted
to rmax = 5.5. Below: the function m(x1, r) for computing local K-function of x1.

of
∑

x∈x Ij(x) and using (15). We first compute the function m(x, r) and then compute Ij(x)
using a depth-first search algorithm.

6.2. Computation of perimeter count m(x, r)

We start with some notation used in the rest of this section. Let L∗∗x (rmax) denote the
extended shortest-path tree that is constructed from the subnetwork L(x, rmax) defined in
Section 5.2. Let Vx(rmax) denote the set of nodes that are within rmax distance from x by
shortest path. Let V ∗x denote the set of all nodes in L∗∗x (rmax), except the nodes that do not
have any adjacent node in Vx(rmax).
It is easy to verify that Vx(rmax) ⊂ V ∗x , and for any v ∈ V ∗x , dL(x, v) > rmax if and only if
v ∼ v′ for some v′ ∈ Vx(rmax). Note that, V ∗x may not include all breakpoints in L∗∗x (rmax),
e.g., in Figure 15 the extended shortest path tree L∗∗x1(rmax), for a given rmax = 5.5, does not
include the breakpoint b′(3,4).

24 Efficient Code for Analyzing Events on a Linear Network

To compute m(x, r), we first order the shortest-path distances based on the non-decreasing
values of dL(x, v), v ∈ V ∗x . The sorted list of distances is given by

Dx = {d[1], . . . , d[m∗x]}, withm∗x = |V ∗x |, (16)

corresponding to the list of nodes {v[1], . . . , v[m∗x]}. Note that we shall always have v[1] = x
and d[1] = 0. Let δ[j] denote the degree of the node v[j], for j = 1, . . . ,m∗x. Then, for a given
r determine j such that d[j] ≤ r < d[j+1], and compute m(x, r) as

m(x, r) = δ[1] +
j∑

k=2
(δ[k] − 2). (17)

The m-function is a step-function with possible jumps at distinct d[j] values. If there is a tie,
e.g., d[j] = d[j+1], the value of the m-function remains unchanged between d[j−1] and d[j+1].
More generally, if d[j−1] < d[j] = · · · = d[j+k] < d[j+k+1] for some j ≥ 2 and k ≥ 2, we have

m(x, r) = δ[1] +
j+k−1∑

k=2
(δ[k] − 2) for d[j−1] ≤ r < d[j+k].

The m-function m(x, r) is stored in the computer memory using two arrays dval and mval of
equal size Mx, where Mx is the number of distinct values (except d[1] = 0) in Dx. In general,
Mx ≤ m∗x, with equality holding when there are no ties in Dx. For j = 2, . . . ,Mx,

dval[j] = jth smallest value amongst the distinct values in Dx;

mval[j] = m(x, r) if dval[j − 1] ≤ r < dval[j].

Therefore, for a given r, we have,

m(x, r) =


2, if r < dval[1];
mval[j], if dval[j − 1] ≤ r < dval[j];
mval[Mx], if r ≥ dval[Mx]. (18)

6.3. Depth-first search algorithm

Here we present a variant of the classical depth-first search algorithm (Tarzan 1972) for
computing the interval sums Ij(x) (j = 1, . . . , l) in (12) for a given x ∈ x. When searching a
tree, the most recently visited node, say v, is called the current node, and its adjacent nodes
away from the root node are the children nodes, with v as their parent node.
A depth-first search begins at the root node x, taking it as the current node, in the extended
shortest-path tree L∗∗x (rmax). The search then explores an unvisited outgoing edge (a child
node) of the current node and then updates that child node as the current node. When there
are no unvisited outgoing edge from the current node, the search backtracks to the parent
node, thereby updating the parent node as the current node. The search finishes when there
are no more unvisited outgoing edges from x. In our variation, we backtrack from a node,
without exploring outgoing edges from the node, if the shortest-path distance from x to that
node is greater than rmax and the shortest distance to its parent node from x is less than rmax.

Journal of Statistical Software 25

We have implemented the depth-first search algorithm in a recursive C function. To give an
overview of our implementation, below we provide a pseudofunction intervalSum outlining
the steps involved in computing the interval sums (12). The pseudofunction has six arguments,
which are described in Table 6.

Procedure 2 (Depth-first search). intervalSum(G, D, M, x, dist, K, r)

1. Find the node x in G.

2. Check if there exists any adjacent node xAdj of x.

(a) IF (xAdj == NULL), then EXIT.
(b) WHILE (xAdj 6= NULL)

i. IF (xAdj.weight > dist)
A. crashList = xAdj.crashlist
B. Assign to nCrash the number of Crash objects in the crashList that are

less than dist distance away from x
C. FOR(i = 1; i ≤ nCrash; + + i){

• crash = crashList[i]
• Compute the shortest-path distance from the root of the tree to the crash:

rootToCrashDistance = xAdj.d + xAdj.weight ∗ crash.tp
• Find the m-value corresponding to rootToCrashDistance using D and

M using (18) in Section 6.2, and assign it to mValue.
• Find j such that r[j − 1] < rootToCrashDistance ≤ r[j].
• Perform K[j] = K[j] + 1/mValue } END FOR LOOP

ii. ELSE
A. Compute remainingDistance = dist − xAdj.weight
B. crashList = xAdj.crashlist
C. Assign to nCrash the total number of Crash objects in crashList.
D. FOR(i = 1; i ≤ nCrash; + + i){

• crash = crashList[i]
• rootToCrashDistance = xAdj.d + xAdj.weight ∗ crash.tp
• Find the m-value corresponding to rootToCrashDistance and assign it

to mValue.
• Find j such that r[j − 1] < rootToCrashDistance ≤ r[j].
• Perform K[j] = K[j] + 1/ mValue} END FOR LOOP

E. intervalSum(G, D, M, xAdj, remainingDistance, K, r)
iii. Go to the next adjacent node, and assign it to xAdj.

(c) END WHILE LOOP

3. EXIT

The function intervalSum should be executed with arguments dist = rmax and K equal to
0, an l-length array of zeros. The recursive calls of intervalSum update the array K upon

26 Efficient Code for Analyzing Events on a Linear Network

Argument Description
x A node identifier for node x whose outgoing edges are to be explored.
G The extended shortest-path tree L∗∗x (rmax).
D The array dval of the distance values.
M The array mval for accessing the m-values.
dist Numeric value representing the distance required to be explored from

node x on the tree L∗∗x (rmax).
K An array of size l for storing the interval sums Ij(x) for j = 1, . . . , l.
r Vector of distances (r1, . . . , rl).

Table 6: The function arguments for intervalSum and their descriptions.

every call, and at the end when intervalSum terminates, the jth entry of the array K contains
Ij(x), for j = 0, . . . , l.

6.4. Algorithm L based on an adjacency list representation

Here we present a pseudocode of our adjacency list algorithm for computing the network
K-function K̂L(r).

Algorithm 1 (L). Input data: Network-graph L, vector of distances r=(r1, . . . , rl).

1. Assign Isum an array of size l with all entries equal to zero for storing the interval sums.

2. FOR(i = 1; i ≤ p; ++i){

(a) Construct L(xi, rmax) corresponding to the point event xi using Procedure 1.
(b) Construct the extended shortest-path tree L∗∗xi

(rmax).
(c) Compute m(xi, r) using (17) and store it using two arrays dval and mval.
(d) Call intervalSum(G = L∗∗xi

(rmax), D = dval, M = mval, x = xi, dist = rmax,
K=Isum, r = r).

} END FOR LOOP

3. The array Isum now contains all the information for computing the K-function K̂L(r)
for r = r1, . . . , rl. Assign Kval an empty array of size l.

4. FOR(j = 1; j ≤ l; ++j){ Kval[j] = {p(p− 1)}−1|L|
∑j

s=1 Isum[s] }

5. RETURN Kval.

The most important step in Algorithm L is the computation of the interval sums (12). In
Section 7, we demonstrate the computation of this part of the algorithm with an example.

7. Worked example of an interval sum
Here we calculate the interval sums (12) for the point event x1 in Figure 6. To do this, we
first compute the m-function m(x1, r) and then describe the steps in the search procedure
intervalSum using the extended shortest-path tree shown in Figure 15.

Journal of Statistical Software 27

The extended shortest-path tree is constructed for a given rmax = 5.5. For this example,
m∗x1 = 7, and the ordered distances are

d[1] = 0, d[2] = 1.0, d[3] = 2.0, d[4] = 4.0, d[5] = 5.0, d[6] = 6.0, d[7] = 7.0,

and the nodes corresponding to these ordered distances are

v[1] = x1, v[2] = v2, v[3] = v1, v[4] = v5, v[5] = v4, v[6] = v3, v[7] = b′′3,4.

The graph in Figure 15 gives a plot of the step-function corresponding to m(x1, r), whose
computation is explained below using (17).

m(x1, r) =



δ[1] = 2, if d[1] = 0 < r < d[2] = 1.0;
δ[1] + (δ[2] − 2) = 2, if d[2] = 1.0 < r < d[3] = 2.0;
δ[1] + (δ[2] − 2) + (δ[3] − 2) = 3, if d[3] = 2.0 < r < d[4] = 4.0;
δ[1] + (δ[2] − 2) + (δ[3] − 2) + (δ[4] − 2) = 2, if d[4] = 4.0 < r < d[5] = 5.0;
2, if d[5] = 5.0 < r < rmax = 5.5.

Let r1 = 0.5, r2 = 1.0, . . . , r10 = 5.0 be the values of r for which the interval sums will be
computed. Accordingly, we set the initial value for Isum as the zero vector of length 10. Then,
the depth-first search routine as explained in Procedure 2 works as follows.

1. The search begins at root node x1, visits v2, one of the x1’s adjacent nodes, and then
checks for any point events on the edge [x1, v2]. Since the edge is empty, the search
visits v4, one of the unexplored adjacent nodes of v2.

2. The edge [v2, v4] holds two point events x3 and x4. The algorithm then computes
dL(x1, x3) = 3.0, dL(x1, x4) = 4.0, and the corresponding m-values m(x1, 3.0) = 3 and
m(x1, 4.0) = 3.

3. Because r5 < dL(x1, x3) ≤ r6 and r7 < dL(x1, x4) ≤ r8, the algorithm assigns Isum[6] =
1/m(x1, 3.0) = 0.333 and Isum[8] = 1/m(x1, 4.0) = 0.333, respectively.

4. The search now proceeds toward the adjacent node of v4, and it stops at the vertical
line signifying rmax in Figure 15. Because the line segment [v4, rmax] contains no point
events and v4 does not have any unexplored adjacent node, the search track backs to
v2.

5. Because all the adjacent nodes of v2 have already been explored, the search now track
backs to x1.

6. The search now visits v1, the last unvisited node in the adjacency list of x1. Since the
edge [x1, v1] is empty, the search next visits v5, one of the unexplored adjacent nodes of
v1.

7. The edge [v1, v5] contains a point event x5. The algorithm computes dL(x1, x5) = 3.0
and the corresponding m-value m(x1, 3.0) = 3. Subsequently, the algorithm performs
Isum[6] = Isum[6] +1/m(x1, 3.0) = 0.666.

8. Since the adjacency list of v5 is empty, the search track backs to v1.

28 Efficient Code for Analyzing Events on a Linear Network

9. The search now proceeds toward v3, the last unvisited adjacent node of v1, and it stops
at rmax. The line segment [v1, rmax] contains a point event x2. The algorithm computes
dL(x1, x2) = 4.0 and m(x1, 4.0) = 3. Subsequently, the algorithm performs Isum[8] =
Isum[8] + 1/m(x1, 4.0) = 0.666.

10. Finally, the search track backs to x1, and since there present no unexplored outgoing
edges of x1, the algorithm terminates.

When the above search finishes, the jth element of the array Isum is equal to the interval
sum Ij(x1) for j = 1, . . . , 10.

8. Execution time against the number of point events
The computational time of both algorithms M and L crucially depends on p, the number
of events observed on the network. Simulation experiments in this section suggest that the
computational times of algorithms M and L are, respectively, quadratic and linear functions of
p (see Figure 16a). A heuristic behind these timings is that Algorithm M computes p(p−1)/2
shortest-path distances for all distinct event pairs, whereas Algorithm L only iterates over p
times (see Step 2 of Algorithm L).
Figure 16a compares execution times (in seconds) for the Algorithm M and the Algorithm L as
a function of p. For this plot, first, we generated independent, uniformly-distributed random
points on the chicago street network for p = 1000, . . . , 10000, and then for each simulated
data, we recorded the execution times of both the algorithms, taken for computing K̂L. The
plot confirms that our proposed algorithm’s computation time is linear in p, while that of the
adjacency matrix algorithm is quadratic in p. The other drawback of the Algorithm M is that
the R-program breaks down, even for a small network such as the chicago network, due to
memory allocation problem when the number of points are greater than or equal to 11, 000.
Figure 16a also shows that for small number of point events Algorithm M can outperform
Algorithm L – although the differences in the timings are often negligible. Therefore, it is
okay to use Algorithm M if the observed number of events on a network is relatively small and
the network itself can be stored using the adjacency matrix data structure. Baddeley et al.
(2015, Section 17.8) provides example illustrating the use of Algorithm M in applications to
point patterns on linear networks. Ang et al. (2012) also used the same implementation for
analyzing point patterns created by spider webs on the mortar lines of a wall and by crime
events on the street network in Chicago, USA.
Although the adjacency matrix algorithm has satisfactory performance for small data sets, it
is not feasible for larger data sets such as the Western Australian road network in Figure 1.
Not only is the time complexity of order p2, but also the memory storage requirement of
Algorithm M is prohibitive, as discussed in Section 2.2. Based on the adjacency list structure
in Figure 8 and the Algorithm L in Section 6.4, we created R interfaces for computing the
summary statistics (4)-(6). This implementation is memory efficient; it can store and analyze
large networks with more than 105 nodes and edges on a PC with only 8 Gb RAM.
The execution time of Algorithm L also depends on the chosen value of rmax. However, the
linear time complexity of the algorithm with respect to p holds true for any choice of rmax.
Figure 16b plots the computation times of the network K-function (5) against the number of

Journal of Statistical Software 29

(a)

(b)

Figure 16: (a) Execution times of the adjacency matrix and adjacency list algorithms, plotted
against the number of point events used to compute K̂L(r) on the chicago street network.
(b) Execution times of the adjacency list algorithm for computing K̂L(r) (on the chicago
network) corresponding to different rmax values. In both cases, uniform random points were
generated on the network.

points on the chicago network for different choices of rmax. It is evident from the plot that
the choice of rmax only affects the slope of the linear relationship.

To evaluate performance on real data, we used the large Western Australian road network
shown in Figure 1, and generated data sets with different numbers of point events by sampling
without replacement from the 2011 road accident record. Figure 17 plots the timings (in
minutes) of computing K̂L(r) for the data sets with p = 1000, 3000, . . . , 13000. As expected,
the plot shows an approximately linear relationship between the execution time and the
number of points.

30 Efficient Code for Analyzing Events on a Linear Network

Figure 17: Execution time (in seconds) of the adjacency list algorithm for computing K̂L(r)
with different number of points sampled randomly from the accident data on the Western
Australian road network.

9. Western Australia road network and road accident data
Here we compute the homogeneous and inhomogeneous network K-functions using Algo-
rithm L for the road accident data set shown in Figure 1. The accidents are recorded on
the road network of the state of Western Australia for the calendar year 2011. These data,
provided by the Western Australian state government department of Main Roads, are made
available for this publication as part of the Western Australian Whole of Government Open
Data Policy. The primary data corresponding to the Western Australian road network and
accidents can be accessed publicly from the Main Roads Data Portal. The network graph has
88, 512 nodes and 115, 169 edges with a total length of approximately 97, 165 km. There are
14, 562 accident locations recorded.
The geometrically-corrected homogeneous K-function K̂L(r), equation (5), for the Western
Australian accident pattern is shown in Figure 18 (left panel). The summary function K̂L(r)
is often compared with the theoretical K-function of the Poisson process (KL(r) = r) to assess
whether the distribution of point pattern is different from a completely random point pattern.
In Figure 18, the large difference between the empirical K-function K̂L(r) and the theoretical
benchmark value (dashed line) suggests a departure from the completely random point process
model. One can use K̂L(r) to formally test whether the accident pattern exhibits clustering,
using a one-sided Monte Carlo test based on simulation envelopes (Baddeley et al. 2015,
Chapter 10). The following lines of code can be used to compute and plot the homogeneous
K-function in Figure 18.

R> library("spatstat.Knet")
R> data("wacrashes", package = "spatstat.Knet")
R> r_grid <- seq(0, 1000, length = 101)
R> Khom <- Knet(wacrashes, r = r_grid)
R> plot(Khom, legend = FALSE, lwd = 2, main = " ")

Journal of Statistical Software 31

Figure 18: Left: Geometrically-corrected homogeneous K-function for the Western Aus-
tralian road accident data set (solid line). Right: Geometrically-corrected inhomogeneous
K-functions with intensity estimates computed using a fixed bandwidth smoothing method
(large dashed-line) and using a variable bandwidth smoothing method (solid line). In both
plots, the theoretical K-function for a completely random pattern is plotted using red dashed
line and the horizontal axis is road distance in metres.

Although inference based on the homogeneous K-function is straightforward, its computation
for the accident pattern assumes that the accident rate is constant across the entire road
network. This assumption is clearly fallacious in this case, as the spatially varying accident
rates are visible in Figure 1. If the underlying point process is inhomogeneous with a spatially
varying intensity function λ(u), u ∈ L, the inhomogeneous K-function K̂ih

L (r) defined in (6)
is typically used to examine the second-order properties, such as clustering or interactions
amongst points, of the pattern (Ang et al. 2012; Baddeley, Møller, and Waagepetersen 2000).
This function adjusts for the varying intensity by using the intensity estimates at the event
locations as weights for the estimator K̂ih

L (r).
The accuracy of estimation of K̂ih

L depends on how well we estimate the intensity function
λ(u). In case of two-dimensional point patterns, kernel smoothing is a standard nonparametric
technique for estimating the intensity function. However, kernel smoothing is time-consuming
on a linear network due to its non-homogeneous spatial structure and complex boundary con-
figurations at different locations (McSwiggan et al. 2016). We estimated the spatially varying
accident rates using fixed and variable bandwidth smoothing methods for point patterns on
a linear network. Details on these methods will be given in a sequel paper (Rakshit et al.
2019).
Figures 19a and 19b show, respectively, heatmaps of the fixed and variable bandwidth inten-
sity estimates (with color map on a logarithmic scale) on the Western Australian road network.
The estimated intensity values are provided in supplementary files waCrashIntensity.rda
and waCrashIntensityAdaptive.rda, respectively. The following code plots both the heatmaps.

R> library("spatstat.Knet")
R> load("waCrashIntensity.rda")
R> plot(waCrashIntensity, log = TRUE, main = " ")
R> load("waCrashIntensityAdaptive.rda")

32 Efficient Code for Analyzing Events on a Linear Network

(a)

(b)

Figure 19: (a) Fixed and (b) variable bandwidth estimate of the intensity for the accidents
on the Western Australian road network. Color map is on a logarithmic scale.

R> plot(waCrashIntensityAdaptive, log = TRUE, main = " ")

Using these two estimates, we have computed two geometrically-corrected inhomogeneous
K-functions, which are plotted in the right panel of Figure 18. The following code can be
used for computing and plotting the inhomogeneous K-functions.

R> inten_est <- waCrashIntensity[as.ppp(wacrashes)]
R> inten_est_adap <- waCrashIntensityAdaptive[as.ppp(wacrashes)]
R> Kin <- Knetinhom(wacrashes, lambda = inten_est, r = r_grid)
R> Kin_adap <- Knetinhom(wacrashes, lambda = inten_est_adap, r = r_grid)
R> plot(Kin, lty = c(5, 2), lwd = 2, col = c("blue", "red"), legend = FALSE)
R> plot(Kin_adap, est ~ r, add = TRUE, lty = 1, lwd = 2, col = "black")

The Western Australian accident pattern is dense in some parts of the network and very sparse
in other parts. In such a scenario, the fixed bandwidth estimator performs unsatisfactorily

Journal of Statistical Software 33

because it over-smooths the densely populated parts of the network while producing intensity
estimates close to zero for network parts that are sparsely populated. This is evident from the
over-smoothing of the densely-populated western part of the state and from several missing
pixels in Figure 19a, appearing in the sparsely populated north western part of the network,
which corresponds to intensity estimates very close to zero. The variable bandwidth intensity
estimates in Figure 19b are computed after adjusting for the underlying density of the point
events – relatively large bandwidths are used in the sparsely populated areas than the dense
areas. This reduces the over-smoothed nature of the heatmap and decreases the number of
zero-valued pixels.
If we contrast the two inhomogeneous K-functions in Figure 18, we observe that, although
both plots suggest some form of clustering in the accident pattern, the K-function with the
adaptively smoothed intensity estimates reveals a lesser degree of clustering than its counter-
part with fixed bandwidth estimates. However, this is expected as the adaptive smoothing
based on variable bandwidth provide better estimates of the underlying intensity function
than the fixed bandwidth estimates.

10. Discussion
This paper examined two general approaches to the computation of statistical summaries of
events on a network. An approach based on the incidence matrix (Algorithm M) is straight-
forward to implement, and quite fast to execute, but is severely limited by its very large
memory requirements. The adjacency matrix is wasteful because the vast majority of entries
are zero. A sparse matrix representation reduces storage requirements but is not efficient for
graph topology operations.
The alternative approach using adjacency lists (Algorithm L) results in substantial memory
savings. This is evident from Table 1, which gives a comparison of memory usage between
these two implementations of the K-function in (5) for three different network data sets
available in the R package spatstat (Baddeley and Turner 2005). This efficient use of memory
allows Algorithm L to be applied to very large networks, such as the entire road network of
Western Australia. Algorithm L also lends itself easily to the calculation of other quantities
such as the local K-functions.
Although Algorithm L adapts some ideas from Okabe and Yamada (2001), a direct com-
parison between our implementation and that of Okabe and Yamada (2001) does not seem
appropriate. The latter computes the uncorrected, unweighted K-function (4), whereas our
implementation is designed to compute any summary function of the general form (1) with
special emphasis on the geometrically-corrected empirical K function (5).
Many improvements are possible. In very large and complex networks it might be more
efficient to use quad-trees or other geometric hashing methods to divide the network into
manageable pieces (cf. Okabe and Sugihara 2012, Chapter 3). Furthermore, it would be pos-
sible to improve parts of Algorithm L by using a priority queue. The operation of extracting
the minimum value from a priority queue is O(1), and maintaining the heap property of the
priority queue is O(logM), where M is the number of elements in the queue.
The representation of a road network as a graph is a substantial over-simplification of the real
physical network (Okabe and Sugihara 2012). Roads have complicated geometry including
curvature and camber, multiple lanes, complicated intersections, overpasses, and structures

34 Efficient Code for Analyzing Events on a Linear Network

which separate different lanes. The analysis of road accidents must take into account many
of these covariates associated with the road network. The aNode components could easily be
extended in order to make these covariates accessible in the adjacency-list data structure.

Supplementary materials
The supplementary materials provide the source code of our implementation of Algorithm L;
the data analyzed in the paper; and R scripts needed to reproduce our results.
Computation times reported in the paper were measured on a 2.67 GHz Windows laptop with
8 Gb RAM.
The R package spatstat.Knet contains our implementation of Algorithm L. The implementa-
tion is written in C with an R interface through functions named Knet and Knetinhom. The
spatstat.Knet package also contains the point pattern data sets analyzed in the paper, and
the two estimated intensity functions depicted in Figures 19a and 19b.
The file v90i01.R is a stand-alone R script for reproducing all the results and figures in the
paper.
The spatstat.Knet package will be updated from time to time; the latest version can be
installed from the authors’ Github repository using the R package remotes (Hester, Csárdi,
Wickham, Chang, Morgan, and Tenenbaum 2019):

R> library("remotes")
R> install_github("spatstat/spatstat.Knet")

Acknowledgments
We gratefully acknowledge the collaboration, participation, and support of Main Roads West-
ern Australia, in particular Ms. Thandar Lim and Dr. Sanath Jayamanna. We also thank Mr.
Isaac Gravestock for his collaboration in early stages of the project. This work was supported
by Australian Research Council grant DP130102322. We thank CSIRO and the University of
Western Australia for computing resources and related support.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum
A, Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users’ Guide. 3rd edition.
SIAM, Philadelphia.

Ang QW, Baddeley A, Nair G (2012). “Geometrically Corrected Second Order Analysis of
Events on a Linear Network, with Applications to Ecology and Criminology.” Scandinavian
Journal of Statistics, 39(4), 591–617. doi:10.1111/j.1467-9469.2011.00752.x.

Anselin L (1995). “Local Indicators of Spatial Association – LISA.” Geographical Analysis,
27(2), 93–115. doi:10.1111/j.1538-4632.1995.tb00338.x.

https://doi.org/10.1111/j.1467-9469.2011.00752.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Journal of Statistical Software 35

Baddeley A, Jammalamadaka A, Nair G (2014). “Multitype Point Process Analysis of Spines
on the Dendrite Network of a Neuron.” Journal of the Royal Statistical Society C, 63(5),
673–694. doi:10.1111/rssc.12054.

Baddeley A, Møller J, Waagepetersen R (2000). “Non- and Semi-Parametric Estimation
of Interaction in Inhomogeneous Point Patterns.” Statistica Neerlandica, 54(3), 329–350.
doi:10.1111/1467-9574.00144.

Baddeley A, Rubak E, Turner R (2015). Spatial Point Patterns: Methodology and Applications
with R. Chapman and Hall/CRC, Boca Raton.

Baddeley A, Turner R (2005). “spatstat: An R Package for Analyzing Spatial Point Patterns.”
Journal of Statistical Software, 12(6), 1–42. doi:10.18637/jss.v012.i06.

Bates D, Maechler M (2019). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 1.2-17, URL https://CRAN.R-project.org/package=Matrix.

Bengtsson H (2018). profmem: Simple Memory Profiling for R. R package version 0.5.0, URL
https://CRAN.R-project.org/package=profmem.

Boots B, Okabe A (2007). “Local Statistical Spatial Analysis: Inventory and Prospect.”
International Journal of Geographical Information Science, 21(4), 355–375. doi:10.1080/
13658810601034267.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009). Introduction to Algorithms. 3rd
edition. The MIT Press, London.

Diggle PJ (1985). “A Kernel Method for Smoothing Point Process Data.” Journal of the
Royal Statistical Society C, 34(2), 138–147. doi:10.2307/2347366.

Dongarra J, Moler C, Bunch JR, Stewart GW (1979). LINPACK Users’ Guide. 1st edition.
SIAM.

Even S (1979). Graph Algorithms. 1st edition. Computer Science Press.

Gallo G, Pallottino S (1988). “Shortest Path Algorithms.” The Annals of Operations Research,
13(1), 1–79. doi:10.1007/bf02288320.

Getis A, Franklin J (1987). “Second-Order Neighbourhood Analysis of Mapped Point Pat-
terns.” Ecology, 68(3), 473–477. doi:10.2307/1938452.

Golub GH, Van Loan CF (1996). Matrix Computations. 3rd edition. Johns Hopkins, Balti-
more.

Guan Y (2006). “A Composite Likelihood Approach in Fitting Spatial Point Process
Models.” Journal of the American Statistical Association, 101(476), 1502–1512. doi:
10.1198/016214506000000500.

Hester J, Csárdi G, Wickham H, Chang W, Morgan M, Tenenbaum D (2019). remotes: R
Package Installation from Remote Repositories, Including GitHub. R package version 2.0.4,
URL https://CRAN.R-project.org/package=remotes.

https://doi.org/10.1111/rssc.12054
https://doi.org/10.1111/1467-9574.00144
https://doi.org/10.18637/jss.v012.i06
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=profmem
https://doi.org/10.1080/13658810601034267
https://doi.org/10.1080/13658810601034267
https://doi.org/10.2307/2347366
https://doi.org/10.1007/bf02288320
https://doi.org/10.2307/1938452
https://doi.org/10.1198/016214506000000500
https://doi.org/10.1198/016214506000000500
https://CRAN.R-project.org/package=remotes

36 Efficient Code for Analyzing Events on a Linear Network

Hopcroft JE, Tarjan RE (1973). “Algorithm 447: Efficient Algorithms for Graph Manipula-
tion.” Communications of the ACM, 16(6), 372–378. doi:10.1145/362248.362272.

Koenker R, Ng P (2003). “SparseM: A Sparse Matrix Package for R.” Journal of Statistical
Software, 8(6), 1–9. doi:10.18637/jss.v008.i06.

Kolaczyk ED, Csárdi G (2014). Statistical Analysis of Network Data with R. Springer-Verlag,
New York.

Louden K (1999). Mastering Algorithms with C. 1st edition. O’Reilly.

McSwiggan G, Baddeley A, Nair G (2016). “Kernel Density Estimation on a Linear Network.”
Scandinavian Journal of Statistics, 44(2), 324–345. doi:10.1111/sjos.12255.

Okabe A, Okunuki K, Shiode S (2006). “The SANET Toolbox: New Methods for Network
Spatial Analysis.” Transactions in GIS, 10(4), 535–550. doi:10.1111/j.1467-9671.2006.
01011.x.

Okabe A, Satoh T, Sugihara K (2009). “A Kernel Density Estimation Method for Networks,
Its Computational Method and a GIS-Based Tool.” International Journal of Geographical
Information Science, 23(1), 7–32. doi:10.1080/13658810802475491.

Okabe A, Sugihara K (2012). Spatial Analysis Along Networks. John Wiley & Sons, New
York.

Okabe A, Yamada I (2001). “The K-Function Method on a Network and Its Computational
Implementation.” Geographical Analysis, 33(3), 271–290. doi:10.1111/j.1538-4632.
2001.tb00448.x.

Pissanetzky S (1984). Sparse Matrix Technology. 1st edition. Academic Press.

Rakshit S, Baddeley A (2019). spatstat.Knet: Extension to spatstat for Large Datasets on a
Linear Network. R package version 1.11-2, URL https://CRAN.R-project.org/package=
spatstat.Knet.

Rakshit S, Davies T, Moradi M, McSwiggan G, Nair G, Mateu J, Baddeley A (2019). “Fast
Kernel Smoothing of Point Patterns on a Large Network Using 2D Convolution.” Interna-
tional Statistical Review. Forthcoming.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ripley BD (1977). “Modelling Spatial Patterns.” Journal of the Royal Statistical Society B,
39(2), 172–212.

Tanaka U, Ogata Y, Stoyan D (2008). “Parameter Estimation and Model Selection for
Neyman-Scott Point Processes.” Biometrical Journal, 50(1), 43–57. doi:10.1002/bimj.
200610339.

Tarjan RE (1983). Data Structures and Network Algorithms. 1st edition. Society for Industrial
and Applied Mathematics.

https://doi.org/10.1145/362248.362272
https://doi.org/10.18637/jss.v008.i06
https://doi.org/10.1111/sjos.12255
https://doi.org/10.1111/j.1467-9671.2006.01011.x
https://doi.org/10.1111/j.1467-9671.2006.01011.x
https://doi.org/10.1080/13658810802475491
https://doi.org/10.1111/j.1538-4632.2001.tb00448.x
https://doi.org/10.1111/j.1538-4632.2001.tb00448.x
https://CRAN.R-project.org/package=spatstat.Knet
https://CRAN.R-project.org/package=spatstat.Knet
https://www.R-project.org/
https://doi.org/10.1002/bimj.200610339
https://doi.org/10.1002/bimj.200610339

Journal of Statistical Software 37

Tarzan R (1972). “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on
Computing, 1(2), 146–160. doi:10.1137/0201010.

Tewarson RP (1973). Sparse Matrices. Mathematics in Science and Engineering, 1st edition.
Academic Press.

Ver Hoef JM, Peterson E, Theobald D (2006). “Spatial Statistical Models That Use Flow
and Stream Distance.” Environmental and Ecological Statistics, 13(4), 449–464. doi:
10.1007/s10651-006-0022-8.

Wilkinson JH, Reinsch C (eds.) (1971). Linear Algebra, volume II of Handbook for Automatic
Computation. Springer-Verlag, Berlin.

Affiliation:
Suman Rakshit
SAGI-West, School of Molecular and Life Sciences
Curtin University
GPO Box U1987
Perth WA 6845, Australia

Adrian Baddeley
Department of Mathematics and Statistics
Curtin University
GPO Box U1987
Perth WA 6845, Australia
E-mail: adrian.baddeley@curtin.edu.au

Gopalan Nair
School of Mathematics and Statistics
University of Western Australia
35 Stirling Highway
Crawley WA 6009, Australia

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

July 2019, Volume 90, Issue 1 Submitted: 2017-06-04
doi:10.18637/jss.v090.i01 Accepted: 2018-03-08

https://doi.org/10.1137/0201010
https://doi.org/10.1007/s10651-006-0022-8
https://doi.org/10.1007/s10651-006-0022-8
mailto:adrian.baddeley@curtin.edu.au
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v090.i01

	Introduction
	Representation of events on a linear network
	Linear networks
	Data structure for storing a network
	Adjacency matrix
	Adjacency list

	Events on a network
	Data structure for a linear network with events
	Time complexity of creating the data structure

	Inter-event distances and the K-function
	Shortest path distance
	K-functions on a linear network
	Existing implementations of K-function

	Algorithm M, using adjacency matrix
	Algorithm M specification
	(M1) Shortest-path distances between nodes
	(M2) Shortest-path distances between events
	(M3) Counting points on the disc perimeter
	(M4) Computation of K-functions

	Implementation in spatstat

	Tree structures for the new algorithm
	Shortest-path tree, breakpoints, and extended shortest-path tree
	Local subnetwork
	Procedure for constructing local subnetwork
	Time complexity in computing local subnetwork

	Algorithm L, using adjacency list
	Interval sums
	Computation of perimeter count m(x,r)
	Depth-first search algorithm
	Algorithm L based on an adjacency list representation

	Worked example of an interval sum
	Execution time against the number of point events
	Western Australia road network and road accident data
	Discussion

