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Abstract

Data cleaning and validation are important steps in any data analysis, as the validity
of the conclusions from the analysis hinges on the quality of the input data. Mistakes in
the data can arise for any number of reasons, including erroneous codings, malfunctioning
measurement equipment, and inconsistent data generation manuals. Ideally, a human
investigator should go through each variable in the dataset and look for potential errors –
both in input values and codings – but that process can be very time-consuming, expensive
and error-prone in itself.

We describe an R package, dataMaid, which implements an extensive and customiz-
able suite of quality assessment aids that can be applied to a dataset in order to identify
potential problems in its variables. The results are presented in an auto-generated, non-
technical, stand-alone overview document intended to be perused by an investigator with
an understanding of the variables in the data, but not necessarily knowledge of R. Thereby,
dataMaid aids the dialogue between data analysts and field experts, while also providing
easy documentation of reproducible data quality screening. Moreover, the dataMaid solu-
tion changes the data screening process from the usual ad hoc approach to a systematic,
well-documented endeavor. dataMaid also provides a suite of more typical R tools for in-
teractive data quality assessment and screening, where the data inspections are executed
directly in the R console.
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1. Introduction
Though data cleaning might be regarded as a somewhat tedious activity, adequate data
cleaning is crucial in any data analysis. With ever-growing dataset sizes and complexities,
statisticians and data analysts find themselves spending a large portion of their time on data
cleaning and data wrangling. While a computer should generally not make unsupervised
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decisions on what should be done to potential errors in a dataset, it can still be an extremely
useful tool in the data cleaning process. Some errors can be tracked down and flagged by a
computer without further ado, while other types of errors need a subject context in order to
be identified. Even in this latter case, well-designed software can aid the process tremendously
by providing the human investigator with the information needed for identifying issues.

But even when tools are available for identifying problems in a dataset, the activity of data
cleaning still suffers from a challenge that has received increasing attention in the scientific
communities in the later years: Data cleaning is not very straight forward to document and
therefore, reproducibility suffers. We present a new R (R Core Team 2019) package, dataMaid
(Petersen and Ekstrøm 2019), whose most central purpose is to facilitate a supervised data
quality screening workflow where documentation is thoroughly integrated rather than an
add-on. This is accomplished by structuring the data screening around auto-generated data
overview reports that summarize and flags potential problems in the dataset. The package is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=dataMaid.

But no matter how clever software tools we make, data cleaning remains to be a time con-
suming endeavor, which inherently requires human interaction since every dataset is different
and the variables in the dataset can only be understood in the proper context of their origin.
This often requires a collaborative effort between an expert in the field and a statistician
or data scientist. In many situations, these errors are discovered in the process of the data
analysis (e.g., a categorical variable with numeric labels for each category may be wrongly
classified as a quantitative variable or a variable where all values have erroneously been coded
to the same value), but in other cases a human with knowledge about the data context area
is needed to identify possible mistakes in the data (e.g., if there are 4 categories for a variable
that should only have 3).

The dataMaid approach to data screening, quality assessment and documentation is governed
by two fundamental paradigms. First of all, there is no need for data cleaning to be an ad
hoc procedure. Often, we have a very clear idea of what flags are raisable in a given dataset
before we look at it, as we were the ones to produce it in the first place. This means that
data cleaning can easily be a well-documented, well-specified procedure. In order to aid
this paradigm, dataMaid provides easy-to-use, automated tools for data quality assessment
in R on which data cleaning decisions can be made. This quality assessment is presented
in an auto-generated overview document, readable by data analysts and field experts alike,
thereby also contributing to an inter-field dialogue about the data at hand. Oftentimes, e.g.,
distinguishing between faulty codings of a numeric value and unusual, but correct, values
requires problem-specific expertise that might not be held by the data analyst. Hopefully,
having easy access to data summaries through dataMaid will help this necessary knowledge
sharing.

While dataMaids primary raison d’être is auto-generating data quality assessment overview
documents, we still wish to emphasize that it is not a tool for unsupervised data cleaning.
This qualifies as the second paradigm of dataMaid: Data cleaning decisions should always be
made by humans. Therefore, dataMaid does not supply any tools for “fixing” errors in the
data. However, we do provide interactive functions that can be used to identify potentially
erroneous entries in a dataset and that can make it easier to solve data issues, one variable
at a time.

https://CRAN.R-project.org/package=dataMaid
https://CRAN.R-project.org/package=dataMaid
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A number of R packages made for other pre-analysis steps are already available, including
janitor (Firke 2019), assertive (Cotton 2016), dplyr (Wickham, Francois, Henry, and Müller
2019), tidyr (Wickham and Henry 2019), data.table (Dowle, Srinivasan, Short, and Lianoglou
2019), DataCombine (Gandrud 2016), validate (Van der Loo and De Jonge 2018), and assertr
(Fischetti 2019). These packages focus on different stages of the pre-analysis work. janitor
provides tools for data import with a particular emphasis on the challenges of getting neat
data frames from Microsoft Excel data files. dplyr, tidyr, data.table and DataCombine go a
few steps further by providing a wide array of extremely powerful tools for data wrangling,
including a number of particularly useful functions for merging and working with very large
datasets. When it comes to actual data cleaning, however, the options are fewer. validate
– and the similar packages editrules (De Jonge and Van der Loo 2018) and deducorrect
(Van der Loo, De Jonge, and Scholtus 2015) from the same authors – and assertive offer
tools for identifying errors in a dataset by checking the state of the variable given a set of
pre-specified rules, and their focus is on internal validity rather than general data screening.
In practice, this means that quite elegant tools for, e.g., linear restraints among the variables
in a dataset can be applied, but looking for potentially miscoded missing values is not really
feasible. The main difference between these two challenges is the direction in which the data
is inspected: While linear constraints work observation-wise with no ambiguity, determining
whether or not something is a miscoded missing value often requires knowledge about the full
variable (e.g., range or data type), and thus it should be performed variable-wise. validate
does not currently allow for user-defined extensions of the latter type, thereby limiting its
data cleaning potential. Automatic data correction functions are also provided by validate
which we consider to be quite a dangerous cocktail: All power is given to the the computer
with no human supervision, and investigators are less likely to make an active, case-specific
choice regarding the handling of the potential errors. Finally, no tools have been made to
easily document exactly which checks and preliminary results were used in the data cleaning
process. The assertr package provides very similar – and very nice – tools compared to those
of validate, but without any ambitions of conducting auto-cleaning.
One last package that should be mentioned in this context is DataExplorer (Cui 2019). While
this package does not address data cleaning issues per se, its general strategy is quite similar
to that of dataMaid and to the paradigms presented above. This package provides a few
simple, but practical tools for exploratory data analysis, including automated documentation.
Therefore, we find DataExplorer to be a good candidate for a next-step package after data
cleaning is finished.
This manuscript is structured as follows: First, in Section 2, we introduce the main represen-
tative of the first paradigm, namely the makeDataReport() function, which generates data
overview documents. In the dataMaid package, we have provided a number of default generic
checks that cover the data cleaning challenges we find to be most common and these are also
summarized in Section 2. Next, in Section 3, we present the interactive mode of dataMaid,
as motivated by the second paradigm above. Next, we show step-by-step how the data report
mode and the interactive mode of dataMaid can be combined to conduct a well-documented,
systematic data cleaning in Section 4. Here, we assess and clean a dirty dataset with infor-
mation about the US presidents. At last, in Section 5, we discuss a number of examples of
specific data cleaning and documentation challenges and how dataMaid can be used to solve
them.
dataMaid was designed to be easily extended with user-supplied functions for summariz-
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ing, visualizing and checking data. In the package, we have provided a vignette in which
we describe how dataMaid extensions can be made, such that they are integrated with the
makeDataReport() function and with the other tools available in dataMaid.

2. Creating a data overview report
The makeDataReport() function is the primary workhorse of dataMaid and it is the only
function needed to generate a data report using the standard battery of tests. The data
report itself is an overview document, intended for reading by humans, in either PDF, HTML
or Word (.docx) format. Appendix A provides an example of a data report, produced by
calling makeDataReport() on the dataset toyData available in dataMaid. The first two pages
(excluding the front page) of this data report are shown in Figure 1 and the following two
pages are shown in Figure 2. toyData is a very small (15 observations of 6 variables), artificial
dataset which was created with a lot of potential errors to illustrate the main capabilities of
dataMaid. Section 4 shows an example of a data screening process with a real dataset. The
following commands load the dataset and produce the report:

R> library("dataMaid")
R> data("toyData", package = "dataMaid")
R> toyData

Part 1

Data report overview

The dataset examined has the following dimensions:

Feature Result
Number of observations 15
Number of variables 6

Checks performed
The following variable checks were performed, depending on the data type of each variable:

character factor labelled
haven
labelled numeric integer logical Date

Identify miscoded missing values × × × × × × ×
Identify prefixed and suffixed
whitespace

× × × ×

Identify levels with < 6 obs. × × × ×
Identify case issues × × × ×
Identify misclassified numeric or
integer variables

× × × ×

Identify outliers × × ×

Please note that all numerical values in the following have been rounded to 2 decimals.

1

Part 2

Summary table

Variable class # unique values Missing observations Any problems?
pill factor 3 13.33 % ×
events numeric 9 20.00 % ×
region factor 7 0.00 % ×
change numeric 15 0.00 % ×
id factor 15 0.00 % ×
spotifysong factor 1 0.00 % ×

2

Figure 1: The two first pages of the report created by running makeDataReport() on the
toyData dataset. First, a summary of the full dataset is given along with an overview of
what checks were performed. Next, a summary of all the variables and whether or not they
are problematic is provided. Larger versions of the pages can be seen in Appendix A.
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Part 3

Variable list

pill

Feature Result
Variable type factor
Number of missing obs. 2 (13.33 %)
Number of unique values 2
Mode “red”
Reference category blue
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• Note that the following levels have at most five observations: "blue".

events

Feature Result
Variable type numeric
Number of missing obs. 3 (20 %)
Number of unique values 8
Median 4.5
1st and 3rd quartiles 1.75; 6
Min. and max. 1; 999
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• The following suspected missing value codes enter as regular values: "999", "NaN".

• Note that the following possible outlier values were detected: "82", "999".

3

region

Feature Result
Variable type factor
Number of missing obs. 0 (0 %)
Number of unique values 7
Mode “a”
Reference category
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• The following suspected missing value codes enter as regular values: " ", ".".

• The following values appear with prefixed or suffixed white space: " ".

• Note that the following levels have at most five observations: " ", ".", "a", "b", "c", "other", "OTHER".

• Note that there might be case problems with the following levels: "other", "OTHER".

change

Feature Result
Variable type numeric
Number of missing obs. 0 (0 %)
Number of unique values 15
Median 0.33
1st and 3rd quartiles -0.62; 0.66
Min. and max. -2.21; 1.6
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• Note that the following possible outlier values were detected: "1.12", "1.51", "1.6".

id
• The variable is a key (distinct values for each observation).

spotifysong
• The variable only takes one (non-missing) value: "Irrelevant". The variable contains 0 % missing observations.

Report generation information:

• Created by Claus Thorn Ekstrøm (username: cld189).

• Report creation time: Wed Jul 10 2019 14:13:28

• Report was run from directory: /Users/cld189

• dataMaid v1.3.1 [Pkg: 2019-07-10 from local]

• R version 3.6.0 (2019-04-26).

• Platform: x86_64-apple-darwin15.6.0 (64-bit)(macOS High Sierra 10.13.6).

• Function call: makeDataReport(data = toyData)

4

Figure 2: The third and fourth pages of the report created by running makeDataReport()
on the toyData dataset. Here, we see a description of each variable in the dataset, consisting
of a summary table, a visualization and an indication of what problems were flagged for the
variable (if any). At last, a few lines of metadata about the makeDataReport() are included
for enhancing reproducibility. Larger versions of the pages can be seen in Appendix A.

# A tibble: 15 x 6
pill events region change id spotifysong
<fct> <dbl> <fct> <dbl> <fct> <fct>

1 red 1.00 a -0.626 1 Irrelevant
2 red 1.00 a 0.184 2 Irrelevant
3 red 1.00 a -0.836 3 Irrelevant
4 red 2.00 a 1.60 4 Irrelevant
5 red 2.00 a 0.330 5 Irrelevant
6 red 6.00 b -0.820 6 Irrelevant
7 red 6.00 b 0.487 7 Irrelevant
8 red 6.00 b 0.738 8 Irrelevant
9 red 999 c 0.576 9 Irrelevant

10 red NA c -0.305 10 Irrelevant
11 blue 4.00 c 1.51 11 Irrelevant
12 blue 82.0 . 0.390 12 Irrelevant
13 blue NA " " -0.621 13 Irrelevant
14 <NA> NaN other -2.21 14 Irrelevant
15 <NA> 5.00 OTHER 1.12 15 Irrelevant
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R> makeDataReport(toyData)

By default, an R markdown file and a rendered PDF, Word or HTML overview document are
produced, saved to the working directory and opened for immediate inspection. Such a data
report consists of three parts, two of which are presented in Figure 1. First, an overview of
what was done is presented under the title “Data report overview”. Secondly, an index listing
each variable along with an indication of whether it was found to be problematic or not is
provided. Thirdly, as seen in Figure 2, each variable in the dataset is presented in turn using
(up to) three tools in the “Variable list”: a table summarizing key features of the variable, a
figure visualizing its distribution when relevant and a list of flagged issues, if any. For instance,
as shown in Figure 2, for the numeric-type variable events from toyData, makeDataReport()
has identified two values that are suspected to be miscoded missing values (999 and NaN),
while two values were also flagged as potential outliers that should be investigated more
carefully.
The arguments to makeDataReport() can be used to modify the contents and the look of
the data report according to the user’s needs. The most commonly used arguments are
summarized in Table 1 and they are grouped according to the part of the data assessment
and report generation they influence. In order to understand this distinction, a glimpse of the
inner structure of makeDataReport() is shown in Figure 3. Below, we present a few examples
on how to use the arguments from Table 1 to influence the output of a makeDataReport()
call.

2.1. Dusting off the arguments
We begin with an example that is intended as an illustration of how makeDataReport() might
be used in the very first stages of data cleaning, when we are uncertain about the complexities
of the errors and how much time should be allocated to data cleaning. At this stage, what is
really needed, is a very rough idea of the severity of errors in the dataset. In this scenario, we
might wish to obtain a summary document in HTML format that only contains the variables
with potential problems, and with a limit of, say, maximum 2 printed potentially problematic
values per check for each variable. Also, we can add the argument replace = TRUE in order
to force makeDataReport() to overwrite any existing files produced by makeDataReport().
Using the toyData dataset as a guinea pig, we type:

R> makeDataReport(toyData, output = "html", onlyProblematic = TRUE,
+ maxProbVals = 2, replace = TRUE)

The final rendering of the generated markdown file is controlled by the render and openResult
arguments, which both default to TRUE. render determines if the R markdown file produced
should be rendered using the rmarkdown (Allaire, Xie, McPherson, Luraschi, Ushey, Atkins,
Wickham, Cheng, Chang, and Iannone 2019) package and openResult decides whether the
outputted file should be opened. The following command produces an R markdown file
containing the information needed for generating a data report, but without rendering nor
opening the markdown file:

R> makeDataReport(toyData, output = "html", render = FALSE,
+ openResult = FALSE, replace = TRUE)



Journal of Statistical Software 7

Argument Description Default value
Control input variables, looks and meta information

useVar What variables should be used? NULL (all variables)
ordering Ordering of the variables in the data summary

(as is or alphabetical).
"asIs"

only-
Problematic

Should only variables flagged as problematic
be included in the “Variable list”?

FALSE

preChecks What check functions should be called to de-
termine whether a variable is suitable for sum-
marization, visualization and checking?

c("isKey",
"isSingular",
"isSupported")

reportTitle What should the title displayed on the front
page of the report be?

NULL (dataset name)

twoCol Should the summary table and visualizations
be placed side-by-side (in two columns)?

TRUE

Control summarize, visualize, and check steps
summaries What summaries should be performed for each

variable type?
See Table 2.

visuals What type of visualization should be provided
for each variable type?

See Table 2.

checks What checks should be applied to each variable
type?

See Table 2.

mode What steps should be performed for each vari-
able (out of the three possibilities “summa-
rize”, “visualize”, “check”)?

c("summarize",
"visualize",
"check")

smartNum Should numerical values with only a few unique
levels be flagged and treated as a factor vari-
able?

TRUE

maxProbVals Maximum number of problematic values to
print, if any are found in data checks.

10

maxDecimals Maximum number of decimals to print for nu-
meric values in the variable list.

2

treatXasY How should non-supported variable classes be
handled?

NULL (no handling)

Control output and post-processing
output Type of output file to be produced (HTML,

Word (.docx) or PDF).
NULL (PDF if LATEX
is found, otherwise
Word (on Win-
dows), or HTML)

render Should the output file be rendered from mark-
down?

TRUE

openResult If a PDF/HTML file is rendered, should it au-
tomatically open afterwards, and if not, should
the R markdown file be opened?

TRUE

replace Overwrite an existing file with the same name? FALSE
vol Add a suffix to the file name of the report. "" (no suffix)

Table 1: A selection of commonly used arguments to makeDataReport() separated into the
parts they control.
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Variable classes
Description C F I L HLB N D

summaryFunctions
centralValue Compute median for numeric

variables, mode for categorical
variables.

× × × × × × × ×

countMissing Compute proportion of missing
observations.

× × × × × × × ×

minMax Find minimum and maximum
values.

× × ×

quartiles Compute 1st and 3rd quartiles. × × ×
refCat Show reference category. ×
uniqueValues Count number of unique values. × × × × × × × ×
variableType Data class of variable. × × × × × × × ×

visualFunctions
basicVisual Histograms and barplots using

base R graphics.
× × × × × × × ×

standardVisual Histograms and barplots using
ggplot2.

× × × × × × × ×

checkFunctions
identifyCaseIssues Identify case issues. × × × ×
identifyLoners Identify levels with < 6 obs. × × × ×
identifyMissing Identify miscoded missing values. × × × × × × ×
identifyNums Identify misclassified numeric or

integer variables.
× × × ×

identifyOutliers Identify outliers. × × ×
identifyOutliers-
TBStyle

Identify outliers (Turkish boxplot
style).

× × ×

identifyWhitespace Identify prefixed and suffixed
white space.

× × × ×

isCPR Identify Danish personal identifi-
cation numbers.

× × × × × × × ×

isSingular Check if the variable contains
only a single value.

× × × × × × × ×

isKey Check if the variable is a key. × × × × × × × ×

isSupported Check if the variable is among the
supported variable types.

× × × × × × × ×

Table 2: Overview of all summary, visual and check functions currently implemented in
dataMaid. The variable classes C, F, I, L, HL, B, N, and D, refer to character, factor, integer,
labelled, ‘haven_labelled’ (from the haven package, Wickham and Miller 2019), logical
(Boolean), numeric, and ‘Date’, respectively. The default settings of makeDataReport() are
marked in green.
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Figure 3: Schematic illustration of the stages undertaken when running makeDataReport().
Each variable is checked for eligibility before running summarize(), visualize(), and
check(), and the resulting R markdown file may be rendered and opened.

2.2. Controlling contents through summaries, visualizations and checks
dataMaid works through three different steps – summarize, visualize, and check (SVC) –
for each variable in the dataset (illustrated in Figure 3). Three different types of func-
tions are used to perform these steps, namely summaryFunctions, visualFunctions and
checkFunctions. By default, makeDataReport() runs selected summary, visualization and
check functions on each variable in the dataset, and the exact choice of these functions de-
pends on the classes of the variables. For instance, detection of outlier values might be
interesting for numerical variables, but it holds little meaning for factor variables, and there-
fore, numerical and factor variables need different checks. Table 2 lists all available summa-
rize/visualize/check functions, but we can also use the functions allSummaryFunctions(),
allVisualFunctions(), and allCheckFunctions() in dataMaid to print overview lists in
R. For example, the implemented summaryFunctions are:

R> allSummaryFunctions()
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-------------------------------------------------------------------------
name description classes
-------------- ------------------------------- --------------------------
centralValue Compute median for numeric character, Date, factor,

variables, mode for integer, labelled,
categorical variables haven_labelled, logical,

numeric

countMissing Compute proportion of missing character, Date, factor,
observations integer, labelled,

haven_labelled, logical,
numeric

minMax Find minimum and maximum integer, numeric, Date
values

quartiles Compute 1st and 3rd quartiles Date, integer, numeric

refCat Find reference level factor

uniqueValues Count number of unique values character, Date, factor,
integer, labelled,
haven_labelled, logical,
numeric

variableType Data class of variable character, Date, factor,
integer, labelled,
haven_labelled, logical,
numeric

-------------------------------------------------------------------------

Thus we can see, for example, that for numeric, integer, and Date variables, dataMaid provides
functions for adding summary information about the minimum and maximum values, while all
seven variable classes dealt with in dataMaid have functions for central tendency summaries
(i.e., mode or median).
We can control what summaries and checks are applied for each variable type through the
summaries, visuals and checks arguments of makeDataReport(). Each of these arguments
takes a list with one entry for each variable type and a number of function names for each
such entry. The easiest way to specify the arguments is by use of the built-in helper func-
tions setSummaries(), setVisuals() and setChecks() that contain the default settings of
makeDataReport() and simple syntaxes for making small alterations of these default settings.
We can inspect the default settings for summaries by calling:

R> setSummaries()

$character
[1] "variableType" "countMissing" "uniqueValues" "centralValue"
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$factor
[1] "variableType" "countMissing" "uniqueValues" "centralValue" "refCat"

$labelled
[1] "variableType" "countMissing" "uniqueValues" "centralValue"

$haven_labelled
[1] "variableType" "countMissing" "uniqueValues" "centralValue"

$numeric
[1] "variableType" "countMissing" "uniqueValues" "centralValue" "quartiles"
[6] "minMax"

$integer
[1] "variableType" "countMissing" "uniqueValues" "centralValue" "quartiles"
[6] "minMax"

$logical
[1] "variableType" "countMissing" "uniqueValues" "centralValue"

$Date
[1] "variableType" "countMissing" "uniqueValues" "centralValue" "minMax"
[6] "quartiles"

This helper function really just calls several other helper functions, namely the
defaultXXXSummaries() functions, where XXX refers to a variable class. For instance, we can
see the default character summaries by calling defaultCharacterSummaries():

R> defaultCharacterSummaries()

[1] "variableType" "countMissing" "uniqueValues" "centralValue"

We can change the choice of summaries (and similarly the checks and visual functions) by
setting the corresponding arguments when calling makeDataReport(). For example, to get
only the variable type and the central tendency listed in the summary table for numeric and
integer variables, we write

R> makeDataReport(toyData, replace = TRUE,
+ summaries = setSummaries(numeric = c("variableType", "centralValue"),
+ integer = c("variableType", "centralValue")))

In the case where we specify the same set of summary functions for each variable type, we
can use a simpler argument for setSummaries which overrides the summary functions for all
variable types:

R> makeDataReport(toyData, replace = TRUE,
+ summaries = setSummaries(all = c("variableType", "centralValue")))
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Similarly, the checks applied are set with the checks argument and the setChecks function.
The default checks being applied to a factor are

R> defaultFactorChecks()

[1] "identifyMissing" "identifyWhitespace" "identifyLoners"
[4] "identifyCaseIssues" "identifyNums"

Now, if we only wanted to apply the function to identify white space for factor variables, then
we would need to provide this information for setChecks():

R> makeDataReport(toyData, replace = TRUE,
+ checks = setChecks(factor = "identifyWhitespace"))

or we could remove checks for factors altogether by setting the corresponding argument to
NULL, in which case factor variables will not be checked for any potential errors:

R> makeDataReport(toyData, checks = setChecks(factor = NULL), replace = TRUE)

As with summaryFunctions, a complete list of available checkFunctions is obtained by calling
allCheckFunctions(). Note however, that checkFunctions have a usage beyond the checks
arguments, namely in the pre-check stage. In this stage, it is determined whether or not
each variable is suitable for the summarize/visualize/check steps. The functions used in the
pre-check stage should be checkFunctions that are applicable to all variable classes. The
default pre-checks, the functions isKey(), isSingular() and isSupported(), check whether
a variable has unique values for all observations, only a single value for all observations, and is
not among the variable types supported by dataMaid, respectively. If one of these statements
are true, the variable will not be subjected to the SVC steps. We can allow singular variables
to move on to the SVC step by only checking for keys and non-supported variables in the
pre-check step:

R> makeDataReport(toyData, preChecks = c("isKey", "isSupported"),
+ replace = TRUE)

Note that the data visualizations in the report are also controllable, though only a single
function can be provided for each variable type. If, for instance, we wish to change the
visualizations from the default ggplot2 (Wickham 2016) style histograms and barplots to
base R histograms and barplots, we type

R> makeDataReport(toyData, visuals = setVisuals(all = "basicVisual"),
+ replace = TRUE)

In summary, and as indicated in Figure 3, there are two stages where makeDataReport()
applies functions to each of the variables:

1. In the pre-check stage.

2. As part of the summarize/visualize/check steps.
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Each stage is controllable using appropriate function arguments in makeDataReport(), and
above we have shown examples of how to tweak them to modify the data cleaning outputs.
However, if the dataset at hand requires new, additional checks, then more control is needed.
The package contains a vignette that explains the details of how to modify and expand the
possibilities by producing new summary, visual, and check functions.
One might also encounter datasets with variables that are not among the 8 classes mentioned
above (character, Date, factor, integer, labelled, haven_labelled, logical and numeric), for
instance variables of type complex or user-defined classes. makeDataReport() can be told
how to handle such variables by use of the argument treatXasY. This argument takes a list
where the names correspond to “new” variable types (X), while the entries must be supported
variable types (Y). For instance, we can instruct dataMaid to treat complex variables as
numeric and generate a data report for a type complex variable like this:

R> complexData <- data.frame(complexVar = complex(100, real = 1:100,
+ imaginary = 3), numericVar = 1:100)
R> makeDataReport(complexData, treatXasY = list(complex = "numeric"),
+ replace = TRUE)

In this report, we will find that the two variables, complexVar and numericVar will have
identical presentations in the variable list, as treating a complex variable as a numeric means
dropping the imaginary part of the complex numbers which was the only thing setting the
two variables apart in the first place.

3. Using dataMaid interactively
While overview documents are great for presenting and documenting the data at various
stages of the data cleaning process, it may be useful to be able to work more interactively when
performing actual data cleaning. Aside from the makeDataReport() function presented above,
dataMaid also provides more standard R interactive tools, such as functions that print results
to the console or return the information as an object for later use. This section describes
how to use the functions check(), summarize() and visualize() to work interactively with
dataMaid.

3.1. Data cleaning by hand: An example
Assume that we wish to look further into a certain variable from toyData, namely events.
The data cleaning summary found some issues in this variable, and we would like to recall
what these issues were. This can be done using the check() command

R> check(toyData$events)

$identifyMissing
The following suspected missing value codes enter as regular
values: 999, NaN.
$identifyOutliers
Note that the following possible outlier values were detected: 82, 999.
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Note that the arguments specifying which checks to perform, as described in the previous
section, are in fact passed to check(), and thus they can also be used here. For instance,
if we only want to check for potentially miscoded missing values, we can use the checks
argument and the setChecks() helper function to specify this. Recall that Table 2 and
an allCheckFunctions() call provide overviews of the available check functions. Moving
forward, we limit the numeric checks to only identify miscoded missing values:

R> check(toyData$events, checks = setChecks(numeric = "identifyMissing"))

$identifyMissing
The following suspected missing value codes enter as regular
values: 999, NaN.

An equivalent way to call only a single, specific checkFunction, such as identifyMissing,
is by using it directly on the variable, e.g.,

R> identifyMissing(toyData$events)

The following suspected missing value codes enter as regular
values: 999, NaN.

The result of a checkFunction is an object of class ‘checkResult’. By using the structure
function, str(), we can look further into its components:

R> missEvents <- identifyMissing(toyData$events)
R> str(missEvents)

List of 3
$ problem : logi TRUE
$ message : chr "The following suspected missing value codes enter as

regular values: \\\"999\\\", \\\"NaN\\\"."
$ problemValues: num [1:2] 999 NaN
- attr(*, "class")= chr "checkResult"

The most important thing to note here is that while the printed message is made for easy
reading, the actual values of the variable causing the issue are still obtainable in the entry
problemValues. If we decide that the values 999 and NaN in events are in fact miscoded
missing values, we can easily replace them with NAs:

R> toyData$events[toyData$events %in% missEvents$problemValues] <- NA
R> identifyMissing(toyData$events)

No problems found.

Similarly, the visualize() and summarize() functions can be used to run the corresponding
visualizations and summaries for each variable. See Figure 4 for the visualization output.
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Figure 4: Output from running visualize() on variable events from the toyData dataset.

R> visualize(toyData$events)
R> summarize(toyData$events)

$variableType
Variable type: numeric
$countMissing
Number of missing obs.: 4 (26.67 %)
$uniqueValues
Number of unique values: 6
$centralValue
Median: 4
$quartiles
1st and 3rd quartiles: 1.5; 6
$minMax
Min. and max.: 1; 82

As we saw with the check() function, the summary can be modified by using the summaries
argument and the setSummaries() helper function. If we want to remove the default sum-
maries variableType and countMissing for numeric variables, we can use the function
defaultNumericSummaries() and its argument remove that excludes a vector of summaries
from the usual default summaries:

R> summarize(toyData$events, summaries = setSummaries(
+ numeric = defaultNumericSummaries(remove = c("variableType",
+ "countMissing"))))

$uniqueValues
Number of unique values: 6
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$centralValue
Median: 4
$quartiles
1st and 3rd quartiles: 1.5; 6
$minMax
Min. and max.: 1; 82

The syntax in this code chunk can be read as follows: “Summarize events in toyData,
and for numeric variables, set the summaries to be the default summary functions, except
variableType and countMissing.”
Similar defaultXXXSummaries() functions are available for the other supported variable
classes. For checks, the same syntax can also be used, but the helper functions are now
named defaultXXXChecks with XXX as a placeholder for a supported variable class.
Note that the summarize(), check() and visualize() functions are also available inter-
actively for full datasets by calling, e.g., summarize(toyData). However, this produces an
extensive amount of output in the console, and therefore, we generally do not recommend it,
unless working with very small datasets or subsets of datasets.

4. A worked example: Dirty presidents
We will now put the bits and pieces from above together and show how makeDataReport() can
be used on a less artificial dataset to create a useful overview report and how the interactive
tools can subsequently be used to assist the actual data cleaning process. More specifically,
we will create a report describing the presidentData dataset, which is available in dataMaid
and use the information from this report to clean up the data. presidentData is a slightly
mutilated dataset with information about the 45 first US presidents, but with a few common
data issues and a blind passenger. The dataset contains one observation per president and
has the following variables:

• lastName: The last name of the president.

• firstName: The first name of the president.

• orderOfPresidency: The number in the order of presidents.

• birthday: The birthday of the president.

• stateOfBirth: The state in which the president was born.

• assassinationAttempt: Was there an assassination attempt on the president?

• sex: The sex of the president.

• ethnicity: The ethnicity of the president.

• presidencyYears: The duration of the presidency.

• ageAtInauguration: The age of the president at inauguration.

• favoriteNumber: The favorite number of the president (fictional).
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Dirty president data
Autogenerated data summary from dataMaid

2019-07-11 00:39:01

Part 1

Data report overview

The dataset examined has the following dimensions:

Feature Result
Number of observations 46
Number of variables 11

Checks performed
The following variable checks were performed, depending on the data type of each variable:

character factor labelled
haven
labelled numeric integer logical Date

Identify miscoded missing values × × × × × × ×
Identify prefixed and suffixed
whitespace

× × × ×

Identify case issues × × × ×
Identify misclassified numeric or
integer variables

× × × ×

Identify levels with < 6 obs. × × ×
Identify outliers × × ×

Non-supported variable types were set to be handled in the following way:

• Name is treated as character

Please note that all numerical values in the following have been rounded to 2 decimals.

1

Figure 5: The front page and the first page of the data overview report for the presidentData
dataset. Note that the report title has been customized (front page), identifyLoners has
been removed from the checks performed on character variables (“Identify levels with < 6
obs.” is not checked for character variables in the table on page 1) and that variables of class
‘Name’ have been set to be treated like character variables (page 1). Larger versions of the
pages can be seen in Appendix B.

R> data("presidentData", package = "dataMaid")
R> head(presidentData)

lastName firstName orderOfPresidency birthday stateOfBirth
1 Washington George 1 1732-02-22 Virginia
2 Adams John 2 1735-10-30 Massachusetts
3 Jefferson Thomas 3 1743-04-13 Virginia
4 Madison James 4 1751-03-16 Virginia
5 Monroe James 5 1758-04-28 Virginia
6 Adams John 6 1767-07-11 Massachusetts

assassinationAttempt sex ethnicity presidencyYears
1 0 Male Caucasian 7
2 0 Male Caucasian 3
3 0 Male Caucasian 8
4 0 Male Caucasian 8
5 0 Male Caucasian 8
6 0 Male Caucasian 4

ageAtInauguration favoriteNumber
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Part 2

Summary table

Variable class # unique values Missing observations Any problems?
lastName Name 40 0.00 % ×
firstName Name 31 0.00 % ×
orderOfPresidency factor 46 0.00 % ×
birthday Date 45 0.00 % ×
stateOfBirth character 23 0.00 % ×
assassinationAttempt numeric 2 0.00 %
sex factor 1 0.00 % ×
ethnicity factor 2 0.00 % ×
presidencyYears numeric 11 4.35 % ×
ageAtInauguration character 23 0.00 % ×
favoriteNumber complex 11 0.00 % ×

2

Part 3

Variable list

lastName

Feature Result
Variable type Name
Number of missing obs. 0 (0 %)
Number of unique values 40
Mode “Adams” 0.0

0.5

1.0

1.5

2.0

 TrumanAdamsArathornsonArthurBuchananBushCarterClevelandClintonCoolidgeEisenhowerFillmoreFordGarfieldGrantHardingHarrisonHayesHooverJacksonJeffersonJohnsonKennedyLincolnMadisonMcKinleyMonroeNixonObamaPiercePolkReaganRooseveltTaftTaylorTrumpTylerVan BurenWashingtonWilson
lastName

co
un

t

• The following values appear with prefixed or suffixed white space: " Truman".

firstName

Feature Result
Variable type Name
Number of missing obs. 0 (0 %)
Number of unique values 31
Mode “James” 0

1

2

3

4

5

.AbrahamAndrewAragornBarackBenjaminCalvinChesterDwightFranklinGeorgeGeraldGroverHarryHerbertJamesJimmyJohnLyndonMartinMillardRichardRonaldRutherfordTheodoreThomasUlyssesWarrenWilliamWoodrowZachary
firstName

co
un

t

• The following suspected missing value codes enter as regular values: ".".

orderOfPresidency
• The variable is a key (distinct values for each observation).

3

Figure 6: The second and third pages of the presidentData data report. We see that there
are two ‘Name’ variables in the overview on page 2 and see that these variables are indeed
treated as character variables on page 3, as specified in the makeDataReport call by use of
the treatXasY argument. Larger versions of the pages can be seen in Appendix B.

1 57 3+0.000000i
2 61 4+0.000000i
3 57 0+1.414214i
4 57 10+0.000000i
5 58 3+0.000000i
6 57 9+0.000000i

We discuss the results of a data overview report generated for this dataset below, but first
there are a few special features of the dataset and wishes for the data report that require
us to customize it using some of the arguments for makeDataReport. We have the following
points of interest:

1. A couple of variables are used to store names, namely lastName and firstName. In
order to use special bibliographical analysis tools on these, and only these, variables, it
might be convenient to assign them a special class. Therefore, these variables have been
set to have class ‘Name’ by use of the base R function class(). When we wish to make
a data report for the dataset, we have to tell makeDataReport() how to handle such
‘Name’-type variables, as they are not among the supported variable types mentioned in
the above. This can be done using the treatXasY argument.

2. We use the character class for a few categorical variables that have a lot of different



Journal of Statistical Software 19

birthday

Feature Result
Variable type Date
Number of missing obs. 0 (0 %)
Number of unique values 45
Mode “1837-03-18”
Min. and max. 1300-03-01; 1961-08-04
1st and 3rd quartiles 1790-03-29; 1890-10-14
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1400 1600 1800 2000
birthday

co
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t

• Note that the following possible outlier values were detected: "1300-03-01".

stateOfBirth

Feature Result
Variable type character
Number of missing obs. 0 (0 %)
Number of unique values 23
Mode “Ohio” 0

2

4

6

8

ArkansasCaliforniaConnecticutGeorgiaGondorHawaiiIllinoisIowaKentuckyMassachusettsMissouriNebraskaNew HampshireNew JerseyNew yorkNew YorkNorth CarolinaOhioPennsylvaniaTennesseeTexasVermontVirginia
stateOfBirth

co
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t

• Note that there might be case problems with the following levels: "New york", "New York".

assassinationAttempt
• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature Result
Variable type numeric
Number of missing obs. 0 (0 %)
Number of unique values 2
Mode “0”
Reference category 0

0

10
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30

0 1
assassinationAttempt

co
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t

sex
• The variable only takes one (non-missing) value: "Male". The variable contains 0 % missing observations.

4

ethnicity

Feature Result
Variable type factor
Number of missing obs. 0 (0 %)
Number of unique values 2
Mode “Caucasian”
Reference category African American

0
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20

30

40

African American Caucasian
ethnicity
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t

• Note that the following levels have at most five observations: "African American".

presidencyYears

Feature Result
Variable type numeric
Number of missing obs. 2 (4.35 %)
Number of unique values 10
Median 4
1st and 3rd quartiles 3.75; 8
Min. and max. 0; Inf

0
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0.0 2.5 5.0 7.5 10.0 12.5
presidencyYears

co
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• The following suspected missing value codes enter as regular values: "Inf".

• Note that the following possible outlier values were detected: "0", "1", "2", "Inf".

ageAtInauguration

Feature Result
Variable type character
Number of missing obs. 0 (0 %)
Number of unique values 23
Mode “54” 0

1

2

3

4

5

4243464748495051525455565758606162646568697087
ageAtInauguration

co
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t

• Note: The variable consists exclusively of numbers and takes a lot of different values. Is it perhaps a misclassified
numeric variable?

favoriteNumber
• The variable has class complex which is not supported by dataMaid.

Report generation information:

• Created by Claus Thorn Ekstrøm (username: cld189).

• Report creation time: Thu Jul 11 2019 00:39:01

5

Figure 7: Part of the data overview report generated for the presidentData dataset. Here,
we see pages 4 and 5 from the “Variable list”. Larger versions of the pages can be seen in
Appendix B.

levels, but where it is not a data mistake that these levels each generally have very few
observations, e.g., the variable stateOfBirth. Therefore, we would like to disable the
identifyLoners check (which flags variables with < 6 observations in any of the levels)
for this variable type. This can be done using the checks argument.

3. We would like the report to be called “Dirty president data” in order to reflect that it
is, indeed, a report concerning dirty data about presidents.

We incorporate these three customizations, load the data, and generate a report by calling:

R> makeDataReport(presidentData, replace = TRUE,
+ treatXasY = list("Name" = "character"), checks = setChecks(character =
+ defaultCharacterChecks(remove = "identifyLoners")),
+ reportTitle = "Dirty president data")

The first four pages of the resulting report can be inspected in Figures 5 and 6. Note that
all the customized settings can be identified from the first two pages, without having to read
through the report: The new title is written on the front page, the check settings are displayed
in the “Checks performed” table and the strategy for handling ‘Name’ variables is documented
below this table. The full data report, except for the front page, is available in Appendix B.
The first problem that can be spotted from these first four pages is the surprising number
of observations: Anno 2019, there have only been 45 US presidents. Therefore, having 46
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observations reveals that the dataset contains a blind passenger. For instance, if the dataset
was constructed as a subset of a more general “World leaders” dataset, this type of problem
could occur due to wrongful nationality classification. We return to the extra president issue
below.
On page 3, we see the contents for the three first variables. Here, we identify a prefixed
white space in the last name entry for President Truman and we find that a dot was en-
tered as a first name; this is a typical choice for coding missing values in, e.g., Stata (Stata-
Corp 2017), and therefore, it is flagged as a potential miscoded missing value. The variable
orderOfPresidency is not summarized, visualized or checked because it is categorical and
contains unique values for each observation.
Figure 7 presents the remaining two pages with variable presentations. On pages 4 and 5, we
find a few remarks:

• In the birthday variable, there is an entry with the date March 1, 1300 which is a bit
of an outlier.

• Among the states in which the presidents were born, New York was mistakenly spelled
with a lower case “Y” in at least one entry.

• The variable concerning assassination attempts is coded as a numeric, but the default
smartNum = TRUE setting of makeDataReport() implies that such a numeric variable
with only a few (less than 5) unique values is treated as a factor variable in the data
report, thereby providing more relevant summaries, visualizations and checks. This is
remarked in the variable presentation for assassinationAttempt and it can also be
seen by the visualization being a barplot rather than a histogram.

• The variable concerning the sex of the president was skipped, as there is nothing to
present when all US presidents have been male so far.

• The report flags the variable ethnicity to have suspiciously few observations in one
category, “African American”.

• A few presidents were found to have odd values in the variable describing the duration
of their presidencies: Some had very short (outlier) presidencies of less than two years
and one was registered to have an infinite presidency.

• The variable concerning age at inauguration was coded as a character variable, but
consists exclusively of numbers and takes a lot of different values and therefore, it was
flagged as a potentially misclassified numeric variable.

• It seems as if one or more presidents have complex numbers as their favorite numbers.
As complex is not a supported variable type in dataMaid and no strategy for handling
this class was provided in the treatXasY argument, the variable is simply flagged as
non-supported.

A lot of these mistakes are easily fixable, and we will do so below. However, some of them
require more delicate knowledge of the subject matter. For instance, ethnicity is very
reasonably marked as a potentially problematic variable as it includes only a single observation
of “African American”. However, a human reading this report will know that this does not
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reflect a mistake in the data, but rather the real world, and as such, it should not be cleaned
out.
A few of the identified problems have easy fixes that need no further discussion. We remove the
prefixed white space from Truman’s name, fix the misspelling of New York, convert the binary
variable assassinationAttempt to a factor and change the class of the ageAtInauguration
variable to numeric:

R> presidentData$lastName[presidentData$lastName == " Truman"] <- "Truman"
R> presidentData$stateOfBirth[presidentData$stateOfBirth == "New york"] <-
+ "New York"
R> presidentData$assassinationAttempt <-
+ factor(presidentData$assassinationAttempt)
R> presidentData$ageAtInauguration <-
+ as.numeric(presidentData$ageAtInauguration)

Please note that if ageAtInauguration had been a factor rather than a character variable,
an additional inner call should be added in order to ensure no conversion issues:

R> presidentData$ageAtInauguration <-
+ as.numeric(as.character(presidentData$ageAtInauguration))

Moving forward, we might be interested in inspecting the contents of the “.”-coded entry of
firstName closer, as we do know the first names of all the US presidents. We look at the last
name for this president and fill in the first name correctly:

R> presidentData$lastName[presidentData$firstName == "."]

[1] "Trump"

R> presidentData$firstName[presidentData$firstName == "."] <- "Donald"

Next up is the unlikely US president birthday of March 1, 1300. In order to understand if this
is a generally problematic observation, or if it is just a mistyped observation, we inspect the
full data entry for this person. We can do this using the usual R selection syntax as above,
or we can use the value of a identifyOutliers call to select this observation:

R> birthdayOutlierVal <-
+ identifyOutliers(presidentData$birthday)$problemValues

Now, we have the outlier birthday stored and can use it to select and print the appropriate
observation in the dataset:

R> presidentData[presidentData$birthday == birthdayOutlierVal, ]

lastName firstName orderOfPresidency birthday stateOfBirth
46 Arathornson Aragorn 0 1300-03-01 Gondor

assassinationAttempt sex ethnicity presidencyYears
46 1 Male Caucasian NA

ageAtInauguration favoriteNumber
46 87 8+0i
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We see that this is not a proper US president and thus, it is likely to be the explanation of
the faulty number of observations in the dataset. Therefore, we drop this observation from
the dataset, e.g., by overwriting the dataset with a selection of all the other observations:

R> presidentData <-
+ presidentData[presidentData$birthday != birthdayOutlierVal, ]

Now, all that is left to fix is the presidencyYears variable. For this variable, we are con-
cerned about three different things: First, it has some quite small outlier values. We need to
identify whether these are really true. Secondly, one president is registered to have an infinite
presidency, this should also be fixed. Third, we see from the summary table that there are
two missing observations for this variable. One might have been fixed by removing Aragorn
from the dataset, so we start by inspecting if this is indeed the case by calling summarize()
interactively:

R> summarize(presidentData$presidencyYears)

$variableType
Variable type: numeric
$countMissing
Number of missing obs.: 1 (2.22 %)
$uniqueValues
Number of unique values: 10
$centralValue
Median: 4
$quartiles
1st and 3rd quartiles: 3.75; 8
$minMax
Min. and max.: 0; Inf

We see that there is one less missing value and that the small and large values pertain.
Therefore, we look at all the observations that cause worry, namely the outliers and the
missing value, and we select to see the variables firstName, lastName and presidencyYears:

R> presidentData[is.na(presidentData$presidencyYears) |
+ presidentData$presidencyYears %in%
+ identifyOutliers(presidentData$presidencyYears)$problemValues,
+ c("firstName", "lastName", "presidencyYears")]

firstName lastName presidencyYears
9 William Harrison 0
12 Zachary Taylor 1
13 Millard Fillmore 2
20 James Garfield 0
29 Warren Harding 2
35 John Kennedy 2
38 Gerald Ford 2
44 Barack Obama Inf
45 Donald Trump NA



Journal of Statistical Software 23

We see that Obama is listed as being president forever, which history has proven to be wrong.
Trump, on the other hand, has a missing value for his presidency duration, which is in fact
reasonable as we cannot know how long it will be yet (anno 2019). Presidents Harrison,
Taylor, Fillmore, Garfield, Harding, Kennedy, and Ford were identified to have very brief
presidencies, but these are not mistakes, as any US history textbook can tell us. Thus, the
only mistake left to fix is Obama’s infinite presidency:

R> presidentData$presidencyYears[presidentData$lastName == "Obama"] <- 8

This does not mean we are necessarily done with the data cleaning process: There might be
problems that dataMaid was not able to identify. But we have fixed some key issues in the
data and thereby given ourselves a chance of a smoother sailing in the next steps of the data
analysis.
Finally, we create a new data report, adding the suffix “cleaned” to the title, as well as the file
name, so that we have documentation of the current state of the dataset. We also decide that
it might be sufficient to inspect only the real part of the presidential favorite numbers and
therefore, we choose to treat the complex variable favoriteNumber as a numeric variable:

R> makeDataReport(presidentData, vol = "_cleaned",
+ treatXasY = list(Name = "character", complex = "numeric"),
+ checks = setChecks(character =
+ defaultCharacterChecks(remove = "identifyLoners")),
+ reportTitle = "Dirty president data - cleaned", replace = TRUE)

This will create a new data report stored in the file dataMaid_presidentData_cleaned.pdf.

5. Rubbing down data cleaning challenges
Finally, we present a few examples of how to make dataMaid solve specific issues related to
data documentation and cleaning. First, we discuss how the data report generation functions
of dataMaid can be used in a data science workflow where one is not necessarily interested in
inspecting the results right away and most commands are run automatically. Next, we show
how dataMaid can be used for problem-flagging. Lastly, we discuss how the dataMaid output
document can be included in other R markdown documents as a way to produce clear and
concise documentation of a dataset.

5.1. Incorporating dataMaid in automated workflow
The default settings of makeDataReport() have been set to facilitate easy and quick data re-
port generation, but unfortunately, this also means that it is not ideal for a more programming-
oriented workflow, where the function might not be called by a human. For instance, one
might be interested in automatically running makeDataReport() on all datasets received from
a certain client, perhaps via email or through a web upload, and returning a data report for
them to inspect and comment before ever looking at the data. In this scenario, there are a
few issues with the standard data report:

1. After rendering, the report is automatically opened. This is not very useful, if the
processes are supposed to run in the background.
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2. The report generation writes messages to the console while producing and rendering
the report.

3. Unless specifically told otherwise, every report created for the same dataset (or different
datasets with the same storage name in R) will have the same file name.

Note that the data report does contain information about who, when and how concerning
its generation, so even though the default choices for file names do not make it easy to tell
different reports for the same dataset apart, it should be rather easy when inspecting the
report manually.
The three problems can easily be solved by use of the arguments of makeDataReport().
Whether or not the outputted file is opened can be controlled through the argument open.
How much information is printed in the console can be adjusted by using the argument quiet.
And conveniently introducing small alterations of the file names can be obtained by use of
the vol argument. For instance, we can make a data report for toyData that is not opened
automatically, produces no output to the console and includes the date and time of its creation
in the file name:

R> makeDataReport(toyData, open = FALSE, quiet = "silent",
+ vol = paste("_", format(Sys.time(), "%m-%d%-%y_%H.%M"), sep = ""))

Now, if, e.g., the report is created at 3 pm on June 30, 2019, the report will have the file
name dataMaid_toyData_06-30-2019_15.00.pdf, making it easy to find.

5.2. Using dataMaid for problem flagging
If the dataset is large and the time available for reading through the data report is scarce, it can
be convenient to only make a report concerning the variables that were flagged to be problem-
atic. This can be achieved by using the onlyProblematic argument for makeDataReport().
By specifying onlyProblematic = TRUE, only variables that raise a flag in the checking steps
will be summarized and visualized. But perhaps we are not even interested in obtaining gen-
eral information about these variables, but only in getting a quick overview of the problems
they might have. This is obtained by using the mode argument:

R> makeDataReport(toyData, onlyProblematic = TRUE, mode = "check",
+ replace = TRUE)

Now only the checking results are printed, and only for variables where problems were iden-
tified. An even more minimal output can be obtained directly in the console by using the
check() function interactively. When called on a data frame, this function produces a list
(of variables) of lists (of checks) of lists (or rather, checkResults). Thus, the overall problem
status of each variable can easily be unraveled using the list manipulation function sapply():

R> toyChecks <- check(toyData)
R> foo <- function(x) {
+ any(sapply(x, function(y) y[["problem"]]))
+ }
R> sapply(toyChecks, foo)
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pill events region change id
TRUE TRUE TRUE TRUE TRUE

spotifysong
FALSE

and we find that only a single variable in toyData, spotifysong (for which all observations
have the value "Irrelevant"), is problem-free when using the default checks.

5.3. Including dataMaid reports in other files
Sometimes, a dataMaid report might be a useful addition to a more general overview docu-
ment, including additional information such as pairwise association plots, time series plots,
or exploratory analysis results. dataMaid can produce a document to be included in other
R markdown files by setting the standAlone = FALSE argument in makeDataReport() to
remove the preamble from the output R markdown file. Note that it is still necessary to
indicate which R markdown output type is created; the PDF and HTML R markdown styles
are unfortunately not identical. Note that the "word" output option is based on the "html"
markdown style.
If it is important that the embedded dataMaid document can be rendered to any of these three
file types, we recommend setting the twoCols = FALSE and output = "html" arguments in
makeDataReport(). This essentially removes almost all output type specific formatting code
from the generated R markdown file.
On the other hand, if a PDF document is to be produced, a few extra lines need to be added
to the preamble of the master R markdown document – otherwise, the two-column layout code
will produce an error. The following is an example of how such a master document preamble
YAML might look like and how the dataMaid_toyData.Rmd file can then be included:

---
output: pdf_document
documentclass: report
header-includes:

- \renewcommand{\chaptername}{Part}
- \newcommand{\fullline}{\noindent\rule{\textwidth}{0.4pt}}
- \newcommand{\bminione}{\begin{minipage}{0.75\textwidth}}
- \newcommand{\bminitwo}{\begin{minipage}{0.25\textwidth}}
- \newcommand{\emini}{\end{minipage}}

---

```{r, child = 'dataMaid_toyData.Rmd'}
```

In this example, the dataMaid_toyData.Rmd file could have been created as follows:

R> makeDataReport(toyData, standAlone = FALSE)

and the more minimal, HTML-style R markdown file described above can be produced using
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R> makeDataReport(toyData, standAlone = FALSE, output = "html",
+ twoCols = FALSE)

Note that with the latter option, no special YAML preamble is needed in the R markdown
document. Alternatively, one can create the usual output report, not render it and then
manually edit the produced R markdown file as wished. The following command does that:

R> makeDataReport(toyData, render = FALSE, openResult = FALSE)

After editing, the file can be rendered by calling the render function:

R> render("dataMaid_toyData.Rmd", quiet = FALSE)

6. Concluding remarks
In this paper we have introduced the R package dataMaid for performing reproducible error
detection, data overview reports and data screening. The package provides a general and ex-
tendable framework for identifying potential errors and for creating human-readable summary
documents that will help investigators to identify possible errors in the data.
We are also currently considering adding options to handle repeated measurement, where the
visualizations – in particular – might be improved by visualizing measurements over time. In
addition, an online shiny (Chang, Cheng, Allaire, Xie, and McPherson 2019) application is
currently being developed such that non-R-savvy users can upload their data online and get
a data cleaning document.
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Part 1

Data report overview

The dataset examined has the following dimensions:

Feature Result
Number of observations 15
Number of variables 6

Checks performed
The following variable checks were performed, depending on the data type of each variable:

character factor labelled
haven
labelled numeric integer logical Date

Identify miscoded missing values × × × × × × ×
Identify prefixed and suffixed
whitespace

× × × ×

Identify levels with < 6 obs. × × × ×
Identify case issues × × × ×
Identify misclassified numeric or
integer variables

× × × ×

Identify outliers × × ×

Please note that all numerical values in the following have been rounded to 2 decimals.
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A. Data report for the toyData dataset



Part 2

Summary table

Variable class # unique values Missing observations Any problems?
pill factor 3 13.33 % ×
events numeric 9 20.00 % ×
region factor 7 0.00 % ×
change numeric 15 0.00 % ×
id factor 15 0.00 % ×
spotifysong factor 1 0.00 % ×

2

Journal of Statistical Software 29



Part 3

Variable list

pill

Feature Result
Variable type factor
Number of missing obs. 2 (13.33 %)
Number of unique values 2
Mode “red”
Reference category blue

0.0

2.5

5.0

7.5

10.0

blue red
pill

co
un

t

• Note that the following levels have at most five observations: "blue".

events

Feature Result
Variable type numeric
Number of missing obs. 3 (20 %)
Number of unique values 8
Median 4.5
1st and 3rd quartiles 1.75; 6
Min. and max. 1; 999

0

3

6

9

0 250 500 750 1000
events

co
un

t

• The following suspected missing value codes enter as regular values: "999", "NaN".

• Note that the following possible outlier values were detected: "82", "999".
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region

Feature Result
Variable type factor
Number of missing obs. 0 (0 %)
Number of unique values 7
Mode “a”
Reference category

0

1

2

3

4

5

 . a b c other OTHER
region

co
un

t

• The following suspected missing value codes enter as regular values: " ", ".".

• The following values appear with prefixed or suffixed white space: " ".

• Note that the following levels have at most five observations: " ", ".", "a", "b", "c", "other", "OTHER".

• Note that there might be case problems with the following levels: "other", "OTHER".

change

Feature Result
Variable type numeric
Number of missing obs. 0 (0 %)
Number of unique values 15
Median 0.33
1st and 3rd quartiles -0.62; 0.66
Min. and max. -2.21; 1.6

0

2

4

6

−3 −2 −1 0 1 2
change

co
un

t

• Note that the following possible outlier values were detected: "1.12", "1.51", "1.6".

id
• The variable is a key (distinct values for each observation).

spotifysong
• The variable only takes one (non-missing) value: "Irrelevant". The variable contains 0 % missing observations.

Report generation information:

• Created by Claus Thorn Ekstrøm (username: cld189).

• Report creation time: Wed Jul 10 2019 14:13:28

• Report was run from directory: /Users/cld189

• dataMaid v1.3.1 [Pkg: 2019-07-10 from local]

• R version 3.6.0 (2019-04-26).

• Platform: x86_64-apple-darwin15.6.0 (64-bit)(macOS High Sierra 10.13.6).

• Function call: makeDataReport(data = toyData)
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Part 1

Data report overview

The dataset examined has the following dimensions:

Feature Result
Number of observations 46
Number of variables 11

Checks performed
The following variable checks were performed, depending on the data type of each variable:

character factor labelled
haven
labelled numeric integer logical Date

Identify miscoded missing values × × × × × × ×
Identify prefixed and suffixed
whitespace

× × × ×

Identify case issues × × × ×
Identify misclassified numeric or
integer variables

× × × ×

Identify levels with < 6 obs. × × ×
Identify outliers × × ×

Non-supported variable types were set to be handled in the following way:

• Name is treated as character

Please note that all numerical values in the following have been rounded to 2 decimals.
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B. Data report for the presidentData dataset



Part 2

Summary table

Variable class # unique values Missing observations Any problems?
lastName Name 40 0.00 % ×
firstName Name 31 0.00 % ×
orderOfPresidency factor 46 0.00 % ×
birthday Date 45 0.00 % ×
stateOfBirth character 23 0.00 % ×
assassinationAttempt numeric 2 0.00 %
sex factor 1 0.00 % ×
ethnicity factor 2 0.00 % ×
presidencyYears numeric 11 4.35 % ×
ageAtInauguration character 23 0.00 % ×
favoriteNumber complex 11 0.00 % ×
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Part 3

Variable list

lastName

Feature Result
Variable type Name
Number of missing obs. 0 (0 %)
Number of unique values 40
Mode “Adams” 0.0
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1.0

1.5
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 TrumanAdamsArathornsonArthurBuchananBushCarterClevelandClintonCoolidgeEisenhowerFillmoreFordGarfieldGrantHardingHarrisonHayesHooverJacksonJeffersonJohnsonKennedyLincolnMadisonMcKinleyMonroeNixonObamaPiercePolkReaganRooseveltTaftTaylorTrumpTylerVan BurenWashingtonWilson
lastName

co
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t

• The following values appear with prefixed or suffixed white space: " Truman".

firstName

Feature Result
Variable type Name
Number of missing obs. 0 (0 %)
Number of unique values 31
Mode “James” 0
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5

.AbrahamAndrewAragornBarackBenjaminCalvinChesterDwightFranklinGeorgeGeraldGroverHarryHerbertJamesJimmyJohnLyndonMartinMillardRichardRonaldRutherfordTheodoreThomasUlyssesWarrenWilliamWoodrowZachary
firstName

co
un

t

• The following suspected missing value codes enter as regular values: ".".

orderOfPresidency
• The variable is a key (distinct values for each observation).
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birthday

Feature Result
Variable type Date
Number of missing obs. 0 (0 %)
Number of unique values 45
Mode “1837-03-18”
Min. and max. 1300-03-01; 1961-08-04
1st and 3rd quartiles 1790-03-29; 1890-10-14
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1400 1600 1800 2000
birthday

co
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• Note that the following possible outlier values were detected: "1300-03-01".

stateOfBirth

Feature Result
Variable type character
Number of missing obs. 0 (0 %)
Number of unique values 23
Mode “Ohio” 0
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4

6

8

ArkansasCaliforniaConnecticutGeorgiaGondorHawaiiIllinoisIowaKentuckyMassachusettsMissouriNebraskaNew HampshireNew JerseyNew yorkNew YorkNorth CarolinaOhioPennsylvaniaTennesseeTexasVermontVirginia
stateOfBirth

co
un

t

• Note that there might be case problems with the following levels: "New york", "New York".

assassinationAttempt
• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature Result
Variable type numeric
Number of missing obs. 0 (0 %)
Number of unique values 2
Mode “0”
Reference category 0

0

10

20

30

0 1
assassinationAttempt

co
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t

sex
• The variable only takes one (non-missing) value: "Male". The variable contains 0 % missing observations.
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ethnicity

Feature Result
Variable type factor
Number of missing obs. 0 (0 %)
Number of unique values 2
Mode “Caucasian”
Reference category African American
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30

40

African American Caucasian
ethnicity

co
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t

• Note that the following levels have at most five observations: "African American".

presidencyYears

Feature Result
Variable type numeric
Number of missing obs. 2 (4.35 %)
Number of unique values 10
Median 4
1st and 3rd quartiles 3.75; 8
Min. and max. 0; Inf
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• The following suspected missing value codes enter as regular values: "Inf".

• Note that the following possible outlier values were detected: "0", "1", "2", "Inf".

ageAtInauguration

Feature Result
Variable type character
Number of missing obs. 0 (0 %)
Number of unique values 23
Mode “54” 0
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4

5

4243464748495051525455565758606162646568697087
ageAtInauguration
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• Note: The variable consists exclusively of numbers and takes a lot of different values. Is it perhaps a misclassified
numeric variable?

favoriteNumber
• The variable has class complex which is not supported by dataMaid.

Report generation information:

• Created by Claus Thorn Ekstrøm (username: cld189).

• Report creation time: Thu Jul 11 2019 00:39:01
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• Report was run from directory: /Users/cld189

• dataMaid v1.3.1 [Pkg: 2019-07-10 from local]

• R version 3.6.0 (2019-04-26).

• Platform: x86_64-apple-darwin15.6.0 (64-bit)(macOS High Sierra 10.13.6).

• Function call: makeDataReport(data = presidentData, replace = TRUE, checks = setChecks(character
= defaultCharacterChecks(remove = "identifyLoners")), reportTitle = "Dirty president
data", treatXasY = list(Name = "character"))

6
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