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Abstract

This article describes the R package BinaryEPPM and its use in determining maximum
likelihood estimates of the parameters of extended Poisson process models for grouped
binary data. These provide a Poisson process family of flexible models that can handle
unlimited under-dispersion but limited over-dispersion in such data, with the binomial
distribution being a special case. Within BinaryEPPM, models with the mean and vari-
ance related to covariates are constructed to match a generalized linear model formulation.
Combining such under-dispersed models with standard over-dispersed models such as the
beta binomial distribution provides a very general form of residual distribution for mod-
eling grouped binary data. Use of the package is illustrated by application to several
data-sets.

Keywords: binomial distribution, covariate effects, dispersion, Poisson process, precision of
estimates.

1. Introduction

Modeling using extended Poisson process models (EPPMs) was originally developed in Faddy
(1997) where the construction of discrete probability distributions having very general disper-
sion properties was described. Smith and Faddy (2016) was concerned with generalizations of
the Poisson distribution to deal with over- and under-dispersion. This article is about similar
generalizations of the binomial distribution which is another special case of the modeling de-
scribed in Faddy (1997). Covariate dependence can be incorporated via a re-parameterization
using approximate forms of the mean and variance.
The supplementary material for Faddy and Smith (2012) contained R (R Core Team 2019)
code illustrating the fitting of these models. This code has been extended and generalized to
have inputs and outputs akin to those of the generalized linear model function glm from the
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packages stats and betareg (Cribari-Neto and Zeileis 2010; Grün, Kosmidis, and Zeileis 2012).
The resulting package BinaryEPPM (Smith and Faddy 2019), whose use is described here, is
available as a contributed package from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=BinaryEPPM.
There exists a number of generalized binomial models that can deal with over-dispersion
relative to the binomial: for example, mixed models (Williams 1996) and correlated models
(Kupper and Haseman 1978). Although the resulting probability distributions can admit some
under-dispersion, where the residual variance is less than that corresponding to a binomial
distribution, this may be rather too limited for them to be considered general models for
under-dispersed data. BinaryEPPM complements these models by modeling under-dispersion
(and limited over-dispersion). Both the mean and variance can be formulated in terms of
associated covariates. Observed data can then be modeled using these generalized binomial
distributions, leading to better fitting models and model checking diagnostics, and more
appropriate assessment of the precision of any estimated quantities.

2. Models

2.1. Extended Poisson process models (EPPMs)

The models described in Faddy (1997) can be summarized as describing probability distribu-
tions on 0, 1, 2, . . . , n in terms of the vector of probabilities

p = (1 0 · · · 0) exp(Q), (1)

where Q is an (n+1)× (n+1) bi-diagonal matrix consisting of (Poisson process) rate param-
eters λi(> 0) for i = 0, 1, . . . , n− 1 on the upper diagonal; and −λi for i = 0, 1, . . . , n
(with λn = 0) on the diagonal. A function of linearly decreasing λi’s

λi = a(n − i), for i = 0, 1, 2, . . . , n with a > 0 (2)

gives rise to the binomial distribution with probability p = 1 − exp(−a). If covariates,
x say, influence the response then having log(a) = xTβ (the usual linear predictor) in
this binomial special case corresponds to generalized linear modeling with a complementary
log-log link function (Dobson and Barnett 2008, Chapter 7). Other link functions (such as
logistic) could be used, but the complementary log-log link function does arise quite naturally
from this extended Poisson process modeling.
Faddy and Smith (2008) considered a generalization of Equation 2

λi = a(n − i)b, with b > 0 (3)

resulting in distributions analogous to those from correlated binomial modeling (Kupper and
Haseman 1978) with concave sequences of λi’s (0 < b < 1) corresponding to positive cor-
relations and over-dispersion, and convex sequences (b > 1) to negative correlations and
under-dispersion. Here approximations for the mean and variance of these distributions from
Faddy (1997) are used to re-parameterize them in terms of the probability of a success ps in
a single Bernoulli trial and scale-factor fs for the variance of the number of successes in n
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trials as in Equations 4 and 5.

ps = mean
n

≈ 1 −
{

1 − anb−1(1 − b)
} 1

1−b (4)

and fs = variance
nps(1 − ps)

≈ (1 − ps)2b−1 − 1
ps(1 − 2b) (5)

with substantial under-dispersion possible for large b (fs → 0 as b→∞) while over-dispersion
is limited by fs < 1

1−ps
(the value for b→ 0). Since the complementary probability distribu-

tion of the number of failures will have (approximately) fs < 1
ps

over-dispersion is effectively
limited by fs < max

(
1

1−ps
, 1

ps

)
with this modeling. Although technically the scale-factor

cannot exceed n, this is unlikely to be a practical limitation, so a simple log link can be used
for covariate dependence; i.e., log(fs) = x>γ.
Given fs and ps Equation 5 can be solved for b using the R root finding function uniroot,
then Equation 4 can be solved for a leading to

λi = n

[
1 − (1 − ps)1−b

(1 − b)

](
1− i

n

)b
(6)

from Equation 3. This parameterization based on approximate forms for the mean and
variance results in the exact mean and scale-factor not being described perfectly by their
respective link functions of the linear predictors but by some perturbations of these. However,
for the examples discussed in the next section the effect of this on moment-based estimates is
quite modest. The covariate coefficients β and γ describing the mean and scale-factor can be
estimated by maximum likelihood from data y1, y2, . . . , yk using the likelihood py1 , py2 , . . . , pyk

from the probabilities in Equation 1. Alternatively, the parameter b in Equation 6 can be
estimated as a nuisance parameter if there is no interest in modeling the variance. Exact
calculation of the mean and variance can also be done using the probabilities in Equation 1.

2.2. Models other than EPPMs
There are other distributional models available for over-dispersed binary data such as the
correlated binomial and beta binomial distributions. These distributions differ in their inter-
pretation with the former allowing the outcomes of successive trials to be correlated, and the
latter being a mixed binomial distribution where the success probability ps is not fixed over
the sequence of trials but varies according to a beta distribution. The mean and scale-factor
of a simple correlated binomial with correlation ρ between the outcomes of any two trials are
nps and 1 + ρ(n− 1), with probability mass function as in Kupper and Haseman (1978)

P(X = x) =

 n

x

 pxs (1− ps)n−x
{

1 + ρ

2ps(1− ps)
[
(x− nps)2 + x(2ps − 1) − np2

s

]}
.

The beta binomial distribution has probability mass function as in Smith (1983)

P(X = x) =

 n

x


x−1∏
r=0

(µ + rθ)
n−x−1∏
r=0

(1 − µ + rθ)

n−1∏
r=0

(1 + rθ)
,
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with mean µ and scale-factor 1 + θ
(1+θ)(n − 1) (Hughes and Madden 1995). Both these

distributions do admit some modest levels of under-dispersion; bounds on the scale-factor
can be determined from those given for ρ in Kupper and Haseman (1978) for the correlated
binomial, and for θ in Prentice (1986) for the beta binomial.
The EPPM generalization of the binomial distribution complements the beta binomial dis-
tribution as it allows quite general levels of under-dispersion but only modest levels of over-
dispersion. Therefore a distribution formed by a combination of beta binomial for fs > 1
and EPPM generalized binomial for fs ≤ 1 will allow for the full range of under- and over-
dispersion in observed data. With the mean and scale-factor being dependent on covariates
as discussed in the previous sub-section, continuity is assured by both the EPPM general-
ized binomial and the beta binomial reducing to the simple binomial distribution for fs = 1.
Standard likelihood methods would apply as fs = 1 is not on the boundary of the parameter
spaces of either of the components forming the residual distribution.

3. Description of the functions
Models with two covariate dependencies linked to ps and fs are developed using Equations 1
and 3. The link function between ps and the linear predictor of covariates is either logit, pro-
bit, complementary log-log, cauchit, log, loglog, double exponential, double reciprocal, power
logit, or negative complementary log. The last four of these link functions are not available
in glm or betareg. References to them are Ford, Torsney, and Wu (1992), Gaudard, Karson,
Linder, and Tse (1993), and Tibshirani and Ciampi (1983). Only a log link function is used
for the scale-factor fs. Fitting to data is done using maximum likelihood, the optimization
method used being one of two of the options available in the R function optim, i.e., the
simplex method of Nelder and Mead (1967) ("Nelder-Mead"), or the "BFGS" method which
uses first derivatives. The first derivatives used in the latter method, and in calculating the
hessian matrix, are numerical ones obtained using the gradient function of the R package
numderiv of Gilbert and Varadhan (2019).
The R package Formula of Zeileis and Croissant (2010) is used to extract model information
from the formula input to BinaryEPPM. Offsets are included in the formulae specifications. To
avoid repeated extractions within subsidiary functions, extraction of model information such
as covariates.matrix.mean is only done once. As iteration is involved in the model fitting,
initial estimates of the parameters are needed. These can be provided in the vector initial
with a default, if unset, of initial estimates being produced within BinaryEPPM by fitting a
binomial model using glm. The matrix exponential function used for calculating the proba-
bilities of Equation 1 is from the package expm of Goulet, Dutang, Maechler, Firth, Shapira,
and Stadelmann (2019) which depends on the package Matrix of Bates and Maechler (2019).
Three pseudo R-squared are available, the first, is the square of the correlation between the
observed and predicted GLM linear predictor values; the other two are commonly used in
logistic regression, relevant references being Cox and Snell (1989) and Nagelkerke (1991).
The arguments of BinaryEPPM are

BinaryEPPM(formula, data, subset = NULL, na.action = NULL,
weights = NULL, model.type = "p and scale-factor",
model.name = "generalized binomial", link = "cloglog",
initial = NULL, method = "Nelder-Mead",
pseudo.r.squared = "square of correlation", control = NULL)
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Argument Description Default
formula paired formulae as in

Zeileis and Croissant (2010)
data a data.frame or a list
subset subsetting commands NULL
na.action action taken for NAs in data NULL
weights vector if data is a data.frame vector of ones

a list if data is a list list of lists of ones
attributes normalization, norm.to.n both NULL

model.type "p only" "p and scale-factor"
(only ps in Equation 4 modeled)
"p and scale-factor"
(ps and fs modeled)

model.name "binomial" ("p only") "generalized binomial"
"beta binomial"
"correlated binomial"
"generalized binomial"

link the GLM link function for ps "cloglog"
"logit" "probit" "cloglog"
"cauchit" "log" "loglog"
"doubexp" "doubrecip"
"negcomplog"
"powerlogit" attribute "power" "power" = 1

initial parameter initial values vector glm fit of binomial
method "Nelder-Mead" "Nelder-Mead"

"BFGS" attribute "grad.method" attribute "simple"
which is "simple" or "Richardson"

pseudo.r.squared "square of correlation" "square of correlation"
"R squared"
"max-rescaled R squared"

control list of control parameters see text for more detail

Table 1: Arguments of BinaryEPPM.

with details given in Table 1 together with defaults if any. The dependent variable is either a
column, or columns, where data is a data.frame; or a list within data where it is a list.
For the latter, the response variable list is one of frequency distributions. Several of the
example data sets are available in both forms to illustrate how to deploy them. Table 2 gives
details of the fitted model object of class ‘BinaryEPPM’ returned. It is a list similar to those
of objects with classes ‘glm’ and ‘betareg’ returned by calls to glm and betareg. Table 3
gives details of a set of S3 generic extractor functions for objects of class ‘BinaryEPPM’. The
set is similar to that of Table 1 of Cribari-Neto and Zeileis (2010) related to package betareg,
except there are no functions estfun, bread or linear.hypothesis. Also, gleverage and
cooks.distance are variants of the functions glm.diag and glm.diag.plots from package
boot (Canty and Ripley 2019) rather than betareg. The first four blocks refer to functions
specific to BinaryEPPM. The last block contains generic functions, the default versions of
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Component Description
data.type data.frame or list
list.data data as a list of frequency distributions
call the call to BinaryEPPM
formula the formula input
model.type "p only" or "p and scale-factor"
model.name as in Table 1 according to value of model.type
link the GLM link function for ps
covariates.matrix.p matrix of covariates for ps
covariates.matrix.scalef matrix of covariates for scale-factor
offset.p offset vector for ps
offset.scalef offset vector for scale-factor
coefficients the estimated coefficients
loglik the final log likelihood
vcov the estimated variance/covariance matrix
n needed for lmtest the number of observations
nobs needed for stats the number of observations
df.null null model degrees of freedom
df.residual residual degrees of freedom
vnmax a vector of number of trials
weights a vector of weights
converged whether converged
iterations number of iterations
method "Nelder-Mead" or "BFGS"
pseudo.r.squared pseudo R squared value
start initial estimates input
optim final estimates of coefficients
control control parameters of optim
fitted.values fitted values of ps
y observed values of ps
terms model terms

Table 2: Components of object returned by BinaryEPPM.

which work because of the information supplied by the functions of the first four blocks.
Package lmtest (Zeileis and Hothorn 2002) needs to be loaded to use coeftest and lrtest.
Function AIC comes from stats which is a default package loaded when R is started. In
Table 2 both n and nobs are included, so that functions from both packages lmtest and stats
can use the object returned. The limits on the values of θ (beta binomial) or ρ (correlated
binomial) can be obtained from the S3 extractor function predict with argument type =
"distribution.parameters". For given values of n and ps tables of limits can be constructed
using the subsidiary function Model.BCBinProb of BinaryEPPM. The supplementary file of
examples has code for calculating the table of limits for ρ as given in Kupper and Haseman
(1978).
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Function Description
print() a simple printed display
summary() standard regression output (coefficient estimates, standard

errors, partial Wald tests); returns an object of class
‘summary.BinaryEPPM’ containing the relevant summary
statistics (which has a print() method)

coef() extract coefficients of model (full, mean, or precision
components), a single vector of all coefficients by default

vcov() associated covariance matrix (with matching names)
predict() predictions (response, linear predictor ps, linear

predictor scale-factor, ps, scale-factor, scale-factor limits, mean,
variance, distribution probabilities, distribution parameters)
for existing and new data

fitted() fitted means for observed data
residuals() extract residuals (deviance, Pearson, response, standardized

deviance, standardized Pearson residuals), defaulting to
standardized Pearson residuals

terms() extract terms of model components
model.matrix() extract model matrix of model components
model.frame() extract full original model frame
logLik() extract fitted log-likelihood
plot() diagnostic plots of residuals, predictions, leverages, etc.
hatvalues() hat values (diagonal of hat matrix)
cooks.distance() Cook’s distance
gleverage() generalized leverage
waldtest() Wald tests of model parameters
coeftest() partial Wald tests of coefficients
lrtest() likelihood ratio tests of model parameters
AIC() compute information criteria (AIC, BIC, . . . )

Table 3: Generic functions for use with objects of class ‘BinaryEPPM’.

4. Examples
To run the examples as shown the package lmtest needs to be installed and loaded.

4.1. Data of number of rope spores in a dilution series of potato flour

These dilution series data originate from Finney (1971), where a number of samples (n = 5)
at each of a series of dilutions of a suspension of potato flour were examined for rope spores.
The data are given in Faddy and Smith (2008), Faddy and Smith (2012). Both forms of
the data are available with data("ropespores.grouped", package = "BinaryEPPM") and
data("ropespores.case", package = "BinaryEPPM") representing list and data.frame
respectively. All models fitted have the (approximate) ps modeled according to the series of
dilutions using a cloglog link function

ps = mean
n

≈ (1 − exp(− exp(β0 − log(dilution)))) .



8 Mean and Variance Modeling of Grouped Binary Data

The preliminary analysis of these data in Faddy and Smith (2008) was based on a binomial
distribution from Equation 2 with log(a) = β0− log(dilution), corresponding to the parameter
a being proportional to the reciprocal of the dilution, and log(dilution) an offset. Here,
1 − exp(−a) is the probability of a single sample being fertile for rope spores and exp(−a)
the probability of a single sample being sterile. Fitting a binomial followed by generalized
binomial Equation 3 with constant b using the data.frame form of input

R> data("ropespores.case", package = "BinaryEPPM")
R> output.fn <- BinaryEPPM(number.spores / number.tested ~
+ 1 + offset(logdilution), data = ropespores.case,
+ model.name = "binomial")
R> output.fn.one <- update(output.fn, model.type = "p only",
+ model.name = "generalized binomial")
R> summary(output.fn.one)

Dependent variable a vector of numerator / denominator.

Call:
BinaryEPPM(formula = number.spores/number.tested ~ 1 + offset(logdilution),

data = ropespores.case, model.type = "p only",
model.name = "generalized binomial")

Model type : p only
Model name : generalized binomial
Link p : cloglog
non zero offsets in linear predictors
Coefficients (model for p with cloglog link):
Coefficient of GB parameter has 1 subtracted from it
so the test is against 1 i.e., a binomial.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.86624 0.14352 13.0036 1.16e-06 ***
GB parameter 8.49031 6.39009 1.3287 0.2206
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1

Type of estimator: ML (maximum likelihood)
Log-likelihood: -3.244071 on 2 Df
Pseudo R-squared: 0.892522 type square of correlation
Number of iterations: 67 of optim method Nelder-Mead
return code 0 successful

A likelihood ratio test can be performed and AIC values produced to compare the models.

R> lrtest(output.fn, output.fn.one)
R> AIC(output.fn, output.fn.one)
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In the following, model 1 (output.fn) is a binomial and model 2 (output.fn.one) a gener-
alized binomial.

Likelihood ratio test

Model 1: number.spores/number.tested ~ 1 + offset(logdilution)
Model 2: number.spores/number.tested ~ 1 + offset(logdilution)

#Df LogLik Df Chisq Pr(>Chisq)
1 1 -5.5942
2 2 -3.2441 1 4.7003 0.03016 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1

df AIC
output.fn 1 13.18843
output.fn.one 2 10.48814

The generalized binomial model with constant b is superior to the binomial with significant
under-dispersion apparent according to the likelihood ratio test, although not according to
the Wald test due to considerable asymmetry in the profile log-likelihood as a function of this
parameter. The estimates of the other parameter β0 are rather different due to the formulation
of the generalized binomial model in terms of the approximate mean (Equation 4), but this
has only a small effect on the actual means of the fitted model.
The complementary log–log link function is asymmetric about the 50% (ED50) as compared
to the symmetric logit link function. To assess how a more general asymmetric link function
might perform, the profile likelihood can be optimized for a power logit link function.

R> output.fn.two <- update(output.fn.one, link = "powerlogit")
R> Results <- optim(par = 1, fn = function(par, input.data, ...) {
+ local.link <- "powerlogit"
+ attr(local.link, which = "power") <- par
+ sum.logL <- logLik(update(output.fn.two, link = local.link))
+ return(sum.logL)}, input.data = ropespores.case,
+ method = "Brent", lower = 1/3, upper = 3,
+ control = list(fnscale = -1), hessian = TRUE)
R> se <- sqrt(-solve(Results$hessian)[1, 1])
R> data.frame(name = "power", Results$par, se, name = "log likelihood",
+ Results$value)
R> cat(paste("\n", "power", round(Results$par, digits = 4), "se",
+ round(sqrt(-solve(Results$hessian)[1, 1]), digits = 4),
+ "log likelihood", round(Results$value, digits = 4), "\n", sep = " "))

power 2.5677 se 2.4504 log likelihood -2.5956

The difference in log-likelihoods here is insufficient for AIC to favor a model with a power
logit link over one with the complementary log-log link.
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4.2. Frequency of sex combinations in litters of pigs

The title of Brooks, James, and Gray (1991) suggests that the data they consider show under-
dispersion relative to the binomial distribution. Of the three data sets mentioned, only those
for the Yorkshire breed will be used here. The fitting of a binomial distribution to these
data with litter size treated as a factor with 9 levels suggests that such a model might be a
satisfactory fit.

R> output.fn <- BinaryEPPM(data = Yorkshires.litters,
+ model.name = "binomial", number.success ~ 0 + fsize)
R> cat(paste("\n", "generalized Pearson goodness of fit statistic",
+ round(sum(residuals(output.fn, type = "pearson")^2), digits = 4),
+ "on", sum(sapply(1:length(Yorkshires.litters$number.success),
+ function(i) { sum(c(Yorkshires.litters$number.success[[i]]))})) -
+ length(attr(Yorkshires.litters$fsize, which = "levels")), "df","\n",
+ sep = " "))

generalized Pearson goodness of fit statistic 2614.2181 on 2602 df

Fitting binomial and generalized binomial models with probability ps dependent on litter
size, the latter with a constant scale-factor fs would support this. However, there is quite an
improvement in fit by allowing the scale-factor fs also to depend on litter size.

R> output.fn <- BinaryEPPM(data = Yorkshires.litters,
+ model.name = "binomial", number.success ~ 1 + vsize)
R> output.fn.one <- BinaryEPPM(data = Yorkshires.litters,
+ number.success ~ 1 + vsize | 1)
R> output.fn.two <- BinaryEPPM(data = Yorkshires.litters,
+ number.success ~ 1 + vsize | 1 + vsize)
R> lrtest(output.fn, output.fn.one, output.fn.two)

Model 1: number.success ~ 1 + vsize
Model 2: number.success ~ 1 + vsize | 1
Model 3: number.success ~ 1 + vsize | 1 + vsize

#Df LogLik Df Chisq Pr(>Chisq)
1 2 -4776.6
2 3 -4776.5 1 0.0726 0.7876
3 4 -4774.6 1 3.8115 0.0509 .

A data.frame of predicted summary statistics can be printed.

R> print(data.frame(size = Yorkshires.litters$vsize,
+ mean = predict(output.fn.two, type = "mean"),
+ variance = predict(output.fn.two, type = "variance"),
+ p = predict(output.fn.two, type = "p"),
+ scale.factor = predict(output.fn.two, type = "scale.factor"),
+ lower = predict(output.fn.two,
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Figure 1: Linear predictor plots.

+ type = "scale.factor.limits")[["lower"]],
+ upper = predict(output.fn.two,
+ type = "scale.factor.limits")[["upper"]]),
+ row.names = FALSE)

size mean variance p scale.factor lower upper
5 2.526440 1.378628 0.5052879 1.1030256 0 2.035225
6 3.036085 1.626883 0.5060141 1.0847454 0 2.033201
7 3.544445 1.859951 0.5063493 1.0630006 0 2.031182
8 4.051727 2.078820 0.5064658 1.0395836 0 2.029168
9 4.558034 2.284360 0.5064482 1.0154399 0 2.027159

10 5.063419 2.477295 0.5063419 0.9910774 0 2.025154
11 5.567904 2.658235 0.5061731 0.9667782 0 2.023155
12 6.071499 2.827718 0.5059583 0.9427066 0 2.021160
13 6.574205 2.986238 0.5057081 0.9189622 0 2.019169

The calculation of these exact summary statistics is done using the probabilities in Equation 1
for the generalized binomial, rather than the approximate formulae in Equations 4 and 5. The
following code uses predict to compare these approximate forms with the above predicted
values of ps and fs. Figure 1 shows plots of these where the lines represent the approximate
(linear) values and the symbols the exact (non linear) values.
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R> approx.lp.p <- predict(output.fn.two, type = "linear.predictor.p")
R> approx.lp.sf <- predict(output.fn.two,
+ type = "linear.predictor.scale.factor")
R> exact.lp.p <- log( -log(1 - predict(output.fn.two, type = "p")))
R> exact.lp.sf <- log(predict(output.fn.two, type = "scale.factor"))
R> plot(x = c(5, 13), y = c(-0.40, 0.15), xlab = "litter size",
+ ylab = "linear predictor values", type = "n")
R> lines(x = Yorkshires.litters$vsize, y = approx.lp.p, lty = 1)
R> points(x = Yorkshires.litters$vsize, y = exact.lp.p, pch = 1)
R> lines(x = Yorkshires.litters$vsize, y = approx.lp.sf, lty = 2)
R> points(x = Yorkshires.litters$vsize, y = exact.lp.sf, pch = 3)
R> legend(5.1, -0.2, legend = c("log( -log(1 - p_s)", "log(f_s)"),
+ pch = c(1, 3), cex = 1.0)

At least for these data, the approximations are numerically close, but more importantly the
exact values show only minor perturbations from linearity.
The data from the first five litters sizes show scale-factors greater than one and the data
from the last four show scale-factors less than one. The following shows how a combined
model with beta binomial for the over-dispersed litter sizes and generalized binomial for the
under-dispersed litter sizes can be fitted.

R> in.par <- c(output.fn.two$coefficients$p.est,
+ output.fn.two$coefficients$scalef.est)
R> Results <- optim(par = in.par, fn = function(in.par, in.data,
+ model.names, subsets, ...) {
+ subset1 <- BinaryEPPM(data = in.data, model.name = model.names[1],
+ subset = subsets[[1]], initial = in.par,
+ number.success ~ 1 + vsize | 1 + vsize, control = list(maxit = 1))
+ subset2 <- BinaryEPPM(data = in.data, model.name = model.names[2],
+ subset = subsets[[2]], initial = in.par,
+ number.success ~ 1 + vsize | 1 + vsize, control = list(maxit = 1))
+ slogL <- logLik(subset1) + logLik(subset2)
+ attr(slogL, which = "df") <- attr(logLik(subset1), which = "df") +
+ attr(logLik(subset2), which = "df")
+ attr(slogL, which = "nobs") <- attr(logLik(subset1), which = "nobs") +
+ attr(logLik(subset2), which = "nobs")
+ return(slogL) }, in.data = Yorkshires.litters,
+ model.names = c("beta binomial", "generalized binomial"),
+ subsets = list(1:5, 6:9), control = list(fnscale = -1),
+ hessian = TRUE)
R> cat(paste("\n", "log likelihood", round(Results$value, digits = 4),
+ "\n", sep = " "))

log likelihood -4775.0018

The resulting parameter estimates together with their standard errors can be printed.
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R> print(data.frame(parameters = c("intercept p", "slope p",
+ "intercept scale factor", "slope scale factor"), Results$par,
+ se = c(sqrt(diag(solve(Results$hessian))))), row.names = FALSE)

parameters Results.par se
intercept p -0.3443024694 0.015661870

slope p -0.0005205837 0.001835825
intercept scale factor 0.2083432559 0.076138071

slope scale factor -0.0220887354 0.008843641

A data.frame of predicted summary statistics can be printed.

R> first.subset <- BinaryEPPM(data = Yorkshires.litters,
+ model.name = "beta binomial", subset = 1:5, initial = Results$par,
+ number.success ~ 1 + vsize | 1 + vsize, control = list(maxit = 1))
R> second.subset <- BinaryEPPM(data = Yorkshires.litters,
+ model.name = "generalized binomial", subset = 6:9,
+ initial = Results$par, number.success ~ 1 + vsize | 1 + vsize,
+ control = list(maxit = 1))
R> print(data.frame(size = Yorkshires.litters$vsize,
+ mean = c(predict(first.subset, type = "mean"),
+ predict(second.subset, type = "mean")),
+ variance = c(predict(first.subset, type = "variance"),
+ predict(second.subset, type = "variance")),
+ p = c(predict(first.subset, type = "p"),
+ predict(second.subset, type = "p")),
+ scale.factor = c(predict(first.subset, type = "scale.factor"),
+ predict(second.subset, type = "scale.factor")),
+ lower = c(predict(first.subset,
+ type = "scale.factor.limits")[["lower"]],
+ predict(second.subset, type = "scale.factor.limits")[["lower"]]),
+ upper = c(predict(first.subset,
+ type = "scale.factor.limits")[["upper"]],
+ predict(second.subset, type = "scale.factor.limits")[["upper"]])),
+ row.names = FALSE)

size mean variance p scale.factor lower upper
5 2.534078 1.378309 0.5068156 1.1028520 0.4374562 5.000000
6 3.039805 1.617853 0.5066342 1.0787585 0.4526227 6.000000
7 3.545169 1.846277 0.5064527 1.0551913 0.4622157 7.000000
8 4.050170 2.063953 0.5062713 1.0321390 0.4688047 8.000000
9 4.554809 2.271241 0.5060899 1.0095903 0.4735900 9.000000

10 5.060765 2.471189 0.5060765 0.9886216 0.0000000 2.023917
11 5.567677 2.663229 0.5061524 0.9685937 0.0000000 2.023174
12 6.074282 2.845601 0.5061901 0.9486791 0.0000000 2.022432
13 6.580583 3.018647 0.5061987 0.9289574 0.0000000 2.021691
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The predicted ps and scale factor with its limits for a litter size of 14 can be produced from
the fitted model, illustrating use of the newdata argument of predict.

R> newdata <- data.frame(vsize = 14, vnmax = c(14),
+ mean.p = Results$par[[1]], mean.scalef = Results$par[[2]])
R> print(data.frame(size = newdata$vsize,
+ p = predict(subset2, newdata, type = "p"),
+ scale.factor = predict(second.subset, newdata, type = "scale.factor"),
+ lower = predict(second.subset, newdata = newdata,
+ type = "scale.factor.limits")[["lower"]],
+ upper = predict(second.subset, newdata = newdata,
+ type = "scale.factor.limits")[["upper"]]), row.names = FALSE)

size p scale.factor lower upper
14 0.5061843 0.90948 0 2.025047

4.3. Chromosome aberrations

The two data sets are of chromosome aberrations amongst survivors of the atomic bombs
exploded over Japan in 1945. The response variable is the number of cells that show chro-
mosome aberrations out of one hundred tested. Although nominally the same data there are
differences between the two data sets. The Prentice (1986) set Hiroshima.grouped consists
of four frequency distributions, i.e., one for a zero dose and three others where the doses are of
ranges, and it is assumed that every survivor has had one hundred cells tested. The Morel and
Neerchal (2012) set Hiroshima.case is for individual survivors and not all survivors had one
hundred cells tested. The doses of Hiroshima.grouped have been transformed to a standard
normal gz to match those of Hiroshima.case which are represented by z, with zz and gzz
representing dose2. Morel and Neerchal (2012, Section 5.4) fit a beta binomial model similar
to that of "p and scale-factor" but to ps and the over-dispersion parameter θ of the beta
binomial, both having a logit link function. The following sequence of commands replicates
this model fit, but to a "p and scale-factor" model with log link for the scale-factor, using
Hiroshima.grouped to provide initial estimates for fitting the model to Hiroshima.case.

R> output.group <- BinaryEPPM(number.aberrations ~ gz + gzz | gz + gzz,
+ data = Hiroshima.grouped, model.type = "p and scale-factor",
+ model.name = "beta binomial", link = "logit",
+ pseudo.r.squared.type = "max-rescaled R squared")
R> initial <- output.group$optim$par
R> names(initial) <- c("(Intercept)", "z", "zz", "(Intercept)", "z", "zz")
R> output.case <- BinaryEPPM(t/m ~ z + zz | z + zz, data = Hiroshima.case,
+ initial=initial, model.type = "p and scale-factor",
+ model.name = "beta binomial", link = "logit",
+ pseudo.r.squared.type = "max-rescaled R squared")
R> summary(output.case)

Dependent variable a vector of numerator / denominator.
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Call:
BinaryEPPM(formula = t/m ~ z + zz | z + zz, data = Hiroshima.case,
model.type = "p and scale-factor", model.name = "beta binomial",
link = "logit", initial = initial,
pseudo.r.squared.type = "max-rescaled R squared")

Model type : p and scale-factor
Model name : beta binomial
Link p : logit
Link scale-factor : log

Coefficients (model for p with logit link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.012536 0.044732 -67.347 < 2.2e-16 ***
z 1.375235 0.055280 24.878 < 2.2e-16 ***
zz -0.348296 0.033072 -10.532 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1

Coefficients (model for scale factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.044516 0.077455 13.4855 < 2.2e-16 ***
z 0.847877 0.097408 8.7044 < 2.2e-16 ***
zz -0.153439 0.054284 -2.8266 0.004851 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1

Type of estimator: ML (maximum likelihood)
Log-likelihood: -1428.126 on 6 Df
Pseudo R-squared: 0.557056 type max-rescaled R squared
Number of iterations: 351 of optim method Nelder-Mead
return code 0 successful

Morel and Neerchal (2012) report a lower log-likelihood value of -1429.6 for their model which
had the parameter θ of the beta binomial distribution, rather than the scale-factor, dependent
on the covariates.
Using an alternative generalized binomial model with complementary log-log link and log
link functions for ps and fs respectively, resulted in a log-likelihood of −1755.506 for the
Hiroshima.case data set, showing a much poorer fit than the beta binomial which would
generally be preferred for over-dispersed data.
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4.4. Food stamps

These data on food stamps are used as an example in Künsch, Stefanski, and Carroll (1989)
available from package robustbase (Maechler et al. 2019; Todorov and Filzmoser 2009). Here
they are used to illustrate how to use weights. The methodology used in BinaryEPPM is
maximum weighted likelihood estimation, which is associated with robust estimation. The
weights used come from use of glmrob from robustbase although their use here does not
reproduce the analysis of glmrob. It reproduces the analysis of glm using the same weights.
The weights are those of Example 5.2 of Künsch et al. (1989).

R> output.fn <- BinaryEPPM(participation / n ~ tenancy + suppl.income +
+ income, data = foodstamp.case, weights = foodstamp.case$weights1,
+ model.type = "p only", model.name = "binomial", link = "logit",
+ pseudo.r.squared.type = "max-rescaled R squared")
R> summary(output.fn)

Dependent variable a vector of numerator / denominator.

Call:
BinaryEPPM(formula = participation/n ~ tenancy + suppl.income + income,

data = foodstamp.case, weights = foodstamp.case$weights1,
model.type = "p only", model.name = "binomial", link = "logit",
pseudo.r.squared.type = "max-rescaled R squared")

Model type : p only
Model name : binomial
Link p : logit
Coefficients (model for p with logit link):

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1764381 0.7035860 0.2508 0.802345
tenancy1 -2.3639420 0.7097606 -3.3306 0.001097 **
suppl.income1 0.8515868 0.5835291 1.4594 0.146611
income -0.0035141 0.0016648 -2.1109 0.036488 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1

Maximum weighted likelihood regression.
Vector of weights used.

Type of estimator: ML (maximum likelihood)
Log-likelihood: -38.11763 on 4 Df
Pseudo R-squared: 0.4045576 type max-rescaled R squared
Number of iterations: 97 of optim method Nelder-Mead
return code 0 successful
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These data are also available in frequency distribution form with the dependent variable now
l.participation and the weights variable l.weights1 defined as list. Use of a list for
data expects there to be a list within the list data which is named the dependent variable
in Formula. The two normalization attributes of weights which is also expected to be a list,
have been set to illustrate how normalization can be done. The code below is for analyzing
data where the dependent variable and the weights are list. The output is essentially the
same as that above and hence not shown.

R> attr(l.weights1, which = "normalize") <- TRUE
R> attr(l.weights1, which = "norm.to.n") <- 150
R> output.fn <- BinaryEPPM(l.participation ~ tenancy + suppl.income + income,
+ data = foodstamp.grouped, model.name = "binomial",
+ link = "logit", weights = foodstamp.grouped$l.weights1,
+ pseudo.r.squared.type = "max-rescaled R squared")
R> summary(output.fn)

4.5. Other data sets
Testing of BinaryEPPM used other data sets which have been included in BinaryEPPM but
not reported here. Code for use with these other data sets is available in a supplementary file.
These data sets are from Kupper and Haseman (1978), Williams (1996), Hilbe (2011) (Titanic
data of Table 9.37), and Prater (1956) (gasoline yield). The last of these has gasoline yield
as a binomial variable with n = 1000. The code reproduces the analyses of Cribari-Neto
and Zeileis (2010) on these data, where the response is (gasoline yield)/n and is treated as
a continuous beta distributed variable between 0 and 1. The analyses as a beta binomial
variable were done to compare how closely the two analyses agree. Models with an n of
such size stress BinaryEPPM due to the sizes of the matrices involved, and the time taken
to run them, so they are not recommended. However, the close agreement of the results
does illustrate the similarity of a beta binomial analysis of a discrete variable with a beta
distribution analysis of the analogous continuous variable.

5. Concluding remarks
This article has described the use of package BinaryEPPM to fit EPPMs and other distri-
butional models to grouped binary data exhibiting under- and/or over-dispersion relative to
the binomial distribution. A variety of covariate dependencies and data structures are cov-
ered in examples that provide illustrations of the ways in which BinaryEPPM can be used
in the analysis of grouped binary data. It complements the similar modeling in Smith and
Faddy (2016) of count data using EPPMs. Package CountsEPPM (Smith and Faddy 2016)
is available on the Comprehensive R Archive Network (CRAN) as a contributed package at
https://CRAN.R-project.org/package=CountsEPPM.
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