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Abstract

The Bayesian spectral analysis model (BSAM) is a powerful tool to deal with semipara-
metric methods in regression and density estimation based on the spectral representation
of Gaussian process priors. The bsamGP package for R provides a comprehensive set
of programs for the implementation of fully Bayesian semiparametric methods based on
BSAM. Currently, bsamGP includes semiparametric additive models for regression, gen-
eralized models and density estimation. In particular, bsamGP deals with constrained
regression models with monotone, convex/concave, S-shaped and U-shaped functions by
modeling derivatives of regression functions as squared Gaussian processes. bsamGP also
contains Bayesian model selection procedures for testing the adequacy of a parametric
model relative to a non-specific semiparametric alternative and the existence of the shape
restriction. To maximize computational efficiency, we carry out posterior sampling al-
gorithms of all models using compiled Fortran code. The package is illustrated through
Bayesian semiparametric analyses of synthetic data and benchmark data.

Keywords: cosine basis, Gaussian process priors, Markov chain Monte Carlo, R, shape restric-
tions, semiparametric models, spectral representation.

1. Introduction
Gaussian processes provide a natural method for specifying prior distributions on the space
of functions in Bayesian inference. Since the seminal results on Gaussian process priors
(Leonard 1978; O’Hagan 1978) in regression and density estimation, Gaussian processes have
been widely used as nonparametric priors for unknown random functions. For instance,
Gelfand, Kottas, and MacEachern (2005), Duan, Guindani, and Gelfand (2007), and Banerjee,
Gelfand, Finley, and Sang (2008) developed models based on Gaussian processes for spatial
statistics; Lenk (1999), Shi, Murray-Smith, and Titterington (2005), and Banerjee, Dunson,
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and Tokdar (2013) used a Gaussian process as a prior for unknown regression functions; and,
Lenk (1988, 1991, 2003) and Tokdar (2007) proposed logistic Gaussian process priors based on
the logarithmic transformation of Gaussian processes for nonparametric density estimation.
More recently, Gaussian process priors have also been utilized in functional and longitudinal
data analyses (see, e.g., Zhu, Vannucci, and Cox 2010, Kaufman and Sain 2010, Wang and
Shi 2014, and Yang, Zhu, Choi, and Cox 2016).
With the increasing interest in using Gaussian process priors in Bayesian inference, many
easy-to-use software packages have been developed for a wide variety of applications. GPML
(Rasmussen and Nickisch 2010), and GPstuff (Vanhatalo, Riihimäki, Hartikainen, Jylänki,
Tolvanen, and Vehtari 2013) are the widely-used toolboxes in MATLAB (The MathWorks
Inc. 2019) for Gaussian process models. These toolboxes provide modular functions to spec-
ify mean and covariance functions as well as various likelihood functions involving Gaussian
process models and inference methods such as Markov chain Monte Carlo (MCMC), expec-
tation propagation, and variational Bayes methods. Further discussions on and comparisons
of different features in GPML and GPstuff can be found in Vanhatalo et al. (2013) (see,
e.g., Table 1 of Vanhatalo et al. 2013). In R (R Core Team 2019), examples of packages
for Gaussian process regression models include tgp (Gramacy 2007), spectralGP (Paciorek
2007), bigGP (Paciorek, Lipshitz, Zhuo, Prabhat, Kaufman, and Thomas 2015), and laGP
(Gramacy 2016). tgp implements fully Bayesian inference on treed Gaussian process models
including linear models, classification and regression tree models, and single-index models.
spectralGP implements Bayesian smoothing with a Fourier basis representation of Gaussian
processes based on an extension of the work by Wikle (2002) and provides template code
for fitting Bayesian models for exponential family data with normal, Poisson, and binomial
distributions. With the recent advancement in parallel computing, bigGP implements paral-
lel linear algebra operations using threading and message-passing, which is useful for kriging
and Gaussian process regression, and laGP implements local approximate Gaussian process
regression for large-scale modeling and sparse computation with massive data sets. Other
software packages written in different programming languages, such as C, C++, and Python,
are available at http://www.gaussianprocess.org/.
The Bayesian spectral analysis model (BSAM) with Gaussian process priors (e.g, Lenk 1999,
Lenk 2003, and Lenk and Choi 2017) provides a powerful tool to deal with semiparametric
methods in regression and density estimation. Here, the prior for the unknown function is
based on an infinite series expansion with a Karhunen-Loève representation of a second-order
Gaussian process. The BSAM has been shown to work well in estimating an unknown semi-
parametric function and in choosing appropriate functional components for model selection.
More importantly, the BSAM framework provides a Bayesian method for shape-restricted re-
gressions with monotone, convex/concave, S-shaped and U-shaped curves by modeling deriva-
tives of regression functions as squared Gaussian processes (Lenk and Choi 2017).
Accordingly, we develop a user-friendly software application called bsamGP (Jo, Choi, Park,
and Lenk 2019) that not only implements the models in Lenk (1999), Lenk (2003), Jo,
Roh, and Choi (2016), and Lenk and Choi (2017) for regression and density estimation
with continuous data, but also implements other semiparametric models for discrete data.
Thus, we aim to provide practitioners with easy access to Bayesian spectral analysis models
based on recent methodologies. bsamGP is an R package available from http://statlab2.
korea.ac.kr/software/bsamgp and from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=bsamGP. It is implemented in the R statistical
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computing environment and utilizes compiled Fortran 90 code to maximize computational
efficiency when generating random samples from posterior distributions.
Although Bayesian semiparametric models are extremely powerful, their applicability depends
on the availability of user-friendly software. Because semiparametric models are typically
based on complex representations, the tools to fit semiparametric models in regression and
density estimation may not be easily accessible to non-experts or practitioners. Currently,
there are a few good command-driven software packages in R for semiparametric modeling.
Package DPpackage (Jara, Hanson, Quintana, Müller, and Rosner 2011) is perhaps the most
popular R package that includes many semiparametric models; it mostly uses Dirichlet process
mixture models and B-spline functions, and it provides either flexible regression or density
estimation for data analysis. Moreover, there are several general-purpose programs available
for Bayesian inference, including BUGS (Lunn, Spiegelhalter, Thomas, and Best 2009), JAGS
(Plummer 2003), and Stan (Carpenter et al. 2016), which can be tailored for fitting semi-
parametric models for regression and density estimation. For example, BUGS can handle
Dirichlet process priors and nonparametric regression with spline and radial basis functions
as well as the basic BSAM of Lenk (1999) with cosine series (see, e.g., Congdon 2006, Marley
and Wand 2010, and Congdon 2014). Wood (2016) developed the jagam function in package
mgcv (Wood 2017), which automatically generates JAGS code for the generalized additive
model (GAM) supported by mgcv, utilizing spline-like basis expansions. The brms (Bürkner
2017) package implements Bayesian multilevel models in R using Stan, which also includes
non-linear models. In addition, Gaussian process models can be built using Stan for regression
and classification (Stan Development Team 2017).
Although a number of fully Bayesian programs and user-friendly software packages continue
to be developed, as mentioned earlier, these programs and packages generally do not include
semiparametric models with shape restrictions, with the exceptions of the monotonicity con-
straints in GPstuff (Vanhatalo et al. 2013) for Gaussian process regression, in bisoreg (Curtis
and Ghosh 2011) with Bernstein polynomials, and in bnpmr (Bornkamp and Ickstadt 2009)
with mixtures of cumulative distributions, in spite of recent results using Bayesian shape con-
straints for semiparametric models (see, e.g., Meyer, Hackstadt, and Hoeting 2011, Lin and
Dunson 2014, Golchi, Bingham, Chipman, and Campbell 2015, Wang and Berger 2016, Lenk
and Choi 2017 and the references therein). To the best of our knowledge, bsamGP is the
first user-friendly software developed for the purpose of Bayesian shape-restricted function
estimation for semiparametric generalized additive models, handling monotonicity, convexity,
S-shaped functions and U-shaped functions.
Note that it is possible to incorporate the basic BSAM without shape restrictions into the
general programs either through direct coding with BUGS and Stan or by interfacing JAGS and
mgcv developed in Wood (2016). However, it would be rather unfriendly, time-consuming, and
tedious for practitioners to fit the semiparametric models with shape restrictions. In addition,
BSAM with the shape restrictions of Lenk and Choi (2017) involves numerical integration
and quadratic forms to be evaluated for modeling the derivatives of the unknown function
as squared Gaussian processes. This would be computationally inefficient and cumbersome
when using the general purpose MCMC sampling implementations, particularly for estimating
S-shaped and U-shaped functions.
bsamGP currently supports various parametric and semiparametric models with nonpara-
metric components using the Gaussian process priors: linear regression models with Gaussian
and non-Gaussian errors, partial linear regression models with Gaussian and non-Gaussian
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errors, partial linear quantile regression models based on asymmetric Laplace distributions
and Dirichlet mixtures of asymmetric Laplace distributions, generalized partial linear regres-
sion models (probit and logistic regression models for binary data and Poisson and negative
binomial regression models for count data), and density estimation models using a logistic
Gaussian process prior. For non-Gaussian errors, Dirichlet process mixture models are ex-
ploited for either non-Gaussian or unknown error distributions. In particular, bsamGP mod-
els unknown regression functions with monotonic, monotonic convex or concave, S-shaped,
or U-shaped shape constraints. As explained previously, both applications use novel squared
Gaussian process priors that assume that the derivatives of the functions are the squares of
Gaussian processes. In addition, bsamGP contains model selection procedures for testing the
existence of a shape restriction in a regression model as well as the adequacy of a paramet-
ric model relative to a non-specific alternative in a partial regression model based on the
computation of marginal likelihoods.
The rest of this paper is organized as follows. Section 2 briefly reviews the approach to partial
linear models using BSAM, as implemented in bsamGP, and explains how shape constraints
are imposed on the unknown function. Then, we present basic procedures for partial lin-
ear quantile models, generalized partial linear models, and density estimation using BSAM.
Section 3 illustrates the basic usage of the main functions and methods of bsamGP using syn-
thetic data sets and demonstrates how shape restrictions are specified on the semiparametric
regression models with various options in bsamGP using benchmark data sets. Section 4
concludes with a discussion on a possible extension to the bsamGP package.

2. Bayesian spectral analysis models
In this section, we briefly review a Gaussian process and its spectral representation, and
then describe various semiparametric models using a spectral analysis of a Gaussian process
as a prior for nonparametric components. Gaussian processes are widely used to define
prior distributions over functions with continuous domains (e.g., see Rasmussen and Williams
2006, Murphy 2012, and Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2013). Let
Z = (Z(x), x ∈ X ) and X be an arbitrary index set, such as time or space. A stochastic
process Z is called a Gaussian process if the marginal distribution of any finite-dimensional
Z(x1), . . . , Z(xm), where x1, . . . , xm ∈ X , is multivariate normal. This process is clearly
determined by the mean function µ(x) = E [Z(x)] and the covariance function ν(x, x′) =
E [{Z(x)− µ(x)} {Z(x′)− µ(x′)}] for x, x′ ∈ X .
A spectral analysis model of a Gaussian process is defined by linearizing its covariance matrix
with the Karhunen-Loève representation (see, e.g., Grenander 1981). Let Z be a second-order
Gaussian process with a mean function equal to zero and the covariance function COV(s, t).
Let ϕ0(x), ϕ1(x), ϕ2(x), . . . be orthonormal basis functions for all x ∈ [0, 1]. Then, a spectral
analysis model represents the Gaussian process Z as an infinite series expansion with the
Karhunen-Loève representation

Z(x) =
∞∑
j=0

θjϕj(x), x ∈ [0, 1], (1)

and its covariance function is given by COV(x, x′) = ∑∞
j=0 ν

2
jϕj(x)ϕj(x′), where

∑∞
j=0 ν

2
j <∞

and ν2
j =

∫ 1
0
∫ 1

0 COV(s, t)ϕj(s)ϕj(t)dsdt.
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All of the methods implemented in bsamGP are based on the spectral representation in (1)
of Gaussian processes, in particular using a Fourier series expansion based on the cosine basis
functions (Lenk 1999, 2003; Lenk and Choi 2017):

ϕ0(x) = 1 and ϕj(x) =
√

2 cos(πjx), j ≥ 1, 0 ≤ x ≤ 1, (2)

θj =
∫ 1

0
Z(x)ϕj(x)dx, j ≥ 0.

Note that the cosine functions in (2) form an orthonormal basis for piece-wise continuous
functions on [0, 1] (see, e.g., Kreider, Kuller, Ostberg, and Perkins 1966), and that the spec-
tral analysis models facilitate the computation of the posterior distribution of the Gaussian
process. If the support of x is S, then the orthonormal basis can be defined as ϕ0(x) =

√
q(x)

and ϕj(x) =
√

2q(x) cos[πjQ(x)], where Q is a cumulative distribution function with support
S, and q is its density.

2.1. The BSAR model

We first consider a partial linear additive model for the mean regression. Let yi and wi be
the response and the vector of parametric predictors, respectively. Further, let xi,k be the
covariate related to the response through an unknown nonlinear function. The partial linear
additive model is given as follows:

yi = w>i β +
K∑
k=1

fk(xi,k) + εi, i = 1, . . . , n, (3)

where fk is an unknown nonparametric function of the scalar xi,k ∈ [0, 1], which is estimated
using the spectral analysis model of the Gaussian process given in (1) and (2), and the error
terms {εi} are a random sample from a normal distribution, N (0, σ2). For the spectral
coefficients of each function fk, we assign the scale-invariant prior (Lenk and Choi 2017):

θjk | σ, τk, γk ∼ N
(
0, σ2τ2

k exp[−jγk]
)
, j ≥ 1. (4)

With regard to the priors of the hyperparameters τ2
k and γk, we consider the following two

specifications:

• T smoother: τ2
k ∼ IG

( r0,σ
2 ,

s0,σ
2
)
and γk ∼ Exp(w0).

• Lasso smoother: τ2
k ∼ Exp(u0) and γk ∼ Exp(w0).

To complete the model specification, we choose the conjugate priors for β and σ2:

β | σ ∼ N
(
m0,β, σ

2V0,β
)
, σ2 ∼ IG

(
r0,σ
2 ,

s0,σ
2

)
.

We refer to this model as the Bayesian spectral analysis regression (BSAR) in the remainder of
this paper. The MCMC sampling steps for BSAR are not complicated because all parameters
except γk have conjugate priors for T smoother, whereas all the parameters other than τ2

k and
γk have conjugate priors for Lasso smoother. Specifically, we generate the posterior samples
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of β, σ2 and θ from the explicit full conditional distributions, and we use slice sampling
methods (e.g., Damien, Wakefield, and Walker 1999 and Neal 2003) in order to generate γk
for T smoother and both τ2

k and γk for Lasso smoother. The further details of sampling
procedures with posterior distributions can be found in Lenk (1999) and Lenk and Choi
(2017).
Additionally, we consider modeling the error terms {εi} nonparametrically as a random sample
from the Dirichlet process mixture models, which can provide a flexible and robust regression
analysis of data. Specifically, the error distributions are assumed to follow one of two mixture
models as follows:

• Scale mixture: εi iid∼
∫
N
(
εi | 0, σ2) dG (σ2),

G ∼ DP (M,G0) , M ∼ Ga(aM , bM ), G0 = IG
(
σ−2; r0,σ

2 ,
s0,σ
2

)
.

• Location-scale mixture: εi iid∼
∫
N
(
εi | µ, σ2) dG (µ, σ2),

G ∼ DP (M,G0) , M ∼ Ga(aM , bM ), G0 = N
(
µ;µ0, κσ

2
)
IG
(
σ−2; r0,σ

2 ,
s0,σ
2

)
.

Here DP(·) denotes the Dirichlet process (Ferguson 1973), M > 0 is the precision parameter,
and G0(·) is the centering measure. We implement the Dirichlet process mixture models with
the “no-gaps” algorithm of MacEachern and Müller (1998).

2.2. The BSAR model with shape restrictions

Lenk and Choi (2017) developed the BSAR models for the shape-restricted regression func-
tions by assuming that the derivatives of the functions are the squares of Gaussian processes.
That is, the qth (q ≥ 1) derivative of the unknown function f , f (q) is modeled as the square
of a zero-mean, second-order Gaussian process, depending on the a priori shape constraint
imposed on the unknown function. Specifically, for monotonicity and convexity/concavity,
we consider

• Monotone:

f (1)(x) = δZ2(x), δ ∈ {1,−1}, (5)

f(x) = δ

[∫ x

0
Z2(s)ds−

∫ 1

0

∫ x

0
Z2(s)dsdx

]
,

• Convex/concave:

f (2)(x) = δZ2(x), δ ∈ {1,−1}, (6)

f(x) = δ

[∫ x

0

∫ s

0
Z2(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x− 0.5),

where δ can be either 1 (non-decreasing) or−1 (non-increasing) as given by the user. Note that
the f is assumed to be mean centered and orthogonal to the constant function for identification
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and that the constant of integration is included in each of integral representations of f with
α for mean-centering constraints (see Lenk and Choi 2017 for further detailed discussions).
Because Z uses a spectral representation Z(x) = ∑∞

j=1 θjϕj(x) with the same cosine basis
functions as in (1) and (2), the BSAR model with a monotone restriction (5) is given by

f(x) = δ
∞∑
j=0

∞∑
k=0

θjθkϕ
a
j,k(x), ϕaj,k(x) =

∫ x

0
ϕj(s)ϕk(s)ds−

∫ 1

0

∫ s

0
ϕj(t)ϕk(t)dt ds.

The infinite series representation of Z is approximated by a finite sum ZJ(x), Z(x) ≈ ZJ(x) =∑J
j=0 θjϕj(x), where J denotes the truncation point, and the BSAR model with monotone

restrictions can be written in matrix notation as

y = Wβ + δθ>J Φa
J(x)θJ + ε, (7)

where y = (y1, . . . , yn)>, W = (w1, . . . ,wn)>, x = (x1, . . . , xn)>, ε = (ε1, . . . , εn)>, θJ =
(θ0, . . . , θJ)> is the J+1 vector of spectral coefficients, and Φa

J(x) is a (J+1)×(J+1) matrix
with (j, k) entry ϕaj,k(x). Similarly, the BSAR model with monotone convexity or concavity
in (6) is given by the spectral representation

f(x) = δ
∞∑
j=0

∞∑
k=0

θjθkϕ
b
j,k(x) + α(x− 0.5),

ϕbj,k(x) =
∫ x

0

∫ s

0
ϕj(t)ϕk(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
ϕj(t)ϕk(t)dt ds dx,

f(x) ≈ fJ(x) = δθ>J Φb
J(x)θJ + α(x− 0.5),

where Φb
J(x) is the (J+1)×(J+1) matrix with (j, k) entry ϕbj,k(x). Thus, the scale-invariant

prior distributions of the spectral coefficients of the shape-restricted functions basically inherit
those of the BSAR model described in Section 2.1 but are modified as

θ0|σ ∼ N (mθ0 , σv
2
θ0), θj |σ, τ, γ ∼ N (mθj , στ

2 exp[−jγ]), j ≥ 1.

The other prior distributions are the same as those for the BSAR model described in Sec-
tion 2.1 except for the truncated normal prior distribution of α,

α|σ ∼ N (m0,α, σ
2v2

00, α)I(δα ≥ 0),

which ensures that f ′ is positive or negative.
For the U-shaped and S-shaped restrictions, we additionally include a decreasing logistic
function h(x) scaled between −1 and 1 in (5) and (6),

• U-shaped:

f (1)(x) = δZ2(x)h(x), δ ∈ {1,−1}, (8)

h(x) = 1− exp[ψ(x− ω)]
1 + exp[ψ(x− ω)] , ψ > 0, 0 < ω < 1,

f(x) = δ

[∫ x

0
Z2(s)h(s)ds−

∫ 1

0

∫ x

0
Z2(t)h(t)dtds

]
,
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• S-shaped:

f (2)(x) = δZ2(x)h(x), δ ∈ {1,−1}, (9)

h(x) = 1− exp[ψ(x− ω)]
1 + exp[ψ(x− ω)] , ψ > 0, 0 < ω < 1,

f(x) = δζ

[∫ x

0

∫ s

0
Z2(t)h(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
Z2(t)h(t)dt ds dx

]
+ (α− δξ)(x− 0.5),

ξ = min
[
0, min
x∈[0,1]

ζ

∫ x

0
Z2(s)h(s)ds

]
,

where ζ is given by the user and ξ is also considered for mean-centering constraints, similarly
to α. Note that there are two additional parameters ω and ψ in h(x). ω is a unique zero
of h(x) and ψ is a slope of h(x), controlling its steepness at ω. Truncated normal prior
distributions are assigned to these parameters as

ψ ∼ N (m0,ψ, v
2
0,ψ)I(ψ > 0), ω ∼ N (m0,ω, v

2
0,ω)I(0 < ω < 1).

For the shape restricted models, the full conditional distributions for the parameters θ, σ2,
ω and ψ do not have closed-form expressions. For the MCMC sampling steps, we therefore
use adaptive Metropolis algorithms for θ, slice sampling algorithms for σ2 and additional
hyperparameters for θ, and numerical integration using the trapezoidal rule to obtain the
basis functions, ϕa(·) and ϕb(·). Additional details can be found in Lenk and Choi (2017).
Further, as shown in the representations of U-shaped (8) and S-shaped functions (9), all of
the parameters other than two additional parameters, ω and ψ for h(x), and the integral
Z2h in computing f(x) are the same as in the BSAR models with monotonicity and convex-
ity. Using a finite approximation of ZJ , the same MCMC sampling steps can be used with
additional adaptive Metropolis steps for ω and ψ using truncated normal distributions and
numerical integrations to compute Z2

Jh over a fine grid. Further details are also given in the
supplementary materials in the online appendix of Lenk and Choi (2017).

2.3. The BSAQ model

We next consider a partial linear additive model for quantile regression. A Bayesian analysis
of a quantile regression assumes that the error term has an asymmetric Laplace distribution
(e.g., see Yu and Moyeed 2001 and Sriram, Ramamoorthi, and Ghosh 2013), with density

ALp(ε;σ2) = p(1− p)
σ2 exp

{
− |ε|+ (2p− 1)ε

2σ2

}
, (10)

where σ2 is a positive scale parameter and p is a fixed value in (0, 1). Based on the asymmetric
Laplace distribution in (10), we have the following partial linear additive quantile regression
model, using the aforementioned spectral analysis approach:

yi = w>i β +
K∑
k=1

fk(xi,k) + η1ui + η2σuiεi, i = 1, . . . , n,

ui ∼ Exp
(
σ−2

)
, i = 1, . . . , n,
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where η1 = (1−2p)/{p(1−p)}, η2
2 = 2/{p(1−p)}, and π(u) is a density function of an exponen-

tial distribution with mean σ2, π(u) = σ−2e−u/σ
2 . As in the BSAR model in Section 2.1, we

use the Bayesian spectral representation for the unknown additive regression functions fk(·),
k = 1, . . . ,K. We refer to this model as the Bayesian spectral analysis quantile regression
(BSAQ) model.
Note that the joint posterior distribution for the BSAQ is proportional to

p(β,θJ ,u, τ2, γ | Data) ∝
n∏
i=1
N
(
yi;w>i β + fJ(xi) + η1ui, η

2
2σ

2ui
)
N
(
β;m0,β, σ

2V 0,β
)

×
J∏
j=1

N
(
θj ; 0, σ2τ2 exp[−jγ]

)
IG
(
τ2; r0,τ

2 ,
s0,τ
2

)
Exp(γ;ω0)×

n∏
i=1
Exp

(
ui;σ−2

)
,

where we use a location-scale mixture representation of exponential and normal distributions
for ALp, which is commonly used to facilitate the posterior sampling algorithm. Thus, the
MCMC sampling steps are the same as those described in Sections 2.1 and 2.2 for the BSAR
model with or without shape restrictions, with the exception of an additional sampling step
that updates latent mixing parameters from generalized inverse Gaussian distributions (see,
e.g., Kozumi and Kobayashi 2011, Alhamzawi and Yu 2013, and Jo et al. 2016 for detailed
sampling procedures with posterior distributions). That is, we update the latent variables
u = (u1, . . . , un) from

[ui | others] ∼ GIG
(1

2 , δ̃, ξ̃i
)
, δ̃ = 2 + η2

1/η
2
2

σ2 , ξ̃i =

(
yi −w>i β −

∑J
j=1 θjϕj(xi)

)2

η2
2σ

2 .

The shape restrictions in (5)–(9) are also incorporated into the BSAQ model, and the posterior
sampling steps are identical to those of BSAR with shape restrictions with the previous
additional sampling step for the latent mixing parameters u.
Furthermore, we consider error terms {εi} as a random sample from the Dirichlet process
scale mixture of an asymmetric Laplace distribution for flexible nonparametric modeling for
the error distribution (see, e.g., Jo et al. 2016 and Kottas and Krnjajić 2009). Specifically,
we model the error distribution as follows:

εi
iid∼
∫
ALp(ε;σ2)dG(σ2), G ∼ DP(M,G0), M ∼ Ga(aM , bM ), G0 = IG

(
σ−2; r0,σ

2 ,
s0,σ
2

)
,

for which the “no-gaps” algorithm of MacEachern and Müller (1998) is also used.

2.4. The GBSAR model

Generalized linear models (GLMs), introduced by Nelder and Wedderburn (1972), provide a
unified framework for the regression analysis of normal and non-normal response variables,
assuming that the mean of the response variable is linearly associated with the predictors
by a known smooth function, called a link function. A GAM (Hastie and Tibshirani 1990)
combines the properties of GLMs with those of additive non-/semiparametric models by
relaxing the linearity assumption on the actual relationship between response variable and
predictors. Here, we consider the GAM approach using a spectral analysis regression, referred
to as the generalized linear BSAR (GBSAR) model. Specifically, we deal with semiparametric
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generalized additive models for discrete responses, including binary, Poisson and negative
binomial data.

GBSAR: Binary response regression
Consider a binary response variable yi ∈ {0, 1}, i = 1, . . . , n for a collection of n subjects as-
sociated with p linear effect predictors wi = (wi1, . . . , wip)> and K nonlinear effect predictors
xi = (xi,1, . . . , xi,K)>. The Bayesian generalized partial linear model for binary response is
given as follows:

yi
ind∼ B(1, µi), 1 ≤ i ≤ n,

g(µi) = w>i β +
K∑
k=1

fk(xi,k),
(11)

where g(·) is a link function, β is a p-dimensional vector of coefficients for linear effects,
and fk(·) is an unknown nonlinear function of the scalar xi,k ∈ [0, 1], which is modeled
using spectral analysis models of Gaussian processes. Typically, the link function g(·) in the
binary regression is chosen as the cumulative distribution function (CDF) of some continuous
distributions defined on the real line, such as, for example, the standard normal distribution
and the logistic distribution. In the former case, the binary regression model is referred to
as the probit model, and the latter is called the logit model (see, e.g., McCullagh and Nelder
1989, Hastie and Tibshirani 1990 and Dey, Ghosh, and Mallick 2000).

GBSAR with the probit regression. For the probit link, g−1(µ) = Φ(µ), where Φ(µ)
denotes the CDF of the standard normal distribution, Albert and Chib (1993) proposed
a simple data augmentation approach that renders the full conditional distributions of the
model parameters equivalent to those under the Bayesian normal regression model. Thus,
the GBSAR with the probit link represents the model in (11) using auxiliary variables, as
follows:

yi = I(zi > 0),

zi = w>i β +
K∑
k=1

fk(xi,k) + εi,

εi
iid∼ N (0, 1).

(12)

The main advantage of Albert and Chib (1993)’s approach in (12) is that it enables the use
of the Gibbs sampling algorithm to simulate posterior samples of the unknown parameters in
the GBSAR with the probit regression model. That is, assuming K = 1 for simplicity, the
joint posterior of all unknown parameters is proportional to

n∏
i=1
{I(zi ≥ 0)I(yi = 1) + I(zi < 0)I(yi = 0)} ×

n∏
i=1

exp
(
− 1

2(zi −w>i β − f(xi))2
)

× exp
(
− 1

2(β −mβ)>V −1
β (β −mβ)

)
×

J∏
j=1

{
(τ2 exp(−jγ)−

1
2 exp

(
−

θ2
j

2τ2 exp(−jγ)

)}

× exp(−w0γ)× (τ2)−
r0
2 −1 exp

(
− s0

2τ2

)
,
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and, thus, the MCMC sampling steps are the same as those in BSAR with the Gibbs sampling
and slice sampling methods, except for an additional step to update the latent variable zi
from a form of the truncated normal posterior distribution,

zi|all others ∼
{
N (w>i β + f(xi), 1)I(zi ≥ 0) if yi = 1,
N (w>i β + f(xi), 1)I(zi ≥ 0) if yi = 0.

GBSAR with the logistic regression. As an alternative to the probit link, the logit link,
g−1(µ) = 1/(1 + e−µ), is also widely used. From the missing-data mechanism of Albert and
Chib (1993), the GBSAR model (11) with the logit link is defined by

yi = I(zi > 0),

zi = w>i β +
K∑
k=1

fk(xi,k) + εi,

εi
iid∼ Lo(0, 1),

(13)

where Lo(0, 1) denotes a standard logistic distribution (Devroye 1986) with a density function
given by Lo(ε; 0, 1) = eε

(1 + eε)2 . The binary regression model with a logit link in (13), called

the logistic regression model, is typically preferred to the probit regression model (12) for
most statistical applications because of the easy interpretation of the regression coefficients.
In the implementation of GBSAR logistic regression, we exploit the hierarchical representation
of the logistic distribution and the data-augmentation approach for the posterior sampling
proposed by Holmes and Held (2006). Specifically, Holmes and Held (2006) represented the
logistic distribution as a scale mixture of a normal distribution (Andrew and Mallows 1974):

εi | λi
ind∼ N (0, λi),

λi = (2ψi)2, ψi ∼ KS,

where KS denotes the Kolmogorov-Smirnov distribution (see, e.g., Devroye 1986; Holmes and

Held 2006) given by KS(ψ) =
∞∑

n=−∞
(−1)ne−2n2ψ2

, ψ ≥ 0. Note that a further set of auxiliary

variables λi, i = 1, . . . , n, facilitates the posterior sampling algorithm of the logistic regression
model in (13).
Thus, the MCMC sampling procedures are the same as those of probit regression using the
algorithm of Albert and Chib (1993) except for the additional steps for updating zi and ψi
from the logistic distribution as a scale mixture of the normal distribution.

• Update zi, i = 1, . . . , n:

zi|all others ∝
{
Lo(zi;w>i β + f(xi), 1)I(zi > 0) if yi = 1,
Lo(zi;w>i β + f(xi), 1)I(zi ≤ 0) if yi = 0,

• To update ψi, i = 1, . . . , n, we first re-parameterize λi = (2ψi)2 and then update λi
using a rejection sampling algorithm with a proposal generated from the generalized
inverse Gaussian distribution, GIG

(
0.5, 1, R2

i

)
, where R2

i =
[
zi −w>i β − f(xi)

]2
.
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Alternatively, because the full conditional distributions of the unknown parameters do not
have standard forms, the Metropolis-Hastings algorithm, which is typically used in the Bayes-
ian logistic regression model, can be directly applied to posterior sampling without using the
missing-data mechanism of Albert and Chib (1993) and Holmes and Held (2006). Specifi-
cally, we generate posterior samples from the joint posterior distribution based on the adap-
tive Metropolis algorithms (e.g., Haario, Saksman, and Tamminen 2001 and Roberts and
Rosenthal 2009) using normal distributions with adaptively updated variances as proposal
distributions. The shape restrictions in Section 2.2 are also incorporated into the GBSAR for
binary regression, and the same posterior sampling algorithms are applied as in BSAR with
shape restrictions.

GBSAR: Count response regression
When the response is an unbounded count, y = 0, 1, 2 . . ., we can use count response re-
gression models. In this case, two regression models for counts are commonly considered:
the Poisson regression and the negative binomial regression. The Poisson regression model
assumes that the response variables y = (y1, . . . , yn) are independently Poisson distributed
with the rate parameters λi, i = 1, . . . , n and that the logarithm of λi can be modeled by a
regression function of predictors. The negative binomial regression model extends the Poisson
regression model by introducing an additional parameter that is known to easily handle the
over-dispersion problem (see, e.g., Hilbe 2011).

GBSAR with Poisson regression. We work with the following GBSAR for the Poisson
additive model:

yi | λi
iid∼ P(λi), i = 1, . . . , n,

log(λi) = w>i β +
K∑
k=1

fk(xi,k),
(14)

where β is a p-dimensional vector of the coefficients for the linear effects, wi is the correspond-
ing design vector, and the {fk(·)} are unknown nonlinear functions of the scalars xi,k ∈ [0, 1],
modeled using spectral analysis models of Gaussian processes, as before. Note that because
the full conditional distributions of the unknown parameters in (14) do not have standard
forms, we also use the adaptive Metropolis algorithms.
That is, we generate posterior samples from the joint posterior distribution based on the
adaptive Metropolis algorithms using normal distributions with adaptively updated variances
as proposal distributions. Specifically, we illustrate the process for generating candidates for
β:

• Generate the candidates of βt with a proposal distribution given at iteration t by

Qt(β, ·) =
{

N
(
βt−1, (0.1)2Id/d

)
for t ≤ 2d,

0.95N
(
βt−1, (2.38)2Σt/d

)
+ 0.05N

(
βt−1, (0.1)2Id/d

)
for t > 2d,

where d is the dimension of β, and Σt is the empirical covariance estimate of β, sequen-
tially computed as

Σt = t− 1
t

Σt−1 + 1
t

{
tβt−1β

>
t−1 − (t+ 1)βtβ

>
t + βtβ>t

}
,
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where βt+1 = t−1∑t
i=0 βi.

• Then, the candidates are accepted with the product of the prior distributions in Sec-
tions 2.1 and 2.2 for BSAR with or without shape restrictions and the Poisson likelihood
from (14).

Note that the remaining parameters with spectral coefficients and other hyperparameters are
updated as before.

GBSAR with negative binomial regression. The Poisson regression model can be of
limited use in several disciplines because empirical count data sets typically exhibit over-
dispersion, usually caused by dependencies, variation between responses or violations in the
distributional assumptions. The negative binomial distribution can better deal with such over-
dispersed count data and, thus, the negative binomial regression model is often preferred to
the Poisson regression model (see, e.g., Hilbe 2014 and Fahrmeir, Kneib, Lang, and Marx
2013).
The Bayesian negative binomial additive model with GBSAR is given as follows:

yi | β,θ, κ
ind∼ NB

[
exp

{
w>i β +

K∑
k=1

fk(xi,k)
}
, κ

]
, i = 1, . . . , n, (15)

where κ > 0 is a dispersion parameter, assigned a gamma distribution with shape parameter
r0,κ and the rate parameter s0,κ as a prior. The negative binomial model (15) can also be
expressed as a continuous mixture of Poisson distributions, where the mixing distribution of
the Poisson rate is a gamma distribution (see, e.g., Koop, Poirier, and Tobias 2007 and Luts
and Wand 2015):

yi | λi
ind∼ P(λi), i = 1, . . . , n,

λi | β,θ, κ
ind∼ Ga

(
κ, κ exp

{
−w>i β −

K∑
k=1

fk(xi,k)
})

.
(16)

Here, the parameters κ and β are updated using the adaptive Metropolis algorithm, and the
posterior sampling procedures of the remaining unknown parameters are the same as before.
Note that the negative binomial distribution was originally derived as a limiting case of the
Poisson-gamma mixture distribution (Greenwood and Yule 1920), and that, in the current
version of bsamGP, both the (15) and (16) approaches are available for implementing the
GBSAR negative binomial regression. The shape restrictions in Section 2.2 are also incorpo-
rated into the GBSAR for count regression, and the same posterior sampling algorithms are
applied as in BSAR with shape restrictions, using the joint posterior distribution proportional
to the product of either the Poisson or negative binomial likelihood and the prior distributions
described in Sections 2.1 and 2.2.

2.5. The BSAD model

In addition to regression models, we include a Bayesian semiparametric density estimation
procedure using a spectral representation of Gaussian processes as in Lenk (2003). The semi-
parametric density model consists of a parametric component, specified by an exponential
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family, and a nonparametric component, specified by a logistic Gaussian process (see, e.g.,
Leonard 1978 and Lenk 1988, 1991). The logistic Gaussian process, defined as the logistic
transformation of a Gaussian process, provides a flexible model for estimating unknown den-
sities using the covariance structure (see, e.g., Lenk 1991; Tokdar and Ghosh 2007; Riihimäki
and Vehtari 2014).
Specifically, consider the situation in which the observations y1, . . . , yn constitute a random
sample from an absolutely continuous probability density f with respect to a known, dom-
inating measure G on the support Y. A semiparametric density estimation model using a
logistic Gaussian process prior (Lenk 2003), which we refer to as the Bayesian spectral analysis
density estimation (BSAD) hereafter, is given as follows:

f(y|β, Z) =
exp

[
w(y)>β + Z(y)

]
∫
Y exp

[
w(x)>β + Z(x)

]
dG(x)

, y ∈ Y, (17)

where w(y) = [w1(y), . . . , wp(y)]> is a p-vector of non-constant functions specifying an ex-
ponential family, β is a p-vector of unknown coefficients, and Z is a zero-mean, second-
order Gaussian process using the spectral representation Z(y) = ∑∞

j=1 θjϕj(y), ϕj(y) =√
2 cos(πjG(y)), as before. A normal prior for {θj} similar to that of BSAR in (4) is considered

θj ∼ N
(
0, τ2 exp[−γcj ]

)
for τ2 > 0 and γ > 0.

However, two possible parameterizations of cj are considered, namely cj = j for the geometric
smoother and cj = log(j+1) for the algebraic smoother (Lenk 1999, 2003). Other unknown
parameters have the same prior specifications as in the BSAR with a normal distribution for
β and in the T smoother for τ2 and γ. In order to generate posterior samples in BSAD, given
the logistic transformation in (17), the MCMC sampling procedures of BSAR are employed to
estimate β, spectral coefficients, and additional hyperparameters by transforming the problem
from density estimation into the semiparametric regression based on a discrete version of the
likelihood. Additional details can be found in Lenk (2003).

3. Basic implementation of bsamGP
The bsamGP package for R provides tools that implement the Bayesian spectral analysis
models described in the previous section. In this section, we demonstrate the general usage
of the main functions and methods of bsamGP using two synthetic data sets: one with a
normal semiparametric regression for the BSAR and the other with a semiparametric density
estimation for the BSAD. To assess the adequacy of the semiparametric model against the
parametric model, we also provide the log marginal likelihoods for both cases. More impor-
tantly, we demonstrate how to specify shape restrictions on the semiparametric regression
models, the BSAR, BSAQ, and GBSAR, with various options in bsamGP using benchmark
data sets.

3.1. The BSAR model with synthetic data

The main function in bsamGP for the analysis of normal regression data is a function bsar()
that fits a semiparametric regression model using the BSAR approach described in Section 2.1.
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To illustrate the use of the bsar function for the BSAR model, we generate synthetic data
with n = 100 observations from

yi = 2wi + f(xi) + εi, εi ∼ N
(
0, 12

)
, (18)

where wi follows a normal distribution with mean 0 and standard deviation 0.5 and f(x) =
5 − 10x + 8 exp

[
−100(x− 0.3)2] − 8 exp

[
−100(x− 0.7)2] is the “double-normal” function

used in Lenk (1999). Here, the predictor values xi are generated from a uniform distribution,
xi

iid∼ Unif(0, 1). The data are simulated using the following code:

R> set.seed(1)
R> n <- 100
R> f <- function(x) {
+ 5 - 10 * x + 8 * exp(- 100 * (x - 0.3) ^ 2) -
+ 8 * exp(- 100 * (x - 0.7) ^ 2)
+ }
R> w <- rnorm(n, sd = 0.5)
R> x <- runif(n)
R> y <- 2 * w + f(x) + rnorm(n, sd = 1)

To fit the data with the BSAR, we first need to specify the number of basis functions and the
hyperparameters as follows:

R> nbasis <- 50
R> prior <- list(beta_m0 = numeric(2), beta_v0 = diag(100, 2), w0 = 2,
+ tau2_m0 = 1, tau2_v0 = 100, sigma2_m0 = 1, sigma2_v0 = 1000)

In total, 60,000 draws from the MCMC sampling method implemented in the bsar function
were completed. A transition (burn-in) period of 10,000 samples was considered, and the
chain was sub-sampled at every tenth iteration to obtain a final posterior sample size of
5,000. The following code illustrates the MCMC specification:

R> mcmc <- list(nblow = 10000, nskip = 10, smcmc = 5000, ndisp = 5000)

Then, the BSAR model is fitted using the following commands:

R> fout <- bsar(y ~ w + fs(x), nbasis = nbasis, mcmc = mcmc, prior = prior,
+ shape = "Free", marginal.likelihood = TRUE, spm.adequacy = TRUE)

bsamGP facilitates an intuitive formula interface to describe the semiparametric additive
model where fs() indicates that nonparametric smoothing is applied to a variable x with
spectral analysis regression in BSAM. Note that no shape constraint in the regression func-
tion is considered with option shape = "Free" in the specification of the BSAR model.
Furthermore, we use the logarithm of the marginal likelihoods and the Bayes factor to test
the adequacy of the semiparametric model with the options marginal.likelihood = TRUE
and spm.adequacy = TRUE.
Note that the coda (Plummer, Best, Cowles, and Vines 2006) package can be used to perform
convergence diagnostics based on output objects in fout and produce trace and density plots
with the plot method in coda. For illustration, we display these plots of β and σ2 in Figure 1
using the following commands.
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Figure 1: Trace plots for the parameters of the BSAR model.

R> library("coda")
R> post <- as.mcmc(data.frame(beta = fout$mcmc.draws$beta,
+ sigma2 = fout$mcmc.draws$sigma2))
R> plot(post)

Alternatively, the generic plot method for fout can be used to produce trace plots for each
parameter using the following command.

R> plot(fout)

The posterior summary is produced from the object fout of the bsar function using either
the print or the summary command. The code using the summary command and some of the
results for the posterior summary are given as follows:

R> summary(fout)

Number of Cosine basis functions = 50
Number of observations = 100
Number of covariates (no intercept) = 1

MCMC transition draws = 10000
MCMC draws saved for estimation = 5000
Save every nskip draws = 10
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MCMC draws total = 60000

R-Square = 0.9711

Log Integrated Likelihood
LIL Gelfand & Dey = -231.8385
LIL Newton & Raftery (biased) = -157.5351
LIL Parametric = -335.6345

H0: Parametric versus H1: Semiparametric
Log Bayes Factor (BF[01]) = 103.796

beta
PostM PostStd PostM/STD

(Intercept) -0.03426094 0.1240964 -0.2760832
w 1.72447915 0.2589314 6.6599846

sigma
PostM sigma = 1.095848
PostS sigma = 0.08495285
...

From the above summary results, we can test the adequacy of the semiparametric model
against that of the parametric model using the option spm.adequacy = TRUE as mentioned
previously. This shows that the Bayes factor clearly favors the semiparametric model over
the parametric model for the simulated data set. The marginal likelihoods are computed with
the option marginal.likelihood = TRUE using the methods of Gelfand and Dey (1994) and
Newton and Raftery (1994).
The left panel of Figure 2 displays a scatter plot of the simulated data along with the true
regression function, the estimated regression function, and point-wise 95% equal-tail credible
intervals. The posterior mean estimate is very close to the true mean function (i.e., the
“double-normal” function). The following code obtains the estimated mean function under
the BSAR model and the true function and is used to draw the plot displayed in the left panel
of Figure 2.

R> fit <- fitted(fout, HPD = FALSE)
R> plot(fit, ggplot2 = FALSE)
R> lines(fit$xgrid, f(fit$xgrid), lwd = 3, lty = 2)

bsamGP also provides the predict method to easily assess an out-of-sample posterior pre-
diction. Specifically, the predict function for objects created by bsamGP is provided to
allow the drawing of samples from the posterior predictive distributions and, thus, to obtain
the unobserved response predicted by the model after the MCMC sampling is completed.
The following code illustrates the use of the predict method in an out-of-sample prediction
with 100 test data points. The type = "response" option by default in predict provides
the posterior predictive estimates of the future (unobserved) observations given the current
observations by averaging the conditional distribution of the future observations over all pos-
sible parameters weighted by their posterior distributions, whereas type = "mean" returns
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Figure 2: Left: Plot of the true and estimated mean regression curves with the true function
(black dashed line), posterior mean estimates (red solid line), and point-wise 95% equal-tail
credible intervals (gray region). Right: Plot of the posterior predictive mean regression curve
(red solid line) with point-wise 95% equal-tail predictive intervals (PI for mean response,
gray region) for the mean regression curve and those (PI for observation, light gray) for
out-of-sample test data by the predict method.

posterior predictive regression curves. The right panel of Figure 2 portrays the posterior
predictive mean of regression curves with point-wise 95% equal-tail intervals for posterior
predictive estimates of future observations, specifically, out-of-sample test data, as well as
those for posterior predictive regression curves superimposed with the test data. Note that
the latter for the regression curves, that is, the noise-free observations, is narrower than the
former for the predicted value of ỹ, the future observation with noise.

R> set.seed(2)
R> n.test <- 100
R> w.test <- rnorm(n.test, sd = 0.5)
R> x.test <- runif(n.test)
R> fit.pred.tobs <- predict(fout, newp = w.test, newnp = x.test,
+ type = "response")
R> fit.pred.tmean <- predict(fout, newp = w.test, newnp = x.test,
+ type = "mean")

Note that similar plots to those in Figure 2 can be drawn by the plot method using the
ggplot2 (Wickham 2009) package with the option ggplot2 = TRUE option by default.
Alternatively, the simulated data set in (18) can be fitted based on the assumption of an un-
known error distribution using the function bsardpm with a Dirichlet process mixture model.
By default, the function bsardpm utilizes a location-scale mixture, as described in Section 2.1,
and the option of a scale mixture can be specified as location = FALSE in bsardpm. To com-
plete the model specification of bsardpm, we additionally specify hyperparameters on κ and
M as default values. Then, the BSAR model with a Dirichlet process mixture is fitted using
the following R code, and the abridged output of fout.dpm is given as follows:
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R> prior <- append(prior, list(kappa_r0 = 1, kappa_s0 = 100, tmass_a = 2,
+ tmass_b = 4))
R> mcmc <- list(nblow = 20000, nskip = 10, smcmc = 5000)
R> fout.dpm <- bsardpm(y ~ w + fs(x), nbasis = nbasis, mcmc = mcmc,
+ prior = prior, shape = "Free")
R> summary(fout.dpm)

...
Log Pseudo Marginal Likelihood (LPML)
LPML Mukhopadhyay & Gelfand = -158.8072

R-Square = 0.9716

Number of Clusters
nclass

1 2 3 4
0.8808 0.1128 0.0062 0.0002

Total mass
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.003818 0.117289 0.201338 0.243443 0.328480 1.230444

beta
PostM PostStd PostM/STD

w1 1.718656 0.252336 6.810983
...
With the plot command on the fitted object, bsamGP provides a density plot of residuals for
diagnostics as well as a fitted mean curve with point-wise 95% credible intervals, as shown in
Figure 3.

R> fit.dpm <- fitted(fout.dpm, HPD = TRUE)
R> plot(fit.dpm)

3.2. The BSAR model with shape restrictions: Benchmark data sets
In this subsection, we illustrate how to fit the BSAR, BSAQ, and GBSAR models with shape
restrictions using benchmark data sets based on the shape-constraint approaches described
in Sections 2.2–2.4. As in the BSAR illustration in Section 3.1, the major function in the
bsamGP package is bsar. The option of no shape constraint is specified as shape = "Free",
and the shape-constrained regression models are fitted by specifying the shape argument to
impose various types of shape restrictions, as follows:

bsar(formula, xmin, xmax, nbasis, nint, mcmc = list(), prior = list(),
shape = c("Free", "Increasing", "Decreasing", "IncreasingConvex",

"DecreasingConcave", "IncreasingConcave", "DecreasingConvex",
"IncreasingS", "DecreasingS", "IncreasingRotatedS",
"DecreasingRotatedS", "InvertedU", "Ushape"),

marginal.likelihood = TRUE, spm.adequacy = FALSE)
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Figure 3: Left panel: The fitted regression curves produced by the plot method for ‘bsamdpm’
objects. Right panel: The density plot of residuals for diagnostics produced by the plot
method for ‘bsamdpm’ objects.

More detailed explanations and demonstrations of the bsamGP package for shape-constrained
regressions are presented using benchmark data sets for BSAR, BSAQ, and GBSAR models
in the remainder of this subsection.

Electricity demand data: BSAR with shape restriction

To illustrate the usage of the argument shape for the BSAR with shape restrictions, we first
consider a data set on demand for electricity, which consists of 288 quarterly observations
in Ontario for the period from 1971 to 1994, taken from Yatchew (2003) and available from
https://www.economics.utoronto.ca/yatchew/. This data set has been analyzed using a
cubic spline model (Engle, Granger, Rice, and Weiss 1986), a partial linear model (Yatchew
2003), and shape-restricted regression models (Lenk and Choi 2017), among others. The R
package bsamGP includes the data set Elec.demand, which contains six variables: electricity
demand (enerm), gross domestic product (gdp), price of electricity (pelec), price of natural
gas (pgas), and the number of heating (hddqm) and cooling (cddqm) degree days relative to
a reference temperature. We use Elec.demand to show how the results in Lenk and Choi
(2017) can be reproduced.

R> data("Elec.demand", package = "bsamGP")
R> attach(Elec.demand)
R> y <- log(enerm / gdp)
R> w <- log(pelec / pgas)
R> x <- cddqm - hddqm
R> xmin <- min(x)
R> xmax <- max(x)
R> xmid <- (xmax + xmin) / 2

https://www.economics.utoronto.ca/yatchew/
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R> xrange <- xmax - xmin

Following the approach of Lenk and Choi (2017), we fit a model to Elec.demand using the
bsar function in bsamGP with shape restrictions. We use the logarithm of the ratio of
electricity demand to gross domestic product as the response variable and the log price ratio
of electricity to natural gas and temperature, which is the number of heating and cooling
degree days relative to 68◦F, as the linear and nonlinear fixed effects, respectively. For the
fixed effect of temperature, we enforce shape restrictions on its nonlinear regression function.
To fit the BSAR model with a shape restriction, we use the same hyperparameters as those
in the BSAR model without shape restrictions in Section 3.1 with the exception of the ad-
ditional hyperparameters used in the nonparametric component with shape restrictions. For
the hyperparameters of the nonparametric component, we fix v2

θ0
= 1002, (r0,τ/s0,τ ) = 1,

(2r0,τ/s
2
0,τ ) = 100, ω0 = 2, m0,α = 0, and v2

0,α = 502. For the variance parameter, we
choose (r0,σ/s0,σ) = 1 and (2r0,σ/s

2
0,σ) = 1000. Finally, we use m0,ψ = 1000, v2

0,ψ = 10000,
m0,ω = Q2, and v2

0,ω = R/8 for hyperparameters of the inflection point ω and the slope ψ.
Here, Q2 is the midpoint and R is the range of x (Lenk and Choi 2017). Further, to identify
satisfactory variances of the adaptive Metropolis algorithm, we initialize a Markov chain with
10,000 samples and then obtain 5,000 samples of MCMC simulation, which are thinned from
the original MCMC sample by a factor of 10% after a burn-in period of 10,000 samples (Lenk
and Choi 2017).

R> prior <- list(theta0_m0 = 0, theta0_s0 = 100, tau2_m0 = 1, tau2_v0 = 100,
+ w0 = 2, beta_m0 = numeric(2), beta_v0 = diag(100, 2), sigma2_m0 = 1,
+ sigma2_v0 = 1000, alpha_m0 = 3, alpha_s0 = 50, iflagpsi = 1,
+ psifixed = 1000, omega_m0 = xmid, omega_s0 = xrange / 8)
R> mcmc <- list(nblow0 = 10000, nblow = 10000, nskip = 10, smcmc = 5000)

The following R code illustrates how the BSAR models are fitted with a shape restriction
using the bsar function and how the posterior inferences are subsequently extracted from
these models. We estimate the monotone decreasing regression function of temperature,
specified in the argument shape, and use 50 basis functions for the spectral representation.

R> fout1 <- bsar(y ~ w + fs(x), nbasis = 50, mcmc = mcmc, prior = prior,
+ shape = "Decreasing", marginal.likelihood = TRUE, verbose = TRUE)
R> fit1 <- fitted(fout1)
R> plot(fit1)
R> summary(fout1)

Note that we specify the verbose option to be active, verbose = TRUE, so that the bsar
function displays its running procedure with progress bars, acceptance rates in adaptation,
burn-in periods, and sampling phases. The output of fout1 given by the summary method
provides the log-integrated likelihood (LIL) and the fit statistics that are summarized in
Table 1 as well as the posterior estimates of all unknown parameters.

Figure 4 shows the parametric residuals ŷi− β̂
>
wi and the posterior mean estimates f̂ versus

temperature (number of cooling or heating degree days) for the BSAR with a monotone
decreasing restriction, obtained from the plot command, as in the previous R code. The plots
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Figure 4: Estimated monotone decreasing regression curves for electric demand data: pos-
terior mean estimates (blue and purple solid lines), point-wise 95% HPD intervals (in green
and red dash-dotted lines), and parametric residuals (blue dots).

Decreasing DecreasingConvex DecreasingS
LIL 237.1036 164.1054 63.8932
R-Square 0.8063 0.7921 0.8084
Error Standard Deviation 0.0999 0.1000 0.0981
Intercept −1.5803 −1.5786 −1.5785
Log Price Ratio −0.0749 −0.0710 −0.0746

Table 1: Posterior summaries for electricity demand data.

also include the point-wise 95% highest posterior density (HPD) intervals for the estimated
model.
In addition to the restriction of monotonicity, using the same data set, we consider two other
types of shape restrictions, namely convexity and an S-shape, by specifying the argument
shape, as required. The following R code illustrates how the BSAR models are fitted with
these shape restrictions.

R> fout2 <- bsar(y ~ w + fs(x), nbasis = 50, mcmc = mcmc, prior = prior,
+ shape = "DecreasingConvex", marginal.likelihood = TRUE)
R> fout3 <- bsar(y ~ w + fs(x), nbasis = 50, mcmc = mcmc, prior = prior,
+ shape = "DecreasingS", marginal.likelihood = TRUE)

We summarize the fit statistics and estimated parameters of all three models in Table 1.
The monotone decreasing model has a marginally better LIL than those of the model with
convexity and the S-shaped model, as discussed in Lenk and Choi (2017). All of the models
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Figure 5: Estimated mean regression curves of all models for electric demand data: poste-
rior mean estimates (red solid line), point-wise 95% HPD intervals (in the gray area), and
parametric residuals (black dots).

indicate that demand decreases as the price of electricity increases relative to the price of
natural gas, as shown in Figure 5.

Micronutrient blood plasma data: BSAQ with shape restrictions
As a real data example of the BSAQ model with shape restrictions, we consider data on
n = 314 healthy patients from a study of micronutrient levels in blood plasma (Nieren-
berg, Stukel, Baron, Dain, and Greenberg 1989), available from http://lib.stat.cmu.edu/
datasets/Plasma_Retinol. This data set was originally used to investigate the relationship
between personal characteristics and plasma concentrations of micronutrients such as retinol
or beta-carotene. Recently, Meyer et al. (2011) analyzed the same data set for the effects of
age, body mass index (BMI), and smoking status on the log of blood plasma beta-carotene us-
ing semiparametric additive normal regression models. They considered a shape-constrained
regression model to fit the data, with a decreasing function of BMI and an increasing function
of age, based on shape-restricted splines.
The R package bsamGP includes the data set plasma, which contains 14 variables: 12 personal
characteristics (age, sex, smoking status, etc.) and two variables (beta-carotene and retinol)
for the plasma concentrations of micronutrients. For a more detailed description of the data,
see Nierenberg et al. (1989). Following the work of Meyer et al. (2011), we focus on the
relationship between the log of blood plasma beta-carotene (betaplasma) and smoking status
(current or not), age, and body mass index (bmi), which is defined as weight/height2 in the
units kg/m2. Here, we are interested in quantile regression functions rather than the mean
regression of Meyer et al. (2011), and, thus, we apply the BSAQ by imposing the same
shape restrictions as Meyer et al. (2011) for illustration purposes. Specifically, in order to
evaluate the effects of age, BMI, and smoking status on the blood plasma concentration of
beta-carotene, we consider the bsaq function, estimating the model given by

log(betaplasma) = β0 + βsmoke + f1(bmi) + f2(age) + ε, ε ∼ ALp(ε;σ2), (19)

where smoke denotes a design matrix containing a dummy variable for smoking status (“cur-
rent smoker” or “not”), and the functions f1 and f2 are assumed to be decreasing and in-
creasing, respectively.

http://lib.stat.cmu.edu/datasets/Plasma_Retinol
http://lib.stat.cmu.edu/datasets/Plasma_Retinol
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To fit the BSAQ model (19), we use the hyperparameters m0,β = 0, V0,β = 100I, v2
θ0

= 1002,
(r0,τ/s0,τ ) = 1, (2r0,τ/s

2
0,τ ) = 100, ω0 = 2, (r0,σ/s0,σ) = 1, and (2r0,σ/s

2
0,σ) = 1000 and

an MCMC simulation of length 60,000 with a burn-in period of 10,000 samples, and final
posterior samples with a size of 5,000 at every tenth iteration, both of which are the same
as before in bsar. The following R code illustrates how to fit the additive BSAQ model with
shape restrictions for the plasma data with the specification of prior distributions and MCMC
parameters in the bsaq function.

R> data("plasma", package = "bsamGP")
R> attach(plasma)
R> prior <- list(theta0_m0 = 0, theta0_s0 = 100, tau2_m0 = 1, tau2_v0 = 100,
+ w0 = 2, beta_m0 = numeric(2), beta_v0 = diag(100, 2), sigma2_m0 = 1,
+ sigma2_v0 = 1000)
R> mcmc <- list(nblow0 = 10000, nblow = 10000, nskip = 10, smcmc = 5000)
R> foutBSAQ <- bsaq(log(betaplasma) ~ I(smoke == "Current_Smoker") +
+ fs(bmi) + fs(age), p = 0.5, nbasis = 50, mcmc = mcmc, prior = prior,
+ shape = c("Decreasing", "Increasing"))
R> fitBSAQ <- fitted(foutBSAQ)
R> plot(fitBSAQ)

Note that the predictors bmi and age are used for two nonparametric components and
that bsaq automatically fits two-component additive nonparametric median regression func-
tions using the argument p = 0.5 with the shape restriction using the argument shape =
c("Decreasing", "Increasing"). That is, f1(bmi) is a decreasing function of bmi, and
f2(age) is an increasing function of age, as shown in Figure 6. The left panel of Figure 6
shows the relationship between log(betaplasma) and bmi, indicating an overall decreasing
trend, whereas the right panel shows that the relationship between log(betaplasma) and age
is increasing.
Other quantile regression functions can be considered by specifying the argument p with
different quantile levels of interest in the function bsaq. As an illustration, we provide the
quantile regression functions of bmi and age with shape restrictions using BSAQ models at
p = {0.1, 0.5, 0.9} (see Figure 7). In each panel, the black line denotes the quantile regression
function for current non-smokers, and the red line indicates the function for current smokers.
All of the quantile regression function estimates for bmi and log(betaplasma) show overall
negative trends, whereas the estimates for age and log(betaplasma) demonstrate increasing
relationships, as enforced by the argument shape in bsaq. In both relationships, the level
of log(betaplasma) for current non-smokers is higher than that for current smokers, which
indicates that the level of betaplasma is influenced by the smoking status.
Alternatively, the data set plasma can be fitted based on the assumption of an unknown
error distribution using the function bsaqdpm with a Dirichlet process scale mixture model
for BSAQ, as described in Section 2.3. The following R code illustrates how to fit the additive
BSAQ model with shape restrictions using bsaqdpm for plasma data. For an object returned
by bsaqdpm, the plot method provides estimated quantile curves as well as an estimated
density plot of residuals for diagnostics, as shown in Figure 8.
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Figure 6: Posterior mean estimates for the effect of bmi and age on log(betaplasma) levels.
The left panel shows the relationship between log(betaplasma) and bmi, and the right panel
displays the relationship between log(betaplasma) and age.
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Figure 7: Posterior mean estimates for the quantile regression function of bmi and age on
log(betaplasma) levels. The top panels show the relationship between log(betaplasma) and
bmi, and the bottom panels display the relationship between log(betaplasma) and age.

R> prior <- append(prior, list(kappa_r0 = 1, kappa_s0 = 100, tmass_a = 2,
+ tmass_b = 4))
R> mcmc <- list(nblow = 20000, nskip = 10, smcmc = 5000)
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Figure 8: The left and middle panels display the posterior mean estimates (red line) and
95% HPD interval (gray shaded area) for the effect of bmi and age on log(betaplasma) levels
with scatter plots of their parametric residuals. The right panel shows an estimated density
function of these residuals.

R> foutBSAQ.dpm <- bsaqdpm(log(betaplasma) ~ I(smoke == "Current_Smoker") +
+ fs(bmi) + fs(age), p = 0.5, nbasis = 50, mcmc = mcmc, prior = prior,
+ shape = c("Decreasing", "Increasing"))
R> fitBSAQ.dpm <- fitted(foutBSAQ.dpm)

Wage-union membership data: GBSAR binary regression with shape restrictions
In order to illustrate the GBSAR model for binary responses with shape restrictions, we con-
sider the data on wages and union membership of Berndt (1991), as discussed in Ruppert,
Wand, and Carroll (2003) and Crainiceanu, Ruppert, and Wand (2005), among others. The
data consists of a random sample of 534 US workers on 11 variables from the 1985 Current Pop-
ulation Survey (CPS), available from http://lib.stat.cmu.edu/datasets/CPS_85_Wages
and also from the R package SemiPar (Wand 2018).
The R package bsamGP includes the data set wage.union, which has one dependent variable
(an indicator of union membership, union), and ten predictor variables, including six dummy
variables for southern residence (south), race, occupational status (occupation), sector,
sex, and marital status (married), and four continuous variables for experience, wages,
age, and education. Ruppert et al. (2003) and Crainiceanu et al. (2005) analyzed the wage-
union membership data using a semiparametric additive logistic regression model with splines
because the standard linear, quadratic and cubic regressions were not adequate for identifying
the features of union membership probability. They used wages, age, education, race,
gender, and south as predictor variables and modeled the first three predictors (wages, age,
and education) with penalized splines. They found that the effect of wages appears to be
non-monotonic and that the probability of union membership tends to increase with age
and decrease with education. Here, we re-analyze the same data set with the generalized
semiparametric additive logistic regression, using the gbsar function of bsamGP. We assume
that age and education are monotonically related to the probability of union membership.
The R code illustrates how to fit the GBSAR model with a logit link for the binary data using
the arguments family = "bernoulli", link = "logit" and the default prior distributions
in gbsar.

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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Figure 9: Posterior mean estimates and point-wise 95% credible intervals for the effect of
wage, age, and education on the estimated probability of union membership using a logit
link.

R> data("wage.union", package = "bsamGP")
R> attach(wage.union)
R> race <- ifelse(race == 3, 1, 0)
R> mcmc <- list(nblow0 = 10000, nblow = 10000, nskip = 10, smcmc = 5000)
R> foutLogit <- gbsar(union ~ race + sex + south + fs(wage) + fs(age) +
+ fs(education), family = "bernoulli", link = "logit", mcmc = mcmc,
+ nbasis = 50, shape = c("Free", "Decreasing", "Increasing"))
R> fitLogit <- fitted(foutLogit, HPD = FALSE)

Note that the gbsar function for the logistic regression uses adaptive Metropolis algorithms
(Haario et al. 2001; Atchadé and Rosenthal 2005; Roberts and Rosenthal 2009) to generate
posterior samples by default. To draw posterior samples from the algorithm of Holmes and
Held (2006), the user should utilize the gbsar function with the option algorithm = "KS".
The analysis results using bsamGP are shown in Figure 9. The plots show the effects of the
three predictors (wage, age and education) modeled nonparametrically. The Y-axes are the
estimated probabilities of union membership. Each plot displays the posterior mean estimates
and 95% point-wise credible intervals. The non-monotonic behavior of the probability of union
membership is captured similarly to that found in Ruppert et al. (2003) and Crainiceanu et al.
(2005). In addition, the monotonic (increasing with age and decreasing with education)
relationship between the probability of union membership and age and education is captured
reasonably well, as shown in Figure 9. In particular, the probability of union membership
nearly linearly increases with age and decreases with education.
Note that the same data can also be fitted with a probit regression using the gbsar function
by replacing the argument link = "logit" with link = "probit", as in the R code below.

R> foutPbt <- gbsar(union ~ race + sex + south + fs(wage) + fs(education) +
+ fs(age), nbasis = 50, family = "bernoulli", link = "probit",
+ shape = c("Free", "Decreasing", "Increasing"))
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Mortality-temperature data: GBSAR count response regression with shape restrictions
The health effects of exposure to extreme temperatures have been frequently investigated,
and many epidemiological studies (e.g., Curriero, Heiner, Samet, Zeger, Strug, and Patz 2002;
Anderson and Bell 2009; Gasparrini et al. 2015) have confirmed that when temperatures are
extremely high or low, there is a significant association with increased mortality. Further-
more, the mortality rate has an exposure-response curve with respect to temperature with
a specific shape. Consequently, we illustrate the shape-restricted semiparametric count re-
sponse regression models for Poisson and negative binomial data using the arguments family
and link in gbsar with a benchmark data set on the mortality-temperature relationship.
The data set is based on real applications from Gasparrini et al. (2015) for assessing the
effect of mean temperature on mortality. In particular, the data include regional daily
death occurrences in England and Wales in the United Kingdom (UK), which are pub-
licly available from the Office for National Statistics, and daily mean temperature esti-
mated from minimum and maximum temperatures, which are available from the British
Atmospheric Data Centre. These data are described in detail in related epidemiological
studies and recent publications (see, e.g., Armstrong et al. 2011; Gasparrini, Armstrong,
Kovats, and Wilkinson 2012; Gasparrini et al. 2015). Specifically, the data set is part
of that collected in the UK and used for a multi-country observation study in Gaspar-
rini et al. (2015) based on a first-stage time-series quasi-Poisson regression model with B-
splines. Details on the data set are given in the supplementary appendix of Gasparrini
et al. (2015), and the data set can be obtained from the supplementary web page at https:
//github.com/gasparrini/2015_gasparrini_Lancet_Rcodedata.
In order to illustrate gbsar, we use 5,113 daily observations from London for the period
from 1993 to 2006, included as the data set London.Mortality in bsamGP. The data set
London.Mortality consists of 5,113 observations on the number of deaths (death), mean
daily temperature (tmean in ◦C), and other related variables, such as the relative humidity,
maximum/minimum temperatures, and others (rh, tmax, tmin, date, dewp). Here, for
simplicity, we seek only the effect of temperature on the mortality rate in order to demonstrate
the gbsar function. We use a Poisson semiparametric regression model with a count response
variable death and a continuous predictor tmean, and compare the fitted results, with or
without appropriate shape restrictions. In particular, the U-shaped mortality-temperature
relationship (e.g., Muggeo 2008; Anderson and Bell 2009; Muggeo 2010) can be identified and
tested using the argument shape in the gbsar function.
The following R code illustrates the use of gbsar() in the bsamGP package for a Poisson
semiparametric regression with shape restrictions. We specify the Poisson family with the log
link function, with and without shape restrictions. We set the number of basis functions to
50 and use the default hyperparameters, as before. Additional hyperparameters for ω and ψ
in the U-shaped restriction are specified by default as m0,ψ = 100, v2

0,ψ = 1002, m0,ω = Q2,
and v2

0,ω = R/8, where Q2 is the midpoint and R is the range of tmean, respectively. Note
that we set the adaptation iterations to 10,000 (only applicable for shape restricted cases)
and obtain 1,000 MCMC samples at every ten steps after 10,000 burn-in iterations.

R> data("London.Mortality", package = "bsamGP")
R> mcmc <- list(nblow0 = 10000, blow = 10000, nskip = 10, smcmc = 1000,
+ maxmodmet = 10)
R> fout.free <- with(London.Mortality, gbsar(death ~ fs(tmean), mcmc = mcmc,

https://github.com/gasparrini/2015_gasparrini_Lancet_Rcodedata
https://github.com/gasparrini/2015_gasparrini_Lancet_Rcodedata


Journal of Statistical Software 29

0 5 10 15 20 25 30

10
0

15
0

20
0

25
0

30
0

35
0

tmean

de
at
h

Free

0 5 10 15 20 25 30

10
0

15
0

20
0

25
0

30
0

35
0

tmean

de
at
h

U-shape

Figure 10: Posterior estimates obtained from the gbsar function for the London mortality
data. The black dots represent daily death counts for given temperatures, the red line repre-
sents the estimated mean of daily death counts, and the gray shaded area represents the 95%
HPD fitted from the GBSAR model.

+ family = "poisson", link = "log", nbasis = 50, shape = "Free"))
R> fit.free <- fitted(fout.free)
R> fout.U <- with(London.Mortality, gbsar(death ~ fs(tmean), mcmc = mcmc,
+ family = "poisson", link = "log", nbasis = 50, shape = "Ushape"))
R> fit.U <- fitted(fout.U)

Figure 10 displays the fitted mean of daily death occurrences superimposed with the number
of deaths obtained from the GBSAR Poisson regression with and without a shape restriction.
As shown in Figure 10, both unrestricted and U-shaped exposure-response curves identify the
nonlinear exposure-response curves in the association between temperature with increased
mortality, indicating that high and low temperatures have an adverse effect on mortality.
The adequacy of the shape restrictions can be tested by computing the marginal likelihoods.
The marginal likelihoods (LIL) given in the abridged output of fout.free and fout.U below
show that the unrestricted Poisson semiparametric regression has a larger LIL and would be
favored over that with a U-shaped restriction by the observed data set, in terms of model
selection. However, note that the U-shaped model is not always correctly identified by the
marginal likelihood and that when the two models are consistent with the true function, such
as the unrestricted model versus the U-shaped model with additional parameters, as in the
current exposure-response curve, the marginal likelihood may prefer a simpler model, as dis-
cussed in Lenk and Choi (2017). Further, the mortality rate from the shape-restricted model
clearly shows the U-shaped exposure-response curve estimates and confirms the empirical
findings on the shape of the curve in previous mortality-temperature studies (e.g., Curriero
et al. 2002; Muggeo 2008; Anderson and Bell 2009). In addition, an estimate of ω, the abscissa
of the minimum of the U-shaped curve, is provided as approximately 13.1◦C, the temperature
that minimizes mortality, as shown in the abridged output of fout.U.

R> summary(fout.free)

...
Log Integrated Likelihood
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LIL Gelfand & Dey = -26911.14
LIL Newton & Raftery (biased) = -26724.28
...

R> summary(fout.U)

...
Log Integrated Likelihood
LIL Gelfand & Dey = -26965.14
LIL Newton & Raftery (biased) = -26803.36
...
omega is inflection point of squish function
Posterior mean omega = 13.12218
Posterior stdev omega = 0.0179773
...

In addition, we check the adequacy of the Poisson regression versus the negative binomial
regression with a U-shaped restriction for the data set by computing the marginal likelihoods
for model selection. To fit the negative binomial regression, we specify the arguments in
gbsar as family = "negative.binomial" and link = "log", as illustrated in the following
R code and abridged output:

R> fout.U.nb <- gbsar(death ~ fs(tmean), family = "negative.binomial",
+ link = "log", nbasis = 50, shape = "Ushape", mcmc = mcmc,
+ prior = prior)
R> fit.U.nb = fitted(fout.U.nb)
R> summary(fout.U.nb)

...
Log Integrated Likelihood
LIL Gelfand & Dey = -23668.52
LIL Newton & Raftery (biased) = -23434.95
...
omega is inflection point of squish function
Posterior mean omega = 13.95253
Posterior stdev omega = 0.08368391
...

Table 2 summarizes the computed marginal likelihoods of the two candidate models (U-shaped
Poisson, and U-shaped negative binomial). Based on the results in Table 2, the U-shaped
negative binomial semiparametric regression model provides the better fit for the data set
than the U-shaped Poisson model.
Note that the data set was originally used in statistical analyses based on the over-dispersed
Poisson distribution (Gasparrini et al. 2012) and the time-series quasi-Poisson model (Gaspar-
rini et al. 2015) associated with different time lags. However, the current analysis considers
only the mean temperature as a predictor of the mortality rate in order to illustrate the
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U-shape Poisson U-shape negative binomial
LIL (Gelfand & Dey) −26965.14 −23668.52
LIL (Newton & Raftery) −26803.36 −23434.95

Table 2: LIL of London mortality data.

gbsar function of bsamGP. Thus, the negative binomial distribution could be favored over
the Poisson distribution for the observed data, which is probably because over-dispersion is
better explained by the negative binomial distribution.
Here, we use a default prior specification in the negative binomial regression with an additional
hyperparameter, that is, the dispersion parameter κ with the shape parameter r0,κ and the
rate parameter s0,κ, to be weakly informative by setting a prior mean of 1 and a prior variance
of 100. Note that the negative binomial distribution can be represented as a Poisson-gamma
mixture and that bsamGP also implements the mixture approach to the negative binomial
regression by specifying family = "poisson.gamma".

3.3. Density estimation with the BSAD model
In addition to regression modeling, the BSAM provides a semiparametric density estimation
procedure for the BSAD model, as described in Section 2.4. Here, we explain how to use the
bsamGP package for the BSAD model as the final illustration of bsamGP using synthetic data.
The data used in this analysis are based on a random sample of size n = 500 from a semi-
parametric density f(y) ∝ exp {h1(y)β1 + h2(y)β2 + z(y)}. Here, the parametric component
has a truncated gamma distribution with h1(y) = log(y), β1 = 3, h2(y) = y, β2 = −1, defined
on (0, 10), and the nonparametric component has a sigmoid function z(y) = tanh(y − 5). In
order to generate samples from the semiparametric model, we utilize rejection sampling with
a uniform envelope on (0, 10). The following R code illustrates the process of generating the
synthetic data from the semiparametric model.

R> set.seed(1)
R> nSample <- 500
R> a <- 0
R> b <- 10
R> zFunc <- function(x, center) tanh(x - center)
R> paraFunc <- function(x, a) drop(3 * log(x - a) - x)
R> semiFunc <- function(x, a, b) exp(paraFunc(x, a) + zFunc(x, (b - a) / 2))
R> InvAccRate <- optimize(function(x) semiFunc(x, a, b) / dunif(x, a, b),
+ maximum = TRUE, interval = c(a, b))$objective
R> u <- runif(nSample * InvAccRate)
R> y <- runif(nSample * InvAccRate, a,b)
R> x <- y[u < semiFunc(y, a, b) / (InvAccRate * dunif(y, a, b))][1:nSample]

To fit the data, we use the geometric smoother prior and generate 1,000 posterior samples
with 20,000 burn-in iterations and a thinning of five from the MCMC algorithm of the bsad
function. In estimating the semiparametric model, we set the maximum number of basis
functions to 98 and the number of grid points to 101. The R command is given as follows:

R> mcmc <- list(nblow = 20000, nskip = 5, smcmc = 1000)
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Figure 11: Posterior estimates of the bsad function for the simulated data generated from
the semiparametric model, overlaid with a histogram of the data. The dashed blue line
denotes the parametric model and the solid magenta line represents the posterior mean of
the semiparametric model with dotted green and orange lines representing the 95% equal-tail
credible intervals.

R> fout <- bsad(x, xmin = a, xmax = b, nint = 101, MaxNCos = 98,
+ mcmc = mcmc, smoother = "geometric", parametric = "gamma")

The estimated density curve based on the BSAD model can be drawn with the plot method
as displayed in Figure 11.

R> fit <- fitted(fout, HPD = FALSE)
R> plot(fit)

The posterior summary is also produced for the object returned by the bsad function using
the summary command. The code and partial output of the posterior probability of each
model and the natural logarithm of the marginal likelihoods are given as follows:

R> summary(fout)

...
Posterior Probabilities of Parametric vs Semi-parametric with kappa

Para SemiPara
0 1

Ln Marginal Distribution of the Data
Para Semi SemiMK

-1062.375 -1037.290 -1040.604
...

As shown in Figure 11 and by the marginal likelihood in the posterior summary, the semipara-
metric model is more appropriate for fitting the simulated data than the parametric model is
and, thus, provides a reasonable estimate of the probability density function.
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4. Conclusion
This article has presented a user-friendly new R package called bsamGP for fitting semipara-
metric models using Gaussian process priors. The bsamGP package provides easy access to
fitting Bayesian semiparametric models for regression and density estimation. The bsamGP
package utilizes spectral representations in order to simplify the posterior computation of
Gaussian processes through the linearization of the covariance structure. bsamGP contains
popular parametric linear regression models, semiparametric partial linear regression mod-
els, semiparametric density estimation models, semiparametric quantile regression models,
and generalized semiparametric models. All semiparametric regression models in bsamGP
allow for additive models and nonlinear regression functions with, for example, monotonic,
monotonic convex or concave, S-shaped, and U-shaped constraints. bsamGP uses compiled
Fortran 90 code to maximize computational efficiency. Thus, the implementation is fast and
reliable, making it viable for various Bayesian semiparametric models with shape restrictions
to be applied more widely in practice.
Our package can be expanded in several directions. The current version allows for normal prior
distributions for the coefficients of the linear regression and two smoothing prior distributions
(T-smoother and Lasso smoother) for the nonparametric function. Thus, it could be expanded
to allow spike-and-slab prior distributions for variable selection in the linear regression as
well as for the nonparametric function with shape restrictions, which improves the model
fit when the true unknown function is on the boundary of the constraints for the shape
restrictions, as discussed in Jo et al. (2016) and Lenk and Choi (2017). For longitudinal data or
clustered data, semiparametric additive mixed effects models can be considered in the BSAM
framework by incorporating random effects and measurement errors in the covariates (e.g.,
Choi, Jo, Park, and Lenk 2017), and such models can be extended to and implemented by the
bsamGP package. Furthermore, a companion software application is being developed as either
a Python-based (van Rossum et al. 2011) graphical user interface (GUI) or an interactive web
application using shiny (Chang, Cheng, Allaire, Xie, and McPherson 2019) in the R package
bsamGP. These applications will have the same functionality as that of bsamGP but will
allow practitioners to use bsamGP easily by means of a GUI instead of a command-line user
interface in R.
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