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Abstract

This document analyses in details the fertility data first discussed by Winkelmann (1995)
and further analysed by McShane et al. (2008) and recently by Baker and Kharrat (2017).
The computation described in this document is done in R (R Core Team, 2016) using the
contributed package Countr (Kharrat and Boshnakov, 2017). The package implements the
algorithms described in Baker and Kharrat (2017) and an improved version of the methods
derived in McShane et al. (2008) for the weibull-count models. For this example, we compare
the weibull-count model to the standard Poisson glm and describe methods to select the best
model and access the goodness of fit of the selected model.

This vignette is part of package Countr (see Kharrat et al., 2019).

1 Prerequisites

We will do the analysis of the data with package Countr, so we load it:

library(Countr)

Packages dplyr (Wickham and Francois, 2016) and (Dahl, 2016) provide usefull facilities
for data manipulation and presentation:

library(dplyr)
library(xtable)

2 Data

The fertility dataset was first analysed by Winkelmann (1995) and we are thankful to Blake
McShane for sharing it with us. We changed somewhat the format of the columns by replacing
dummy variables with factor variables and renaming them. For example, the dummy variables
for the different religions are replaced by a single variable "Religion", a factor with levels
Other, Catholic, Muslim and Protestant. These reformatted data are shipped with package
Countr and can be loaded in the usual way:

data(fertility)
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1 2 no 8 no no Other 42 yes 20
2 3 no 8 no no Other 55 yes 21
3 2 no 8 no no Other 51 yes 24
4 4 no 8 no no Other 54 no 26
5 2 no 8 no no Other 46 yes 22
6 2 no 8 no no Other 41 no 18

Table 1: First few rows of fertility data.

0 1 2 3 4 5 6 7 8 >= 9
Frequency 76 239 483 228 118 44 30 10 8 7

Relative frequency 0.061 0.19 0.39 0.18 0.095 0.035 0.024 0.008 0.0064 0.0056

Table 2: Fertility data: Frequency distribution of column children.

The first few rows of the data are shown in Table 1. The sample is formed by observation
of 1243 women aged 44 or older in 1985 who answered the questions relevant to the analysis
conducted by the German Socio-Economic Panel. The count variable children is the number
of births per woman and is characterised by small underdispersion: the variance of the number
of births is less than the mean, 2.33 versus 2.384

There are 8 possible explanatory variables: 3 continuous and 5 categorical (factors), describ-
ing the risk of a birth, see the package documentation for further details.

This computes separate summaries for the numeric and non-numeric variables:

nam_fac <- sapply(fertility, function(x) !is.numeric(x))
fert_factor <- summary(fertility[ , nam_fac])
fert_num <- t(sapply(fertility[ , !nam_fac], summary))

The results are shown in Tables 3 and 4.

german voc_train university Religion rural
1 no :245 no :704 no :1207 Other :130 no :613
2 yes:998 yes:539 yes: 36 Catholic :502 yes:630
3 Muslim : 75
4 Protestant:536

Table 3: Summary of the factor variables

3 Fitting a model
The benchmark for this data set is the Poisson glm. It can be fitted in the usual way using the
glm() function.

form <- children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage
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Min. 1st Qu. Median Mean 3rd Qu. Max.
children 0.00 1.00 2.00 2.38 3.00 11.00

years_school 8.00 9.00 9.00 9.10 9.00 13.00
year_birth 40.00 45.00 50.00 51.99 58.00 83.00

age_marriage 17.00 21.00 23.00 23.11 25.00 30.00

Table 4: Summary of the numeric explanatory variables

pois <- glm(formula = form, data = fertility, family = poisson())
summary(pois)

Call:
glm(formula = form, family = poisson(), data = fertility)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.1839 -0.6964 -0.0792 0.4088 4.1954

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.147444 0.301658 3.804 0.000142 ***
germanyes -0.200362 0.072135 -2.778 0.005476 **
years_school 0.033506 0.032455 1.032 0.301901
voc_trainyes -0.152776 0.043856 -3.484 0.000495 ***
universityyes -0.154830 0.158779 -0.975 0.329498
ReligionCatholic 0.218038 0.070716 3.083 0.002047 **
ReligionMuslim 0.547571 0.085039 6.439 1.20e-10 ***
ReligionProtestant 0.113410 0.076272 1.487 0.137038
year_birth 0.002418 0.002383 1.015 0.310213
ruralyes 0.059072 0.038120 1.550 0.121224
age_marriage -0.030446 0.006510 -4.677 2.91e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1204.3 on 1242 degrees of freedom
Residual deviance: 1034.4 on 1232 degrees of freedom
AIC: 4225.6

Number of Fisher Scoring iterations: 5

One alternative to the standard Poisson model is the renewal count models implemented
in Countr. In theory, any survival density can be used to build the associated renewal-count
model using the computation methods detailed in Baker and Kharrat (2017).

3.1 Distributions
The package offers several choices for the inter-arrival times distribution. The overview here is
for Countr version 3.4.1. There are three main distributions: weibull, gamma and gengamma
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(generalised gamma). They should work fine with all data sets. There are also some experimen-
tal distributions, weibullgam (weibull-gamma, see McShane et al., 2008, Section 3.2) and burr,
which should be used with care. Users can also use their own dist = "custom" distributions
but the computation times in this case may become cumbersome and should be avoided with
large datasets.

3.2 Algorithms
Three main algorithms have been implemented to compute the associated convolution problem
in the function renewalCount() and can be specified by choosing the desired method in the
convPars argument. The performance of the different algorithms has been compared in Baker
and Kharrat (2017, Section 7.2). The default set-up is to use the dePril algorithm with 50 steps
and extrapolation. We found that this set-up worked quite well for a large range of examples.
The weibull-count model can also be fitted using 2 series expansion methods. These algorithms
are usually faster but less reliable for large counts (>= 10).

The following code fits a weibull-count model to the fertility data using the default
algorithm and the PORT optimisation routine (nlminb).

form <- children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage

wei <- renewalCount(formula = form, data = fertility, dist = "weibull",
weiMethod = "conv_dePril",
control = renewal.control(trace = 0, method = "nlminb")
)

summary(wei)

Call:
renewalCount(formula = form, data = fertility, dist = "weibull",

control = renewal.control(trace = 0, method = "nlminb"),
weiMethod = "conv_dePril")

Pearson residuals:
Min 1Q Median 3Q Max

-2.6721 -0.9975 -0.2462 0.4292 7.1926
Inter-arrival dist.: weibull

Links: scale: link log, shape: link log

Count model coefficients
Estimate Std. Error z value Pr(>|z|)

scale_ 1.397176 0.304994 4.581 4.63e-06 ***
scale_germanyes -0.222547 0.072208 -3.082 0.002056 **
scale_years_school 0.038533 0.032604 1.182 0.237269
scale_voc_trainyes -0.173348 0.043996 -3.940 8.15e-05 ***
scale_universityyes -0.181454 0.159394 -1.138 0.254953
scale_ReligionCatholic 0.241996 0.070708 3.422 0.000621 ***
scale_ReligionMuslim 0.638743 0.086420 7.391 1.46e-13 ***
scale_ReligionProtestant 0.123141 0.076195 1.616 0.106064
scale_year_birth 0.002305 0.002383 0.967 0.333439
scale_ruralyes 0.068059 0.038169 1.783 0.074570 .
scale_age_marriage -0.034026 0.006537 -5.205 1.94e-07 ***
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shape_ 0.211969 0.027268 7.773 7.64e-15 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Number of iterations in nlminb optimization: 48

Execution time 39
Log-likelihood: -2077.0244 on 12 Df

Note that the scale (scale_) and shape (shape_) parameters are reported on the log scale
in this example and hence in order to recover the values in (McShane et al., 2008, Table 2), one
should apply exp() to the coefficient values.

4 Residuals
Residuals measure the departure of fitted values from observed values of the response variables.
They can be used to detect model misspecification: outliers, poor fit for given values of the
covariates and/or the count values. Whereas a universal definition of residuals exists for linear
models (the difference, possibly standardised, between observed and fitted values), this univer-
sality is lost for nonlinear models. Many definitions have been suggested in the literature (see
the discussion in Cameron and Trivedi (2013, Section 5.2)) and depending on the aims of the
analysis, one definition may be more useful than another.

For renewal-count models, the Pearson residuals are easy to compute and can be used
in diagnostoc plots. Such plots need to be interpreted with care however since there are no
theoretical results for renewal-count models justifying the asymptotic normality of residuals.
There is also little hope to make them identically distributed.

The Countr package provides a method to compute Peason residuals and a routine residuals_plot()
to plot them in order to assist the analyst when trying to work out some patterns that would
lead to model improvement (detect outliers, introduce covariates in a different form, etc.).

residuals_plot(wei, type = "pearson")

In Figure 1, four diagnosis plots are presented for the fitted weibull count model. The top
left graph shows the estimated density of the residuals. The distribution has a mode around
zero, is slightly right skewed and has fat tails. The departure from normality is confirmed in
the qq-plot (top-right) especially for large values of the residuals (absolute values larger than
2). The bottom graphs plot the residuals against the predicted mean and predicted scale and
show the presence of some outliers.

One can also compare the residuals of the previously fitted models (Poisson and Weibull):

par(mfrow = c(1, 2))
res_wei <- residuals(wei, type = "pearson")
qqnorm(res_wei, ylim = range(res_wei), main = "Weibull Renewal Model")
qqline(res_wei, ylim = range(res_wei))
grid()
pois <- glm(formula = form, data = fertility, family = poisson())
res_pois <- residuals(pois, type = "pearson")
qqnorm(res_pois, ylim = range(res_wei), main = "GLM Poisson")
qqline(res_pois, ylim = range(res_wei))
grid()
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Figure 1: Weibull model: residuals analysis
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Figure 2: Normal QQ-plots for the Weibull and Poisson Pearson’s residuals. Both are clearly not normal.
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Figure 2 shows that the Weibull and Poisson Pearson’s residuals are not normal. It could
be speculated that the Poisson’s residuals are somewhat closer to normality but this is doesn’t
really give az basis for informed decision.

5 Statistical Tests
The Poisson and weibull models can be considered nested. In fact, the Poisson model is a special
case of the weibull with a shape parameter equal to 1 (0 on the log scale).

5.1 t-test

Based on the previous observation, one can test the significance of the shape parameter using
the usual t-test. The t-test is a special case of the Wald test (see Cameron and Trivedi (2013,
Section 2.6)). Let θ be the regression coefficients and j be the index of the shape parameter.
The null hypothesis is defined as H0 : θj = 0 to be tested against the alternative hypothesis
Ha : θj 6= 0. The test statistic Tz is defined by:

Tz = θ̂j√
vjj

(1)

where θ̂j is the estimated shape parameter and √vjj its estimated standard error. Asymptoti-
cally, Tz is standard normal. We reject H0 against Ha at significance level α if |Tz| > zα/2.

Following standard practice in R, the t-test and the associated p-values are reported when
calling the summary() method for a fitted regression model. Therefore, in order to obtain the
value of the t-test for the shape value, the user can use the following code:

form <- children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage

wei <- renewalCount(formula = form, data = fertility, dist = "weibull",
control = renewal.control(trace = 0, method = "nlminb")
)

wei_summary <- summary(wei)$coef

t_shape <- wei_summary[rownames(wei_summary) == "shape_",, drop = FALSE]
print(xtable(t_shape), floating = FALSE)

Estimate Std. Error z value Pr(>|z|)
shape_ 0.21 0.03 7.79 0.00

The test statistic is Tz = 7.794, which means that H0 can be rejected at any reasonable
significance level. Therefore, according to the t-test, the Poisson model can be rejected in favour
of the weibull one.

5.2 Likelihood ratio test

Given that the estimation procedure for both models is likelihood based, one classical statisti-
cal technique for testing hypotheses (for nested models) is the likelihood ratio test. One can
formulate the null hypothesis as being in favour of the Poisson model. The likelihood ratio test
statistic is defined as:

TLR = −2[L0 − La] (2)
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which is assymptotically χ2(h) under H0 and h is the difference in degree of freedom between
the models (here h = 1). H0 is rejected against Ha at significance level α if TLR > χ2(h;α).

In R, one can use the lmtest package (Zeileis and Hothorn, 2002) to conduct the likelihood
ratio test as shown below:

library(lmtest)
lrtest(pois, wei)

[1] "7.794"
Likelihood ratio test

Model 1: children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage

Model 2: children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage

#Df LogLik Df Chisq Pr(>Chisq)
1 11 -2101.8
2 12 -2077.0 1 49.559 1.925e-12 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Warning message:
In modelUpdate(objects[[i - 1]], objects[[i]]) :

original model was of class "glm", updated model is of class "renewal"

The warning message simply reminds the user that the models have different classes and
can be safely ignored here. The test shows that H0 can be rejected at any significance level and
comforts the conclusion of the t-test described earlier: The Weibull model should be preferred
to the Poisson for the fertility data.

6 Goodness of Fit
For fully parametric models such as Poisson or renewal-count, a crude diagnosis is to compare
the fitted probabilities with observed frequencies. Things are better understood with a formula.
Define the count variable yi, i = 1, . . . , n where n is the total number of individuals and let
m = max(yi). We denote by p̄j the observed frequencies (the fraction of the sample where
y = j) and let p̂j , j = 1, . . . ,m the fitted frequencies. For example, in the Poisson model,
p̂j = 1

n

∑n
i=1 exp (−µ̂ji )/j!.

To start with, one can compare p̄j to p̂j for specific values of the count variable j to gain
some insight about the range of counts where the model has a tendency to over or under
predicts or to allow a visual inspection of the predictive performance of competing models.
This computation can be done in Countr by a call to the function compareToGLM which can
take a fitted Poisson and (optionally) a negative binomial model and compare them to a number
of fitted renewal models passed in .... The function will return a table with p̄j (Actual) and
the p̂j induced by the different models. The contribution to the Pearson statistic of each cell
defined as

∑J
j=1 n

(p̄j−p̂j)2

p̄j
will also be computed. Note that here we specified the cells by

providing the breaks argument: the two cells 5-6 and 7-8 were merged and counts larger than
9 have also been merged.

form <- children ~ german + years_school + voc_train + university + Religion +
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year_birth + rural + age_marriage
pois <- glm(formula = form, data = fertility, family = poisson())
wei <- renewalCount(formula = form, data = fertility, dist = "weibull",

control = renewal.control(trace = 0, method = "nlminb")
)

tab <- compareToGLM(poisson_model = pois, breaks = c(0:5, 7, 9), weibull = wei)
tab_tbl <- xtable(tab, caption = "Comparison between some models.")
print(tab_tbl)

Counts Actual weibull_predicted poisson_predicted weibull_pearson poisson_pearson
1 0 0.06 0.07 0.10 0.52 22.66
2 1 0.19 0.23 0.23 7.17 6.60
3 2 0.39 0.29 0.25 42.15 90.97
4 3 0.18 0.22 0.19 6.33 0.69
5 4 0.09 0.12 0.12 5.04 4.93
6 5-6 0.06 0.07 0.09 2.30 10.16
7 7-8 0.01 0.01 0.02 2.58 0.22
8 >= 9 0.01 0.00 0.00 18.40 2.71

Table 5: Comparison between some models.

In a first step, one can compare the Pearson statistics:

colSums(dplyr::select(tab, contains("_pearson")))

weibull_pearson poisson_pearson
84.48827 138.94820

It can be seen that the Pearson statistic for the Poisson model is 40% larger than the one
achieved by the weibull model. It is also interesting to note the contribution to the Pearson
statistic is substantially smaller in the Poisson case for cells 7-8 and 9 and larger. This was
already observed in the residuals plot and shows the Poisson model presents a ’better’ fit in
the tails and hence is less robust to outliers. In fact, the Poisson fitting process focuses on
minimising the ’mean-error’ and hence the estimation maybe influenced by outliers (It is well
known that the mean is not robust to outliers). The weibull model with the extra shape
parameter somehow smooths this effect. Depending on the analyst goal (predicting the mean
or the different probabilities), this feature maybe seen as a desired addition. For more on this,
see the discussion in Cameron and Trivedi (2013, Section 6.2)).

More insight can be gained by visualising the previous results. This can be done by calling
the function frequency_plot() as follows:

frequency_plot(tab$Counts, tab$Actual,
dplyr::select(tab, contains("_predicted"))

)
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Visualising the result can be a good starting point but without a formal test, it is hard to
conclude if p̂j is a good approximation to p̄j and hence if the model fits the data well. Cameron
and Trivedi (2013, Section 5.3.4)) suggest a formal chi-square goodness-of-fit test which is a
generalisation of the Pearson’s chi-square test and controls for estimation error in p̂j . The test
is a conditional moment test. It has been implemented in Countr in the chiSq_gof() method
using the gradient version which is justified for renewal models as they are fully parametric and
parameters estimated is based on maximum-likelihood.

form <- children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage

wei <- renewalCount(formula = form, data = fertility, dist = "weibull",
control = renewal.control(trace = 0, method = "nlminb")
)

gof <- chiSq_gof(wei, breaks = c(0:5, 7, 9))
gof

chi-square goodness-of-fit test

Cells considered 0 1 2 3 4 5-6 7-8 >= 9
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DF Chisq Pr(>Chisq)
1 7 70.167 1.367e-12 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The formal chi-square test statistic yields a value 70.17, compared to χ2(7) critical value of
12.02 at 5%. The weibull model, although preferred to the Poisson according to the LR test,
is strongly rejected. For this type of models with bi-modal distribution, mixture models are
usually preferred. See the discussion in Cameron and Trivedi (2013, Chapter 6.2).

7 Conclusion
The above analysis suggests, on several measures, that the weibull count model is better than
the Posson model for the fertility dataset but it may not be good enough, as well.
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