
JSS Journal of Statistical Software
October 2019, Volume 91, Issue 5. doi: 10.18637/jss.v091.i05

Depth and Depth-Based Classification with
R Package ddalpha

Oleksii Pokotylo
University of Cologne

Pavlo Mozharovskyi
CREST, Ensai

Rainer Dyckerhoff
University of Cologne

Abstract

Following the seminal idea of Tukey (1975), data depth is a function that measures
how close an arbitrary point of the space is located to an implicitly defined center of
a data cloud. Having undergone theoretical and computational developments, it is now
employed in numerous applications with classification being the most popular one. The
R package ddalpha is a software directed to fuse experience of the applicant with recent
achievements in the area of data depth and depth-based classification.

ddalpha provides an implementation for exact and approximate computation of most
reasonable and widely applied notions of data depth. These can be further used in the
depth-based multivariate and functional classifiers implemented in the package, where the
DDα-procedure is in the main focus. The package is expandable with user-defined custom
depth methods and separators. The implemented functions for depth visualization and
the built-in benchmark procedures may also serve to provide insights into the geometry
of the data and the quality of pattern recognition.

Keywords: data depth, supervised classification, DD-plot, outsiders, visualization, functional
classification, ddalpha.

1. Introduction
In 1975 John W. Tukey, in his work on mathematics and the picturing of data, proposed a
novel way of data description, which evolved into a measure of multivariate centrality named
data depth. For a data sample, this statistical lta, and thus allows for multivariate ordering of
data regarding their centrality. More formally, given a data cloud X = (x1, . . . ,xn)> in Rd,
for a point z of the same space, a depth function D(z | X) measures how close z is located
to some (implicitly defined) center of X. Different concepts of closeness between a point z
and a data cloud X suggest a diversity of possibilities to define such a function and a center
as its maximizer. Naturally, each depth notion concentrates on a certain aspect of X, and
thus possesses various theoretical and computational properties. Many depth notions have

https://doi.org/10.18637/jss.v091.i05

2 ddalpha: Depth and Depth-Based Classification in R

arisen during the last several decades differing in properties and being suitable for various
applications. Mahalanobis (Mahalanobis 1936), halfspace (Tukey 1975), simplicial volume
(Oja 1983), simplicial (Liu 1990), zonoid (Koshevoy and Mosler 1997), projection (Zuo and
Serfling 2000), spatial (Vardi and Zhang 2000) depths can be seen as well developed and most
widely employed notions of depth function; see Mosler (2013) for a recent survey with details
on categorization and properties.
Being intrinsically nonparametric, a depth function captures the geometrical features of given
data in an affine-invariant way. By that, it appears to be useful for description of data’s loca-
tion, scatter, and shape, allowing for multivariate inference, detection of outliers, ordering of
multivariate distributions, and in particular classification, that recently became an important
and rapidly developing application of the depth machinery. While the parameter-free nature
of data depth ensures attractive theoretical properties of classifiers, its ability to reflect data
topology provides promising predicting results on finite samples.

1.1. Classification in the depth space

Consider the following setting for supervised classification: Given a training sample consist-
ing of q classes X1, . . . ,Xq, each containing ni, i = 1, . . . , q, observations in Rd. For a new
observation x0, a class should be determined, to which it most probably belongs. Depth-
based learning started with plug-in type classifiers. Ghosh and Chaudhuri (2005b) construct
a depth-based classifier, which, in its naïve form, assigns the observation x0 to the class
in which it has maximal depth. They suggest an extension of the classifier, that is consis-
tent w.r.t. Bayes risk for classes stemming from elliptically symmetric distributions. Further
Dutta and Ghosh (2011, 2012) suggest a robust classifier and a classifier for Lp-symmetric
distributions, see also Cui, Lin, and Yang (2008), Mosler and Hoberg (2006), and additionally
Jörnsten (2004) for unsupervised classification.
A novel way to perform depth-based classification has been suggested by Li, Cuesta-Albertos,
and Liu (2012): first map a pair of training classes into a two-dimensional depth space, which
is called theDD-plot, and then perform classification by selecting a polynomial that minimizes
empirical risk. Finding such an optimal polynomial numerically is a very challenging and –
when done appropriately – computationally involved task, with a solution that in practice can
be unstable (see Mozharovskyi 2015, Section 1.2.2 for examples). In addition, the DD-plot
should be rotated and the polynomial training phase should be done twice. Nevertheless,
the scheme itself allows to construct optimal classifiers for wider classes of distributions than
the elliptical family. Being further developed and applied by Vencalek (2011); Lange, Mosler,
and Mozharovskyi (2014b); Mozharovskyi, Mosler, and Lange (2015) it proved to be useful
in practice, also in the functional setting (Mosler and Mozharovskyi 2017; Cuesta-Albertos,
Febrero-Bande, and de la Fuente 2017).
The general depth-based supervised classification framework implemented in the R package
ddalpha (Pokotylo, Mozharovskyi, and Dyckerhoff 2016) can be described as follows. In the
first part of the training phase, each point of the training sample is mapped into the q-variate
space of its depth values with respect to each of the classes xi 7→ (D(xi |X1), . . . , D(xi |Xq)).
In the second part of the training phase, a low-dimensional classifier, flexible enough to ac-
count for the change in data topology due to the depth transform, is employed in the depth
space. We suggest to use the α-procedure, which is a nonparametric, robust, and computa-
tionally efficient separator. When classifying an unknown point x0, the first part is the same

Journal of Statistical Software 3

as in the training phase, (x0 7→ (D(x0 |X1), . . . , D(x0 |Xq))), and in the second part the
trained q-variate separator assigns the depth-transformed point to one of the classes. Depth
notions best reflecting data geometry share the common feature to attain value zero immedi-
ately beyond the convex hull of the data cloud. Thus, if such a data depth is used in the first
phase, it may happen that x0 is mapped to the origin of the depth space, and thus cannot be
readily classified. We call such a point an outsider and suggest to apply a special treatment
to assign it. If the data is of functional nature, a finitization step based on the location-
slope (LS-) transform precedes the above described process. Depth transform, α-procedure,
outsider treatment, and the preceding LS-transform constitute the DDα-classifier. This to-
gether with the depth-calculating machinery constitutes the heart of the R package ddalpha
(Pokotylo et al. 2016).

1.2. The R package ddalpha

The R package ddalpha is a software directed to fuse experience of the applicant with recent
theoretical and computational achievements in the area of data depth and depth-based clas-
sification. The R package ddalpha (Pokotylo et al. 2016) is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=ddalpha. ddalpha
provides an implementation for exact and approximate computation of seven most reason-
able and widely applied depth notions: Mahalanobis, halfspace, zonoid, projection, spatial,
simplicial and simplicial volume depths. The variety of depth-calculating procedures includes
functions for computation of data depth of one or more points w.r.t. a data set, construc-
tion of the classification-ready q-dimensional depth space, visualization of the bivariate depth
function for a sample in the form of upper-level contours and of a 3D-surface.
The main feature of the proposed methodology on the DD-plot is the DDα-classifier, which
is an adaptation of the α-procedure to the depth space. Except for its efficient and fast
implementation, ddalpha suggests other classification techniques that can be employed in the
DD-plot: the original polynomial separator by Li et al. (2012) and the depth-based kNN-
classifier proposed by Vencalek (2011).
Halfspace, zonoid and simplicial depths vanish beyond the convex hull of the sample, and
thus cause outsiders during classification. For this case, ddalpha offers a number of outsider
treatments and a mechanism for their management.
If it is decided to employ the DD-classifier, its constituents are to be chosen: data depth,
classification technique in the depth space, and, if needed, outsider treatment and aggregation
scheme for multi-class classification. Their parameters, such as type and subset size of the
variance-covariance estimator for Mahalanobis and spatial depth, number of approximating
directions for halfspace and projection depth or fraction of simplices for approximating sim-
plicial and simplicial volume depths, degree of polynomial extension for the α-procedure or
the polynomial classifier, number of nearest neighbors in the depth space or for an outsider
treatment, etc. must be set. Rich built-in benchmark procedures allow to estimate the em-
pirical risk and error rates of the DD-classifier and the portion of outsiders help in making
the decision concerning the settings.
ddalpha possesses tools for immediate classification of functional data in which the measure-
ments are first brought onto a finite dimensional basis, and then fed to the depth-classifier.
In addition, the componentwise classification technique by Delaigle, Hall, and Bathia (2012)
is implemented.

https://CRAN.R-project.org/package=ddalpha

4 ddalpha: Depth and Depth-Based Classification in R

Unlike other packages, ddalpha implements various depth functions and classifiers for mul-
tivariate and functional data under one roof. ddalpha is the only package that implements
zonoid depth and efficient exact halfspace depth. All depths in the package are implemented
for any dimension d ≥ 2; except for the projection depth all implemented algorithms are
exact, and supplemented by their approximating versions to deal with the increasing com-
putational burden for large samples and higher dimensions. It also provides an interface
to define custom (user-specific) depths and classifiers. In addition, the package contains 50
multivariate and 4 functional ready-to-use classification problems and data generators for a
palette of distributions.
Most of the functions of the package are programmed in C++, in order to be fast and efficient.
The package has a module structure, which makes it expandable and allows user-defined
custom depth methods and separators. ddalpha employs boost (package BH; Eddelbuettel,
Emerson, and Kane 2019), a well known fast and widely applied library, and resorts to Rcpp
(Eddelbuettel and François 2011) allowing for calls of R functions from C++.

1.3. Comparison to existing implementations

Having proved to be useful in many areas, data depth and its applications find implemen-
tation in a number of R packages: aplpack (Wolf 2019), depth (Genest, Masse, and Plante
2017), localdepth (Agostinelli, Romanazzi, and SLATEC Common Mathematical Library
2013), fda.usc (Febrero-Bande and Oviedo de la Fuente 2012), rsdepth (Mustafa, Ray, and
Shabbir 2014), depthTools (Lopez-Pintado and Torrente 2013), MFHD (Hubert and Vak-
ili 2013), depth.plot (Mahalanobish and Karmakar 2015), DepthProc (Kosiorowski and Za-
wadzki 2019), WMTregions (Bazovkin 2013), modQR (Šiman and Boček 2019), OjaNP (Fis-
cher, Mosler, Möttönen, Nordhausen, Pokotylo, and Vogel 2018), and MATLAB (The Math-
Works Inc. 2019) packages: CompPD (Liu and Zuo 2015) and modQR (Boček and Šiman
2016), which suggest substantial possibilities. Out of this diversity, we concentrate on the
two main aspects to which the package ddalpha is devoted, namely computation of the mul-
tivariate data depth function and depth-based supervised classification.
Regarding the depth calculation, the wide range of the possibilities of the package ddalpha
can be better seen in comparison with the existing functionality on calculation of data depth.
Being a monotone transformation of the Mahalanobis distance, Mahalanobis depth can be
programmed in a few script lines, and due to its wide spread is implemented in numerous
software packages, among others, e.g., DepthProc, localdepth, fda.usc from the above list.
The R package ddalpha adds a possibility to compute robust Mahalanobis depth using MCD
estimates for mean and covariance matrix. Spatial depth can be computed using the R package
depth.plot that also provides spatial ranks and constructs corresponding DD-plots; different
to it ddalpha allows to compute affine-invariant spatial depth, while the affine invariance
can be accounted for in a robust way. Simplicial depth can be calculated exactly by the R
packages depth and fda.usc for bivariate data sets, and by the R package localdepth in higher
dimensions, while depth also provides an implementation for exact simplicial volume depth
in any dimension. To avoid the enormous burden of exact computation, ddalpha additionally
suggests a possibility to approximate both depths, either keeping computation time constant
(in n, given d) or maintaining calculation precision on the same level. Projection depth and
associated estimators can be computed exactly using the MATLAB package CompPD (Liu
and Zuo 2015). While exact computation of the projection depth even for moderate data sets

Journal of Statistical Software 5

is infeasible, one can make use of its approximation by minimizing over univariate projections
on random directions, implemented in the R packages DepthProc and fda.usc. ddalpha only
approximates the projection depth, but does it not only by random projections but using a
fast local optimization algorithm as well.
Most distinctive is the computation of the halfspace and zonoid depths. For d ≤ 3, exact
halfspace depth can be calculated by the R package depth. Pioneering for d > 3, Liu and Zuo
(2014a) construct an exact algorithm which regards all necessary halfspaces exploiting the
idea of the cone segmentation of the Euclidean space, whose MATLAB implementation can
be obtained upon request from the authors. Regarding these halfspaces in a combinatorial
order, Dyckerhoff and Mozharovskyi (2016) propose an entire family of algorithms, which are
sizeably more efficient (e.g., 16.1 seconds on Intel Core i7-2600 3.4 GHz against 10 hours on
Intel Pentium Duo 2.0 GHz when computing depth of a single point w.r.t. a sample of n = 160
and d = 5) and do not require data to be in general position. Three most important cases of
this family are implemented in ddalpha. ddalpha is the only software providing an (efficient)
exact implementation for zonoid depth, by means of linear programming (Dyckerhoff, Mosler,
and Koshevoy 1996).
ddalpha not only contains a comprehensive implementation of seven most popular depth
notions, and also provides a possibility to define a new (or extend an existing) depth function
corresponding exactly to the user’s needs, and integrates this in a generic way in further
procedures implemented in the package. Thus for any depth function, ddalpha plots depth
contours and the surface of the depth function for bivariate data set, but also provides the
entire implemented classification machinery. It is worth to note here that computation of
depth contours for d ≥ 3, as well as their visualization, are implemented for the weighted-
mean trimmed regions (R package WMTregions) and zonoid depth as their particular case,
multiple-output regression quantiles (MATLAB and R packages modQR) and halfspace depth
as their particular case and projection depth (MATLAB package CompPD). Further, ddalpha
does not include median-search algorithms (i.e., finding the deepest location(s)) implemented,
e.g., in OjaNP for simlplicial volume depth, rsdepth for the ray shooting depth, MFHD for
bivariate functional halfspace depth. Depth notions and accompanying statistics developed
for functional data can be calculated in such R packages as DepthProc, fda.usc, depthTools,
MFHD, and do not constitute the content of the current article.
The main feature of ddalpha is the unified DD-plot based framework for depth-based classi-
fication, which allows for choosing the data depth to construct the DD-plot, the multivariate
classifier to employ there, the treatment for points not handled by the depth if this is the
case, and the discretization scheme for projection of functional data onto a finite-dimensional
basis and the aggregation scheme for multi-class classification if needed. Together with a
variety of depths, multivariate separators, and outsider treatments, ddalpha contains tools
for visualization and validation of classification results, and has by that no analogs. DD-
plot-based techniques employing functional depths and suited for supervised classification of
functional data are implemented in the R package fda.usc (Febrero-Bande and Oviedo de la
Fuente 2012).

1.4. Outline of the article

To facilitate understanding and keep the presentation solid, the functionality of the R package
ddalpha is illustrated through the article on the same functional data set “ECG Five Days”

6 ddalpha: Depth and Depth-Based Classification in R

from Chen et al. (2015), which is a long ECG time series constituting two classes. The
data set originally contains 890 objects. We took a subset consisting of 70 objects only
(35 from each of the days) which best demonstrates the general and complete aspects of
the proposed procedures (e.g., existence of outliers in its bivariate projection or necessity of
three features in the α-procedure). Depth computation and depth-based classification are
exemplified – through Sections 2 and 3 – on the finite-dimensional (bivariate) transform of
these data, whose explanation we postpone to Section 5. In Section 2.2 considered depth
notions are illustrated in this two-dimensional space (cf. Figures 1 and 2, and Figure 5, left).
In Section 3, the DD-plot is constructed (Figure 5, right) where the classification is performed
by the DDα-separator. The steps of the α-procedure are illustrated in Figure 6.
The article is outlined as follows: Section 2 presents a theoretical description of the data depth
and the depth notions implemented in the package. In addition, it compares their computation
time and performance when employed in the maximum depth classifier. Section 3 includes
a comprehensive algorithmic description of the DDα-classifier with a real-data illustration.
Further, it discusses other classification techniques that can be employed in the DD-plot.
The questions whether one should choose a depth that avoids outsiders or should allow for
outsiders and classify them separately, and in which way, are considered in Section 4. Section 5
addresses the classification of functional data. In Section 6, the basic structure and concepts
of the R package user interface are presented, along with a discussion of their usage for
configuring the classifier and examples for calling its functions.
The illustrative material and the examples have been prepared using R packages bfp (Sa-
banés Bové and Held 2011), ggplot2 (Wickham 2016), MASS (Venables and Ripley 2002),
microbenchmark (Mersmann 2018), reshape2 (Wickham 2007), rgl (Adler, Murdoch et al.
2019), Rmpi (Yu 2017), snowFT (Sevcikova and Rossini 2017), stringr (Wickham 2019).

2. Data depth
This section regards depth functions. First (Section 2.1), we briefly review the concept of
data depth and its fundamental properties. Then (Section 2.2), we give the definitions in
their empirical versions for several depth notions: Mahalanobis, projection, spatial, halfspace,
simplicial, simplicial volume, zonoid depths. For each notion, we shortly discuss relevant com-
putational aspects, leaving motivations, ideas, and details to the corresponding literature and
the software manual. We do not touch the question of computation of depth-trimmed regions
for the following reasons: first, for a number of depth notions there exist no algorithms; then,
for some depth notions these can be computed using different R packages, e.g., WMTregions
for the family of weighted-mean regions including zonoid depth (Bazovkin and Mosler 2012)
or modQR for multiple-output quantile regression including halfspace depth as a particular
case; finally, this is not required in classification. After having introduced depth notions, we
compare the speed of the implemented exact algorithms by means of simulated data (Sec-
tion 2.3). The section is concluded (Section 2.5) by a comparison of error rates of the naïve
maximum depth classifier, paving a bridge to the more developedDD-plot classification which
is covered in the following sections.

2.1. The concept

Consider a point z ∈ Rd and a data sampleX = (x1, . . . ,xn)> in the d-dimensional Euclidean

Journal of Statistical Software 7

space, with X being a (n× d)-matrix and > being the transposition operation. A data depth
is a function D(z | X) : Rd 7→ [0, 1] that describes how deep, or central, the observation z is
located w.r.t. X. In a natural way, it involves some notion of center. This is any point of the
space attaining the highest depth value in X, and not necessarily a single one. In this view,
depth can be seen as a center-outward ordering, i.e., points closer to the center have a higher
depth, and those more outlying a smaller one.
The concept of a depth function can be formalized by stating postulates (requirements) it
should satisfy. Following Dyckerhoff (2004) and Mosler (2013), a depth function is a function
D(z |X) : Rd 7→ [0, 1] that is:

(D1) translation invariant: D(z + b | X + 1nb>) = D(z | X) for all b ∈ Rd (here 1n =
(1, . . . , 1)>),

(D2) linear invariant: D(Az |XA>) = D(z |X) for every nonsingular d× d matrix A,

(D3) zero at infinity: lim‖z‖→∞D(z |X) = 0,

(D4) monotone on rays: Let z∗ = argmaxz∈Rd D(z | X), then for all r ∈ Sd−1 the function
β 7→ D(z∗ + βr |X) decreases in the weak sense, for β > 0,

(D5) upper semicontinuous: the upper level sets Dα(X) = {z ∈ Rd : D(z | X) ≥ α} are
closed for all α.

For slightly different postulates see Liu (1992) and Zuo and Serfling (2000).
The first two properties state that D(· |X) is affine invariant. A in (D2) can be weakened to
isometric linear transformations, which yields an orthogonal invariant depth. Taking instead
of A some constant λ > 0 gives a scale invariant depth function. (D3) ensures that the upper
level sets Dα, α > 0, are bounded. According to (D4), the upper level sets are starshaped
around z∗, andDmax

z∈Rd D(z|X)(X) is convex. (D4) can be strengthened by requiringD(· |X)
to be a quasiconcave function. In this case, the upper level sets are convex for all α > 0. (D5)
is a useful technical restriction.
Upper level sets Dα(X) = {x ∈ Rd : D(x | X) ≥ α} of a depth function are also called
depth-trimmed or central regions. They describe the distribution’s location, dispersion, and
shape. For given X, the sets Dα(X) constitute a nested family of trimming regions. Note
that due to (D1) and (D2) the central regions are affine equivariant, due to (D3) bounded,
due to (D5) closed, and due to (D4) star-shaped (respectively convex, if quasiconcaveness of
D(· |X) is additionally required).

2.2. Implemented notions
The R package ddalpha implements a number of depths. Below we consider their empirical
versions. For each implemented notion of data depth, the depth surface (left) and depth
contours (right) are plotted in Figures 1 and 2 for one class of the data set introduced
in Section 1.4. The corresponding code can be found in the part Depth visualization of
Section 6.3.
Mahalanobis depth is based on an outlyingness measure, viz. the Mahalanobis distance (Ma-
halanobis 1936) between z and a center of X, µ(X) say:

d2
Mah

(
z;µ(X),Σ(X)

)
=
(
z − µ(X)

)>Σ(X)−1(z − µ(X)
)
.

8 ddalpha: Depth and Depth-Based Classification in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

data

Bivariate data

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Mahalanobis

Mahalanobis depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

projection

Projection depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

spatial

Spatial depth

Figure 1: Depth plots and contours of bivariate data.

Journal of Statistical Software 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

zonoid

Zonoid depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

halfspace

Halfspace depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

simplicial

Simplicial depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

simplicialVolume

Simplicial volume depth

Figure 2: Depth plots and contours of bivariate data.

10 ddalpha: Depth and Depth-Based Classification in R

The depth of a point z w.r.t. X is then defined as (Liu 1992)

DMah(z |X) = 1
1 + d2

Mah

(
z;µ(X),Σ(X)

) , (1)

where µ(X) and Σ(X) are appropriate estimates of mean and covariance of X. This depth
function obviously satisfies all the above postulates and is quasi-concave, too. It can be
regarded as a parametric depth as it is defined by a finite number of parameters (namely
d(d+1)

2). Based on the two first moments, its depth contours are always ellipsoids centered
at µ(X), and thus independent of the shape of X. If µ(X) and Σ(X) are chosen to be
moment estimates, i.e., µ(X) = 1

nX
>1n being the traditional average and Σ(X) = 1

n−1(X−
1nµ(X)>)>(X − 1nµ(X)>) being the empirical covariance matrix, the corresponding depth
may be sensitive to outliers. A more robust depth is obtained with the minimum covariance
determinant (MCD) estimator, see Rousseeuw and Leroy (1987).
Calculation of the Mahalanobis depth consists in estimation of the center vector µ(X) and the
inverse of the scatter matrix Σ(X). In the simplest case of traditional moment estimates the
time complexity amounts to O(nd2 + d3) only. Rousseeuw and Van Driessen (1999) develop
an efficient algorithm for computing robust MCD estimates.
Projection depth, similar to Mahalanobis depth, is based on a measure of outlyingness. See
Stahel (1981), Donoho (1982), and also Liu (1992), Zuo and Serfling (2000). The worst case
outlyingness is obtained by maximizing an outlyingness measure over all univariate projec-
tions:

oprj(z |X) = sup
u∈Sd−1

|z>u−m(X>u)|
σ(X>u)

,

with m(y) and σ(y) being any location and scatter estimates of a univariate sample y.
Taking m(y) as the mean and σ(y) as the standard deviation one gets the Mahalanobis
outlyingness, due to the projection property (Dyckerhoff 2004). In the literature and in
practice most often median, med(y) = y(bn+1c

2

), and median absolute deviation from the
median, MAD(y) = med(|y −med(y)1n|), are used, as they are robust. Projection depth is
then obtained as

Dprj(z |X) = 1
1 + oprj(z |X) . (2)

This depth satisfies all the above postulates and quasiconcavity. By involving the symmetric
scale factor MAD its contours are centrally symmetric and thus are not well suited for
describing skewed data.
Exact computation of the projection depth is a nontrivial task, which fast becomes intractable
for large n and d. Liu and Zuo (2014b) suggest an algorithm (and a MATLAB implementation,
see Liu and Zuo 2015). In practice one may approximate the projection depth from above by
minimizing it over projections on k random lines, which has time complexity O(knd). It can
be shown that finding the exact value is a zero-probability event though.
Spatial depth (also L1-depth) is a distance-based depth formulated by Vardi and Zhang (2000)
and Serfling (2002), exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchin-
skii (1997). For a point z ∈ Rd, it is defined as one minus the length of the average direction
from X to z:

Dspt(z |X) = 1−
∥∥∥ 1
n

n∑
i=1
v
(
Σ−

1
2 (X)(z − xi)

)∥∥∥, (3)

Journal of Statistical Software 11

with v(y) = y
‖y‖ if y 6= 0, and v(0) = 0. The scatter matrix Σ(X) provides the affine

invariance.
Affine invariant spatial depth satisfies postulates (D1), (D2), (D3), and (D5), but fails to
satisfy (D4) (Nagy 2017) and is thus also not quasiconcave. Its maximum is referred to as
the spatial median. In the one-dimensional case it coincides with the halfspace depth, defined
below.
Spatial depth can be efficiently computed even for large samples amounting in the simplest
case to time complexity O(nd2 + d3); for calculation of Σ−

1
2 (X) see the above discussion of

the Mahalanobis depth.
Halfspace depth follows the idea of Tukey (1975), see also Donoho and Gasko (1992). The
Tukey (=halfspace, location) depth of z w.r.t. X is determined as:

Dhs(z |X) = min
u∈Sd−1

1
n

#{i : x>i u ≤ z>u; i = 1, . . . , n}. (4)

Halfspace depth satisfies all the postulates of a depth function. In addition, it is quasiconcave,
and equals zero outside the convex hull of the support of X. For any X, there exists at least
one point having depth not smaller than 1

1+d (Mizera 2002). For empirical distributions,
halfspace depth is a discrete function of z, and the set of depth-maximizing locations – the
halfspace median – can consist of more than one point (to obtain a unique median, an average
of this deepest trimmed region can be calculated). Halfspace depth determines the empirical
distribution uniquely (Struyf and Rousseeuw 1999; Koshevoy 2002).
Dyckerhoff and Mozharovskyi (2016) develop a family of algorithms (for each d > 1) possessing
time complexity O(nd−1 logn) and O(nd) (the last has proven to be computationally more
efficient for larger d and small n). These algorithms are applicable for moderate n and d.
For large n or d and (or) if the depth has to be computed many times, approximation by
minimizing over projections on random lines can be performed (Dyckerhoff 2004; Cuesta-
Albertos and Nieto-Reyes 2008). By that, Dhs(z |X) is approximated from above with time
complexity O(knd), and Dhs(X |X) with time complexity O

(
kn(d+logn)

)
, using k random

directions (see also Mozharovskyi et al. 2015).
Simplicial depth (Liu 1990) is defined as the portion of simplices having vertices from X
which contain z:

Dsim(z |X) = 1(n
d+1
) ∑

1≤i1<i2<...<id+1≤n
I
(
z ∈ conv(xi1 ,xi2 , . . . ,xid+1)

)
(5)

with conv(Y) being the convex hull of Y and I(Y) standing for the indicator function, which
equals 1 if Y is true and 0 otherwise.
It satisfies postulates (D1), (D2), (D3), and (D5). The set of depth-maximizing locations is
not a singleton, but, different to the halfspace depth, it is not convex (in fact it is not even
necessarily connected) and thus simplicial depths fails to satisfy (D4). It characterizes the
empirical measure if the data, i.e., the rows of X, are in general position, and is, as well as
the halfspace depth, due to its nature rather insensitive to outliers, but vanishes beyond the
convex hull of the data conv(X).
Exact computation of the simplicial depth has time complexity of O(nd+1d3). Approximations
accounting for a part of simplices can lead to time complexity O(kd3) only when drawing k

12 ddalpha: Depth and Depth-Based Classification in R

random (d+1)-tuples from X, or reduce real computational burden with the same time com-
plexity, but keeping precision when drawing a constant portion of

(n
d+1
)
. For R2, Rousseeuw

and Ruts (1996) proposed an exact efficient algorithm with time complexity O(n logn) .
Simplicial volume depth (Oja 1983) is defined via the average volume of the simplex with d
vertices from X and one being z:

Dsimv(z |X) = 1
1 + 1

(n
d)
√

det
(

Σ(X)
) ∑1≤i1<i2<...<id≤n vol

(
conv(z,xi1 ,xi2 , . . . ,xid)

) (6)

with vol(Y) being the Lebesgue measure of Y.
It satisfies all above postulates, is quasiconcave, determines X uniquely (Koshevoy 2003),
and has a nonunique median.
Time complexity of the exact computation of the simplicial volume depth amounts to O(ndd3),
and thus approximations similar to the simplicial depth may be necessary.
Zonoid depth has been first introduced by Koshevoy and Mosler (1997), see also Mosler (2002)
for a discussion in detail. The zonoid depth function is most simply defined by means of
depth contours – the zonoid trimmed regions. The zonoid α-trimmed region of an empirical
distribution is defined as follows: For α ∈

[
k
n ,

k+1
n

]
, k = 1, . . . , n − 1 the zonoid region is

defined as

Zα(X) = conv
{ 1
αn

k∑
j=1
xij +

(
1− k

αn

)
xik+1 : {i1, . . . , ik+1} ⊂ {1, . . . , n}

}
,

and for α ∈
[
0, 1

n

)
Zα(X) = conv(X).

Thus, e.g., Z 3
n

(X) is the convex hull of the set of all possible averages involving three points
of X, and Z0(X) is just the convex hull of X.
The zonoid depth of a point z w.r.t. X is then defined as the largest α ∈ [0, 1] such that
Zα(X) contains z if z ∈ conv(X) and 0 otherwise:

Dzon(z |X) = sup{α ∈ [0, 1] : z ∈ Zα(X)}, (7)

where sup of ∅ is defined to be 0.
The zonoid depth belongs to the class of weighted-mean depths, see Dyckerhoff and Mosler
(2011). It satisfies all the above postulates and is quasiconcave. As well as halfspace and
simplicial depth, zonoid depth vanishes beyond the convex hull of X. Its maximum (always
equaling 1) is located at the mean of the data, thus this depth is not robust.
Its exact computation with the algorithm of Dyckerhoff et al. (1996), based on linear pro-
gramming and exploiting the idea of Danzig-Wolf decomposition, appears to be fast enough
for large n and d, not to need approximation.
A common property of the above considered depth notions is that they concentrate on global
features of the data ignoring local specifics of sample geometry. Thus they are unable to
reflect multimodality of the underlying distribution. Several depths have been proposed in
the literature to overcome this difficulty. Two of them were introduced in the classification

Journal of Statistical Software 13

d: 2 d: 3 d: 4 d: 5

50 100 250 500 1000 50 100 250 500 1000 50 100 250 500 1000 50 100 250 500 1000

1 ms

0.1 s

1 s

10 s

1 m

10 m

1 h

10 h

Number of points

T
im

e,
 s

ec
.

— zonoid, - - halfspace, — Mahalanobis, - - spatial,
— projection, — simplicial, - - simplicial volume

Figure 3: Calculation time of various depth functions, on the logarithmic time scale.

context, localized extension of the spatial depth (Dutta, Sarkar, and Ghosh 2016) and the data
potential (Pokotylo and Mosler 2019). They are also implemented in the R package ddalpha.
The performance of these depths and of the classifiers exploiting them depends on the type of
the kernel and its bandwidth. While the behaviour of these two notions substantially differs
from the seven depth notions mentioned above, we leave them beyond the scope of this article
and relegate to the corresponding literature for theoretical and experimental results.

2.3. Computation time

To give insights into the speed of exactly calculating various depth notions we indicate com-
putation times by graphics in Figure 3. On the logarithmic time scale, the lines represent
the time (in seconds) needed to compute the depth of a single point, averaged over 25 points
w.r.t. 30 samples, varying dimension d ∈ {2, 3, 4, 5} and sample length n ∈ {50, 100, 250, 500,
1000}.
Due to the fact that computation times of the algorithms do not depend on the particular
shape of the data, the data has been drawn from the standard normal distribution. Some of
the graphics are incomplete due to excessive time. Projection depth has been approximated
using 100’000 random projections, all other depths have been computed exactly. Here we used
one kernel of the Macbook Pro laptop possessing processor Intel(R) Core(TM) i7-4980HQ
(2.8 GHz) having enough physical memory.
One can see that, for all exactly computed depths and n ≤ 1000, computation of the two-

14 ddalpha: Depth and Depth-Based Classification in R

dimensional depth never oversteps one second. For halfspace and simplicial depth this can
be explained by the fact that in the bivariate case both depths depend only on the angles
between the lines connecting z with the data points xi and the abscissa. Computing these
angles and sorting them has a complexity of O(n logn) which determines the complexity of
the bivariate algorithms. As expected, halfspace, simplicial, and simplicial volume depths,
being of combinatorial nature, have exponential time growth in (n, d). Somewhat surpris-
ing, zonoid depth being computed by linear programming, seems to be way less sensitive to
dimension. One can conclude that in applications with restricted computational resources,
halfspace, projection, simplicial and simplicial volume depths may be rather approximated in
higher dimensions, while exact algorithms can still be used in the low-dimensional framework,
e.g., when computing time cuts of multivariate functional depths, or to assess the performance
of approximation algorithms.

2.4. Choosing among depth notions

When employing the data depth function in multivariate statistical analysis, a notion – out
of the existing variety – should be chosen by accounting for the nature of the question and
application area, statistical properties of the data, available computational resources. Ad-
dressing this choice in a comprehensive way appears impossible, and doing it even in part is
beyond the scope of this article. Nevertheless we hope that information provided throughout
the article and the short discussion following right below will guide the practitioner.
Depending on the application of interest, when choosing a depth notion one usually deals
with the trade-off between satisfaction of the depth’s general statistical properties (postulates
but also their extension/weakening possibly required by a particular application area), its
robustness, and computational intensity. The importance of particular depth properties is
mainly determined by the specific application (area). For example, affine invariance of a
statistical depth function is generally attractive in multivariate analysis. On the other hand, it
may make less sense if measurement units in all variables are connected in scaling, e.g., regard
geometric coordinates of an object where stretching/shrinking one axis only may cause results
contradicting with the reality; in this case orthogonal and translation invariance appear to
be sufficient. As any general guidelines from our side would definitely be incomplete, we just
refer the reader to Mosler (2013) for a discussion of the properties of the depth function from
a statistical point of view.
If, on the other hand, affine invariance is required, this can be achieved by introducing the
covariance matrix into the depth definition, see, e.g., Mahalanobis, spatial, and simplicial
volume depths. While this is cheap computationally (see, e.g., the paragraph on Mahalanobis
depth in Section 2.2), the moment estimator contradicts with robustness. Robust covariance
estimators such as minimum volume ellipsoid (see, e.g., Rousseeuw and Leroy 1987) or mini-
mum covariance determinant (already mentioned in Section 2.2) can be used instead; for the
last one the authors recommend the fast algorithm developed by Rousseeuw and Van Driessen
(1999) accessible, e.g., as function covMcd in the R package robustbase (Maechler et al. 2016).
If the data set has affine dimension < d (“is flat”), the algorithm cannot converge, which is
usually reported by the implementation; the dimension reduction, say, by projecting data on
the principal components with positive (one usually establishes a precision-defined thresh-
old) eigenvalues should be done first. (R package FactoMineR, Lê, Josse, and Husson 2008,
e.g., provides the necessary functionality.)

Journal of Statistical Software 15

Another issue, that is often very important in practice, is the robustness of the depth function
under consideration. Due to the chosen two-dimensional data possessing four outliers (in
the left bottom corner), robustness of the implemented depth notions can be compared in
Figures 1 and 2. For example, regard the depth contours (right part of the figures). One can
see that the Mahalanobis depth with elliptical contours based on the moment estimates of
mean and covariance poorly reflects the geometry of the data. Slightly better behave zonoid
and simplicial volume depths, although their contours are still (substantially) distracted by
the outliers, the first one being defined with weighted mean and the second one being based on
volumes but also by exploiting the covariance moment estimator to achieve affine invariance.
While being robust by its nature, the spatial depth (3) is sensible to outliers by involving the
moment estimator of covariance for affine invariance reasons.
The three remaining notions, namely projection, halfspace, and simplicial depths, prove re-
sistance against data pollution, while being in addition affine invariant (without being based
on the covariance matrix). One can see that their (more central) depth contours are not
distracted by the four outlying points. This comes at a high computational cost: exponential
in (n, d) algorithmic time complexities are reflected visually by rapidly mounting straight
lines in Figure 3 (projection depth is approximated, see Liu and Zuo 2014b, for the times
of exact computation). For this reason it seems reasonable to approximate them, which is
implemented in the R package ddalpha, too. Nevertheless properties of such approximations
are not well studied yet, but due to their usefulness deserve future exploration.
As an example of an application revealing the properties of different depth notions we suggest
a short comparative simulation study of the naïve maximum depth classifier in Section 2.5
right below, which will also serve as an introductory bridge to the subsequent material of this
article. Additionally, we refer the reader to the recent work by Vencalek (2017) for a similar
discussion on multivariate classification.

2.5. Maximum depth classifier

To demonstrate the differing finite-sample behavior of the above depth notions and to con-
struct a bridge to supervised classification, in this section we compare the depths in the frame
of the maximum depth classifier. This is obtained by simply choosing the class in which x0
has the highest depth (breaking ties at random):

class(x0) = argmax
i∈{1,...,q}

D(x0 |Xi). (8)

Ghosh and Chaudhuri (2005b) have proven that its misclassification rate converges to the
optimal Bayes risk if each Xi, i = 1, . . . , q, is sampled from a unimodal elliptically symmet-
ric distribution having a common nonincreasing density function, a prior probability 1

q , and
differing in location parameter only (location-shift model), for halfspace, simplicial, and pro-
jection depths, and under additional assumptions for spatial and simplicial volume depths.
Setting q = 2, and n = 24, 50, 100, 250, 500, 1000, ni = n/2, i = 1, 2, we sample Xi from
a Student-t distribution with location parameters µ1 = [0, 0], µ2 = [1, 1] and common scale
parameter Σ = [1 1

1 4], setting the degrees of freedom to t = 1, 5, 10,∞. Average error rates
over 250 samples each checked on 1000 observations are indicated in Figure 4. The testing
observations were sampled inside the convex hull of the training set. The problem of out-
siders is addressed in Section 4. For n = 1000, experiments have not been conducted with
the simplicial depth due to high computation time.

16 ddalpha: Depth and Depth-Based Classification in R

t10 normal

t1 t5

10005002501005024 10005002501005024

32

34

36

38

40

42

44

46

48

32

34

36

38

40

42

44

46

48

Number of points

E
rr

or
s,

 %

— zonoid, - - halfspace, — Mahalanobis, - - spatial,
— projection, — simplicial, - - simplicial volume

Figure 4: Average error rates of the maximum depth classifier with different data depths. The
samples are simulated from the Student-t distribution possessing 1, 5, 10, and ∞ degrees of
freedom.

As expected, with increasing n and t classification error and difference between various depths
decrease. As the classes stem from elliptical family, depths accounting explicitly for ellipticity
(Mahalanobis and spatial due to covariance matrix), symmetry of the data (projection), and
also volume, form the error frontier. On the other hand, except for the projection depth,
they are nonrobust and perform poorly for Cauchy distribution. While projection depth,
even being approximated, behaves excellent in all the experiments, it may perform poorly if
distributions of Xi retain asymmetry due to inability to reflect this.

3. Classification in the DD-plot
In Section 2.5, we have already considered the naive way of depth-based classification –
the maximum depth classifier. Its extension beyond the equal-prior location-shift model,
e.g., to account for differing shape matrices of the two classes, or unequal prior probabilities,
is somewhat cumbersome, cf. Ghosh and Chaudhuri (2005a); Cui et al. (2008). A simpler
way, namely to use the DD-plot (or, more general, a q-dimensional depth space), has been
proposed by Li et al. (2012). For a training sample consisting of X1, . . . ,Xq, the depth space

Journal of Statistical Software 17

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−0.008 −0.006 −0.004 −0.002 0.000 0.002

−
0.

01
5

−
0.

00
5

0.
00

0
0.

00
5

Discrete space

area under function

ar
ea

 u
nd

er
 d

er
iv

at
iv

e

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−0.008 −0.006 −0.004 −0.002 0.000 0.002

−
0.

01
5

−
0.

00
5

0.
00

0
0.

00
5

Discrete space with depth contours

area under function
ar

ea
 u

nd
er

 d
er

iv
at

iv
e ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Original DD−plot

x

y

Figure 5: The discretized space (left), the depth contours with the separating rule (middle)
and the DD-plot with the separating line in it (right), using spatial depth. Here we denote
the depth of a point w.r.t. red and blue classes by x and y, respectively.

is constructed by applying the mapping Rd → [0, 1]q : x 7→
(
D(x | X1), . . . , D(x | Xq)

)
to

each of the observations. Then the classification is performed in this low-dimensional space
of depth-extracted information, which, e.g., for q = 2 is just a unit square. The core idea of
the DDα-classifier is the DDα-separator, a fast heuristic for the DD-plot. This is presented
in Section 3.1, where we slightly abuse the notation introduced before. This is done in an
intuitive way for the sake of understandability and closeness to the implementation. Further,
in Section 3.2 we discuss application of alternative techniques in the depth space.

3.1. The DDα-separator

The DDα-separator is an extension of the α-procedure to the depth space, see Vasil’ev (2003);
Vasil’ev and Lange (1998), also Lange and Mozharovskyi (2014). It iteratively synthesizes
the space of features, coordinate axes of the depth space or their (polynomial) extensions,
choosing features minimizing a two-dimensional empirical risk in each step. The process of
space enlargement stops when adding features does not further reduce the empirical risk.
Here we give its comprehensive description. The detailed algorithm is stated right below.
Regard the two-class sample illustrated on Figure 5, left, representing discretizations of the
electrocardiogram curves. Explanation of the data is given in Section 1.4, we postpone the
explanation of the discretization scheme till Section 5 and consider a binary classification in
the DD-plot for the moment. Figure 5, middle, represents the depth contours of each class
computed using the spatial depth. The DD-plot is obtained as a depth mapping (X1,X2) 7→
Z = {zi = (Di,1, Di,2), i = 1, . . . , n1 + n2}, when the first class is indexed by i = 1, . . . , n1
and the second by i = n1 + 1, . . . , n2, and writing Dspt(xi |X1) (respectively Dspt(xi |X2))
by Di,1 (respectively Di,2) for shortness. Further, to enable for nonlinear separation in the
depth space, but to employ linear discrimination in the synthesized subspaces, the kernel
trick is applied. As the DDα-separator explicitly works with the dimensions (space axis),
a finite-dimensional resulting space is required. In the R package ddalpha we employ the
polynomial kernel. Truncated series or another finitized basis of general reproducing kernel
Hilbert spaces can be used alternatively. For the polynomial kernel we choose the degree of
space extension (an integer > 0) by means of a fast cross-validation, which is performed over a
small range and in the depth space only. The high computation speed of the DDα-separator
allows for this.

18 ddalpha: Depth and Depth-Based Classification in R

Given the degree p of the polynomial extension, the dimension of the resulting extended
depth space equals r =

(p+q
q

)
− 1 (by default, we choose p among {1, 2, 3} using 10-fold

cross-validation). This extended depth space serves as the input to the DDα-separator.
Continuing the example, i.e., with q = 2, and taking p = 3, one gets the extended depth
space Z(p) of dimension r = 9 consisting of the observations z(p)

i = (Di,1, Di,2, D2
i,1, Di,1×

Di,2, D2
i,2, D3

i,1, D2
i,1 ×Di,2, Di,1 ×D2

i,2, D3
i,2) ∈ R9 for i = 1, . . . , n1 + n2.

After initializations, on the 1st step, the DDα-separator starts with choosing the pair of
extended properties minimizing the empirical risk. For this, it searches through all coordinate
subspaces Z(k,l) = {z(k,l)

i | z(k,l)
i = (z(p)

ik , z
(p)
il), i = 1, . . . , n1+n2} for all 1 ≤ k < l ≤ r, i.e., all

pairs of coordinate axis of Z(p). For each of them, the angle α(k,l)
1 minimizing the empirical

risk is found
α

(k,l)
1 ∈ argmin

α∈[0;2π)
∆(k,l)(α) (9)

with

∆(k,l)(α) =
n1∑
i=1

I(z(p)
ik cosα− z(p)

il sinα < 0) +
n1+n2∑
i=n1+1

I(z(p)
ik cosα− z(p)

il sinα > 0). (10)

For the regarded example, this is demonstrated in Figure 6 by the upper triangle of the
considered subspaces. Computationally, it is reasonable to check only those α corresponding
to (radial) intervals between points and to choose α(k,l)

1 as an average angle between two
points from Z(k,l) in case there is a choice, as it is implemented in procedure GetMinError.
Computational demand is further reduced by skipping uninformative pairs, e.g., if one feature
is a power of another one and, therefore, the bivariate plot whole data set is collapsed to a
line, as shown in Figure 6. Finally, a triplet is chosen:

(α(k∗,l∗)
1 , k∗, l∗) ∈ argmin

1≤k<l≤r, α∈[0;2π)
∆(k,l)(α), (11)

i.e., a two-dimensional coordinate subspace Z(k∗,l∗) in which the minimal empirical risk over
all such subspaces is achieved, and the corresponding angle α(k∗,l∗)

1 minimizing this. Among
all the minimizing triplets (there may be several as empirical risk is discrete) it is reasonable
to choose k∗ and l∗ with the smallest polynomial degree, the simplest model. Using α(k∗,l∗)

1 ,
Z(k∗,l∗) is convoluted to a real line

z(1∗) = {zi | zi = z
(p)
ik∗ cosα(k∗,l∗)

1 − z(p)
il∗ sinα(k∗,l∗)

1 , i = 1, . . . , n1 + n2}, (12)

— first feature of the synthesized space.
On each following s-step (s ≥ 2), the DDα-separator proceeds as follows. The feature,
obtained by the convolution on the previous (s−1)-step, is coupled with each of the extended
properties of the depth space, such that a space Z((s−1)∗,k) = {z((s−1)∗,k)

i | z((s−1)∗,k)
i =

(z((s−1)∗)
i , z

(p)
ik), i = 1, . . . , n1 + n2} is regarded, for all k used in no convolution before. For

each Z((s−1)∗,k), ∆((s−1)∗,k)(α(k)
s) and the corresponding empirical-risk-minimizing angle α(k)

s

are obtained using (9) and (10). Out of all considered k, the one minimizing ∆((s−1)∗,k)(α(k)
s)

is chosen, as in (11), and the corresponding Z((s−1)∗,k) is convoluted to z(s∗), as in (12). The
second part of Figure 6 illustrates a possible second step of the algorithm.

Journal of Statistical Software 19

y x2 xy y2 x3 x2y xy2 y3

x
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x

y

16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1st step. error: 26

x

x^
2

26
●

●● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x

xy

23
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

x

y^
2

19

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

x

x^
3

26

●

●● ●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
● ●

●

●●● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x

x^
2y

23
●

●● ●●

●●

● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x

xy
^2

23
●

●● ●●

●

●

● ●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 21

x

y^
3

21

y
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 18

y

x^
2

18
●

●

● ●●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

y

xy

26
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y

y^
2

23

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

y

x^
3

19

●

●

● ●●
●

●

●

●● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
●●

●

● ●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

y

x^
2y

26

●

●

● ●●●

● ●

●● ●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●● ●● ●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y

xy
^2

23

●

●

● ●●●

●

●

●● ●●
●

●

●

●

●

●

●

● ●●

●

●

●

●●● ●● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y

y^
3

23

x2

●

●

●● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2

xy

16
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2

y^
2

16

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

x^2

x^
3

26

●

●

●● ●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
● ●

●

●●● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x^2

x^
2y

23

●

●

●● ●●

●●

● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

x^2

xy
^2

19

●

●

●● ●●

●

●

● ●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 17

x^2

y^
3

17

xy
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

xy

y^
2

16

● ●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 18

xy

x^
3

18

●

●

●●●
●

●

●

●●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
●●

●

●●● ●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

xy

x^
2y

26

●

●

●●●●

●●

●●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

xy

xy
^2

23

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

xy

y^
3

19

y2

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●● ● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 17

y^2

x^
3

17

●

●

● ●●
●

●

●

●● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●●

●
●●

●

● ●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 18

y^2

x^
2y

18

●

●

● ●●●

● ●

●● ●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●●●●●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

y^2

xy
^2

26

●

●

● ●●●

●

●

●● ●●
●

●

●

●

●

●

●

● ●●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y^2

y^
3

23

x3

●

●

●●●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●●

●
● ●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^3

x^
2y

16

●

●

●●●●

●●

● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●●● ●● ●

●

●
●
●
●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^3

xy
^2

16

●

●

●●●●

●

●

● ●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^3

y^
3

16

x2y

●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2y

xy
^2

16

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2y

y^
3

16

xy2

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1st step. error: 16

xy^2

y^
3

16

F1
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

2st step. error: 15

feature 1

x^
2

15
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

2st step. error: 16

feature 1

xy

16
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

2st step. error: 16

feature 1

y^
2

16

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●
● ●●● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●
●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

2st step. error: 13

feature 1

x^
3

13
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

2st step. error: 15

feature 1

x^
2y

15
●

●

●● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

2st step. error: 16

feature 1

xy
^2

16

●

●

●● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●●● ●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

2st step. error: 16

feature 1

y^
3

16

Figure 6: The steps of the α-procedure. The number of errors is shown in the right top corner
of each plot. Here we denote the depth of a point w.r.t. red and blue classes by x and y,
respectively. The two-dimensional spaces are shown for each pair of properties. On the first
step all pairs of properties are considered, on the second step the remaining features are taken
together with the first feature F1. In this example properties x and y are selected on the first
step and x3 on the second.

Here we present the algorithm of the DDα-separator:
The main procedure
Input: X̃ = {x̃1, . . . , x̃n}, x̃i ∈ Rd,

{y1, . . . , yn}, yi ∈ {−1, 1} for all i = 1, . . . ,m = m−1 +m+1.

1. X = X̃
> = {x1, . . . ,xd}, xi ∈ Rn.

2. Initialize arrays:
(a) array of available properties P ← {1..d};

20 ddalpha: Depth and Depth-Based Classification in R

(b) array of constructed features F ← ∅;
(c) for a feature f ∈ F denote f.p and f.α the number of the used property and the

optimal angle.

3. 1st step: Find the first features:
(a) select optimal starting features considering all pairs from P :

(opt1, opt2, emin, α) = arg ming∈G g.e with
G = {(p1, p2, e, α) : (e, α) = GetMinError(xp1 ,xp2), p1, p2 ∈ P , p1 < p2}

(b) F ← F ∪ {(opt1, 0), (opt2, α)}
(c) P ← P \ {opt1, opt2}
(d) set current feature f ′ = xopt1 × cos(α) + xopt2 × sin(α)

4. Following steps: Search an optimal feature space while empirical error rate decreases
while emin 6= 0 and P 6= ∅ do
(a) select next optimal feature considering all properties from P :

(opt, ẽmin, α) = arg ming∈G g.e with
G = {(p, e, α) : (e, α) = GetMinError(f ′,xp), p ∈ P }

(b) Check if the new feature improves the separation:
if ẽmin < emin then

emin = ẽmin
F ← F ∪ (opt, α)
P ← P \ opt
update current feature f ′ = f ′ × cos(α) + xopt × sin(α)

else
break

5. Get the normal vector of the separating hyperplane:
(a) Declare a vector r ∈ Rd, ri = 0 for all i = 1, . . . , d. Set a = 1.
(b) Calculate the vector components as rF i.p =

∏]F
j=i+1

(
cos(F j .α)

)
sin(F i.α):

for all i ∈ {]F ..2} do
rF i.p = a× sin(F i.α)
a = a× cos(F i.α)

rF 1.p = a
(c) Project the points on the ray: pi.y = yi, pi.x = r · x̃i
(d) Sort p w.r.t. p·.x in ascending order.
(e) Count the cardinalities before the separation plane

ml− =]{i : pi.y = −1,pi.x ≤ 0},
ml+ =]{i : pi.y = +1,pi.x ≤ 0}

(f) Count the errors
e− = ml+ +m− −ml−,
e+ = ml− +m+ −ml+

(g) if e− > e+ then
r ← −r

Output: the normal vector of the separating hyperplane r.
Procedure GetMinError
Input: current feature f ∈ Rn, property x ∈ Rn.

1. Obtain angles:

Journal of Statistical Software 21

(a) Calculate αi = arctan xi
fj
, i = 1, . . . , n, with arctan 0

0 = 0.
(b) Aggregate angles into set A. Denote Ai.α = αi and Ai.y = yi the angle and the

pattern of the corresponding point. Set Ai.y to 0 for the points having both xi = 0
and fi = 0.

(c) Sort A w.r.t. A·.α in ascending order.

2. Look for the optimal threshold:
(a) Define iopt = arg maxi

(
|
∑i

1Ai.y|+ |
∑n
i+1Ai.y|

)
as the place of the optimal thresh-

old and emin = n −maxi
(
|
∑i

1Ai.y|+ |
∑n
i+1Ai.y|

)
as the minimal number of in-

correctly classified points
(b) Define the optimal angle αopt = 1

2(Aiopt+1.α+Aiopt+2.α)− π
2 .

Output: min error emin, optimal angle αopt.
From the practical point of view, the routine DDα-separator has high computation speed as
in each plane it has the complexity of the quick-sort procedure: O

(∑q
i=1 ni log(

∑q
i=1 ni)

)
.

While minimizing empirical risk in two-dimensional coordinate subspaces and due to the
choice of efficient for classification features, the DDα-separator tends to be close to the
optimal risk-minimizing hyperplane in the extended space. To a large extent, this explains
the performance of the DDα-procedure on finite samples.
The robustness of the procedure is twofold: First, regarding points, as the depth-space is
compact, the outlyingness of the points in it is restricted, and the DDα-separator is robust
due to its risk-minimizing nature, i.e., by the discrete (zero-or-one) loss function. And second,
regarding features, the separator is not entirely driven by the exact points’ location, but
accounts for importance of features of the (extended) depth space. By that, the model
complexity is kept low; in practice a few features are selected only, see, e.g., Mozharovskyi
et al. (2015, Section 5.2).
For theoretical results on the DDα-procedure the reader is referred to Lange et al. (2014b,
Section 4). Mozharovskyi et al. (2015) provide an extensive comparative empirical study
of its performance with a variety of data sets and for different depth notions and outsider
treatments, while Lange, Mosler, and Mozharovskyi (2014a) conduct a simulation study on
asymmetric and heavy-tailed distributions.

3.2. Alternative separators in the DD-plot

Besides the DDα-separator, the package ddalpha allows for two alternative separators in the
depth space: a polynomial rule and the k-nearest-neighbor (kNN) procedure.
When Li et al. (2012) introduce the DD-classifier, they suggest to use a polynomial of certain
degree passing through the origin of the DD-plot to separate the two training classes. Based
on the fact that by choosing the polynomial order appropriately the empirical risk can be
approximated arbitrarily well, they prove the consistency of the DD-classifier for a wide
range of distributions including some important cases of the elliptically symmetric family.
In practice, the minimal error is searched by smoothing the empirical loss with a logistic
function and then optimizing the parameter of this function. This strategy has sources of
instability such as choice of the smoothing constant and multimodality of the loss function.
The authors (partially) solve the last issue by varying the starting point for optimization and
multiply running the entire procedure, which increases computation time. For theoretical

22 ddalpha: Depth and Depth-Based Classification in R

derivations and implementation details see Li et al. (2012, Sections 4 and 5). For a simulation
comparison of the polynomial rule in the DD-plot and the DDα-separator see Lange et al.
(2014b, Section 5).
In his PhD-thesis, Vencalek (2011) suggests to perform the kNN classification in the depth
space, and proves its consistency for elliptically distributed classes with identical radial densi-
ties. For theoretical details and a simulation study see Vencalek (2011, Sections 3.4.3 and 3.7),
respectively. It is worth to notice that the kNN-separator has another advantage – it is directly
extendable to more than two classes.

4. Outsiders
For a number of depth notions like halfspace, zonoid, or simplicial depth, the depth of a point
vanishes beyond the convex hull of the data. This leads to the problem that new points (to
be classified) lying beyond the convex hull of each of the training classes have depth zero
w.r.t. all of them. By that, they are depth-mapped to the origin of the DD-plot, and thus
cannot be readily classified. We call these points outsiders (Lange et al. 2014b).
Regard Figure 7 showing scatter and DD-plot for the training sample of random vectors
X1 (“red”) and X2 (“blue”) distributed normally with means µX1 = [0, 0] and µX2 = [1, 1],
and covariances ΣX1 = [1 1

1 4] and ΣX2 = [4 4
4 16], where three green points are to be classified.

Point “1” has positive depth in both classes, and based on its location in the DD-plot will
be assigned to the less scattered “red” class. Point “2” has zero depth in the “red” class, but
a positive one in the more scattered “blue” class, to which it will be assigned based on the
classification rule in the DD-plot. Point “3” on the other hand has zero depth w.r.t. both
training classes, and thus classification rule in the DD-plot is helpless. Nevertheless, visually
it clearly belongs to the “blue” class, and most probably would be correctly classified by a
very simple classifier, say a poorly tuned kNN (e.g., 1NN). The suggestion thus is to apply
an additional fast classifier to the outsiders.

−10 −5 0 5 10

−
1
0

−
5

0
5

1
0

x

y

23

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D(|X1)

D
(
|X

2
)

1

2

3

.

.

11

Figure 7: Points to be classified (green) in the original (left) and depth (right) space.

Journal of Statistical Software 23

t10 normal

t1 t5

24 50 100 250 500 1000 24 50 100 250 500 1000

0
5

10
15
20
25
30
35
40
45
50
55
60

0
5

10
15
20
25
30
35
40
45
50
55
60

Number of points

E
rr

or
s,

 %

— number of outsiders, — random, — LDA, — QDA, — k-NN, — Mahalanobis max depth

Figure 8: Error rates of various outsiders treatment. Only outsiders are classified.

The R package ddalpha implements a number of outsider treatments: linear (LDA) and
quadratic (QDA) discriminant analysis, kNN, maximum depth classifier based on Maha-
lanobis depth; and additionally random classification or identification of outsiders for sta-
tistical analysis or passing to another procedure. For the same experimental setting as in
Section 2.5, we contrast these treatments in Figure 8, comparing classification errors on out-
siders only. One can see that for the heavy-tailed Cauchy distribution, where classes may be
rather mixed, no outsider treatment performs significantly better than random assignment.
The situation improves with increasing number of degrees of freedom of the Student-t distri-
bution, with LDA forming the classification error frontier, as the classes differ in location only.
On the other hand, with increasing ni, difference between the treatments becomes negligible.
For an extensive comparative study of different outsider treatments the reader is referred to
Mozharovskyi et al. (2015), see also Lange et al. (2014b).
If outsiders pose a serious problem, one can go for a nowhere-vanishing depth. But in gen-
eral, the property of generating outsiders should not necessarily be seen as a shortfall, as it
allows for additional information when assessing the configured classifier or a data point to be
classified. If too many points are identified as outsiders (what can be checked by a validation
procedure), this may point onto inappropriate tuning. On the other hand, if outsiders appear
extremely rarely in the classification phase (or, e.g., during online learning), an outsider may
be an atypical observation not fitting to the data topology in which case one may not want
to classify it at all but rather label indicatively.

24 ddalpha: Depth and Depth-Based Classification in R

5. An extension to functional data
Similar to Section 3, consider a binary classification problem in the space of real valued
functions defined on a compact interval, which are continuous and smooth everywhere except
for a finite number of points, i.e., given two classes of functions: F1 = {f1, . . . , fn1} and F2 =
{f1, . . . , fn2}, again indexing observations by i = 1, . . . , n1, n1 +1, . . . , n1 +n2 for convenience.
(An aggregation scheme extends this binary classification to the multiple one.) The natural
extension of the depth-based classification to the functional setting consists in defining a
proper depth transform (F1,F2) 7→ Z = {zi = (D(fi | F1), D(fi | F2)), i = 1, . . . , n1 + n2}
similar to that in Section 3. For this, a proper functional depth should be employed (see
Mosler and Polyakova 2012; Nieto-Reyes and Battey 2016, and references therein for an
overview), followed by the suitable classification technique in the (finite dimensional) depth
space. As the functional data depth reduces space dimensionality from infinity to one, the final
performance is sensitive to the choice of the depth representation and of the finite-dimensional
separator, and thus both constituents should be chosen very carefully. Potentially, this lacks
quantitative flexibility because of the finite set of existing components. Nevertheless, in many
cases this solution provides satisfactory results; see a comprehensive discussion by Cuesta-
Albertos et al. (2017) with experimental comparisons involving a number of functional depth
notions and q-dimensional classifiers, as well as their implementation in the R package fda.usc.
Corresponding functional depth procedures can also be used with R package ddalpha, see
Section 6 for a detailed explanation.
ddalpha suggests two implementations of the strategy of immediate functional data projec-
tion onto a finite-dimensional space with further application of a multivariate depth-based
classifier: componentwise classification by Delaigle et al. (2012) and LS-transform proposed
by Mosler and Mozharovskyi (2017). Both methodologies allow to control for the quality of
classification in a quantitative way (i.e., by tuning parameters) when constructing the multi-
variate space, which in addition enables consistency derivations. For the first one the reader
is referred to the literature; the second one we present right below.
In application, functional data is usually given in a form of discretely observed paths f̃ i =
[fi(ti1), fi(ti2), . . . , fi(tiNi)], which are the measurements at ordered (time) points ti1 < ti2 <
. . . < tiNi , i = 1, . . . , n1 + n2, not necessarily equidistant nor same for all i. Fitting these
to a basis is avoided as the choice of such a basis turns out to be crucial for classification
and thus should better not be independently selected prior to it. Instead, a simple scheme is
suggested based on integrating linearly extrapolated data and their derivatives over a chosen
number of intervals. Let mini ti1 = 0 and let T = maxi tiNi , then one obtains the following
finite-dimensional transform:

f̂i 7→ xi =
[∫ T/L

0
f̂i(t)dt, . . . ,

∫ T

T (L−1)/L
f̂i(t)dt,

∫ T/S

0
f̂ ′i(t)dt, . . . ,

∫ T

T (S−1)/S
f̂ ′i(t)dt

]
, (13)

with f̂i(t) being the function obtained by connecting the points (tij , fi(tij)), j = 1, . . . , Ni

with line segments and setting f̂i(t) = fi(ti1) when 0 ≤ t ≤ ti1 and f̂i(t) = fi(tiki
) when

tiNi ≤ t ≤ T , f̂ ′i(t) being its derivative, and L, S ≥ 0, L+ S ≥ 2 being integers. L and S are
the numbers of intervals of equivalent length to integrate over the location and the slope of the
function, and have to be tuned. One can use intervals of different length or take into account
higher-order derivatives (constructed as differences, say), but the suggested way appears to
be simple and flexible enough. Moreover it does not introduce any spurious information.

Journal of Statistical Software 25

0 20 40 60 80 100 120 140

−
6

−
4

−
2

0
2

4
6

time

lo
ca

tio
n

0 20 40 60 80 100 120 140

−
6

−
4

−
2

0
2

4

time

sl
op

e

Figure 9: ECG Five Days data (left) and their derivatives (right).

The set of considered (L, S)-pairs can be chosen on the basis of some prior knowledge about
the nature of the functions or just by properly restricting the dimension of the constructed
space by dmin ≤ L+ S ≤ dmax. Cross-validation is then used to choose the best (L, S)-pair.
ddalpha suggests to reduce the set of cross-validated (L, S)-pairs by employing the Vapnik-
Chervonenkis bound. The idea behind is that, while being conservative, the bound can still
provide insightful ordering of the (L, S)-pairs, especially in the case when the empirical risk
and the bound have the same order of magnitude.
Given a set of pairs S = {(li, si) | i = 1, . . . , Nls}, for each its element calculate the Vapnik-
Chervonenkis bound (see Mosler and Mozharovskyi 2017, for this particular derivation)

bV Ci = ε

(
c, F̂ (li,si)

1 , F̂ (li,si)
2

)
+

√√√√ ln 2
∑li+si−1
k=0

(n1+n2−1
k

)
− ln η

2(n1 + n2) , (14)

where ε
(
c, F̂ (li,si)

1 , F̂ (li,si)
2

)
is the empirical risk achieved by a linear classifier c on the data

transformed according to (13) with L = li, S = si and 1− η is the chosen reliability level. In
ddalpha we set η = 1

n1+n2
, and choose c to be the LDA for its simplicity and speed. Then

a subset SCV ⊂ S is chosen possessing the smallest values of bV Ci :
(
(lj , sj) ∈ SCV , (lk, sk) ∈

S \ SCV
)
⇒ (bV Cj < bV Ck), and cross-validation is performed over all (l, s) ∈ SCV . For the

subsample referenced in introduction (Section 1.4), the functions’ levels and slopes are shown
in Figure 9; the LS-representation is selected by reduced cross-validation due to (13) having
(L, S) = (1, 1), and is depicted in Figure 5, left.

6. Usage of the package

The package ddalpha is a structured solution that provides computational machinery for a
number of depth functions and classifiers for multivariate and functional data. It also allows
for user-defined depth functions and separators in the DD-plot (further DD-separators). The
structure of the package is presented in Figure 10. The current section describes the function-
ality of the package using code fragments. Section 6.5 contains comprehensive classification
examples.

26 ddalpha: Depth and Depth-Based Classification in R

Figure 10: The structure of the package.

6.1. Basic functionality

Primary aims of the package are calculation of data depth and depth-classification.
Data depth is calculated by calling

depths <- depth.(x, data, notion = <depthName>, ...)
depths <- depth.<depthName>(x, data, ...)

Parameter notion specifies the used depth <depthName>, data is a matrix with each row be-
ing a d-variate point, and x is a matrix of objects whose depth is to be calculated. Additional
arguments (...) differ between depth notions. The output of the function is a vector of
depths of points from x. These values, constituting a coordinate of the depth space, can be
further used as a new feature of x, which is calculated taking into account information from
the entire data set data. Most of the depth functions possess both exact and approximate ver-
sions that are toggled with parameters exact and method, see Table 1. The exact algorithms
of Mahalanobis, spatial, and zonoid depths are very fast and thus exclude the need of approx-
imation. Mahalanobis and spatial depths use either traditional moment or MCD estimates of
mean and covariance matrix. Methods random for projection depth and Sunif.1D for half-
space depth approximate the depth as the minimum univariate depth of the data projected
on num.directions directions uniformly distributed on Sd−1. The exact algorithms for the
halfspace depth implement the framework described in Section 2.2, where the dimensionality
k of the combinatorial space is specified as follows: k = 1 for method recursive, k = d−2 for
plane and k = d−1 for line, see additionally Dyckerhoff and Mozharovskyi (2016). The sec-
ond approximating algorithm for projection depth is linearize – the Nelder-Mead method
for function minimization, taken from Nelder and Mead (1965) and originally implemented
in R by Subhajit Dutta (https://sites.google.com/site/tijahbus/home). For simplicial
and simplicial volume depths, parameter k specifies the number (if k > 1) or portion (if 0 <
k < 1) of simplices chosen randomly among all possible simplices for approximation.
In addition, the entire multivariate depth representation of a data set consisting of several
(labeled) classes can be calculated at once by

dspace <- depth.space.(data, cardinalities, notion = <depthName>, ...)
dspace <- depth.space.<depthName>(data, cardinalities, ...)

https://sites.google.com/site/tijahbus/home

Journal of Statistical Software 27

Depth Exact Approximate Parameter
Mahalanobis moment mah.estimate

MCD
spatial moment mah.estimate

MCD
none

projection random method
linearize

halfspace recursive Sunif.1D method
plane
line

simplicial + + exact
simplicial volume + + exact
zonoid +

Table 1: Implemented depth algorithms.

The matrix data consists of q stacked training classes, and cardinalities is a vector con-
taining numbers of objects in each class. The method returns a matrix with q columns
representing the depths of each point w.r.t. each class. This matrix can be seen (and further
used) as additional information about x gained considering at once the entire data set data.
Classification can be performed either in two steps – training the classifier with the function
ddalpha.train and using it for classification in ddalpha.classify or predict, or in one
step – by function ddalpha.test(learn, test, ...) that trains the classifier with the
learn sample and checks it on the test one. Other parameters are the same as for function
ddalpha.train and are described right below.
Function ddalpha.train is the main function of the package. Its structure is shown on the
right part of Figure 10.

ddalpha <- ddalpha.train(formula, data, subset, depth = "halfspace",
separator = "alpha", outsider.methods = "LDA", outsider.settings = NULL,
aggregation.method = "majority", use.convex = FALSE, seed = 0, ...)

classes <- ddalpha.classify(ddalpha, objects, subset, outsider.method,
use.convex)

classes <- predict(ddalpha, objects, outsider.method, use.convex, ...)

The training set is passed either through data in a form of a matrix or a data set with each
row being a d-variate point and the last column being the class label, or using formula. In
the latter case the variables from the formula are found either in data or in the environment.
The resulting set of columns is printed in the output. The used part of the observations may
be additionally specified with parameter subset. The notion of the depth function and the
DD-separator are specified with parameters depth and separator, respectively. Parameter
aggregation.method determines the method applied to aggregate outcomes of binary clas-
sifiers during multiclass classification. When "majority", q(q − 1)/2 binary one-against-one
classifiers are trained, and for "sequent", q binary one-against-all classifiers are taught. Dur-
ing classification, the results are aggregated using the majority voting, where classes with
larger proportions in the training sample are preferred when tied (by that implementing both

28 ddalpha: Depth and Depth-Based Classification in R

aggregating schemes at once). Additional parameters of the chosen depth function and DD-
separator are passed using the dots, and are described in the help sections of the corresponding
R functions. Also, the function allows to use a pre-calculated DD-plot by choosing depth =
"ddplot". For each depth function and depth-separator, a validator is implemented – a spe-
cial R function that specifies the default values and checks the received parameters allowing
by that definition of custom depths and separators; see Section 6.2 for details.
Outsider treatment is a supplementary classifier for data that lie outside the convex hulls of all
q training classes. It is only needed during classification when the used data depth produces
outsiders or obtains zero values in the neighborhood of the data. Parameter use.convex
of ddalpha.train indicates whether outsiders should be determined as the points not con-
tained in any of the convex hulls of the classes from the training sample (TRUE) or those having
zero depth w.r.t. each class from the training sample (FALSE); the difference is explained by
the depth approximation error. The following methods are available: "LDA", "QDA" and
"kNN"; affine-invariant kNN ("kNNAff"), i.e., kNN with Euclidean distance normalized by
the pooled covariance matrix, suited only for binary classification and using aggregation with
multiple classes and not accounting for ties, but very fast; maximum Mahalanobis depth
classifier ("depth.Mahalanobis"); equal and proportional randomization ("RandEqual" and
"RandProp") and ignoring ("Ignore") – a string “Ignored” is returned for the outsiders. Out-
sider treatment is set by means of parameters outsider.methods and outsider.settings
in ddalpha.train. Multiple methods may be trained and then the particular method is se-
lected in ddalpha.classify by passing its name to parameter outsider.method. Parameter
outsider.methods of ddalpha.train accepts a vector of names of basic outsider methods
that are applied with the default settings. Parameter outsider.settings allows to train
a list of outsider treatments, whose elements specify the names of the methods (used in
ddalpha.classify later) and their parameters.
Functional classification is performed with functions ddalphaf.train implementing LS-
transform (Mosler and Mozharovskyi 2017) and compclassf.train implementing compo-
nentwise classification (Delaigle et al. 2012).

ddalphaf <- ddalphaf.train(dataf, labels, subset,
adc.args = list(instance = "avr", numFcn = -1, numDer = -1),
classifier.type = c("ddalpha", "maxdepth", "knnaff", "lda", "qda"),
cv.complete = FALSE,
maxNumIntervals = min(25, ceiling(length(dataf[[1]]$args)/2)),
seed = 0, ...)

classes <- ddalphaf.classify(ddalphaf, objectsf, subset, ...)
classes <- predict(ddalphaf, objectsf, subset, ...)
compclassf <- compclassf.train(dataf, labels, subset,

to.equalize = TRUE, to.reduce = TRUE,
classifier.type = c("ddalpha", "maxdepth", "knnaff", "lda", "qda"), ...)

classes <- compclassf.classify(compclassf, objectsf, subset, ...)
classes <- predict(compclassf, objectsf, subset, ...)

In both functions, dataf is a list of functional observations, each having two vectors: "args"
for arguments sorted in ascending order and "vals" for the corresponding functional evalua-
tions; labels is a list of class labels of the functional observations; classifier.type selects
the classifier that separates the finitized data, and additional parameters are passed to this se-

Journal of Statistical Software 29

lected classifier with dots. In the componentwise classification, to.equalize specifies whether
the data is adjusted to have equal (the largest) argument interval, and to.reduce indicates
whether the data has to be projected onto a low-dimensional space via the principal compo-
nents analysis (PCA) in case their affine dimension after finitization is lower than expected.
(Both parameters are recommended to be set true.) The used part of the observations may
be additionally specified with parameter subset as in ddalpha.train.
The LS-transform converts functional data into multidimensional ones by averaging over
intervals or evaluating values on equally-spaced grid for each function and its derivative on L
(respectively S) equal nonoverlapping covering intervals. The dimension of the multivariate
space then equals L + S. Parameter adc.args is a list that specifies: instance – the type
of discretization of the functions having values "avr" for averaging over intervals of the same
length and "val" for taking values on equally-spaced grid; numFcn (L) is the number of
function intervals, and numDer (S) is the number of first-derivative intervals.
The parameters L and S may be set explicitly or may be automatically cross-validated. The
cross-validation is turned on by setting numFcn = -1 and numDer = -1, or by passing a list
of adc.args objects to adc.args – the range of (L, S)-pairs to be checked. In the first case
all possible pairs of L and S are considered up to the maximal dimension that is set in
maxNumIntervals, while in the latter case only the pairs from the list are considered. The
parameter cv.complete toggles the complete cross-validation; if cv.complete is set to false
the Vapnik-Chervonenkis bound is applied, which enormously accelerates the cross-validation,
as described in Mosler and Mozharovskyi (2017) in detail. The optimal values of L and S are
stored in the ddalphaf object, that is returned from ddalphaf.train.

6.2. Custom depths and separators

As mentioned above, the user can amplify the existing variety by defining his own depth
functions and separators. Custom depth functions and separators are defined by implementing
three functions: parameters validator, learning, and calculating functions, see Tables 2 and 3.
Usage examples are found in the manual of the package ddalpha.
Validator is a nonmandatory function that validates the input parameters and checks if the
depth calculating procedure is applicable to the data. All the parameters of a user-defined
depth or separator must be returned by a validator as a named list, otherwise they will not
be saved in the ‘ddalpha’ object.
Definition of a custom depth function is done as follows: The depth-training function
.<name>_learn(ddalpha) calculates any data-based statistics that the depth function needs
(e.g., mean and covariance matrix for Mahalanobis depth) and then calculates the depths
of the training classes, e.g., by calling for each pattern i the depth-calculating function
.<name>_depths(ddalpha, objects = ddalpha$patterns[[i]]$points) that calculates the
depth of each point in objects w.r.t. each pattern in ddalpha and returns a matrix with q
columns. The learning function returns a ‘ddalpha’ object, where the calculated statistics
and parameters are stored. All stored objects, including the parameters returned by the val-
idator, are accessible through the ddalpha object, on each stage. After having defined these
functions, the user only has to specify depth = "<name>" in ddalpha.train and pass the
required parameters there. (The functions are then linked via the match.fun method.)
Definition of a custom separator is similar. Recall that there exist binary separators appli-
cable to two classes, and multiclass ones that separate more than two classes at once. In

30 ddalpha: Depth and Depth-Based Classification in R

.<name>_validate
validates parameters passed to ddalpha.train and passes them to the ‘ddalpha’ object.
IN:
ddalpha the ‘ddalpha’ object, containing the data and settings
<custom params> parameters that are passed to the user-defined method
... other parameters (mandatory)
OUT:
list() list of output parameters, after the validation is finished

these parameters are stored in the ‘ddalpha’ object
.<name>_learn
trains the depth
IN:
ddalpha the ‘ddalpha’ object containing the data and settings
MODIFIES:
ddalpha store the calculated statistics in the ddalpha object
depths calculate the depths of each pattern, e.g.

R> for (i in 1:ddalpha$numPatterns)
+ ddalpha$patterns[[i]]$depths <-
+ .<name>_depths(ddalpha,
+ ddalpha$patterns[[i]]$points)

OUT:
ddalpha the updated ‘ddalpha’ object
.<name>_depths
calculates the depths
IN:
ddalpha the ‘ddalpha’ object containing the data and settings
objects the objects for which the depths are calculated
OUT:
depths the calculated depths for each object (rows),

with respect to each class (columns)
Usage: ddalpha.train(data, depth = "<name>", <custom params>, ...)

Table 2: Definition of a custom depth function.

case if the custom method is binary, the package takes care of the voting procedures, and the
user only has to implement a method that separates two classes. The training method for a
binary separator .<name>_learn(ddalpha, index1, index2, depths1, depths2) accepts
the depths of the objects w.r.t. two classes and returns a trained classifier. A multiclass sep-
arator has to implement another interface: .<name>_learn(ddalpha), accessing the depths
of the different classes via ddalpha$patterns[[i]]$depths. The binary classifier can utilize
the whole depth space (i.e., depths w.r.t. other classes than the two currently under consider-
ation) to get more information like the α-separator does, or restrict to the DD-plot w.r.t. the
two given classes like the polynomial separator, by accessing depths1 and depths2 matrices.
The classifying function .<name>_classify(ddalpha, classifier, objects) accepts the

Journal of Statistical Software 31

.<name>_validate
validates parameters passed to ddalpha.train and passes them to the ‘ddalpha’ object
IN:
ddalpha the ‘ddalpha’ object containing the data and settings
<custom params> parameters that are passed to the user-defined method
... other parameters (mandatory)
OUT:
list() list of output parameters, after the validation is finished,

these parameters are stored in the ‘ddalpha’ object.

methodSeparatorBinary = FALSE in case of a multiclass classifier
.<name>_learn
trains the classifier. Is different for binary and multiclass classifiers.
IN:
ddalpha the ‘ddalpha’ object, containing the data and settings
index1 (only for binary) index of the first class
index2 (only for binary) index of the second class
depths1 (only for binary) depths of the first class w.r.t. all classes
depths2 (only for binary) depths of the second class w.r.t. all classes

depths w.r.t. only given classes are received by
depths1[, c(index1, index2)]

for multiclass separator the depths are accessible via
ddalpha$patterns[[i]]$depths

OUT:
classifier the trained classifier object
.<name>_classify
classifies the objects
IN:
ddalpha the ‘ddalpha’ object, containing the data and global settings
classifier the previously trained classifier
objects the objects (depths) that are classified
OUT:
result a vector with classification results:

positive values for class classifier$index1 (binary) or
the indices of a pattern in ddalpha (multiclass)

Usage:
binary R> ddalpha <- ddalpha.train(data, separator = "<name>",

+ aggregation.method = <any>, <custom params>, ...)
multiclass R> ddalpha <- ddalpha.train(data, separator = "<name>",

+ aggregation.method = "none", <custom params>, ...)

Table 3: Definition of a custom separator.

32 ddalpha: Depth and Depth-Based Classification in R

previously trained classifier and the depths of the objects that are classified. For a binary
classifier, the indices of the currently classified patterns are accessible as classifier$index1
and classifier$index2. A binary classifier shall return a vector with positive values for
the objects from the first class, and the multiclass classifier shall assign to each object to
be classified the index of the corresponding pattern in ddalpha. Similarly to the depth
function, the defined separator is accessible by ddalpha.train by specifying separator =
"<name>". If a nonbinary method is used, it is important to set aggregation.method =
"none" or (preferred but more complicated) to return ddalpha$methodSeparatorBinary =
FALSE from the validator, otherwise the method will be treated as a binary one, as by default
aggregation.method = "majority".

6.3. Additional features
A number of additional functions are implemented in the package to facilitate assessing qual-
ity and time of classification, handle multimodally distributed classes, and visualize depth
statistics.
Benchmark procedures implemented in the package allow for estimating expected error rate
and training time:

ddalpha.test(learn, test, ...)
ddalpha.getErrorRateCV(data, numchunks = 10, ...)
ddalpha.getErrorRatePart(data, size = 0.3, times = 10, ...)

The first function trains the classifier on the learn sample, checks it on the test one, and
reports the error rate, the training time and other related values such as the numbers of
correctly and incorrectly classified points, number of ignored outsiders, etc. The second
function performs a cross-validation procedure over the given data. On each step, every
numchunksth observation is removed from the data, the classifier is trained on these data and
tested on the removed observations. The procedure is performed until all points are used
for testing. Setting numchunks to n leads to the leave-one-out cross-validation (=jackknife)
that is a consistent estimate of the expected error rate. The procedure returns the error
rate, i.e., the total number of incorrectly classified objects divided by the total number of
objects. The third function performs a benchmark procedure by partitioning the given data.
On each of times steps, randomly picked size observations are removed from the data, the
classifier is trained on these data and tested on the removed observations. The outputs of
this function are the vector of errors, their mean and standard deviation. Additionally, both
functions report mean training time and its standard deviation. In all three functions, dots
denote the additional parameters passed to ddalpha.train. Benchmark procedures may
be used to tune the classifier by setting different values and assessing the error rate. The
function ddalpha.test is more appropriate for simulated data, while the two others are more
suitable for subsampling learning with real data and testing sequences from it. Analogs of
these procedures for a functional setting are present in the package as well:

ddalphaf.test(learn, learnlabels, test, testlabels, disc.type, ...)
ddalphaf.getErrorRateCV(dataf, labels, numchunks, disc.type, ...)
ddalphaf.getErrorRatePart(dataf, labels, size, times, disc.type, ...)

The discretization scheme is chosen with parameter disc.type setting it to "LS" or "comp".
Note that these procedures are made to assess the error rates and the learning time for a single

Journal of Statistical Software 33

set of parameters. If the LS-transform is used, the parameters L and S shall be explicitly set
with adc.args rather then cross-validated.
Several approaches reflecting multimodality of the underlying distribution are implemented
in the package. These methods appear to be useful if the data substantially deviate from
elliptical symmetry (e.g., having nonconvex or nonconnected support) and the classification
based on a global depth fails to achieve close to optimal error rates. The methods need
more complicated and fine parameter tuning, whose detailed description we leave to the
corresponding articles.
Localized spatial depth and a classifier based on it, proposed by Dutta et al. (2016), can be
seen as a DD-classifier. The global spatial depth calculates the average of the unit vectors
pointing from the points fromX in direction z. We rewrite (3) denoting ti = Σ−

1
2 (X)(z−xi)

Dspt(z |X) = 1−
∥∥∥ 1
n

n∑
i=1
v
(
ti
)∥∥∥.

The local version is obtained by kernelizing the distances

DLspt(z |X) =
∥∥∥ 1
n

n∑
i=1

Kh(ti)
∥∥∥− ∥∥∥ 1

n

n∑
i=1

Kh(ti)v(ti)
∥∥∥,

with the Gaussian kernel functionKh(x). The bandwidth parameter h defines the localization
rate. (If h > 1, the depth is multiplied by hd.)
The potential-potential (pot-pot) plot (Pokotylo and Mosler 2019) bears the analogy to the
DD-plot and thus can be directly used in DD-classification as well. The potential of a class
j is defined as a kernel density estimate multiplied by the class’s prior probability and is used
in the same way as a depth

φ̂j(x) = pj f̂j(x) = 1
n

nj∑
i=1

KHj (x,xji),

with a Gaussian kernel KH(x) and bandwidth matrix H = h2Σ̂(X). The bandwidth pa-
rameter h (called kernel.bandwidth in the package) is separately tuned for each class. The
parameters have to be properly tuned, using the following benchmark procedures:

R> min_error <- list(a = NA, error = 1)
R> for (h in list(c(h_11, h_21), ... , c(h_1k, h_2k))) {
+ error <- ddalpha.getErrorRateCV(data, numchunks = <nc>,
+ separator = <sep>, depth = "potential", kernel.bandwidth = h,
+ pretransform = "NMahMom")
+ if (error < min_error$error)
+ min_error <- list(a = a, error = error)
+ }

The depth-based kNN (Paindaveine and Van Bever 2015) is an affine-invariant version of
the k-nearest-neighbor procedure. This method is different, in the sense that it is not
using the DD-plot. It is accessible through functions dknn.train, dknn.classify and
dknn.classify.trained. For each point x0 to be classified, data points are appended by

34 ddalpha: Depth and Depth-Based Classification in R

their reflection w.r.t. x0, which results in the extended centrally symmetric data set of size
2n. Then the depth of each data point is calculated in this extended data cloud, and x0 is as-
signed to the most representable class among k points with the highest depth value, breaking
ties randomly. Each depth notion may be inserted. Training the classifier constitutes in its
tuning by the leave-one-out cross-validation. The method is integrated into the benchmark
procedures, accessible there by setting separator = "Dknn".
Depth visualization functions applicable to the two-dimensional data are also implemented in
the package. To visualize a depth function as a three-dimensional landscape, use

depth.graph(data, depth_f, main, xlim, ylim, zlim, xnum, ynum,
theta, phi, bold = FALSE, ...)

The function accepts additional parameters: plot-limiting parameters xlim, ylim, zlim are
calculated automatically, parameters xnum, ynum control the resolution of the plot, parameters
theta and phi rotate the plot, and with parameter bold equal to TRUE the data points are
drawn in bold face.
Depth contours are pictured by the following functions:

depth.contours(data, depth, main, xlab, ylab, drawplot = TRUE,
frequency = 100, levels = 10, col, ...)

depth.contours.ddalpha(ddalpha, main, xlab, ylab, drawplot = TRUE,
frequency = 100, levels = 10, drawsep = TRUE, ...)

Function depth.contours calculates and draws the depth contours Dα for given data. Pa-
rameter frequency controls the resolution of the plot, and parameter levels controls the
vector of depth values of α for which the contours are drawn. Note that a single value set
as levels defines either the depth of a single contour (0 < levels ≤ 1) or the number
(as its ceiling) of contours that are equally gridded between zero and maximal depth value
(levels > 1). To combine the contours of several data sets or several different depth notions
in one plot, parameter drawplot should be set to FALSE for all but the first plot and the color
should be set individually through col. It is also possible to draw depth contours for a pre-
viously trained ddalpha classifier. In this case classes will differ in colors and the separation
will be drawn.
Figures 1 and 2 show depth surface (left) and depth contours (right) for each of the imple-
mented depth notions. The two plots, e.g., for Mahalanobis depth, correspond (without addi-
tional parameters that orientate the plot) to the calls depth.graph(data, "Mahalanobis")
and depth.contours(data, "Mahalanobis").
Another useful function draws the DD-plot either from the trained DDα-classifier or from
the depth space, additionally indicating the separation between the classes:

draw.ddplot(ddalpha, depth.space, cardinalities, main = "DD plot",
xlab = "C1", ylab = "C2", classes = c(1, 2),
colors = c("red", "blue", "green"), drawsep = TRUE)

To facilitate saving the default parameters for the plots and resetting them, which may become
annoying when done often, function par(resetPar()) can be used.

Journal of Statistical Software 35

Multivariate and functional data sets and data generators are included in the package ddalpha
to make the empirical comparison of different classifiers and data depths easier. 50 multivariate
binary classification problems were collected and described by Mozharovskyi et al. (2015) and
are also available at the web page https://www.wisostat.uni-koeln.de/de/forschung/
software-und-daten/data-for-classification/. The data can be loaded to a separate
variable with function variable <- getdata("<name>"). Class labels are in the last col-
umn of each data set. Functional data sets are accessible through functions dataf.<name>()
and contain four functional data sets and two generators from Cuevas, Febrero, and Fraiman
(2007). A functional data object contains a list of functional observations, each character-
ized by two vectors of coordinates, the arguments vector args and the values vector vals,
and a list of class labels. Although this format is clear, visualization of such data can be a
nontrivial task, which is solved by S3 functions plot.functional, lines.functional and
points.functional.

6.4. Tuning the classifier

Classification performance depends on many aspects: chosen depth function, separator, out-
sider treatment, and their parameters.
When selecting a depth function, such properties as ability to reflect asymmetry and shape
of the data, robustness, vanishing beyond the convex hull of the data, and computational
burden have to be considered.
Depth contours of Mahalanobis depth are elliptically symmetric and those of projection depth
are centrally symmetric, thus both are not well suited for skewed data. Contours of spatial
depth are also rounded, but fit substantially closer to the data, which can also be said about
simplicial volume depth. Being intrinsically nonparametric, halfspace, simplicial, and zonoid
depths fit closest to the geometry of the data cloud, but vanish beyond its convex hull, and
thus produce outsiders during classification. All these depths are global and not able to reflect
localities possibly present in the data. Local spatial depth as well as potentials compensate
for this by fitting multimodal distributions well, which is bought at the price of computational
burden for tuning a parameter due to an application specific criteria.
Halfspace, simplicial, and projection depths are robust, while outlier sensitivity of Maha-
lanobis and spatial depths depends on the underlying estimate of the covariance matrix. To
obtain their robust versions, the MCD estimator is applied in package ddalpha. Parame-
ter mah.parMcd used with Mahalanobis and spatial depths corresponds to the portion of the
data for which the covariance determinant is minimized. Simplicial volume and zonoid depths,
being based on volume and mean, fail to be robust in general as well.
Halfspace, zonoid, and simplicial depths produce outsiders; their depth contours are also not
smooth, and the contours of the simplicial depth are even star-shaped. These depths must
not be considered if a substantial portion of points lies on the convex hull of the data cloud;
in some cases, especially in high dimensions, this may reach 100%, see also Mozharovskyi
et al. (2015).
Most quickly computable are Mahalanobis, spatial, and zonoid depths. Their calculation
speed depends minorly on data dimension and moderately on the size of the data set, while
computation time for simplicial, simplicial volume, and exact halfspace depths dramatically
increases with the number of points and dimension of the data. Approximating algorithms
balance between calculation speed and precision depending on their parameters. Random

https://www.wisostat.uni-koeln.de/de/forschung/
software-und-daten/data-for- classification/

36 ddalpha: Depth and Depth-Based Classification in R

halfspace and projection depths are driven by parameter num.directions, i.e., the number
of directions used in the approximation. The approximations of simplicial and simplicial
volume depths depend on the number of simplices picked, which is set with parameter k. If
a fixed number of simplices k > 1 is given the algorithmic complexity is polynomial in d but
is independent of n, given k. If a proportion of simplices is given (0 < k < 1), then the
corresponding portion of all simplices is used and the algorithmic complexity is exponential
in n, but one can assume that the approximation precision is kept on the same level when n
changes. Note that in R2, the exact efficient algorithm of Rousseeuw and Ruts (1996) is used
to calculate simplicial depth.
Based on the empirical study using real data (Pokotylo and Mosler 2019), the classifiers’
error rates grow in the following order: DDα, polynomial classifier, kNN; although DDα and
the polynomial classifier provide similar polynomial solutions and kNN sometimes delivers
good results when the other two fail. The degree of the DDα and the polynomial classifier
and the number of nearest neighbors are automatically cross-validated, but maximal values
may be set manually. To gain more insights, depth-transformed data may be plotted (using
draw.ddplot).
The outsider treatment should not be regarded as the one that gives the best separation of
the classes in the original space, but rather be seen as a computationally cheap solution for
points right beyond their convex hulls.
In functional classification, parameters L and S can be set by the experience-guided applicant
or determined automatically by means of cross-validation. The ranges for cross-validation can
be based on previous knowledge of the area or conservatively calculated.
Benchmark procedures that we included in the package may be used for empirical parameters’
tuning, by iterating the parameters values and estimating the error rates. For example, the
following code fragment searches for the separator, depth, and some other parameters, which
deliver best classification:

R> min_error <- list(error = 1, par = NULL)
R> for (par in list(par_set_1, ... , par_set_k)) {
+ error <- ddalpha.getErrorRateCV(data, numchunks = <nc>,
+ separator = par$sep, depth = par$depth, other_par = par$other_par)
+ if (error < min_error$error)
+ min_error <- list(error = error, par = par)
+ }

6.5. Classification examples
In this section we present two examples of real data classification with the R package ddalpha.
In the first example, we train the ddalpha classifier using the Blood Transfusion Service
Center Data Set (Yeh, Yang, and Ting 2009), see Figure 11 for the DD-plot obtained with
the code fragment below. The data has been taken from the Blood Transfusion Service Center
in Hsin-Chu City in Taiwan. It contains 748 donors that have three properties: Recency –
months since last donation, Frequency – total number of donation, Monetary – total blood
donated in c.c.. The class variable indicates whether the donor gave blood in March 2007.
Following Li et al. (2012), we have removed the correlated property Time – months since first
donation.

Journal of Statistical Software 37

●●
●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

● ●●

● ●●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●
●● ●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●
●●●●

●

●

●

●
●

●

●●
●

● ●●●

●

●●

●

● ●

●

●

● ●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●●●

●
●

●

●

●

●

●

●

●

● ●●
● ●●

●

●

●●

● ● ●●

●

●

●

●

● ●

●

●

●
●

●●
●

● ●

●

●

● ●●
●●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●●
●

●
● ●

●●● ●●

●

●

●

●

●

●

●

●

●
●

●●

●●●●

●

●●

●

●●

●●
●

●

●●

●

●

●

●

● ●●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●●●
● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●
●●

●

●

● ●

● ●

●

●

●

●●

●

●●

●
●

●

●

●

●●●
●

●
●

●

●

●
●●

●
● ●

●

●

●
●

●

●

●
●

●

●

●●
●

●●●

●
●

●
●●●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●●

●

●

●

●

0.00 0.10 0.20 0.30
0.

00
0.

10
0.

20
0.

30

Depth w.r.t. 'Not Donated'

D
ep

th
 w

.r.
t.

'D
on

at
ed

'

Figure 11: DD-plot of the Blood Transfusion data.

R> library("ddalpha")
R> data <- getdata("bloodtransfusion")
R> N <- nrow(data)
R> D <- ncol(data)
R> Ntrain <- 0.7 * N
R> Ntest <- N - Ntrain
R> learnSample <- sample(1:N, Ntrain)

We train the DDα-classifier using:

R> ddalpha <- ddalpha.train(C ~ ., data, subset = learnSample,
+ depth = "halfspace", separator = "alpha",
+ outsider.methods = "kNNAff")

Selected columns: C, Recency, Frequency, Monetary

We draw the separation on the DD-plot and classify by means of the DDα-classifier:

R> draw.ddplot(ddalpha, main = "", xlab = "Depth w.r.t. 'Not Donated'",
+ ylab = "Depth w.r.t. 'Donated'")
R> classes <- ddalpha.classify(ddalpha, data, subset = -learnSample)
R> cat("Classification error rate:",
+ sum(unlist(classes) != data[-learnSample, D]) / Ntest, "\n")

Classification error rate: 0.2228164

The second example illustrates the usage of the functional DD-classifier applying it to the
Berkeley Growth Study Data (Tuddenham and Snyder 1954). The data set contains the
heights of 39 boys and 54 girls of age from 1 to 18 and the ages at which they were collected.
The measurements were done at 31 not equally spaced ages, see Figure 12 for the data itself
and the DD-plot obtained with the code fragment below.

38 ddalpha: Depth and Depth-Based Classification in R

5 10 15

80
12

0
16

0
20

0

Year

H
ei

gh
t,

cm

● ●
●

●
●●

●
● ●●

● ●●

●

●●
● ● ●●● ● ●●

●

●
●
●●

●

●
●

●

●●
●●

● ●● ●● ●● ●
● ●●

●

●

●

● ●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●●
●

●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Depth w.r.t. girl

D
ep

th
 w

.r.
t.

bo
y

Figure 12: Berkeley Growth Study Data (left) and its DD-plot (right). Girls (red), boys
(blue), classified observations (green).

Here we cross-validate all possible pairs of L and S, L + S ≤ maxNumIntervals. Having
additional information about the functions, the user can explicitly specify reasonable (L, S)-
pairs for cross-validation. For example, by examining the Growth data, one may notice that
after 13 years boys start growing faster than girls, and the derivatives differ between the
classes in the second part of the function, so the classes shall be well separated by setting
S = 2. We load the package and the Growth dataset:

R> library("ddalpha")
R> dataf <- dataf.growth()

We take a sample as test data consisting of elements 50 to 59, which are 5 girls and 5 boys,
and plot the data with colors assigned in alphabetical order of class labels:

R> testIndexes <- 50:59
R> plot(dataf, main = "", xlab = "Year", ylab = "Height, cm",
+ colors = c("blue", "red"))
R> testData <- structure(list(dataf = dataf$dataf[testIndexes]),
+ class = "functional")
R> lines(testData, colors = "green", lwd = 2)

We train the functional classifier using cross-validation over all variants up to dimension 3:

R> ddalphaf <- ddalphaf.train(dataf$dataf, dataf$labels,
+ subset = -testIndexes, classifier.type = "ddalpha",
+ depth = "spatial", maxNumIntervals = 3)

We draw the separation on the DD-plot and classify by means of the DDα-classifier:

R> draw.ddplot(ddalphaf$classifier, main = "",
+ xlab = paste("Depth w.r.t.", ddalphaf$labels[[1]]),
+ ylab = paste("Depth w.r.t.", ddalphaf$labels[[2]]))

Journal of Statistical Software 39

R> classified1 <- ddalphaf.classify(ddalphaf, dataf$dataf,
+ subset = testIndexes)
R> print(unlist(classified1))

[1] "girl" "boy" "girl" "girl" "girl" "boy" "boy" "boy" "boy" "boy"

R> print(ddalphaf$adc.args)

$instance
[1] "avr"

$numFcn
[1] 1

$numDer
[1] 2

We cross-validate the sample to get error rate and running time for particular parameters:

R> ddalphaf.getErrorRateCV(dataf$dataf, dataf$labels,
+ disc.type = "LS", classifier.type = "ddalpha", depth = "spatial",
+ adc.args = list(instance = "avr", numFcn = 1, numDer = 2))

$errors
[1] 0.05376344

$time
[1] 0.212

$time_sd
[1] 0.02250926

Acknowledgments
The authors highly appreciate the help of Karl Mosler consisting in numerous remarks on
earlier versions of this article and his notable contributions to the field of data depth. The
authors want to thank Julie Josse, François Husson, Myriam Vimond, and Pierre Lafaye de
Micheaux for their valuable suggestions that have substantially improved the present work.
Stanislav Nagy is acknowledged for having pointed out absence of the monotonicity property
for spatial depth. Thanks also go to Associate Editor Max Kuhn and the two anonymous
referees. The authors would like to express their gratitude to the Cologne Graduate School
of Management, Economics and Social Sciences who supported the work of Oleksii Pokotylo
and to the Lebesgue Centre of Mathematics who supported the work of Pavlo Mozharovskyi
(program PIA-ANR-11-LABX-0020-01). HPC cluster CHEOPS of the University of Cologne
is acknowledged for providing necessary computational resources.

40 ddalpha: Depth and Depth-Based Classification in R

References

Adler D, Murdoch D, et al. (2019). rgl: 3D Visualization Using OpenGL. R package ver-
sion 0.100.24, URL https://CRAN.R-project.org/package=rgl.

Agostinelli C, Romanazzi M, SLATEC Common Mathematical Library (2013). localdepth:
Local Depth. R package version 0.5-7, URL https://CRAN.R-project.org/src/contrib/
Archive/localdepth/.

Bazovkin P (2013). WMTregions: Exact Calculation of WMTR. R package version 3.2.6,
URL https://CRAN.R-project.org/src/contrib/Archive/WMTregions.

Bazovkin P, Mosler K (2012). “An Exact Algorithm for Weighted-Mean Trimmed Regions in
Any Dimension.” Journal of Statistical Software, 47(13), 1–29. doi:10.18637/jss.v047.
i13.

Boček P, Šiman M (2016). “Directional Quantile Regression in Octave (and MATLAB).”
Kybernetika, 52(1), 28–51. doi:10.14736/kyb-2016-1-0028.

Chaudhuri P (1996). “On a Geometric Notion of Quantiles for Multivariate Data.” Journal
of the American Statistical Association, 91(434), 862–872. doi:10.2307/2291681.

Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015). “The UCR Time
Series Classification Archive.” www.cs.ucr.edu/~eamonn/time_series_data/.

Cuesta-Albertos JA, Febrero-Bande M, de la Fuente MO (2017). “The DDG-Classifier in the
Functional Setting.” TEST, 26(1), 119–142. doi:10.1007/s11749-016-0502-6.

Cuesta-Albertos JA, Nieto-Reyes A (2008). “The Random Tukey Depth.” Computational
Statistics & Data Analysis, 52(11), 4979–4988. doi:10.1016/j.csda.2008.04.021.

Cuevas A, Febrero M, Fraiman R (2007). “Robust Estimation and Classification for Functional
Data via Projection-Based Depth Notions.” Computational Statistics, 22(3), 481–496. doi:
10.1007/s00180-007-0053-0.

Cui X, Lin L, Yang G (2008). “An Extended Projection Data Depth and Its Applications
to Discrimination.” Communications in Statistics – Theory and Methods, 37, 2276–2290.
doi:10.1080/03610920701858396.

Delaigle A, Hall P, Bathia N (2012). “Componentwise Classification and Clustering of Func-
tional Data.” Biometrika, 99(2), 299–313. doi:10.1093/biomet/ass003.

Donoho DL (1982). Breakdown Properties of Multivariate Location Estimators. Ph.D. thesis,
Harvard University.

Donoho DL, Gasko M (1992). “Breakdown Properties of Location Estimates Based on Half-
space Depth and Projected Outlyingness.” The Annals of Statistics, 20(4), 1803–1827.
doi:10.1214/aos/1176348890.

Dutta S, Ghosh AK (2011). “On Classification Based on Lp Depth with an Adaptive Choice of
p.” Technical Report R5/2011, Statistics and Mathematics Unit, Indian Statistical Institute.

https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/src/contrib/Archive/localdepth/
https://CRAN.R-project.org/src/contrib/Archive/localdepth/
https://CRAN.R-project.org/src/contrib/Archive/WMTregions
https://doi.org/10.18637/jss.v047.i13
https://doi.org/10.18637/jss.v047.i13
https://doi.org/10.14736/kyb-2016-1-0028
https://doi.org/10.2307/2291681
www.cs.ucr.edu/~eamonn/time_series_data/
https://doi.org/10.1007/s11749-016-0502-6
https://doi.org/10.1016/j.csda.2008.04.021
https://doi.org/10.1007/s00180-007-0053-0
https://doi.org/10.1007/s00180-007-0053-0
https://doi.org/10.1080/03610920701858396
https://doi.org/10.1093/biomet/ass003
https://doi.org/10.1214/aos/1176348890

Journal of Statistical Software 41

Dutta S, Ghosh AK (2012). “On Robust Classification Using Projection Depth.” The
Annals of the Institute of Statistical Mathematics, 64(3), 657–676. doi:10.1007/
s10463-011-0324-y.

Dutta S, Sarkar S, Ghosh AK (2016). “Multi-Scale Classification Using Localized Spatial
Depth.” Journal of Machine Learning Research, 17(218), 1–30.

Dyckerhoff R (2004). “Data Depths Satisfying the Projection Property.” Allgemeines Statis-
tisches Archiv, 88(2), 163–190. doi:10.1007/s101820400167.

Dyckerhoff R, Mosler K (2011). “Weighted-Mean Trimming of Multivariate Data.” Journal
of Multivariate Analysis, 102(3), 405–421. doi:10.1016/j.jmva.2010.10.002.

Dyckerhoff R, Mosler K, Koshevoy G (1996). “Zonoid Data Depth: Theory and Computation.”
In A Prat (ed.), COMPSTAT ’96 – Proceedings in Computational Statistics, pp. 235–240.
Springer-Verlag. doi:10.1007/978-3-642-46992-3_26.

Dyckerhoff R, Mozharovskyi P (2016). “Exact Computation of the Halfspace Depth.” Com-
putational Statistics & Data Analysis, 98, 19–30. doi:10.1016/j.csda.2015.12.011.

Eddelbuettel D, Emerson JW, Kane MJ (2019). BH: Boost C++ Header Files. R package
version 1.69.0-1, URL https://CRAN.R-project.org/package=BH.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Febrero-Bande M, Oviedo de la Fuente M (2012). “Statistical Computing in Functional Data
Analysis: The R Package fda.usc.” Journal of Statistical Software, 51(4), 1–28. doi:
10.18637/jss.v051.i04.

Fischer D, Mosler K, Möttönen J, Nordhausen K, Pokotylo O, Vogel D (2018). OjaNP: Multi-
variate Methods Based on the Oja Median and Related Concepts. R package version 0.9-12,
URL https://CRAN.R-project.org/package=OjaNP.

Genest M, Masse JC, Plante JF (2017). depth: Nonparametric Depth Functions for Multi-
variate Analysis. R package version 2.1-1, URL https://CRAN.R-project.org/package=
depth.

Ghosh AK, Chaudhuri P (2005a). “On Data Depth and Distribution-Free Discriminant Anal-
ysis Using Separating Surfaces.” Bernoulli, 11(1), 1–27. doi:10.3150/bj/1110228239.

Ghosh AK, Chaudhuri P (2005b). “On Maximum Depth and Related Classifiers.” Scandina-
vian Journal of Statistics, 32(2), 327–350. doi:10.1111/j.1467-9469.2005.00423.x.

Hubert M, Vakili K (2013). MFHD: Multivariate Functional Halfspace Depth. R package
version 0.0.1, URL https://CRAN.R-project.org/package=MFHD.

Jörnsten R (2004). “Clustering and Classification Based on the L1 Data Depth.” Journal of
Multivariate Analysis, 90(1), 67–89. doi:10.1016/j.jmva.2004.02.013.

Koltchinskii VI (1997). “M-Estimation, Convexity and Quantiles.” The Annals of Statistics,
25(2), 435–477. doi:10.1214/aos/1031833659.

https://doi.org/10.1007/s10463-011-0324-y
https://doi.org/10.1007/s10463-011-0324-y
https://doi.org/10.1007/s101820400167
https://doi.org/10.1016/j.jmva.2010.10.002
https://doi.org/10.1007/978-3-642-46992-3_26
https://doi.org/10.1016/j.csda.2015.12.011
https://CRAN.R-project.org/package=BH
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v051.i04
https://doi.org/10.18637/jss.v051.i04
https://CRAN.R-project.org/package=OjaNP
https://CRAN.R-project.org/package=depth
https://CRAN.R-project.org/package=depth
https://doi.org/10.3150/bj/1110228239
https://doi.org/10.1111/j.1467-9469.2005.00423.x
https://CRAN.R-project.org/package=MFHD
https://doi.org/10.1016/j.jmva.2004.02.013
https://doi.org/10.1214/aos/1031833659

42 ddalpha: Depth and Depth-Based Classification in R

Koshevoy G, Mosler K (1997). “Zonoid Trimming for Multivariate Distributions.” The Annals
of Statistics, 25(5), 1998–2017. doi:10.1214/aos/1069362382.

Koshevoy GA (2002). “The Tukey Depth Characterizes the Atomic Measure.” Journal of
Multivariate Analysis, 83(2), 360–364. doi:10.1006/jmva.2001.2052.

Koshevoy GA (2003). “Lift-Zonoid and Multivariate Depths.” In R Dutter, P Filzmoser,
U Gather, PJ Rousseeuw (eds.), Developments in Robust Statistics, pp. 194–202. Physica-
Verlag, Heidelberg. doi:10.1007/978-3-642-57338-5_16.

Kosiorowski D, Zawadzki Z (2019). DepthProc: An R Package for Robust Exploration of
Multidimensional Economic Phenomena. R package version 2.1.1, URL https://CRAN.
R-project.org/package=DepthProc.

Lange T, Mosler K, Mozharovskyi P (2014a). “DDα-Classification of Asymmetric and Fat-
Tailed Data.” In M Spiliopoulou, L Schmidt-Thieme, R Janning (eds.), Data Analysis,
Machine Learning and Knowledge Discovery, pp. 71–78. Springer-Verlag. doi:10.1007/
978-3-319-01595-8_8.

Lange T, Mosler K, Mozharovskyi P (2014b). “Fast Nonparametric Classification Based on
Data Depth.” Statistical Papers, 55(1), 49–69. doi:10.1007/s00362-012-0488-4.

Lange T, Mozharovskyi P (2014). “The Alpha-Procedure – A Nonparametric Invariant
Method for Automatic Classification of d-Dimensional Objects.” In M Spiliopoulou,
L Schmidt-Thieme, R Janning (eds.), Data Analysis, Machine Learning and Knowledge
Discovery, pp. 79–86. Springer-Verlag. doi:10.1007/978-3-319-01595-8_9.

Lê S, Josse J, Husson F (2008). “FactoMineR: An R Package for Multivariate Analysis.”
Journal of Statistical Software, 25(1), 1–18. doi:10.18637/jss.v025.i01.

Li J, Cuesta-Albertos JA, Liu RY (2012). “DD-Classifier: Nonparametric Classification
Procedure Based on DD-Plot.” Journal of the American Statistical Association, 107(498),
737–753. doi:10.1080/01621459.2012.688462.

Liu RY (1990). “On a Notion of Data Depth Based on Random Simplices.” The Annals of
Statistics, 18(1), 405–414. doi:10.1214/aos/1176347507.

Liu RY (1992). “Data Depth and Multivariate Rank Tests.” In Y Dodge (ed.), L1-Statistical
Analysis and Related Methods, pp. 279–294. Elsevier, Amsterdam.

Liu X, Zuo Y (2014a). “Computing Halfspace Depth and Regression Depth.” Communications
in Statistics – Simulation and Computation, 43(5), 969–985. doi:10.1080/03610918.
2012.720744.

Liu X, Zuo Y (2014b). “Computing Projection Depth and Its Associated Estimators.” Statis-
tics and Computing, 24(1), 51–63. doi:10.1007/s11222-012-9352-6.

Liu X, Zuo Y (2015). “CompPD: A MATLAB Package for Computing Projection Depth.”
Journal of Statistical Software, 65(2), 1–21. doi:10.18637/jss.v065.i02.

Lopez-Pintado S, Torrente A (2013). depthTools: Depth Tools Package. R package version 0.4,
URL https://CRAN.R-project.org/package=depthTools.

https://doi.org/10.1214/aos/1069362382
https://doi.org/10.1006/jmva.2001.2052
https://doi.org/10.1007/978-3-642-57338-5_16
https://CRAN.R-project.org/package=DepthProc
https://CRAN.R-project.org/package=DepthProc
https://doi.org/10.1007/978-3-319-01595-8_8
https://doi.org/10.1007/978-3-319-01595-8_8
https://doi.org/10.1007/s00362-012-0488-4
https://doi.org/10.1007/978-3-319-01595-8_9
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1080/01621459.2012.688462
https://doi.org/10.1214/aos/1176347507
https://doi.org/10.1080/03610918.2012.720744
https://doi.org/10.1080/03610918.2012.720744
https://doi.org/10.1007/s11222-012-9352-6
https://doi.org/10.18637/jss.v065.i02
https://CRAN.R-project.org/package=depthTools

Journal of Statistical Software 43

Maechler M, Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke
T, Koller M, Conceicao ELT, di Palma MA (2016). robustbase: Basic Robust Statistics.
R package version 0.92-7, URL https://CRAN.R-project.org/package=robustbase.

Mahalanobis PC (1936). “On the Generalized Distance in Statistics.” Proceedings of the
National Institute of Sciences of India, 12, 49–55.

Mahalanobish O, Karmakar S (2015). depth.plot: Multivariate Analogy of Quantiles. R pack-
age version 0.1, URL https://CRAN.R-project.org/package=depth.plot.

Mersmann O (2018). microbenchmark: Accurate Timing Functions. R package version 1.4-6,
URL https://CRAN.R-project.org/package=microbenchmark.

Mizera I (2002). “On Depth and Deep Points: A Calculus.” The Annals of Statistics, 30(6),
1681–1736. doi:10.1214/aos/1043351254.

Mosler K (2002). Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid
Approach. Springer-Verlag.

Mosler K (2013). “Depth Statistics.” In C Becker, R Fried, S Kuhnt (eds.), Robustness and
Complex Data Structures: Festschrift in Honour of Ursula Gather, pp. 17–34. Springer-
Verlag. doi:10.1007/978-3-642-35494-6_2.

Mosler K, Hoberg R (2006). “Data Analysis and Classification with the Zonoid Depth.”
DIMACS. Data Depth: Robust Multivariate Analysis, Computational Geometry and Appli-
cations, pp. 49–59.

Mosler K, Mozharovskyi P (2017). “Fast DD-Classification of Functional Data.” Statistical
Papers, 58(4), 1055–1089. doi:10.1007/s00362-015-0738-3.

Mosler K, Polyakova Y (2012). “General Notions of Depth for Functional Data.”
arXiv:1208.1981 [stat.ME], URL https://arxiv.org/abs/1208.1981.

Mozharovskyi P (2015). Contributions to Depth-Based Classification and Computation of the
Tukey Depth. Verlag Dr. Kovač, Hamburg.

Mozharovskyi P, Mosler K, Lange T (2015). “Classifying Real-World Data with the DDα-
Procedure.” Advances in Data Analysis and Classification, 9(3), 287–314. doi:10.1007/
s11634-014-0180-8.

Mustafa N, Ray S, Shabbir M (2014). rsdepth: Ray Shooting Depth (i.e. RS Depth) Functions
for Bivariate Analysis. R package version 0.1-5, URL https://CRAN.R-project.org/
package=rsdepth.

Nagy S (2017). “Monotonicity Properties of Spatial Depth.” Statistics and Probability Letters,
129, 373–378. doi:10.1016/j.spl.2017.06.025.

Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer
Journal, 7, 308–313.

Nieto-Reyes A, Battey H (2016). “A Topologically Valid Definition of Depth for Functional
Data.” Statistical Science, 31(1), 61–79. doi:10.1214/15-sts532.

https://CRAN.R-project.org/package=robustbase
https://CRAN.R-project.org/package=depth.plot
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.1214/aos/1043351254
https://doi.org/10.1007/978-3-642-35494-6_2
https://doi.org/10.1007/s00362-015-0738-3
https://arxiv.org/abs/1208.1981
https://doi.org/10.1007/s11634-014-0180-8
https://doi.org/10.1007/s11634-014-0180-8
https://CRAN.R-project.org/package=rsdepth
https://CRAN.R-project.org/package=rsdepth
https://doi.org/10.1016/j.spl.2017.06.025
https://doi.org/10.1214/15-sts532

44 ddalpha: Depth and Depth-Based Classification in R

Oja H (1983). “Descriptive Statistics for Multivariate Distributions.” Statistics and Probability
Letters, 1(6), 327–332. doi:10.1016/0167-7152(83)90054-8.

Paindaveine D, Van Bever G (2015). “Nonparametrically Consistent Depth-Based Classifiers.”
Bernoulli, 21(1), 62–82. doi:10.3150/13-bej561.

Pokotylo O, Mosler K (2019). “Classification with the Pot-Pot Plot.” Statistical Papers, 60(3),
903–931. doi:10.1007/s00362-016-0854-8.

Pokotylo O, Mozharovskyi P, Dyckerhoff R (2016). “Depth and Depth-Based Classification
with R Package ddalpha.” arXiv:1608.04109 [stat.CO], URL https://arxiv.org/abs/
1608.04109.

Rousseeuw PJ, Leroy AM (1987). Robust Regression and Outlier Detection. John Wiley &
Sons. doi:10.1002/0471725382.

Rousseeuw PJ, Ruts I (1996). “Algorithm AS 307: Bivariate Location Depth.” Journal of the
Royal Statistical Society C, 45(4), 516–526. doi:10.2307/2986073.

Rousseeuw PJ, Van Driessen K (1999). “A Fast Algorithm for the Minimum Covariance
Determinant Estimator.” Technometrics, 41(3), 212–223. doi:10.1080/00401706.1999.
10485670.

Sabanés Bové D, Held L (2011). “Bayesian Fractional Polynomials.” Statistics and Computing,
21(3), 309–324. doi:10.1007/s11222-010-9170-7.

Serfling R (2002). “A Depth Function and a Scale Curve Based on Spatial Quantiles.” In
Y Dodge (ed.), Statistical Data Analysis Based on the L1-Norm and Related Methods, pp.
25–38. Birkhäuser-Verlag, Basel. doi:10.1007/978-3-0348-8201-9_3.

Sevcikova H, Rossini AJ (2017). snowFT: Fault Tolerant Simple Network of Workstations.
R package version 1.6-0, URL https://CRAN.R-project.org/package=snowFT.

Stahel WA (1981). Robust Estimation: Infinitesimal Optimality and Covariance Matrix Es-
timators. Ph.D. thesis, Swiss Federal Institute of Technology in Zurich. In German.

Struyf AJ, Rousseeuw PJ (1999). “Halfspace Depth and Regression Depth Characterize the
Empirical Distribution.” Journal of Multivariate Analysis, 69(1), 135–153. doi:10.1006/
jmva.1998.1804.

The MathWorks Inc (2019). MATLAB – The Language of Technical Computing, Version
R2019a. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/.

Tuddenham RD, Snyder MM (1954). “Physical Growth of California Boys and Girls from
Birth to Eighteen Years.” Publications in Child Development. University of California,
Berkeley, 1(2), 183–364.

Tukey JW (1975). “Mathematics and the Picturing of Data.” In RD James (ed.), Proceed-
ings of the International Congress of Mathematicians, volume 2, pp. 523–531. Canadian
Mathematical Congress.

https://doi.org/10.1016/0167-7152(83)90054-8
https://doi.org/10.3150/13-bej561
https://doi.org/10.1007/s00362-016-0854-8
https://arxiv.org/abs/1608.04109
https://arxiv.org/abs/1608.04109
https://doi.org/10.1002/0471725382
https://doi.org/10.2307/2986073
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1007/s11222-010-9170-7
https://doi.org/10.1007/978-3-0348-8201-9_3
https://CRAN.R-project.org/package=snowFT
https://doi.org/10.1006/jmva.1998.1804
https://doi.org/10.1006/jmva.1998.1804
http://www.mathworks.com/products/matlab/

Journal of Statistical Software 45

Vardi Y, Zhang CH (2000). “The Multivariate L1-Median and Associated Data Depth.”
Proceedings of the National Academy of Sciences of the United States of America, 97(4),
1423–1426. doi:10.1073/pnas.97.4.1423.

Vasil’ev VI (2003). “The Reduction Principle in Problems of Revealing Regularities I.” Cyber-
netics and Systems Analysis, 39(5), 686–694. doi:10.1023/b:casa.0000012089.39260.
b3.

Vasil’ev VI, Lange TI (1998). “The Duality Principle in Learning for Pattern Recognition.”
Kibernetika i Vytschislitelnaya Technika, 121, 7–16. In Russian.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York. URL http://www.stats.ox.ac.uk/pub/MASS4.

Vencalek O (2011). Weighted Data Depth and Depth Based Discrimination. Ph.D. thesis,
Charles University, Prague.

Vencalek O (2017). “Depth-Based Classification for Multivariate Data.” Austrian Journal of
Statistics, 46(3–4), 117–128. doi:10.17713/ajs.v46i3-4.677.

Šiman M, Boček P (2019). modQR: Multiple-Output Directional Quantile Regression. R pack-
age version 0.1.2, URL https://CRAN.R-project.org/package=modQR.

Wickham H (2007). “Reshaping Data with the reshape Package.” Journal of Statistical
Software, 21(12), 1–20. doi:10.18637/jss.v021.i12.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. URL
https://ggplot2.tidyverse.org/.

Wickham H (2019). stringr: Simple, Consistent Wrappers for Common String Operations.
R package version 1.4.0, URL https://CRAN.R-project.org/package=stringr.

Wolf HP (2019). aplpack: Another Plot Package. R package version 1.3.3, URL https:
//CRAN.R-project.org/package=aplpack.

Yeh IC, Yang KJ, Ting TM (2009). “Knowledge Discovery on RFM Model Using Bernoulli
Sequence.” Expert Systems with Applications, 36(3), 5866–5871. doi:10.1016/j.eswa.
2008.07.018.

Yu H (2017). Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). R package
version 0.6-6, URL https://CRAN.R-project.org/package=Rmpi.

Zuo Y, Serfling R (2000). “General Notions of Statistical Depth Function.” The Annals of
Statistics, 28(2), 461–482. doi:10.1214/aos/1016218226.

https://doi.org/10.1073/pnas.97.4.1423
https://doi.org/10.1023/b:casa.0000012089.39260.b3
https://doi.org/10.1023/b:casa.0000012089.39260.b3
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.17713/ajs.v46i3-4.677
https://CRAN.R-project.org/package=modQR
https://doi.org/10.18637/jss.v021.i12
https://ggplot2.tidyverse.org/
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=aplpack
https://CRAN.R-project.org/package=aplpack
https://doi.org/10.1016/j.eswa.2008.07.018
https://doi.org/10.1016/j.eswa.2008.07.018
https://CRAN.R-project.org/package=Rmpi
https://doi.org/10.1214/aos/1016218226

46 ddalpha: Depth and Depth-Based Classification in R

Affiliation:
Oleksii Pokotylo
Faculty of Management, Economics and Social Sciences
University of Cologne
Albertus-Magnus-Platz, 50923 Cologne, Germany
E-mail: oleksii.pokotylo@gmail.com

Pavlo Mozharovskyi
Center for Research in Economics and Statistics
National School for Statistics and Information Analysis
Université Bretagne Loire
Rue Blaise Pascal, 35172 Bruz, France
E-mail: pavlo.mozharovskyi@ensai.fr
URL: http://www.ensai.fr/enseignant/alias/pavlo-mozharovskyi.html

Rainer Dyckerhoff
Institute of Econometrics and Statistics
Faculty of Management, Economics and Social Sciences
University of Cologne
Albertus-Magnus-Platz, 50923 Cologne, Germany
E-mail: rainer.dyckerhoff@statistik.uni-koeln.de
URL: http://www.wisostat.uni-koeln.de/dyckerhoff.html

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

October 2019, Volume 91, Issue 5 Submitted: 2016-08-11
doi:10.18637/jss.v091.i05 Accepted: 2018-07-07

mailto:oleksii.pokotylo@gmail.com
mailto:pavlo.mozharovskyi@ensai.fr
http://www.ensai.fr/enseignant/alias/pavlo-mozharovskyi.html
mailto:rainer.dyckerhoff@statistik.uni-koeln.de
http://www.wisostat.uni-koeln.de/dyckerhoff.html
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v091.i05

	Introduction
	Classification in the depth space
	The R package ddalpha
	Comparison to existing implementations
	Outline of the article

	Data depth
	The concept
	Implemented notions
	Computation time
	Choosing among depth notions
	Maximum depth classifier

	Classification in the DD-plot
	The DDalpha-separator
	Alternative separators in the DD-plot

	Outsiders
	An extension to functional data
	Usage of the package
	Basic functionality
	Custom depths and separators
	Additional features
	Tuning the classifier
	Classification examples

