
JSS Journal of Statistical Software
November 2019, Volume 91, Issue 11. doi: 10.18637/jss.v091.i11

Learning Large-Scale Bayesian Networks with the
sparsebn Package

Bryon Aragam
University of Chicago

Jiaying Gu
University of California,

Los Angeles

Qing Zhou
University of California,

Los Angeles

Abstract

Learning graphical models from data is an important problem with wide applications,
ranging from genomics to the social sciences. Nowadays datasets often have upwards
of thousands – sometimes tens or hundreds of thousands – of variables and far fewer
samples. To meet this challenge, we have developed a new R package called sparsebn for
learning the structure of large, sparse graphical models with a focus on Bayesian networks.
While there are many existing software packages for this task, this package focuses on
the unique setting of learning large networks from high-dimensional data, possibly with
interventions. As such, the methods provided place a premium on scalability and consis-
tency in a high-dimensional setting. Furthermore, in the presence of interventions, the
methods implemented here achieve the goal of learning a causal network from data. Ad-
ditionally, the sparsebn package is fully compatible with existing software packages for
network analysis.

Keywords: Bayesian networks, causal networks, graphical models, machine learning, structural
equation modeling, multi-logit regression, experimental data.

1. Introduction
Graphical models are a popular tool in machine learning and statistics, and have been used
in a variety of applications including genetics (Gao and Cui 2015; Isci, Dogan, Ozturk, and
Otu 2014), computational biology (Jones, Buchan, Cozzetto, and Pontil 2012), oncology
(Chen et al. 2015), medicine and health care (Nicholson, Cozman, Velikova, Van Scheltinga,
Lucas, and Spaanderman 2014), logistics (Garvey, Carnovale, and Yeniyurt 2015), finance
(Sanford and Moosa 2012), and even software testing (Dejaeger, Verbraken, and Baesens
2013). The widespread growth of high-dimensional biological data in particular has spurred
a renewed interest in the use of graphical models to aid in the discovery of novel biological

https://doi.org/10.18637/jss.v091.i11

2 sparsebn: Learning Large-Scale Bayesian Networks

mechanisms (Bühlmann, Kalisch, and Meier 2014). While the past decade has witnessed
tremendous developments towards understanding undirected graphical models (Meinshausen
and Bühlmann 2006; Ravikumar, Wainwright, and Lafferty 2010; Yang, Ravikumar, Allen,
and Liu 2015), there has been less progress towards understanding directed graphical models
– also known as Bayesian networks (BNs) or structural equation models (SEM) – for high-
dimensional data with p � n. A BN is represented by a directed acyclic graph (DAG),
whose structure contains a richer and different set of conditional independence relations than
an undirected graph. Moreover, DAGs are commonly used in causal inference where the
direction of an edge encodes causality. Consequently, there have been continuing efforts in
structure learning of directed graphs from data.
Unlike their undirected counterparts, however, the structure learning problem for directed
graphical models is complicated by the nonconvexity, nonsmoothness, and nonidentifiability
of the underlying statistical problem. These issues have no doubt slowed progress towards
fast, scalable algorithms for learning in the presence of thousands – let alone tens of thousands
– of variables. Despite progress at the theoretical (Van de Geer and Bühlmann 2013; Aragam,
Amini, and Zhou 2015) and computational level (Schmidt, Niculescu-Mizil, and Murphy 2007;
Xiang and Kim 2013; Fu and Zhou 2013), there is still a lack of user-friendly software for
putting these modern tools into the hands of practitioners.
To bridge this gap we have developed sparsebn, a new R (R Core Team 2019) package for
structure learning and parameter estimation of large-scale Bayesian networks from high-
dimensional data. When experimental data are available, an estimated DAG from this
package has a natural causal interpretation. While there are many R packages for learning
Bayesian networks (Section 2.4), none that we are aware of are specifically tailored to high-
dimensional data with experimental interventions. The sparsebn package has been developed
from the ground up using recent developments in structure learning (Fu and Zhou 2013;
Aragam and Zhou 2015; Gu, Fu, and Zhou 2018) and statistical optimization (Friedman,
Hastie, Höfling, and Tibshirani 2007; Friedman, Hastie, and Tibshirani 2010; Mazumder,
Friedman, and Hastie 2011). In addition to methods for learning Bayesian networks, this
package also includes procedures for learning undirected graphs, fitting structural equation
models, and is compatible with existing packages in R. All of the code for this package
is open-source and available through the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=sparsebn.
To briefly illustrate the use of sparsebn, the code below learns the structure of the pathfinder
network (Heckerman, Horvitz, and Nathwani 1992):

R> library("sparsebn")
R> data("pathfinder")
R> data <- sparsebnData(pathfinder$data, type = "continuous")
R> dags <- estimate.dag(data)
R> plotDAG(dags)

This code estimates a solution path with 16 total estimates (see Section 3.2) and takes ap-
proximately one second to run. The first four estimated networks with an increasing number
of edges are shown in Figure 1. This example is explored in more detail in Section 6.2.

http://CRAN.R-project.org/package=sparsebn

Journal of Statistical Software 3

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

λ = 24.8 (67 edges)

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

λ = 19.5 (108 edges)

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

λ = 15.3 (122 edges)

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

λ = 12 (152 edges)

Figure 1: Example output from learning the pathfinder network. To save space, only the first
four nontrivial estimates are shown here out of the 16 total estimates in the full solution path.

2. Learning Bayesian networks from data
We begin by reviewing the necessary background and definitions, and then discuss the existing
literature and methods.

2.1. Background

The basic model we work with is a p-dimensional random vector X = (X1, . . . , Xp) with joint
distribution P(X1, . . . , Xp). Bayesian networks are directed graphical models whose edges
encode conditional independence constraints implied by the joint distribution of X. For
continuous data, we assume that X follows a multivariate Gaussian distribution; for discrete
data we assume each Xj is a factor with rj levels. We do not consider so-called hybrid
Bayesian networks that allow for graphs with both continuous and discrete nodes, although
this is an interesting future direction for this package.
The general theory of Bayesian networks is quite intricate, and we will make no attempt to
cover it in detail here. The interested reader is referred to one of the many excellent textbooks
on this subject: Koller and Friedman (2009); Spirtes, Glymour, and Scheines (2000); Lauritzen
(1996).

4 sparsebn: Learning Large-Scale Bayesian Networks

Formally, a Bayesian network is defined as a directed acyclic graph G = (V,E) that satisfies
the following factorization condition with respect to the joint distribution of X:

P(X1, . . . , Xp) =
p∏
j=1

P(Xj | pa(Xj), θj).

Here, pa(Xj) = {Xi : Xi → Xj ∈ E} is the parent set of Xj and θj encodes the parameters
that define the conditional probability distribution (CPD) for Xj .
Traditional methods for learning Bayesian networks start with this definition and develop
algorithms from a graph-theoretic perspective (Spirtes and Glymour 1991). This approach
comes with restrictive assumptions such as strong faithfulness (Uhler, Raskutti, Bühlmann,
and Yu 2013; Zhang and Spirtes 2002), which hinders their use in practice. To motivate
our work, we adopt a more general approach to Bayesian networks via structural equation
models. In this approach, we start by directly modeling each CPD P(Xj | pa(Xj), θj) via a
generalized linear model. We will consider two special cases: Gaussian CPDs for continuous
data and multi-logit CPDs for discrete data. This approach also fits naturally our framework
for learning causal networks discussed in Section 2.2.

Continuous data

Suppose that for each j = 1, . . . , p there exists βj = (β1j , . . . , βpj) ∈ Rp such that

Xj = β>j X + εj , (1)

where βjj = 0 (to avoid trivialities) and εj ∼ N (0, ω2
j). By writing B = [β1 | · · · |βp] ∈ Rp×p

and ε = (ε1, . . . , εp) ∈ Rp, we can rewrite Equation 1 as a matrix equation:

X = B>X + ε. (2)

The model (2) is called a structural equation model for X. The matrix B defines the weighted
adjacency matrix of a directed graph which, when acyclic, is also a BN for X. Note that
to estimate B from data it is not enough to simply regress Xj onto the rest of variables –
this leads to the so-called neighbourhood regression estimator of the Gaussian graphical model
introduced in Meinshausen and Bühlmann (2006). The problem with this approach is that
there is no guarantee that the resulting adjacency matrix will be acyclic. In order to produce
a BN, we must constrain B to be acyclic, which couples the parameters of each CPD to
one another and induces a nonconvex constraint during the learning phase. For this reason,
learning directed graphs is substantially more difficult than learning undirected graphs.
By writing Ω = COV(ε), we see that the parameters (B,Ω) specify a unique normal distribu-
tion N (0,Σ) for X. In fact, a little algebra on Equation 2 shows that

Σ = (I −B)−>Ω(I −B)−1. (3)

This gives a way to compute Σ from (B,Ω), and suggests a way to estimate the covariance
matrix by setting Σ̂ = (I − B̂)−>Ω̂(I − B̂)−1. By taking Γ = Σ−1, we obtain an alternative
estimator of the Gaussian graphical model, given by

Γ̂ = (I − B̂)Ω̂−1(I − B̂)>. (4)

Journal of Statistical Software 5

This idea was first explored by Rütimann and Bühlmann (2009) using the PC algorithm
(Section 2.3), and a similar idea using our methods is implemented in sparsebn. In many
situations, the DAG representation (B,Ω) encodes more conditional independence relations
than the inverse covariance matrix Γ, which is one of the motivations for learning DAGs from
observational data.

Discrete data

In a discrete Bayesian network, each Xj is a finite random variable with rj states. Instead
of a traditional product multinomial model, sparsebn uses a multi-logit model for discrete
data. One of the advantages of this approach is a significant reduction in the number of
parameters, and recent work suggests that this model serves as a good approximation to the
product multinomial model (Gu et al. 2018). Here, we briefly introduce the multi-logit model,
and describe how it is used for structure learning.
We use a standard form of the multi-logit model in which each variable Xj is encoded by
dj = rj − 1 dummy variables (Dobson and Barnett 2008). More specifically, given a reference
category (which may be arbitrary), the rj possible values of Xj are encoded by a vector of
dummy variables zj = (zjk, k = 1, . . . , dj) ∈ {0, 1}dj . Let I(·) denote the usual indicator
function, so that e.g., I(Xj = k) = 1 if Xj = k and I(Xj = k) = 0 otherwise. If we choose
the last category as the reference, then zjk = I(Xj = k) for k = 1, . . . , dj so that the reference
category is coded as zj = 0.
Under this parametrization, the conditional distributions take the form

P(Xj = u | pa(Xj)) =
exp

(
β0uj +∑

i∈pa(Xj) z>i βiuj
)∑rj

m=1 exp
(
β0uj +∑

i∈pa(Xj) z>i βimj
) , u = 1, . . . , rj , (5)

where βiuj ∈ Rdi is the coefficient vector for variable Xi to predict the uth level of Xj with
intercept β0uj . In this model, if Xi /∈ pa(Xj) then we have equivalently βiuj = 0 for all u.
Let βij = (βi1j , . . . ,βirjj) ∈ Rdirj be the coefficient vector for edge i to j. Therefore, by
estimating βij , we can infer the structure of a network. If βij = 0, there does not exist an
edge from Xi to Xj . For more details on this model, see Gu et al. (2018).

2.2. Causal DAG learning from interventions

DAGs are a popular model for causal networks, particularly when combined with experimen-
tal interventions in addition to observational data (Pearl 2000). Cooper and Yoo (1999);
Meganck, Leray, and Manderick (2006); Ellis and Wong (2008) proposed methods to learn
causal networks with a mixture of observational and experimental data, and Peér, Regev,
Elidan, and Friedman (2001); Pournara and Wernisch (2004) inferred gene networks with
perturbed expression data. Each of the methods in sparsebn can take experimental data as
input in order to learn the precise causal relationships in a system.
The following simple example illustrates how interventions can be used for learning causal
relations: Assume the true causal graph is G∗ : X1 → X2, i.e., X1 is a direct cause of X2.
This is observationally equivalent to the graph G : X1 ← X2 – we cannot distinguish between
these two graphs using observational data alone. Instead, by manipulating X2 experimentally
and fixing its value, we can “cut off” the edge from X1 to X2 since the value of X2 would no
longer be associated with (i.e., is independent of) X1. This is an example of an experimental

6 sparsebn: Learning Large-Scale Bayesian Networks

intervention. In doing so, the joint distribution factors as P(X1)P(X2). Instead, if we manip-
ulated X1, the relation between X1 and X2 would stay the same, and the joint distribution
factors as P(X1)P(X2 |X1). By exploiting these interventions, it is possible to uncover the
true causal structure in a physical system.
To see how this can be applied in a statistical setting, we now show how a general form of
the density function for experimental data can be derived from the pure observational joint
density function. LetM ⊂ {1, . . . , p} be the set of variables under intervention, so the joint
probability decomposes as

P(X1, . . . , Xp) =
∏
i/∈M

P(Xi |pa(Xi))
∏
i∈M

P(Xi | •), (6)

where P(Xi | •) is the marginal distribution of Xi from which experimental samples are drawn.
Thus, experimental data sets generated from the true DAG G can be considered as data sets
generated from a DAG G′, where G′ is obtained by removing all directed edges in G pointing
to the variables under intervention. Furthermore, we can see that whenM = ∅, Equation 6 is
the density function for observational data. For more details regarding causal DAG learning,
please refer to Pearl (2000) and the references therein.

2.3. Previous work

The various algorithms in the literature for structure learning of Bayesian networks fall into
three main categories: constraint-based methods, score-based methods and hybrid methods.

Constraint-based methods
Constraint-based methods rely on repeated conditional independence tests in order to learn
the structure of a network. The main idea is to determine which edges cannot exist in a
DAG using statistical tests of independence, a procedure which is justified whenever the
so-called faithfulness assumption holds. These algorithms first use independence tests to
learn the skeleton of the network, and then orient v-structures along with the rest of the
edges. Because of the existence of Markov equivalent DAGs, the direction of some edges
may not be decided (for details, see e.g., Koller and Friedman 2009). The PC algorithm
proposed by Spirtes and Glymour (1991) is a well-known example of this kind of method.
Another example is the Fast Causal Inference (FCI) algorithm (Spirtes et al. 2000; Colombo,
Maathuis, Kalisch, and Richardson 2012), which allows for latent variables in the network.
The output of these algorithms is a partially directed graph, which means that there may
be some undirected edges in the estimated graph. While the PC algorithm is a powerful
method to learn Bayesian networks in low-dimensions with n very large, the performance
of the PC algorithm is less competitive in high-dimensions compared to recent score-based
methods (Aragam and Zhou 2015).

Score-based methods
Score-based methods rely on scoring functions such as the log-likelihood or some other loss
function. The goal of these algorithms is to find a DAG that optimizes a given scoring function.
Some popular scoring functions include several Bayesian Dirichlet metrics (Buntine 1991;
Cooper and Herskovits 1992; Heckerman, Geiger, and Chickering 1995), Bayesian information
criterion (Chickering and Heckerman 1997), minimum description length (Bouckaert 1993;

Journal of Statistical Software 7

Suzuki 1993; Lam and Bacchus 1994), and entropy (Herskovits and Cooper 1990). One
of the classic score-based methods is the greedy hill climbing (HC) algorithm (Russell and
Norvig 1995). This algorithm is fast but tends to predict too many edges in high-dimensional
settings. For discrete networks, the K2 algorithm (Cooper and Herskovits 1992) is another
popular method, however, this method requires prior knowledge about the ordering of the
network which is often unavailable in applications. There are also Monte Carlo methods
(Ellis and Wong 2008; Zhou 2011; Niinimäki, Parviainen, and Koivisto 2016), which are quite
accurate but also computationally demanding. This limits Monte Carlo methods to smaller
networks with only tens of nodes. Each of the learning algorithms implemented in sparsebn
is a score-based method, and as such this package represents an attempt to resolve many of
the computational and statistical issues cited here with respect to these methods.

Hybrid methods

Finally, there are hybrid methods which combine constraint-based and score-based methods.
Hybrid methods first prune the search space by using a constraint-based search, and then
learn an optimal DAG structure via score-based search (Tsamardinos, Brown, and Aliferis
2006; Perrier, Imoto, and Miyano 2008; Gámez, Mateo, and Puerta 2011). The max-min hill-
climbing (MMHC) algorithm proposed by Tsamardinos et al. (2006) is a powerful method of
this kind.

2.4. Existing R packages for structure learning

There are several existing R packages for learning and manipulating Bayesian networks. bn-
learn is a thorough and actively maintained package that implements a wide variety of clas-
sical approaches such as HC and MMHC (Scutari 2010, 2017). pcalg focuses on the causal
interpretation of Bayesian networks, and implements the PC and FCI algorithms along with
methods for inferring causal effects (Kalisch, Mächler, Colombo, Maathuis, and Bühlmann
2012). Other packages include deal for mixed data (Boettcher and Dethlefsen 2003) and
gRain (Højsgaard 2012) for exact and approximate computations. For structural equation
models in particular, lavaan is a modern R package that implements many of the standard
fitting procedures for SEM (Rosseel 2012). There are also many software packages avail-
able on platforms besides R (for a more complete list see Murphy 2014) such as BEANDisco
(Niinimäki et al. 2016, https://www.cs.helsinki.fi/u/tzniinim/BEANDisco/), AMIDST
(Masegosa et al. 2017, http://www.amidsttoolbox.com/), and GOBNILP (Cussens, Haws,
and Studený 2017, https://www.cs.york.ac.uk/aig/sw/gobnilp/).
Motivated by applications to computational biology and machine learning, sparsebn was
designed for the following types of applications:

• Datasets with several thousand variables, which arise in computational biology and
machine learning,

• High-dimensional data with p � n, which is common in genomics applications with
high-throughput datasets, such as gene expression data that have p ∼ 20, 000 and
n ∼ 100,

• Experimental data with interventions, which is also common in genomics applications.

https://www.cs.helsinki.fi/u/tzniinim/BEANDisco/
http://www.amidsttoolbox.com/
https://www.cs.york.ac.uk/aig/sw/gobnilp/

8 sparsebn: Learning Large-Scale Bayesian Networks

Unfortunately, the aforementioned packages either do not scale to handle these types of
problems, or cannot process high-dimensional data at all. By contrast, the sparsebn package
was specifically designed to fill this gap, with an orientation towards large, high-dimensional,
experimental data. In order to achieve this, the methods contained in this package rely on
a combination of novel methodology and algorithms in order to scale to larger and larger
datasets. Of course, these methods also gracefully degrade to handle simpler settings with
observational and/or low-dimensional data. Moreover, whenever possible, cross-compatibility
with the above mentioned packages has been provided (Section 4.5).

3. Learning with sparse regularization
To learn a Bayesian network from data, we use a score-based approach based on regularized
maximum likelihood estimation that allows for the incorporation of experimental data. In
this section we discuss these details as well as the block coordinate descent algorithm used to
approximate the resulting optimization problem.

3.1. Regularized maximum likelihood

Suppose X ∈ Rn×p is a matrix of observations, and let ` denote the negative log-likelihood
and ρλ be some regularizer. For example, ρλ may be the `1 penalty (Tibshirani 1996), the
group norm penalty (Yuan and Lin 2006), or a nonconvex penalty such as the smoothly
clipped absolute deviation (SCAD, Fan and Li 2001) or minimax concave penalty (MCP,
Zhang 2010). Furthermore, we assume that X does not contain any missing values. If the
data contains missing values, these should be imputed first.
We consider the following program:

min
B∈D

`(B; X) + ρλ(B), (7)

where D ⊂ Rp×p is the set of weighted adjacency matrices that represent directed graphs
without cycles. The resulting problem (7) is a nonconvex program, where the nonconvexity
arises from (potentially) all three terms: The constraint D, the loss function `, and the
regularizer ρλ.
For continuous data, we use a Gaussian likelihood derived from Equation 2 combined with
`1 or MCP regularization, and for discrete data we use a multi-logit model as in Equation 5
combined with a group lasso penalty. When some data are generated under experimental
intervention, we can derive the form of `(B; X) using the strategy discussed in Section 2.2:
WhenXi is under intervention, its marginal distribution is known and hence can be considered
constant in Equation 6. Let Ij be the set of row indices of the data matrix X where node Xj is
under intervention, and Oj = {1, . . . , n}−Ij be the collection of observations for which Xj is
not under intervention. Then, according to Equation 6, the negative log-likelihood factorizes
as

`(B; X) = −
p∑
j=1

∑
h∈Oj

log fβj
(xhj | pa(xhj)), (8)

where B = [β1 | · · · |βp], fβj
is the conditional density for the jth node, and xhj is the

value of node Xj at the hth data point. Note that multiple nodes may be intervened for a

Journal of Statistical Software 9

particular data point. By incorporating experimental interventions in this way, we are able
to orient the edges in a causal Bayesian network and thus distinguish between equivalent
DAGs. A similar strategy from a Bayesian perspective was first adopted in Cooper and Yoo
(1999). Evidently, one advantage of this framework is its universal applicability to different
data types and various likelihood models.
Since the program (7) is nonconvex it is generally regarded as infeasible to find an exact global
minimizer of this problem. Indeed, score-based structure learning is known to be NP-hard
(Chickering, Heckerman, and Meek 2004). Instead, we seek local minimizers of (7) through an
optimization scheme based on block coordinate descent. The method is based on the following
observation: The difficulty in solving (7) lies in enforcing the constraint B ∈ D, which is a
highly nonconvex and singular parameter constraint. Instead, if we consider (7) one edge at a
time, the problem simplifies considerably. This is the heuristic exploited by many score-based
methods (most notably greedy hill climbing). Unlike conventional methods, however, Fu and
Zhou (2013) propose a block-cyclic strategy and show that it outperforms existing approaches
based on greedy updates. This general observation has been exploited to construct the family
of fast algorithms implemented in sparsebn.

3.2. Algorithm details

Recalling that B = (βij), the high-level idea behind the method is the following:

1. Repeat outer loop until stopping criterion met:
2. Outer loop. For each pair (j, k), j 6= k:

(a) Minimize (7) with respect to (βkj , βjk), holding all other parameters fixed;
(b) If the edge k → j (resp. j → k) induces a cycle in the graph, set βkj ← 0 (resp. βjk ← 0)

and then update βjk (resp. βkj);
(c) Repeat inner loop until convergence:

3. Inner loop. Fix the edge set E from the outer loop and minimize (7) by cycling
through the edge weights βkj for (k, j) ∈ E.

Since the program (7) depends on the unknown regularization parameter λ, this value must
be supplied in advance to the algorithm. In practice, we wish to solve (7) for several values
of the regularization parameter, so instead of returning a single DAG estimate, the output of
this meta-algorithm is a solution path (also called a regularization path, Friedman et al. 2010):
A sequence of estimates {B̂(λmax), B̂(λ1), . . . , B̂(λmin)} for a pre-determined grid of values
λmax > λ1 > · · · > λmin. This is standard practice in the literature on coordinate descent
(Friedman et al. 2007; Wu and Lange 2008), and is similar to the well-known graphical lasso
for undirected graphs (Friedman, Hastie, and Tibshirani 2008).
As λ decreases, there is less regularization, hence the resulting estimates B̂(λm) become more
dense (i.e., contain more edges). Since our focus is on sparse graphs, in practice we use this
fact to terminate the algorithm early if the solution path becomes too dense, i.e., if the number
of edges in B̂(λm) exceeds some user-defined threshold. The default values used in sparsebn
are 10p edges for continuous data and 3p edges for discrete data. The smaller threshold for
discrete data is due to the higher computational complexity of the underlying algorithm as
compared with the continuous case.

10 sparsebn: Learning Large-Scale Bayesian Networks

The detailed implementation of the algorithms uses several tricks from the literature on
coordinate descent in order to speed up the algorithm:

• Warm starts. Given the previous estimate B̂(λm−1) in the solution path, we use
B̂(λm−1) as the initial guess for the next iterate B̂(λm). Furthermore, it is always
possible to choose λmax so that B̂(λmax) = 0 (i.e., the zero matrix), which is the default
implementation used by sparsebn.

• Active set iterations. In the inner loop above, the algorithm only updates the nonzero
parameters by solving at most p penalized regression or multi-logit regression problems.
These subproblems are computationally tractable and can be solved efficiently, which
yields significant performance improvements for large graphs.

• Block updates. Instead of updating each βjk one at a time, the algorithms update each
parameter as a block {βjk, βkj}. This is justified by the acyclicity assumption: If βjk 6= 0
and βkj 6= 0, then the acyclic constraint is violated, and this fact is exploited to update
both parameters simultaneously.

• Sparse data structures. Internally, everything is stored using sparse data structures for
representing directed acyclic graphs. This saves memory and speeds up the computation
of each update.

Compared with existing packages for structure learning, the main novelties of the present
methods are (1) The use of `1 and MCP regularization, (2) Block-cyclic (as opposed to
greedy, one-at-a-time) updates, and (3) The use of warm starts in computing the solution
path. Further details can be found in Fu and Zhou (2013) and Aragam and Zhou (2015).

3.3. Parameter estimation

After learning the structure of a Bayesian network, often it is of interest to then estimate
the parameters of the local conditional distributions associated with the learned structure.
For causal DAGs, these parameters determine the causal effect sizes between the parents and
their children.
For Gaussian data, this is straightforward by regressing each node onto its parents, using
(unpenalized) least squares regression. Note that this requires that the maximum number of
parents is at most n, which is another motivation for leveraging sparsity in our algorithms.
This produces a weighted adjacency matrix B̂ = (β̂ij) (or more specifically, a solution path of
adjacency matrices). Given these weights, we can estimate the conditional variance of each
node given its parents by:

ω̂2
j := VAR(xj −Xβ̂j).

This yields a variance matrix Ω̂ = diag(ω̂2
1, . . . , ω̂

2
p), and together (B̂, Ω̂) can be used to

estimate the covariance matrix Σ (see Section 2.1).
For discrete data, we regress each node onto its parents set using multi-logit regression via
the R package nnet (Venables and Ripley 2002). Note that for discrete data, instead of a
coefficient matrix we get a 4-way array B̂ = (β̂ij), where β̂ij is a matrix and the (u, k) entry
of this matrix is the influence that level k of Xi has on level u of Xj .

Journal of Statistical Software 11

4. The sparsebn package
Based on the framework described in Section 3, sparsebn implements four structure learning
algorithms that are each tailored to a specific type of data:

• Experimental, Gaussian data (Zhang 2016).

• Experimental, discrete data (Gu et al. 2018).

• Observational, Gaussian data (Aragam and Zhou 2015).

• Observational, discrete data (Gu et al. 2018).

By combining these approaches, sparsebn automatically handles datasets with mixed observa-
tional and experimental data. Each algorithm is implemented in C++ using Rcpp (Eddelbuet-
tel and François 2011; Eddelbuettel 2013). In addition to the main algorithms, the package
implements high-level methods for fitting, plotting, and manipulating graphical models.
Furthermore, sparsebn is actually a family of R packages, designed to be cross-compatible
with minimal external dependencies. To date, sparsebn imports the following packages:

• ccdrAlgorithm, based on Aragam and Zhou (2015) and Fu and Zhou (2013).

• discretecdAlgorithm (Gu 2017), based on Gu et al. (2018).

• sparsebnUtils (Aragam, Gu, and Zhou 2017), for housing various common utilities and
classes.

The idea is that the codebase for each algorithm is housed inside its own package, allowing
for rapid development and convenient extensibility. This allows us to add new algorithms and
features rapidly without significant dependency or compatibility constraints.

4.1. Speed and scalability improvements

sparsebn is designed to handle large, high-dimensional datasets with p potentially in the
thousands. To illustrate this, Figure 2 provides a comparison of our methods with the PC
algorithm from the pcalg package and the MMHC algorithm from the bnlearn package. Due
to the higher computational workload for discrete algorithms in general, the results here are
for Gaussian data only. Furthermore, although these numbers are intended to be illustrative,
the interested reader may find more extensive simulations corroborating these results for both
types of data in Aragam and Zhou (2015); Gu et al. (2018).
In order to provide a direct comparison, the times reported in Figure 2 reflect the total
time to learn graphs of the same complexity (number of edges), even though sparsebn is
capable of computing further into the solution path if desired. Note also that both the PC
and MMHC algorithms output only a single graph, whereas our method outputs a solution
path with multiple graph estimates. The results illustrate how sparsebn provides a more
favorable scaling when p is large: For the largest graph with 1090 nodes, sparsebn is 17x faster
compared to the PC algorithm in pcalg and 52x faster compared to the MMHC algorithm
in bnlearn. These computational improvements are made possible by the use of an efficient
block coordinate descent algorithm that leverages warm starts and active set updates; for
more details see Section 3.2.

12 sparsebn: Learning Large-Scale Bayesian Networks

C C C C C C C C C C

200 400 600 800 1000

0
20

40
60

80
10

0

p (number of nodes)

T
im

e
(s

)

P P P P
P P

P
P

P
P

M M M
M

M
M

M

M

M

M

Figure 2: Timing comparison (in seconds). Each point represents the total runtime to execute
an algorithm on simulated Gaussian data as a function of the number of nodes p = 109k
(k = 1, . . . , 10). The DAGs were constructed by tiling k independent copies of the pathfinder
network (p = 109), and n = 50 samples were randomly generated for each dataset. (solid black
line) C = CCDr algorithm implemented in sparsebn, (dashed blue line) P = PC algorithm
implemented in pcalg, (dotted red line) M = MMHC algorithm implemented in bnlearn.

4.2. Experimental interventions

In addition to scalability, another feature that distinguishes sparsebn is its native sup-
port for mixed observational and experimental data. As discussed in Section 2.2, exper-
imental interventions allow observationally equivalent DAGs to be distinguished, thereby
uncovering the structure of the true causal DAG. To illustrate this, we ran two simula-
tion experiments, reported in Figures 3 and 4. To keep things simple, we focus on dis-
crete data. (Code to run these experiments on continuous data can be found at https:
//github.com/itsrainingdata/sparsebn-reproduce.) As in the previous subsection, a
more thorough evaluation of the effect of interventions can be found in Gu et al. (2018);
Zhang (2016); Fu and Zhou (2013).
Figure 3 illustrates how the accuracy of reconstruction improves as interventions are added
to each node in the network. We can see that as we process more interventions per node
(denoted by m) with n held fixed, the true positive rate (TPR) increases. Further analysis
of these results indicates furthermore that the number of reversed edges decreases along with
the number of false positives, and as a result the overall structural Hamming distance (SHD)
– the total number of edge additions, deletions, and reversals needed to convert one directed
graph into another – decreases.
Figure 4 considers the more practical scenario in which only k (k < p) nodes in the network are
under intervention, and over time more interventions on more nodes are able to be collected.
This is common, for example, when reconstructing large networks in biological applications.
Again, we see that overall the true positive rate increases as more nodes are under intervention,
and further analysis shows that the SHD decreases as well.

https://github.com/itsrainingdata/sparsebn-reproduce
https://github.com/itsrainingdata/sparsebn-reproduce

Journal of Statistical Software 13

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

c(0, 10)

c(
T

P
R

_l
ow

, T
P

R
_h

ig
h)

m (number of interventions per node)

T
P

R

(A)

0 2 4 6 8 10

0.
65

0.
75

Scale−free

x

su
m

_a
ll_

cd
_s

f$
T

P
R

0 2 4 6 8 10

0.
25

0.
40

0.
55

Small−world

x

su
m

_a
ll_

cd
_s

w
$T

P
R

0 2 4 6 8 10

0.
25

0.
40

Polytree

x

su
m

_a
ll_

cd
_p

t$
T

P
R

0 2 4 6 8 10

0.
80

0.
90

Bipartite

x

su
m

_a
ll_

cd
_b

p$
T

P
R

m (number of interventions per node)

T
P

R

(B)

Figure 3: The effect of interventions in learning discrete DAGs. For every node, m interven-
tions are added to otherwise observational data with n = 500 and p = 50. (A) Scale-free
network with 49 edges (solid green line), small-world network with 100 edges (dashed red
line), polytree with 49 edges (dashed blue line), and bipartite graph with 50 edges (dashed
black line); (B) Plot for each network individually.

0 10 20 30 40 50

0.
4

0.
6

0.
8

1.
0

c(0, 50)

c(
T

P
R

_l
ow

, T
P

R
_h

ig
h)

k (number of nodes under intervention)

T
P

R

(A)

0 10 20 30 40 50

0.
65

0.
75

Scale−free

k

T
P

R

0 10 20 30 40 50

0.
25

0.
40

0.
55

Small−world

k

T
P

R

0 10 20 30 40 50

0.
25

0.
35

0.
45

Polytree

k

T
P

R

0 10 20 30 40 50

0.
80

0.
90

Bipartite

k

T
P

R

m (number of interventions per node)

T
P

R

(B)

Figure 4: The effect of interventions in learning discrete DAGs. For each k = 0, . . . , 50,
m = 10 interventions for k randomly selected nodes are added to otherwise observational
data with n = 500 and p = 50. Results are averaged over 20 random permutations of the
order in which each node is intervened on as k is increased. (A) Scale-free network with 49
edges (solid green line), small-world network with 100 edges (dashed red line), polytree with
49 edges (dashed blue line), and bipartite graph with 50 edges (dashed black line); (B) Plot
for each network individually.

Since n is held fixed in each simulation, the improvements observed here cannot be attributed
to an increase in sample size, illustrating how sparsebn is able to improve estimation of the
true causal graph under experimental interventions. In particular, reducing reversed edges
that are observationally equivalent shows in an obvious way the utility of interventions for
causal inference.

14 sparsebn: Learning Large-Scale Bayesian Networks

4.3. Functions

The main purpose of the sparsebn package is estimation of graphical models, which is ac-
complished through the methods prefaced with “estimate.”. In this section, we present an
overview of the main estimation methods. In addition, sparsebn includes methods for gener-
ating random graphs, simulating random data, visualization, and conversion between various
graph classes, which are documented extensively in the package manual.
The main function is estimate.dag, which can be called as follows:
estimate.dag(data, lambdas = NULL, lambdas.length = 20, whitelist = NULL,

blacklist = NULL, error.tol = 1e-04, max.iters = NULL,
edge.threshold = NULL, concavity = 2, weight.scale = 1, convLb = 0.01,
upperbound = 100, adaptive = FALSE, verbose = FALSE)

The main arguments are data, lambdas, and lambdas.length. By default, the lambdas
argument is NULL and a standard sequence of L = 20 regularization parameters is generated.
If desired, the user can pre-compute a vector of regularization parameters to be used instead,
in which case this vector should be passed through the lambdas argument. If there is prior
knowledge of (directed) edges that are known to be present in the network, these can be
specified via the whitelist argument. Similarly, if there is prior knowledge of (directed)
edges that are known to be absent from the network, these can be specified via the blacklist
argument. The rest of the arguments control the convergence of the internal algorithms, and
are intended for advanced users. This method returns a sparsebnPath object (Section 4.4),
which stores the solution path described in Section 3.2.
It is important to bear in mind that the objects returned by estimate.dag are graphs, and
in particular they do not include estimates of model parameters such as edge weights or con-
ditional variances. To obtain these parameters, sparsebn includes the estimate.parameters
method, which can be called as follows:
estimate.parameters(fit, data, ...)

where fit is the output of estimate.dag and data is the data to be used for parameter
estimation.
In addition to estimating DAGs, sparsebn can estimate the precision and/or covariance matrix
for multivariate Gaussian data. The nonzero entries in the precision matrix in particular yield
the so-called Gaussian graphical model, which is an undirected graphical model for multivari-
ate Gaussian data. This can be done via the estimate.precision and estimate.covariance
methods:
estimate.covariance(data, ...)
estimate.precision(data, ...)

Internally, these methods call estimate.dag and use Equation 4 to compute the estimated
precision (or covariance) matrix. The ... argument here allows the user to specify any of
the optional arguments from estimate.dag.

4.4. Data structures

sparsebn uses three different S3 classes in order to represent data (sparsebnData), graphs
(sparsebnFit), and solution paths (sparsebnPath). For each of these classes, the usual
generics are defined such as print, summary, and plot.

Journal of Statistical Software 15

The sparsebnData class is used to represent both continuous and discrete data with exper-
imental interventions. Observational data corresponds to the degenerate case where X does
not contain any interventions, and is treated as such by the sparsebn package. The slots are:

• data: This is the original data as a data frame with n observations and p variables.

• type: Either "continuous" or "discrete".

• levels: A list of levels for each variable. This is a list of length p whose jth component
is a vector containing the levels of the jth variable.

• ivn: The list of interventions for each observations. This is a list of length n whose ith
component is a vector of node names (or indices) that are under intervention for the
ith observation.

The sparsebnPath class represents a solution path, which is the output of the main function
estimate.dag. Internally, this is a list of sparsebnFit objects whose jth component cor-
responds to the jth value of λ in the solution path, λmax > λ1 > · · · > λmin. Since this class
is essentially a wrapper for this list, it has no named slots.
The sparsebnFit class represents an individual graph estimate from a DAG learning algo-
rithm. The graph itself is stored as an edgeList object in the edges slot, which is an internal
implementation of a child-parent edge list. Alternatively, this graph can also be stored in
a variety of other formats including graphNEL (from the graph package), igraph (from the
igraph package), and network (from the network package) by using the setGraphPackage
method (Section 4.5). The slots are:

• edges: A directed graph corresponding to the estimated network, stored internally as
an edgeList by default.

• nodes: A vector of node names for the graph.

• lambda: The value of λ used to estimate the network.

• nedge: The total number of edges in the graph.

• pp, nn, time: The number of nodes, number of samples, and clock time to estimate
this network (these are mainly used internally by the package).

4.5. Compatibility

Unfortunately, there is no consistent standard in R for storing and representing graphs. As
a result, different domains have adopted different R packages as a de facto standard for
graph and network representation. For example, in biology the graph package (Gentleman,
Whalen, Huber, and Falcon 2011) seems to be the most popular, whereas in social science
and demography the network package (Butts 2008) is more popular. In other domains, the
igraph package (Csardi and Nepusz 2006) is popular, which has libraries in R, Python, and C.
For this reason, sparsebn does not provide its own mechanism for manipulating graphs, and
instead provides cross-compatibility with each of these three packages. By default, all methods

16 sparsebn: Learning Large-Scale Bayesian Networks

output graphs stored as an edgeList object, which is an internal class with little built-
in functionality outside of being a storage mechanism for graph data. In order to make
use of the extensive capabilities of the different graph packages in R, we have included the
setGraphPackage method to allow users to set a global preference for which graph package
to use. Once this preference is set, the full feature set of the selected package (e.g., plotting,
manipulation, network statistics, etc.) becomes available to the user. We emphasize that the
purpose of sparsebn is not to provide a new library for graph representation and visualization,
but instead to provide algorithms for learning their structure. The manipulation of graphs is
appropriately left to libraries designed explicitly for that purpose.
Furthermore, to allow cross-compatibility with existing packages for structure learning, we
have provided methods to convert the output of sparsebn methods to bnlearn-compatible ob-
jects. Compatibility with the pcalg package is possible via the aforementioned graph package,
which is the default representation used by pcalg.
The setGraphPackage method sets a global preference for the underlying class used to store
graphs by the package. That is, all of the existing graph objects and any subsequent output
will be coerced to the desired class. Generally speaking, this corresponds to the output
of estimate.dag and any corresponding sparsebnPath objects. Alternatively, users can
manually do this conversion on an object-by-object basis using the following methods:

• to_igraph: Conversion to and from igraph graphs from the igraph package;

• to_graphNEL: Conversion to and from graphNEL graphs from the graph package;

• to_network: Conversion to and from network graphs from the network package;

• to_bn: Conversion to and from bn graphs from the bnlearn package.

Each of these methods works on sparsebnPath, sparsebnFit, edgeList objects, in addition
to any of the objects listed above.
Finally, the sparsebn package is compatible with the popular Cytoscape application (Shannon
et al. 2003). This is a standalone graphical interface for visualizing and analyzing complex
networks. This is accomplished via the openCytoscape method, which leverages the RCy3
package (Shannon, Grimes, Kutlu, Bot, and Galas 2013) under the hood. In order to use this
method, both RCy3 and Cytoscape must be installed. For an example of this method in use,
see Section 5.7.

4.6. Installation
sparsebn is an open-source package and is made freely available through CRAN. To install
the latest stable version in R,

R> install.packages("sparsebn")

For advanced users, the development versions can be downloaded directly from GitHub. Using
devtools (Wickham, Hester, Chang, RStudio, and R Core Team 2018), the entire suite of
packages can be installed via

R> devtools::install_github(c("itsrainingdata/sparsebnUtils@dev",
+ "itsrainingdata/ccdrAlgorithm@dev", "gujyjean/discretecdAlgorithm@dev",
+ "itsrainingdata/sparsebn@dev"))

Journal of Statistical Software 17

Note that before being released to CRAN, development versions may be unstable.

5. Example: Cytometry data
To illustrate the use of this package, we will use the flow cytometry dataset from Sachs, Perez,
Pe’er, Lauffenburger, and Nolan (2005) as a working example in this section. The original
dataset consists of n = 7466 observations of p = 11 continuous variables corresponding to
different proteins and phospholipids in human immune system cells, and each observation
indicates the measured level of each biomolecule in a single cell under different experimental
interventions. A network consisting of all well-established causal interactions between these
molecules has been constructed based on biological experiments and literature. This network
is frequently used as a benchmark to assess the accuracy of BN learning algorithms on real
data. Therefore, we refer to this as the consensus network in the sequel.
The consensus network is visualized in Figure 5, in which a directed edge indicates that a
change in the level of the parent will cause a change in the level of the child. This is a
relatively small network which we use in order to keep the exposition simple. More examples,
including a discrete version of this dataset and applications to large networks with hundreds
or thousands of nodes, will be discussed in Section 6.
First, we load this data:

R> library("sparsebn")
R> data("cytometryContinuous")
R> names("cytometryContinuous")

[1] "dag" "data" "ivn"

raf

mek

PLCgPIP2

PIP3

erk

akt

PKA

PKC
p38

jnk

Figure 5: The consensus cytometry network (11 nodes, 17 edges). A topological ordering of
this network is PIP3≺PLCg≺PIP2≺PKC≺PKA≺ raf≺mek≺ erk≺ akt≺p38≺ jnk.

18 sparsebn: Learning Large-Scale Bayesian Networks

Note that this is not a data.frame, but instead a list of R objects that will be useful for this
specific example. Each component of this list stores an important part of the experiment:

• dag is the consensus network with 11 nodes and 17 edges, as described above.

• data is raw data collected from these experiments.

• ivn is a list of interventions for each observation in the dataset.

To illustrate the use of this package, the rest of this section describes the main steps to
learning Bayesian networks from data: (1) Loading the data, (2) Learning the structure,
(3) Incorporating prior knowledge, (4) Exploring the solution path and estimated networks,
(5) Estimating the parameters, (6) Selecting the regularization parameter, and (7) Visualizing
and assessing the output.

5.1. Loading data

In order to distinguish different types of data – namely, experimental versus observational and
continuous versus discrete – we use the sparsebnData class which wraps a data.frame into
an object containing this auxiliary information. All of the methods implemented in sparsebn
expect input as sparsebnData.
To use this class, we need two important pieces of information: The raw data as a data.frame,
and a list of interventions for each observation in the dataset. If the dataset does not contain
any interventions, then the latter can be omitted. In order to create a sparsebnData object
from the cytometry data, we first extract the necessary objects from cytometryContinuous:

R> cyto.raw <- cytometryContinuous$data
R> cyto.ivn <- cytometryContinuous$ivn

Now we can create the required sparsebnData object:

R> cyto.data <- sparsebnData(cyto.raw, type = "continuous",
+ ivn = cyto.ivn)

Notice that we need to explicitly specify that the data is continuous (for discrete data, one
would specify type = "discrete").
Finally, for discrete data, we may wish to manually specify the levels of each variable, which
can be done using the levels argument. When this argument is omitted, we attempt to
automatically infer the levels. Note that in doing so, however, levels which are missing from
the data will not be recognized by the sparsebnData constructor.

R> print(cyto.data)

raf mek plc pip2 pip3 erk akt pka pkc p38 jnk
1: 3.27 2.58022 2.18 2.91 4.074 1.89 2.83 6.03 2.83 3.804 3.689
2: 3.58 2.80336 2.51 2.82 2.096 2.92 3.48 5.86 1.21 2.803 4.119
3: 4.08 3.78646 2.68 2.32 2.565 2.70 3.48 6.00 2.43 3.463 2.970
4: 4.29 4.41643 3.14 2.60 0.255 1.76 2.47 6.27 2.62 3.353 3.140

Journal of Statistical Software 19

5: 3.52 2.98568 1.65 2.28 3.211 3.05 3.83 5.72 1.54 3.246 4.398

7462: 3.89 2.51770 3.49 3.33 3.122 2.46 3.64 7.04 0.00 0.936 0.000
7463: 3.15 1.52823 2.88 3.10 2.701 3.89 4.21 6.83 0.00 2.284 0.000
7464: 3.34 1.50185 2.93 3.01 2.322 1.12 3.09 6.59 0.00 0.560 0.693
7465: 3.54 1.96009 1.75 3.03 2.715 3.47 3.72 6.70 3.80 7.231 0.892
7466: 3.42 0.00995 1.99 5.15 3.131 1.89 2.62 6.79 0.00 0.000 0.501

7466 total rows (7456 rows omitted)
Continuous data w/ interventions on 4863/7466 rows.

R> summary(cyto.data)

raf mek plc pip2
Min. :0.00 Min. :0.00 Min. :0.00 Min. :0.00
1st Qu.:3.43 1st Qu.:2.80 1st Qu.:2.24 1st Qu.:2.91
Median :3.99 Median :3.28 Median :2.80 Median :3.97
Mean :4.09 Mean :3.53 Mean :2.88 Mean :3.90
3rd Qu.:4.63 3rd Qu.:4.17 3rd Qu.:3.30 3rd Qu.:5.15
Max. :8.44 Max. :8.87 Max. :8.73 Max. :9.11

pip3 erk akt pka
Min. :0.00 Min. :0.00 Min. :0.00 Min. :0.00
1st Qu.:2.26 1st Qu.:2.14 1st Qu.:3.15 1st Qu.:5.62
Median :2.88 Median :2.84 Median :3.62 Median :6.11
Mean :2.82 Mean :2.75 Mean :3.79 Mean :5.83
3rd Qu.:3.49 3rd Qu.:3.47 3rd Qu.:4.28 3rd Qu.:6.62
Max. :7.15 Max. :7.85 Max. :8.18 Max. :9.09

pkc p38 jnk
Min. :0.00 Min. :0.00 Min. :0.00
1st Qu.:1.50 1st Qu.:2.96 1st Qu.:2.08
Median :2.54 Median :3.42 Median :2.91
Mean :2.37 Mean :3.53 Mean :3.00
3rd Qu.:3.16 3rd Qu.:3.90 3rd Qu.:3.97
Max. :7.38 Max. :8.92 Max. :8.46

7466 total rows (7456 rows omitted)
Continuous data w/ interventions on 4863/7466 rows.

Note that some of the observations were not under intervention – such datasets with mixed
observational and experimental samples are automatically handled by the methods in this
package.

5.2. Structure learning

To learn the structure of a Bayesian network from this data we use the estimate.dag()
method, which runs the algorithm outlined in Section 3.2. To call this method using the
default parameter settings, use:

20 sparsebn: Learning Large-Scale Bayesian Networks

R> cyto.learn <- estimate.dag(cyto.data)
R> print(cyto.learn)

sparsebn Solution Path
11 nodes
7466 observations
20 estimates for lambda in [0.8641, 86.406]
Number of edges per solution: 0-1-6-8-13-15-15-19-22-21-26-33-35-36-38-38-
41-43-46-50

R> summary(cyto.learn)

sparsebn Solution Path
11 nodes
7466 observations
20 estimates for lambda in [0.8641, 86.406]
Number of edges per solution: 0-1-6-8-13-15-15-19-22-21-26-33-35-36-38-38-
41-43-46-50

lambda nedge
1 86.406 0
2 67.808 1
3 53.213 6
4 41.759 8
5 32.771 13
6 25.717 15
7 20.182 15
8 15.838 19
9 12.429 22
10 9.754 21
11 7.654 26
12 6.007 33
13 4.714 35
14 3.699 36
15 2.903 38
16 2.278 38
17 1.788 41
18 1.403 43
19 1.101 46
20 0.864 50

In addition to data, there are several optional parameters that can be passed to estimate.dag.
The main arguments of interest are lambdas and lambdas.length, which allow the user to
adjust the grid of regularization parameters λmax > λ1 > · · · > λmin used by the algorithms
(Section 3.2).
By default, estimate.dag produces a solution path of 20 estimates with the grid chosen adap-
tively to the data. This grid can be shortened or lengthened by specifying lambdas.length:

Journal of Statistical Software 21

R> estimate.dag(cyto.data, lambdas.length = 50)

sparsebn Solution Path
11 nodes
7466 observations
50 estimates for lambda in [0.8641, 86.406]
Number of edges per solution: 0-0-1-1-2-6-6-7-8-11-12-12-13-15-15-16-16-17-
19-19-20-21-21-21-21-24-27-28-31-35-35-35-34-36-36-37-38-38-38-38-39-41-42-
42-44-45-45-47-48-50

For even more fine-tuning, the lambdas argument allows the user to explicitly input their
own grid. For convenience we have included the generate.lambdas method, which provides
a mechanism for generating grids of arbitrary lengths on either a linear or log scale. To
generate a grid with a linear scale, use scale = "linear":

R> cyto.lambdas <- generate.lambdas(lambda.max = 10, lambdas.ratio = 0.001,
+ lambdas.length = 10, scale = "linear")
R> cyto.lambdas

[1] 10.00 8.89 7.78 6.67 5.56 4.45 3.34 2.23 1.12 0.01

To use a log scale, use scale = "log":

R> cyto.lambdas <- generate.lambdas(lambda.max = 10, lambdas.ratio = 0.001,
+ lambdas.length = 10, scale = "log")
R> cyto.lambdas

[1] 10.0000 4.6416 2.1544 1.0000 0.4642 0.2154 0.1000 0.0464
[9] 0.0215 0.0100

This grid can also be generated manually, although this is not recommended. To run the
algorithm using cyto.lambdas (output suppressed below):

R> estimate.dag(cyto.data, lambdas = cyto.lambdas)

Another argument of interest is edge.threshold, which is another way to specify when the
algorithm terminates. Specifically, if any point on the solution path contains an estimate
with more than edge.threshold edges, the algorithm will terminate immediately and return
what has been estimated up to that point. This makes our methods anytime algorithms, in
the sense that they can be interrupted at anytime while still producing valid output. This is
convenient when running tests on very large graphs.

5.3. Prior knowledge

In some contexts, users may have prior knowledge regarding edges that must be present or
absent from the network. For example, it may already be known that PIP3 regulates PIP2 (see
Figure 5). In this case, estimation of the underlying network can be substantially improved

22 sparsebn: Learning Large-Scale Bayesian Networks

by incorporating this information into the estimation procedure. With the sparsebn package,
this can be done via whitelists and blacklists, which specify edges that must be present and
absent, respectively.
For example, to specify a known relationship between PIP3 and PIP2, we can create a whitelist
as follows:

R> whitelist <- matrix(c("pip3", "pip2"), nrow = 1)
R> estimate.dag(cyto.data, whitelist = whitelist)

The whitelist argument should be a two-column matrix, where the first column stores
parents and the second stores children (i.e., a from-to adjacency list):

R> whitelist

[,1] [,2]
[1,] "pip3" "pip2"

Thus, this whitelist ensures that the edge PIP3→PIP2 will be present in the final estimates.
Similarly, we can specify a blacklist, which stores edges that are known to be absent. For
example, we can forbid any edges between RAF and MEK as follows:

R> blacklist <- rbind(c("raf", "jnk"), c("jnk", "raf"))
R> estimate.dag(cyto.data, blacklist = blacklist)

As with the whitelist, the blacklist should be a two-column matrix. Note that we specify both
directions RAF→MEK and MEK→RAF. If it is known that the direction can only go in one
direction, then a single direction may be specified instead.
Blacklists are useful for specifying known root and leaf nodes in a Bayesian network. In the
cytometry network, PIP3 is a root node (i.e., it has no parents). Thus, we can forbid any
edges pointing into PIP3. Similarly, JNK, P38, and AKT are leaf nodes (i.e., they have no
children), so we can forbid any edges pointing away from all three nodes. To specify this, we
make use of the specify.prior function, which automatically builds an appropriate blacklist
given the names of the root and leaf nodes. Any number of root and/or leaf nodes can be
specified.

R> blacklist <- specify.prior(roots = "pip3", leaves = c("jnk", "p38", "akt"),
+ nodes = names(cyto.data$data))
R> estimate.dag(cyto.data, blacklist = blacklist)

Finally, whitelists and blacklists can be combined arbitrarily, as long as they are consistent
in the sense that no edge appearing in the whitelist appears in the blacklist, and vice versa.
This allows for a powerful specification of prior knowledge in learning networks from data.

5.4. Solution paths

The output of estimate.dag is a sparsebnPath object, which stores the entire solution path
that is returned by the method. This is similar in spirit to the glasso package (Friedman,

Journal of Statistical Software 23

Hastie, and Tibshirani 2018), however, instead of storing each estimate as an R matrix we
use the internal class sparsebnFit. Since sparsebnPath objects also inherit from the list
class in base R, we can inspect the first solution using ordinary R indexing. Note that for
sparsebnFit objects, the print and summary methods are identical, so the output below is
shown only once.

R> print(cyto.learn[[1]])
R> summary(cyto.learn[[1]])

CCDr estimate
7466 observations
lambda = 86.4060183089118

DAG:
<Empty graph on 11 nodes.>

The first estimate will always be the empty graph, which is a consequence of how we employ
warm starts in the solution path. The third estimate, for example, shows a bit more structure:

R> print(cyto.learn[[3]])
R> summary(cyto.learn[[3]])

CCDr estimate
7466 observations
lambda = 53.2129918008817

DAG:
[raf] mek
[mek]
[plc]
[pip2] plc
[pip3]
[erk] akt
[akt]
[pka] p38
[pkc]
[p38] pkc
[jnk] pkc

Each row in the output above corresponds to a child node – indicated by the square brackets
– with its parents listed to the right without brackets. Formally, this is an adjacency list
ordered by children. For large graphs, explicit output of the parental structure as shown here
is omitted by default, however, this behavior can be overridden via the maxsize argument.
Alternatively, we can retrieve the adjacency matrix, {I(β̂ij 6= 0)}p×p, for this estimate:

R> get.adjacency.matrix(cyto.learn[[3]])

24 sparsebn: Learning Large-Scale Bayesian Networks

11 x 11 sparse Matrix of class "dgCMatrix"

raf
mek 1
plc . . . 1
pip2
pip3
erk
akt 1
pka
pkc 1 1
p38 1 . . .
jnk

Note the use of the Matrix package (Bates and Mächler 2019), which reduces the memory
footprint on large graphs.
Finally, for large graphs, it may be desirable to inspect a subset of nodes, which can be done
using the show.parents method:

R> show.parents(cyto.learn[[3]], c("raf", "pip2"))

[raf] mek
[pip2] plc

5.5. Parameter estimation

It is important to note that the output of estimate.dag is a sequence of graphs, i.e., no
parameters (edge weights, variances, etc.) have been estimated at this stage. The next step
is to estimate the values of the parameters associated with the underlying joint distribution.
This is easy to do:

R> cyto.param <- estimate.parameters(cyto.learn, data = cyto.data)

The output is a list with each entry containing a component for the weighted adjacency
matrix (coefs) and a diagonal matrix for the conditional variances (vars). For example,
the coeffients of the third estimate in the solution path with six edges are (rounded to two
decimal places):

R> cyto.param[[3]]$coefs

11 x 11 sparse Matrix of class "dgCMatrix"

[1,]
[2,] 1.05
[3,] . . . 1.26
[4,]

Journal of Statistical Software 25

[5,]
[6,]
[7,] 0.725
[8,]
[9,] 1.3 1.13

[10,] 1.36 . . .
[11,]

Similarly, we can inspect the estimated conditional variances:

R> Matrix::diag(cyto.param[[3]]$vars)

[1] 1.165 2.632 1.583 2.111 0.992 0.684 0.968 8.425 1.831 1.506 1.676

Although the vars argument is a diagonal matrix, we have invoked the diag method above
purely to save space.
For Gaussian data, we can also use Equation 3 to estimate the implied covariance matrix for
each solution in the solution path. This is implemented via the get.covariance method (see
also get.precision for computing the precision, or inverse covariance, matrix). If the user
is only interested in the covariance matrix (resp. precision matrix) and not the underlying
DAG, then this extra step can be skipped by directly using the estimate.covariance method
(resp. estimate.precision).

5.6. Model selection

Unlike existing methods, the output of estimate.dag is a solution path with multiple esti-
mates of increasing complexity, indexed by the regularization parameter. Thus, it is important
to be able to pick out estimates for inspection and further exploration. For ad hoc exploration,
the select method is useful: This allows one to select an estimate from a sparsebnPath ob-
ject based on the number of edges, the regularization parameter λ, or the index j. When
selecting by the number of edges or by λ, fuzzy matching is used by default so that the closest
match is returned to within a given tolerance. Selecting by index is equivalent to subsetting
as usual with the subset operator ‘[[‘. To save space, the output of the following code is
suppressed:

R> select(cyto.learn, edges = 8)
R> select(cyto.learn, edges = 10)

In the first line above, an exact match is returned. In the second line, the closest match is
returned since there is no graph with exactly 10 edges in the solution path.

R> select(cyto.learn, lambda = 41.75)
R> select(cyto.learn, lambda = 41.7)

In both of the above examples, the closest match is returned.

R> select(cyto.learn, index = 4)
R> cyto.learn[[4]]

26 sparsebn: Learning Large-Scale Bayesian Networks

In the both lines above, an exact match is returned. Note that the second line is equivalent
to the first.
For practical applications, one is often concerned with selecting an optimal value of λ. In
high-dimensions, optimal selection of λ for finite samples is an open problem, and past work
has shown that both the prediction oracle and cross-validated choices perform poorly (Mein-
shausen and Bühlmann 2006; Fu and Zhou 2013). Instead, Fu and Zhou (2013) suggest a
practical method for selecting λ based on a trade-off between the increase in log-likelihood
and the increase in complexity between solutions. This method is implemented in sparsebn
via the method select.parameter:

R> selected.lambda <- select.parameter(cyto.learn, cyto.data)
R> selected.lambda

[1] 8

select.parameter returns the optimal index according to this method, in this case j = 8,
corresponding to a value of λ ≈ 15.83806 and an estimated network of 19 edges.

5.7. Visualization

In order to visualize graphs estimated by the sparsebn package, we make use of the visualiza-
tion capabilities of existing graph packages (see Section 4.5). By default, sparsebn uses the
popular igraph package:

R> getPlotPackage()

[1] "igraph"

In addition to igraph, sparsebn is also compatible with the plotting features of the graph (via
Rgraphviz, Hansen et al. 2008) and network packages. It is easy to change which package is
used for plotting:

R> setPlotPackage("network")
R> getPlotPackage()

[1] "network"

R> setPlotPackage("graph")
R> getPlotPackage()

[1] "graph"

R> setPlotPackage("igraph")
R> getPlotPackage()

[1] "igraph"

Journal of Statistical Software 27

raf

mek

plc
pip2

pip3

erk

akt

pka

pkc
p38

jnk

(a) Consensus network.

raf

mek

plc
pip2

pip3

erk

akt

pka

pkc
p38

jnk

(b) Continuous network.

raf

mek

plc
pip2

pip3

erk

akt

pka

pkc
p38

jnk

(c) Discrete network.

Figure 6: Cleaned up plots of (a) The consensus cytometry network, (b) The learned network
based on continuous data, and (c) The learned network based on discretized data. Both
learned networks were estimated using estimate.dag.

This allows the user complete flexibility over which R package is used for storing data and
for visualizing data. In fact, sparsebn even allows one package to be used for visualization
and a different package for storage. For large graphs, it is helpful to use a different set of
defaults, provided in a separate method, plotDAG, which can be used for quick plotting (see,
for example, Figure 1).
Visualizing the full solution path is easy: Simply call plot(cyto.learn). In order to ensure
flexibility, we maintain all of the defaults used by the selected package for the plot method.
It is easy, however, to customize the appearance of the plots if desired. For example, if we
would like to compare the consensus cytometry network and the estimated network side by
side, we can adjust the arguments to plot as follows:

R> plot(cytometryContinuous$dag,
+ layout = igraph::layout_(to_igraph(cytometryContinuous$dag),
+ igraph::in_circle()),
+ vertex.label = names(cytometryContinuous$dag), vertex.size = 30,
+ vertex.label.color = gray(0), vertex.color = gray(0.9),
+ edge.color = gray(0), edge.arrow.size = 0.5)
R> plot(cyto.learn[[selected.lambda]],
+ layout = igraph::layout_(to_igraph(cytometryContinuous$dag),
+ igraph::in_circle()),
+ vertex.label = get.nodes(cyto.learn), vertex.size = 30,
+ vertex.label.color = gray(0), vertex.color = gray(0.9),
+ edge.color = gray(0), edge.arrow.size = 0.5)

The output can be seen in Figures 6a and 6b.
Finally, any object produced by sparsebn can be sent to the external application Cytoscape
(http://www.cytoscape.org/) via the openCytoscape method. To use this method, Cy-
toscape must already be open and running in the background, and the RCy3 package (Ono,
Muetze, Kolishovski, Shannon, and Demchak 2015) from Bioconductor must also be installed.

http://www.cytoscape.org/

28 sparsebn: Learning Large-Scale Bayesian Networks

6. Further examples
In this section we provide three more examples of the functionality of sparsebn: (1) An
example with discrete data, (2) A benchmark network from the Bayesian network repository,
and (3) A gene expression dataset with p = 5000 nodes.

6.1. Discrete cytometry data

In the previous section we used the cytometry network as an instructional example based
on the original, continuous dataset. Sachs et al. (2005) also provided a cleaned, discretized
version of this dataset which can be used to illustrate how these methods apply to discrete
data. After cleaning and pre-processing, the original continuous measurements were binned
into one of three levels: low = 0, medium = 1, or high = 2. Due to the pre-processing, the
discrete data contains fewer observations (n = 5400) compared to the raw, continuous data.
To use this data, we start by loading it as usual:

R> library("sparsebn")
R> data("cytometryDiscrete")

The code to estimate this graph is essentially the same as in Section 5. For completeness,
we present only the essential steps here. As before, the first step is to pass the data into a
sparsebnData object:

R> cyto.data <- sparsebnData(cytometryDiscrete$data, type = "discrete",
+ ivn = cytometryDiscrete$ivn)
R> cyto.data

raf mek plc pip2 pip3 erk akt pka pkc p38 jnk
1: 0 0 0 1 2 1 0 2 0 1 0
2: 0 0 0 0 2 2 1 2 0 1 0
3: 0 0 1 1 2 1 0 2 1 0 0
4: 0 0 0 0 2 1 0 2 0 2 0
5: 0 0 0 0 2 1 0 2 0 0 0

5396: 0 0 0 0 1 1 0 1 1 0 0
5397: 0 0 0 0 0 1 1 0 0 1 1
5398: 0 0 0 0 1 1 0 1 1 0 0
5399: 0 1 0 0 0 0 0 1 1 0 0
5400: 1 1 0 0 1 1 0 1 1 1 0

5400 total rows (5390 rows omitted)
Discrete data w/ interventions on 3600/5400 rows.

One of the main purposes of the sparsebnData class is to encode all of the necessary in-
formation needed to run the main algorithms; now that the data has been converted into a
sparsebnData object, the user will notice almost no difference between the code in Section 5
and the sequel.
To estimate a DAG based on the discrete data, use estimate.dag:

Journal of Statistical Software 29

R> cyto.learn <- estimate.dag(cyto.data)
R> cyto.learn

sparsebn Solution Path
11 nodes
5400 observations
8 estimates for lambda in [1.791, 9.7712]
Number of edges per solution: 0-6-9-13-15-21-30-38

It is easy to adjust lambdas and lambdas.length as before. Note also the difference between
the number of solutions here and in Section 5.2; this is a consequence of the stopping criterion
used for discrete data (see also Section 3.2). For comparison with the network selected in
Section 5.6 which had 19 edges, we use select to choose the estimate that is closest in
complexity; the closest such network in the present case has 21 edges and is shown in Figure 6c.
The code to reproduce this figure is below:

R> plot(select(cyto.learn, edges = 19),
+ layout = igraph::layout_(to_igraph(cytometryContinuous$dag),
+ igraph::in_circle()),
+ vertex.label = get.nodes(cyto.learn), vertex.size = 30,
+ vertex.label.color = gray(0), vertex.color = gray(0.9),
+ edge.color = gray(0), edge.arrow.size = 0.5)

To estimate the parameters associated with the multi-logit model, use estimate.parameters:

R> cyto.param <- estimate.parameters(cyto.learn, data = cyto.data)

As the parameter space for the multi-logit model is much larger than for the Gaussian model,
the output is much more complicated. For example, the node RAF has a single parent PKA
in the DAG selected above, and so the parameter space for this node is a 2× 3 matrix:

R> cyto.param[[5]][["raf"]]

(Intercept) pka_1 pka_2
1 0.4219942 -0.9457959 -2.282747
2 1.8258925 -3.6595227 -5.034717

For each extra parent, there will be two more columns added to this matrix, owing to the fact
that each variable has three levels. There is one such matrix for each node (see Section 3.3
for details on the estimated parameters of the multi-logit model).

6.2. The pathfinder network

In order to illustrate this package on a larger network, we will reconstruct the pathfinder
network (Heckerman et al. 1992). The pathfinder network has 109 nodes and 195 edges and
is part of the Bayesian network repository at http://www.bnlearn.com/bnrepository/, a
centralized repository of benchmark networks for testing structure learning algorithms.
We first load the dataset:

http://www.bnlearn.com/bnrepository/

30 sparsebn: Learning Large-Scale Bayesian Networks

R> data("pathfinder")
R> dat <- sparsebnData(pathfinder$data, type = "c")

The data was generated from a Gaussian SEM with βij = 1 whenever βij 6= 0 and ω2
j = 1

for each j. By Equation 3, we were able to compute the implied covariance matrix and use
mvtnorm to generate samples from this distribution (Genz et al. 2019). For this example,
n = 1000 samples were drawn.
For illustrative purposes, we will estimate a longer solution path with 50 DAGs:

R> nn <- num.samples(dat)
R> lambdas <- generate.lambdas(sqrt(nn), 0.05, lambdas.length = 50,
+ scale = "linear")
R> dags <- estimate.dag(data = dat, lambdas = lambdas, edge.threshold = 500,
+ verbose = FALSE)
R> dags

109 nodes
1000 observations
50 estimates for lambda in [1.5811, 31.6228]
Number of edges per solution: 0-17-22-29-34-37-39-50-58-59-63-63-64-64-
65-78-103-108-108-108-108-108-108-108-108-108-108-108-108-108-113-115-
119-121-121-121-124-130-135-137-139-144-153-166-180-189-206-219-249-370

The choice of λmax = n1/2 in generate.lambdas is important as it guarantees that the first
solution will be the empty graph (see Aragam and Zhou 2015, Section 5.3). We use a linear
scale for the grid and we set edge.threshold = 500 in order to terminate the algorithm
early if any estimate has more than 500 edges (although note that in this case this constraint
never becomes active).
Furthermore, there are no difficulties if the data is high-dimensional (p > n). Let us extract
the first 50 rows of X, so that p = 109 > n = 50:

R> dat <- sparsebnData(pathfinder$data[1:50,], type = "c")
R> nn <- num.samples(dat)
R> lambdas <- generate.lambdas(sqrt(nn), 0.05, lambdas.length = 50,
+ scale = "linear")
R> dags <- estimate.dag(data = dat, lambdas = lambdas, edge.threshold = 500,
+ verbose = FALSE)
R> dags

sparsebn Solution Path
109 nodes
50 observations
43 estimates for lambda in [1.3132, 7.0711]
Number of edges per solution: 0-16-21-23-28-39-39-42-44-49-53-58-63-64-67-
69-71-80-81-84-88-92-99-102-107-111-116-116-118-123-127-134-142-149-161-
173-193-217-229-262-311-382-477

Journal of Statistical Software 31

Note that in this case the algorithm terminates just shy of the full 50 estimates, since the
44th solution apparently exceeds the threshold of 500 edges. Finally, for this high-dimensional
example, there is no noticeable slowdown compared to the previous case with n = 1000.

6.3. Large networks
To conclude the examples, we finish with an application to the estimation of very large net-
works using gene expression data collected from 129 late-onset Alzheimer’s disease (LOAD)
patients and 101 healthy patients (Zhang et al. 2013). The data consists of post-mortem
whole-genome gene-expression profiles from autopsied brain tissues and in particular consti-
tutes a purely observational sample. In total there are three datasets, each corresponding
to tissue samples collected from a different brain region: (1) Dorsolateral prefrontal cortex
(PFC), (2) Visual cortex (VC) and (3) Cerebellum (CR). Since ground truth networks have
not been established for these datasets, the main purpose of this example is to illustrate how
sparsebn scales to real world, high-dimensional data with thousands of variables.
Each dataset contains expression measurements from 39, 280 probes, of which we extracted
the first p = 5, 000 columns for use in this example. For this example, we focused on LOAD
patients only, so n = 129. We then used estimate.dag to learn a solution path from each
dataset, and kept track of the time. In our experiments, it took a little over four minutes
for our package to estimate each solution path, assuming a maximum of 5000 edges. For
example, assuming the output has been stored in a variable called dags, the resulting output
for the PFC data is

R> dags

sparsebn Solution Path
5000 nodes
129 observations
15 estimates for lambda in [2.9973, 11.3578]
Number of edges per solution: 0-79-523-1297-2200-2999-3675-4315-4929-4946-
4957-4963-4984-4988-5000

The output for the remaining two datasets is similar, consisting of 15 DAGs for the VC data
and 16 DAGs for the CR data. Code to reproduce this experiment can be found in supplemen-
tary file v91i11.R (and at https://github.com/itsrainingdata/sparsebn-reproduce).
Some comments on the timing are in order. The edge.threshold argument was used here to
terminate the algorithm at 5000 edges – in practice, of course, we do not know the true number
of edges and so this is meant to be purely illustrative. Moreover, since this parameter can be
set arbitrarily high, the algorithm can in principle run for arbitrarily long. In fact, one of the
advantages of our methods is that they can be interrupted at anytime, bearing in mind that
the result may be a subgraph of the true graph. The edge.threshold parameter allows the
user to incorporate prior knowledge of the sparsity (or lack thereof) of the underlying graph.

7. Conclusion
sparsebn is a fast, modern package for learning the structure of sparse Bayesian networks.
By leveraging recent trends in nonconvex optimization, sparse regularization, and causal

https://github.com/itsrainingdata/sparsebn-reproduce

32 sparsebn: Learning Large-Scale Bayesian Networks

inference, we are able to scale structure learning to problems containing high-dimensional
data with thousands of variables and experimental interventions. This fills a gap within
existing software packages for learning Bayesian networks, which already provide excellent
coverage for traditional problems with large samples and without interventions. All of the
code to reproduce the results presented here is available on GitHub, along with the source
code of the sparsebn package, which is available on CRAN.
Given the nonconvex nature of the minimization problems here, one future direction is to
incorporate stochastic optimization into our package to enhance its global search ability. For
example, stochastic gradient descent may be used in the algorithm for discrete Bayesian
networks, which will reduce the computational complexity as well. We are also interested
in developing divide-and-conquer strategies for ultra-large graphs, say on the scale of 105

nodes. Along these lines, we are also exploring parallel and distributed implementations of
these algorithms. Finally, our package can be combined with various post-learning functions
for multi-stage learning of causal networks. Given the DAG learned from sparsebn, one may
further infer causal relations in a subgraph of interest by making additional causal assumptions
or with new experimental data.

Acknowledgements
This work was supported by NSF grants IIS-1546098 and DMS-1055286 to Q.Z. The authors
thank Dacheng Zhang for helpful discussions and computational assistance.

References

Aragam B, Amini AA, Zhou Q (2015). “Learning Directed Acyclic Graphs with Penalized
Neighbourhood Regression.” arXiv 1511.08963, arXiv.org E-Print Archive. URL https:
//arxiv.org/abs/1511.08963.

Aragam B, Gu J, Zhou Q (2017). “Learning Large-Scale Bayesian Networks with the sparsebn
Package.” arXiv 1703.04025, arXiv.org E-Print Archive. URL https://arxiv.org/abs/
1703.04025.

Aragam B, Zhou Q (2015). “Concave Penalized Estimation of Sparse Gaussian Bayesian
Networks.” Journal of Machine Learning Research, 16, 2273–2328. doi:10.1214/
12-aos1017supp.

Bates D, Mächler M (2019). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 1.2-17, URL https://CRAN.R-project.org/package=Matrix.

Boettcher S, Dethlefsen C (2003). “deal: A Package for Learning Bayesian Networks.” Journal
of Statistical Software, 8(1), 1–40. ISSN 1548-7660. doi:10.18637/jss.v008.i20.

Bouckaert RR (1993). “Probabilistic Network Construction Using the Minimum Description
Length Principle.” In Symbolic and Quantitative Approaches to Reasoning and Uncertainty:
European Conference ECSQARU ’93, volume 747 of Lecture Notes in Computer Science,
pp. 41–48. Springer-Verlag.

https://arxiv.org/abs/1511.08963
https://arxiv.org/abs/1511.08963
https://arxiv.org/abs/1703.04025
https://arxiv.org/abs/1703.04025
https://doi.org/10.1214/12-aos1017supp
https://doi.org/10.1214/12-aos1017supp
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.18637/jss.v008.i20

Journal of Statistical Software 33

Bühlmann P, Kalisch M, Meier L (2014). “High-Dimensional Statistics with a View Toward
Applications in Biology.” Annual Review of Statistics and Its Application, 1. doi:10.1146/
annurev-statistics-022513-115545.

Buntine W (1991). “Theory Refinement on Bayesian Networks.” In Proceedings of the Seventh
Annual Conference on Uncertainty in Artificial Intelligence, pp. 52–60. Morgan Kaufmann.

Butts C (2008). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(1), 1–36. ISSN 1548-7660. doi:10.18637/jss.v024.i02.

Chen YP, Wang ZX, Chen L, Liu X, Tang LL, Mao YP, Li WF, Lin AH, Sun Y, Ma J
(2015). “A Bayesian Network Meta-Analysis Comparing Concurrent Chemoradiotherapy
Followed by Adjuvant Chemotherapy, Concurrent Chemoradiotherapy Alone and Radio-
therapy Alone in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.” An-
nals of Oncology, 26(1), 205–211.

Chickering DM, Heckerman D (1997). “Efficient Approximations for the Marginal Likelihood
of Bayesian Networks with Hidden Variables.” Machine Learning, 29, 181–212. doi:
10.1023/a:1007469629108.

Chickering DM, Heckerman D, Meek C (2004). “Large-Sample Learning of Bayesian Networks
Is NP-Hard.” The Journal of Machine Learning Research, 5, 1287–1330. doi:10.1016/
b978-1-55860-377-6.50079-7.

Colombo D, Maathuis MH, Kalisch M, Richardson TS (2012). “Learning High-Dimensional
Directed Acyclic Graphs with Latent and Selection Variables.” The Annals of Statistics,
40(1), 294–321. doi:10.1214/11-aos940.

Cooper GF, Herskovits E (1992). “A Bayesian Method for the Induction of Probabilistic
Networks from Data.” Machine Learning, 9, 309–347. doi:10.1007/bf00994110.

Cooper GF, Yoo C (1999). “Causal Discovery from a Mixture of Experimental and Obser-
vational Data.” In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, pp. 116–125. Morgan Kaufmann Publishers Inc.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. doi:10.1142/s0219525914500064.

Cussens J, Haws D, Studený M (2017). “Polyhedral Aspects of Score Equivalence in Bayesian
Network Structure Learning.” Mathematical Programming, 164(1-2), 285–324. doi:10.
1007/s10107-016-1087-2.

Dejaeger K, Verbraken T, Baesens B (2013). “Toward Comprehensible Software Fault Pre-
diction Models Using Bayesian Network Classifiers.” IEEE Transactions on Software En-
gineering, 39(2), 237–257. doi:10.1109/tse.2012.20.

Dobson AJ, Barnett A (2008). An Introduction to Generalized Linear Models. CRC Press.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag, New
York. ISBN 978-1-4614-6867-7.

https://doi.org/10.1146/annurev-statistics-022513-115545
https://doi.org/10.1146/annurev-statistics-022513-115545
https://doi.org/10.18637/jss.v024.i02
https://doi.org/10.1023/a:1007469629108
https://doi.org/10.1023/a:1007469629108
https://doi.org/10.1016/b978-1-55860-377-6.50079-7
https://doi.org/10.1016/b978-1-55860-377-6.50079-7
https://doi.org/10.1214/11-aos940
https://doi.org/10.1007/bf00994110
https://doi.org/10.1142/s0219525914500064
https://doi.org/10.1007/s10107-016-1087-2
https://doi.org/10.1007/s10107-016-1087-2
https://doi.org/10.1109/tse.2012.20

34 sparsebn: Learning Large-Scale Bayesian Networks

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Ellis B, Wong WH (2008). “Learning Causal Bayesian Network Structures from Experimental
Data.” Journal of the American Statistical Association, 103, 778–789. doi:10.1198/
016214508000000193.

Fan J, Li R (2001). “Variable Selection via Nonconcave Penalized Likelihood and Its Oracle
Properties.” Journal of the American Statistical Association, 96(456), 1348–1360. doi:
10.1198/016214501753382273.

Friedman J, Hastie T, Höfling H, Tibshirani R (2007). “Pathwise Coordinate Optimization.”
The Annals of Applied Statistics, 1(2), 302–332. doi:10.1214/07-aoas131.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the
Graphical Lasso.” Biostatistics, 9(3), 432–441.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of statistical software, 33(1), 1. doi:10.18637/
jss.v033.i01.

Friedman J, Hastie T, Tibshirani R (2018). glasso: Graphical Lasso – Estimation of Gaussian
Graphical Models. R package version 1.10, URL https://CRAN.R-project.org/package=
glasso.

Fu F, Zhou Q (2013). “Learning Sparse Causal Gaussian Networks With Experimental In-
tervention: Regularization and Coordinate Descent.” Journal of the American Statistical
Association, 108(501), 288–300. doi:10.1080/01621459.2012.754359.

Gámez JA, Mateo JL, Puerta JM (2011). “Learning Bayesian Networks by Hill Climbing:
Efficient Methods Based on Progressive Restriction of the Neighborhood.” Data Mining
and Knowledge Discovery, 22(1-2), 106–148. doi:10.1007/s10618-010-0178-6.

Gao B, Cui Y (2015). “Learning Directed Acyclic Graphical Structures with Genetical Ge-
nomics Data.” Bioinformatics, p. btv513.

Garvey MD, Carnovale S, Yeniyurt S (2015). “An Analytical Framework for Supply Net-
work Risk Propagation: A Bayesian Network Approach.” European Journal of Operational
Research, 243(2), 618–627. doi:10.1016/j.ejor.2014.10.034.

Gentleman R, Whalen E, Huber W, Falcon S (2011). graph: A Package to Handle Graph
Data Structures. R package version 1.30.0, URL https://CRAN.R-project.org/package=
graph.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2019). mvtnorm: Multivari-
ate Normal and t Distributions. R package version 1.0-11, URL https://CRAN.R-project.
org/package=mvtnorm.

Gu J (2017). discretecdAlgorithm: Coordinate-Descent Algorithm for Learning Sparse Dis-
crete Bayesian Networks. R package version 0.0.5, URL https://CRAN.R-project.org/
package=discretecdAlgorithm.

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1198/016214508000000193
https://doi.org/10.1198/016214508000000193
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1214/07-aoas131
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=glasso
https://doi.org/10.1080/01621459.2012.754359
https://doi.org/10.1007/s10618-010-0178-6
https://doi.org/10.1016/j.ejor.2014.10.034
https://CRAN.R-project.org/package=graph
https://CRAN.R-project.org/package=graph
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=discretecdAlgorithm
https://CRAN.R-project.org/package=discretecdAlgorithm

Journal of Statistical Software 35

Gu J, Fu F, Zhou Q (2018). “Penalized Estimation of Directed Acyclic Graphs From Discrete
Data.” Statistics and Computing. doi:10.1007/s11222-018-9801-y.

Hansen KD, Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2008). Rgraphviz:
Provides Plotting Capabilities for R Graph Objects. R package version 1.18.1, URL https:
//CRAN.R-project.org/package=Rgraphviz.

Heckerman D, Geiger D, Chickering DM (1995). “Learning Bayesian Networks: The Com-
bination of Knowledge and Statistical Data.” Machine Learning, 20, 197–243. doi:
10.1007/bf00994016.

Heckerman D, Horvitz E, Nathwani B (1992). “Toward Normative Expert Systems: Part I,
the Pathfinder Project. Knowledge Systems Laboratory, Medical Computer Science.”

Herskovits E, Cooper G (1990). “Kutató: An Entropy-Driven System for Construction of
Probabilistic Expert Systems from Databases.” In Proceedings of the Sixth Annual Confer-
ence on Uncertainty in Artificial Intelligence, pp. 54–62.

Højsgaard S (2012). “Graphical Independence Networks with the gRain Package for R.”
Journal of Statistical Software, 46(1), 1–26. ISSN 1548-7660. doi:10.18637/jss.v046.
i10.

Isci S, Dogan H, Ozturk C, Otu HH (2014). “Bayesian Network Prior: Network Analysis of
Biological Data Using External Knowledge.” Bioinformatics, 30(6), 860–867.

Jones DT, Buchan DW, Cozzetto D, Pontil M (2012). “PSICOV: Precise Structural Con-
tact Prediction Using Sparse Inverse Covariance Estimation on Large Multiple Sequence
Alignments.” Bioinformatics, 28(2), 184–190.

Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012). “Causal Inference
Using Graphical Models with the R Package pcalg.” Journal of Statistical Software, 47(11),
1–26. doi:10.18637/jss.v047.i11.

Koller D, Friedman N (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

Lam W, Bacchus F (1994). “Learning Bayesian Belief Networks: An Approach Based on the
MDL Principle.” Computational Intelligence, 10, 269–293. doi:10.1111/j.1467-8640.
1994.tb00166.x.

Lauritzen SL (1996). Graphical Models. Oxford University Press.

Masegosa AR, Martínez AM, Ramos-López D, Cabañas R, Salmerón A, Nielsen TD, Langseth
H, Madsen AL (2017). “AMIDST: A Java Toolbox for Scalable Probabilistic Machine
Learning.” arXiv 1704.01427, arXiv.org E-Print Archive. URL https://arxiv.org/abs/
1704.01427.

Mazumder R, Friedman JH, Hastie T (2011). “SparseNet: Coordinate Descent with Non-
convex Penalties.” Journal of the American Statistical Association, 106(495), 1125–1138.
doi:10.1198/jasa.2011.tm09738.

https://doi.org/10.1007/s11222-018-9801-y
https://CRAN.R-project.org/package=Rgraphviz
https://CRAN.R-project.org/package=Rgraphviz
https://doi.org/10.1007/bf00994016
https://doi.org/10.1007/bf00994016
https://doi.org/10.18637/jss.v046.i10
https://doi.org/10.18637/jss.v046.i10
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1111/j.1467-8640.1994.tb00166.x
https://doi.org/10.1111/j.1467-8640.1994.tb00166.x
https://arxiv.org/abs/1704.01427
https://arxiv.org/abs/1704.01427
https://doi.org/10.1198/jasa.2011.tm09738

36 sparsebn: Learning Large-Scale Bayesian Networks

Meganck S, Leray P, Manderick B (2006). “Learning Causal Bayesian Networks from Ob-
servations and Experiments: A Decision Theoretic Approach.” In Modeling Decisions for
Artificial Intelligence, pp. 58–69. Springer-Verlag.

Meinshausen N, Bühlmann P (2006). “High-Dimensional Graphs and Variable Selec-
tion with the Lasso.” The Annals of Statistics, 34(3), 1436–1462. doi:10.1214/
009053606000000281.

Murphy K (2014). “Software Packages for Graphical Models.” Accessed 2019-10-31, URL
https://www.cs.ubc.ca/~murphyk/Software/bnsoft.html.

Nicholson A, Cozman F, Velikova M, Van Scheltinga JT, Lucas PJF, Spaanderman M (2014).
“Applications of Bayesian Networks Exploiting Causal Functional Relationships in Bayesian
Network Modelling for Personalised Healthcare.” International Journal of Approximate
Reasoning, 55(1), 59–73. doi:10.1016/j.ijar.2013.03.016.

Niinimäki T, Parviainen P, Koivisto M (2016). “Structure Discovery in Bayesian Networks
by Sampling Partial Orders.” Journal of Machine Learning Research, 17(1), 2002–2048.
doi:10.1007/978-3-642-23783-6_37.

Ono K, Muetze T, Kolishovski G, Shannon P, Demchak B (2015). “CyREST: Turbocharging
Cytoscape Access for External Tools via a RESTful API.” F1000Research, 4(478). doi:
10.12688/f1000research.6767.1.

Pearl J (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.

Peér D, Regev A, Elidan G, Friedman N (2001). “Inferring Subnetworks from Perturbed
Expression Profiles.” Bioinformatics, 17, S215–S224.

Perrier E, Imoto S, Miyano S (2008). “Finding Optimal Bayesian Network Given a Super-
Structure.” Journal of Machine Learning Research, 9(Oct), 2251–2286. doi:10.1007/
978-3-642-25655-4_19.

Pournara I, Wernisch L (2004). “Reconstruction of Gene Networks Using Bayesian Learning
and Manipulation Experiments.” Bioinformatics, 20(17), 2934–2942.

Ravikumar P, Wainwright MJ, Lafferty JD (2010). “High-Dimensional Ising Model Selection
Using `1-Regularized Logistic Regression.” The Annals of Statistics, 38(3), 1287–1319.
doi:10.1214/09-aos691.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of
Statistical Software, 48(1), 1–36. ISSN 1548-7660. doi:10.18637/jss.v048.i02.

Russell S, Norvig P (1995). Artificial Intelligence: A Modern Approach. Prentice-Hall, Upper
Saddle River.

Rütimann P, Bühlmann P (2009). “High Dimensional Sparse Covariance Estimation via
Directed Acyclic Graphs.” Electronic Journal of Statistics, 3, 1133–1160. doi:10.1214/
09-ejs534.

https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
https://doi.org/10.1016/j.ijar.2013.03.016
https://doi.org/10.1007/978-3-642-23783-6_37
https://doi.org/10.12688/f1000research.6767.1
https://doi.org/10.12688/f1000research.6767.1
https://doi.org/10.1007/978-3-642-25655-4_19
https://doi.org/10.1007/978-3-642-25655-4_19
https://doi.org/10.1214/09-aos691
https://www.R-project.org/
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1214/09-ejs534
https://doi.org/10.1214/09-ejs534

Journal of Statistical Software 37

Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005). “Causal Protein-Signaling
Networks Derived from Multiparameter Single-Cell Data.” Science, 308(5721), 523–529.
doi:10.1126/science.1105809.

Sanford AD, Moosa IA (2012). “A Bayesian Network Structure for Operational Risk Modelling
in Structured Finance Operations.” Journal of the Operational Research Society, 63(4),
431–444. doi:10.1057/jors.2011.7.

Schmidt M, Niculescu-Mizil A, Murphy K (2007). “Learning Graphical Model Structure Using
L1-Regularization Paths.” In AAAI, volume 7, pp. 1278–1283.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(i03). doi:10.18637/jss.v035.i03.

Scutari M (2017). “Bayesian Network Constraint-Based Structure Learning Algorithms: Par-
allel and Optimized Implementations in the bnlearn R Package.” Journal of Statistical
Software, 77(2), 1–20. doi:10.18637/jss.v077.i02.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,
Ideker T (2003). “Cytoscape: A Software Environment for Integrated Models of Biomolec-
ular Interaction Networks.” Genome Research, 13(11), 2498–2504. doi:10.1101/gr.
1239303.

Shannon PT, Grimes M, Kutlu B, Bot JJ, Galas DJ (2013). “RCytoscape: Tools
for Exploratory Network Analysis.” BMC Bioinformatics, 14(1), 217. doi:10.1186/
1471-2105-14-217.

Spirtes P, Glymour C (1991). “An Algorithm for Fast Recovery of Sparse Causal Graphs.”
Social Science Computer Review, 9(1), 62–72. doi:10.1177/089443939100900106.

Spirtes P, Glymour C, Scheines R (2000). Causation, Prediction, and Search, volume 81. The
MIT Press.

Suzuki J (1993). “A Construction of Bayesian Networks from Databases Based on an MDL
Principle.” In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial
Intelligence, pp. 266–273.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society B, pp. 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x.

Tsamardinos I, Brown LE, Aliferis CF (2006). “The Max-Min Hill-Climbing Bayesian Net-
work Structure Learning Algorithm.” Machine learning, 65(1), 31–78. doi:10.1007/
s10994-006-6889-7.

Uhler C, Raskutti G, Bühlmann P, Yu B (2013). “Geometry of the Faithfulness Assumption
in Causal Inference.” The Annals of Statistics, 41(2), 436–463. doi:10.1214/12-aos1080.

Van de Geer S, Bühlmann P (2013). “`0-Penalized Maximum Likelihood for Sparse Directed
Acyclic Graphs.” The Annals of Statistics, 41(2), 536–567. doi:10.1214/13-aos1085.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

https://doi.org/10.1126/science.1105809
https://doi.org/10.1057/jors.2011.7
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v077.i02
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1471-2105-14-217
https://doi.org/10.1186/1471-2105-14-217
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1214/12-aos1080
https://doi.org/10.1214/13-aos1085
http://www.stats.ox.ac.uk/pub/MASS4

38 sparsebn: Learning Large-Scale Bayesian Networks

Wickham H, Hester J, Chang W, RStudio, R Core Team (2018). devtools: Tools to Make
Developing R Packages Easier. R package version 2.0.1, URL https://CRAN.R-project.
org/package=devtools.

Wu TT, Lange K (2008). “Coordinate Descent Algorithms for Lasso Penalized Regression.”
The Annals of Applied Statistics, pp. 224–244. doi:10.1214/07-aoas147.

Xiang J, Kim S (2013). “A* Lasso for Learning a Sparse Bayesian Network Structure for
Continuous Variables.” In Advances in Neural Information Processing Systems, pp. 2418–
2426.

Yang E, Ravikumar P, Allen GI, Liu Z (2015). “Graphical Models via Univariate Exponential
Family Distributions.” Journal of Machine Learning Research, 16, 3813–3847. doi:10.
1016/b978-0-12-801522-3.00016-1.

Yuan M, Lin Y (2006). “Model Selection and Estimation in Regression with Grouped
Variables.” Journal of the Royal Statistical Society B, 68(1), 49–67. doi:10.1111/j.
1467-9868.2005.00532.x.

Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie
T, Tran L, Dobrin R, et al. (2013). “Integrated Systems Approach Identifies Genetic
Nodes and Networks in Late-Onset Alzheimer’s Disease.” Cell, 153(3), 707–720. doi:
10.1016/j.cell.2013.03.030.

Zhang CH (2010). “Nearly Unbiased Variable Selection Under Minimax Concave Penalty.”
The Annals of Statistics, 38(2), 894–942. doi:10.1214/09-aos729.

Zhang D (2016). Concave Penalized Estimation of Causal Gaussian Networks with Interven-
tion. Master’s thesis, UCLA Statistics 0891.

Zhang J, Spirtes P (2002). “Strong Faithfulness and Uniform Consistency in Causal Inference.”
In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pp.
632–639.

Zhou Q (2011). “Multi-Domain Sampling with Applications to Structural Inference of
Bayesian Networks.” Journal of the American Statistical Association, 106, 1317–1330.
doi:10.1198/jasa.2011.ap10346.

Affiliation:
Qing Zhou
UCLA Department of Statistics
Los Angeles, CA 90095, United States of America
E-mail: zhou@stat.ucla.edu
URL: http://www.stat.ucla.edu/~zhou/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2019, Volume 91, Issue 11 Submitted: 2017-03-07
doi:10.18637/jss.v091.i11 Accepted: 2018-03-08

https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://doi.org/10.1214/07-aoas147
https://doi.org/10.1016/b978-0-12-801522-3.00016-1
https://doi.org/10.1016/b978-0-12-801522-3.00016-1
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1214/09-aos729
https://doi.org/10.1198/jasa.2011.ap10346
mailto:zhou@stat.ucla.edu
http://www.stat.ucla.edu/~zhou/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v091.i11

	Introduction
	Learning Bayesian networks from data
	Background
	Continuous data
	Discrete data

	Causal DAG learning from interventions
	Previous work
	Constraint-based methods
	Score-based methods
	Hybrid methods

	Existing packages

	Learning with sparse regularization
	Regularized maximum likelihood
	Algorithm details
	Parameter estimation

	The sparsebn package
	Speed and scalability improvements
	Experimental interventions
	Functions
	Data structures
	Compatibility
	Installation

	Example: Cytometry data
	Loading data
	Structure learning
	Prior knowledge
	Solution paths
	Parameter estimation
	Model selection
	Visualization

	Further examples
	Discrete cytometry data
	The pathfinder network
	Large networks

	Conclusion

