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Abstract

BPEC is an R package for Bayesian phylogeographic and ecological clustering which
allows geographical, environmental and phenotypic measurements to be combined with
deoxyribonucleic acid (DNA) sequences in order to reveal geographic structuring of DNA
sequence clusters consistent with migration events. DNA sequences are modelled using a
collapsed version of a simplified coalescent model projected onto haplotype trees, which
subsequently give rise to constrained clusterings as migrations occur. Within each clus-
ter, a multivariate Gaussian distribution of the covariates (geographical, environmental,
phenotypic) is used. Inference follows tailored reversible jump Markov chain Monte Carlo
sampling so that the number of clusters (i.e., migrations) does not need to be pre-specified.
A number of output plots and visualizations are provided which reflect the posterior dis-
tribution of the parameters of interest. BPEC also includes functions that create output
files which can be loaded into Google Earth. The package commands are illustrated
through an example dataset of the polytypic Near Eastern brown frog Rana macrocnemis
analyzed using BPEC.

Keywords: statistical phylogeography, biogeography, population genetics, Bayesian computa-
tion, R.

1. Introduction
Phylogeography can be considered the nexus between classical population genetics, phylo-
genetics and historical biogeography, with much conceptual and analytical overlap with all
three, but particularly with population genetics. Phylogeography was born from the inte-
gration of population genetics and phylogenetics to work at the micro-macroevolutionary
interface (Hickerson et al. 2010), being an evolved discipline that seeks to integrate the ge-
nealogical relationships among DNA lineages (sequences) with their geographic distributions
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to infer historical events that have shaped the contemporary distributions of species and their
genetic variation. However, while population genetics, phylogenetics and historical biogeogra-
phy have witnessed a growth of analytical approaches in recent years, there has been a relative
dearth of analytical approaches within the field of phylogeography, with several reviews sum-
marizing these (e.g., Knowles 2009; Bloomquist, Lemey, and Suchard 2010; Hickerson et al.
2010). To place our work into a broader context, we provide a brief summary of the state of
the art within the field of phylogeography, but the aforementioned reviews should be referred
to for more detail.

Historical biogeography seeks to understand the processes that have shaped the evolution
of geographic differences among related species (i.e., interspecific process), and may involve
time-scales that extend back tens of million of years or more. In contrast, phylogeography
concerns both the quantification of the geographic structuring of genetic variation within
species, and understanding the process that has shaped said structure (i.e. intraspecific pro-
cess). Thus phylogeographic analyses typically involve time-scales that do not extend back
more than a few million years. A challenge for phylogeographic analysis is to simultaneously
account for evolutionary processes over spatial and temporal dimensions, and perhaps for
this reason the phylogeographer’s toolkit is a mixed bag of approaches encompassing various
objectives within this framework. Some population genetic methods find relevance in phylo-
geography, precisely because they do not use geographical information explicitly, but rely on
population genetics modeling to infer the geography of structure. For example, STRUCTURE
(Pritchard, Stephens, and Donnelly 2000) infers population structure purely from genotype
data through a latent Dirichlet allocation model. Population subdivisions are assessed on the
basis of multi-locus allele frequencies which are directly learned from data. More recently,
Jombart, Devillard, and Balloux (2010) developed DAPC, a principal-components alternative
to STRUCTURE which can computationally efficiently deal with large amounts of data. In
these approaches one describes genetic groupings in the absence of spatial information, onto
which phylogeographic inferences can then be conditioned. Fully model-based extensions of
spatially-explicit inferences of population structure such as GENELAND (Guillot, Mortier,
and Estoup 2005) and Cheng, Connor, Sirén, Aanensen, and Corander (2013) assume that
the spatial domain occupied by the inferred clusters can be approximated by a small number
of polygons based on Voronoi tessellations. Drawing inferences about these cluster domains
(and thus about cluster membership) amounts to inferring the location and cluster member-
ships of the polygons. Finally, recent approaches such as Jay, François, Durand, and Blum
(2015) introduced spatially-dependent cluster membership probabilities through a regression
model. These approaches use multilocus genotype data for the inference of spatial genetic
structure, and therefore the absence of a coalescent framework limits inferences across the
temporal dimension.

Methods that use the evolutionary relationships among alleles for phylogeographic analysis
open the door for jointly investigating the spatial and temporal dimensions of genetic re-
latedness among individuals. Early phylogeography relied upon qualitative assessments of
the geographic relationships within a gene genealogy, together with estimated dates of gene
tree branching events. In this approach demography was directly inferred from the phylo-
genetic relationships of alleles, with limited importance given to the potentially confounding
effects of coalescent stochasticity (Hickerson et al. 2010). Such stochasticity could give rise
to similarly probable alternative demographic explanations for a given data set. To address
this, simulation-based statistical methods based on coalescent models for parameter estima-
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tion have emerged giving rise to statistical phylogeography (Knowles and Maddison 2002;
Knowles 2009) allowing for testing among competing demographic models.
With regard to the joint analysis of the genealogical and spatial relationships of DNA se-
quences, we are only aware of two implementations to date. Lemey, Rambaut, Drummond,
and Suchard (2009) developed a fully model-based Bayesian phylogeographic inference frame-
work, assuming a diffusion model for the geographical migration of nodes on a phylogenetic
tree, so that evolution and migration events occur in a continuous-time framework. More
recently, Guindon, Guo, and Welch (2016) modeled spatial distribution as a gradual dispersal
across a continuous landscape.
Here we present the R (R Core Team 2019) package BPEC (Manolopoulou and Hille 2020)
which is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.
R-project.org/package=BPEC and which automates Bayesian phylogeographic and ecolog-
ical clustering (BPEC) analysis (Manolopoulou, Legarreta, Emerson, Brooks, and Tavaré
2011; Manolopoulou and Emerson 2012). BPEC implements a model-based approach which
assumes that population substructure is the result of individuals migrating into a new area
(i.e., dispersal). The approach implemented in BPEC differs from the methods of Lemey
et al. (2009) in that it explicitly models geographical ranges, assuming that sampling locali-
ties are random samples from the entire landscape. In contrast to the continuous approach of
Guindon et al. (2016), it addresses the phylogeographic structure by inferring geographically
structured clusters of DNA sequences as the result of distinct colonization events, while also
admitting a model for the evolutionary history. Here a cluster is defined as a subnetwork
of sequences within the haplotype tree that are geographically aggregated and have similar
ecological characteristics. BPEC performs full Bayesian inference, which means that it pro-
vides an entire posterior distribution over phylogeographic clusterings; although this comes
at a computational cost, the ability to provide uncertainty measures is valuable in terms of
understanding the impact on scientific hypotheses of interest.
The key function of BPEC inputs non-recombinant DNA sequences and geographical loca-
tions, as well as any additional covariates available, such as temperature or phenotypic char-
acteristics, in order to identify clusters that are consistent with migration. The results of the
analysis provide estimates on the number of migration events, the geographical distribution of
the clusters, ancestral locations and clustered tree structure. Aside from providing estimates
for the quantities of interest, BPEC also provides measures of uncertainty of the conclusions
and functions for post-processing. Finally, BPEC is supplemented with various visualization
tools interfacing with geographical mapping resources to aid interpretation. In Section 2,
we present the BPEC model, followed by the corresponding Bayesian computation methods
in Section 3. Section 4 describes an example dataset of the Eastern lineages of polytypic
Near Eastern brown frogs, Rana macrocnemis (Boulenger 1885), from the Caucasus region
(Tarkhnishvili, Hille, and Böhme 2001), and the R user interface is presented in Section 5
through the analysis of the example dataset. The output is interpreted in Section 6 and the
paper concludes with a short discussion in Section 7.

2. Model

The aim of BPEC is to combine sequence data S with geographical and (optionally) ecolog-
ical data Y for demographic inference regarding the geographic and (optionally) ecological
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structuring of genetic variation and thus potential geographical or ecological limitations to
gene flow. To achieve this aim BPEC combines an evolutionary model for the genealogical
relationships among sampled DNA sequences together with a geographical model representing
dispersal events forming clusters into a fully model-based framework.

2.1. Haplotype tree model

Approaches to model and estimate the evolutionary relationships among DNA sequences
range from simple and elegant, such as the vanilla coalescent (Kingman 1982) to complex
with intractable likelihood forms (Cornuet et al. 2014). Questions such as the validity of a
constant (or effectively constant) population size, independent nucleotide mutations, constant
mutation across sites, time-dependence, presence of natural selection pressure, all play a role
in defining an appropriate evolutionary model and have led to a variety of extensions of the
basic model (Wakeley 2013; Hein, Schierup, and Wiuf 2004). In our case, typical datasets are
expected to vary from a several hundred to no more than several thousand nucleotides, with
low levels of polymorphism that typically characterize intraspecific data sets.
As a result, the nucleotide data are noisy and often too weakly informative to allow for
very complex models. The evolutionary relationships among a sample of DNA sequences
can be represented in one of two ways: a coalescent tree or a haplotype tree or network.
A coalescent tree is plotted against time and thus explicitly characterizes the most recent
common ancestor. An example of a coalescent tree with mutations mapped on is shown in
Figure 1 where tips represent observed sequences and black circles indicate mutations, and
the timing of the most recent common ancestors (MRCAs) among sequences is represented
by branch lengths. In contrast, haplotype trees (Figure 2) summarize mutation differences
among sampled sequences, so only implicitly carry information about time. To infer the root
haplotype within a haplotype tree an evolutionary model is needed, but such models are not
readily available. However, models such as the coalescent with mutations are available (Ethier
and Griffiths 1987).
A subtle complication derives from potential tree unidentifiability due to repeated observa-
tions of the same haplotype that are to be expected when either or both the mutation rate
and number of sampled nucleotides is insufficient to ascribe unique variation to all sample
haplotypes. As an example, observations 4 and 6 in Figure 1 correspond to the same haplo-
type, meaning that the two observations could be switched without having any effect on the
likelihood of the tree. Observations may, however, be distinct with respect to the geographical
or ecological information associated to each one. Aside from identifiability issues, exploring
the space of equivalent trees requires cycling through a complex combinatorial object which
quickly becomes computationally cumbersome. Collapsing sequences into haplotypes allows
us to get around this issue, reducing the space of possible trees as exemplified in Figure 2
where sequences 4 and 6 from the coalescent tree (Figure 1) are now represented by the same
node.
In order to draw inferences about the haplotype tree, approaches can be fully model-based
(Felsenstein 1983; Huelsenbeck and Ronquist 2001; Drummond, Suchard, Xie, and Rambaut
2012), parsimony-based through the underlying tree (Rzhetsky and Nei 1993; Desper and
Gascuel 2002), or purely phenetic such as neighbor-joining or median-joining (Atteson 1999;
Gascuel and Steel 2006). BPEC combines parsimonious approaches within a model-based
framework. Although an infinite set of haplotype or coalescent trees could be consistent with
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Figure 1: An example of a coalescent tree with mutations for 7 observed sequences including
mutations; black dots represent mutations. Time evolves from top to bottom.
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Figure 2: The corresponding haplotype tree of Figure 1, where edges represent single effec-
tive mutations. The black dot represents an unobserved intermediate sequence. Note that
sequences 4 and 6 correspond to the same haplotype.

the sequence data S, BPEC uses relaxed parsimony to reduce it to a finite set of “plausible”
trees Ω represented via a graph (Manolopoulou and Emerson 2012). The relaxed parsimony
is defined by a threshold ds representing parsimony relaxation. Briefly, haplotypes are con-
nected by an edge if they are a single mutation apart. When two groups of haplotypes are
disconnected (with minimum mutation distance dmin), then any connection path with length
up to dmin + ds is considered. The exact details of how to obtain Ω from S for a given ds can
be found in algorithm A of Manolopoulou and Emerson (2012). This algorithm constructs
a set of “realistic” trees by cumulatively adding intermediate sequences following a relaxed
parsimony assumption defined by the user-specified parsimony relaxation parameter ds. In
general, larger values of ds (up to a maximum value) yield more inclusive (and hence real-
istic) sets Ω, but the choice of ds is often limited by computational power. For a fixed ds,
this algorithm inputs the DNA sequences at hand, and outputs a sequence network, including
loops. The true haplotype tree is then assumed to be one of the minimum spanning trees of
this graph with equal probability and can be obtained through the breaking of loops.
A haplotype tree encodes less information than a coalescent tree with mutations. Firstly,
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a haplotype tree only encodes time through number of mutations. Secondly, it does not
automatically define an ordering of events, starting from a root down to tips. Even a rooted
(i.e., one where the ancestral haplotype is specified) haplotype tree imposes only a partial
ordering to the set of past mutation and coalescence events. Calculating probabilities over
rooted haplotype trees therefore requires summing over all possibilities and orderings of past
events given a temporal model; an example of possible orderings is shown in Appendix A.
We denote a temporal ordering of events as O, where OSr,T denotes the set of all temporal
orderings consistent with data S given a root r and tree T and assume that any temporal
ordering of events is equally likely a priori. Conditionally on observed data (which restricts
the possible trees to the space Ω) this prior corresponds to a discrete uniform distribution
over Ω and provides the following posterior probabilities for the root r and tree T :

P(r, T | S) =

∣∣∣OSr,T

∣∣∣∑
r,T

∣∣∣OSr,T

∣∣∣ ,
where |·| denotes the size of the set. Similarly,

P(r | T,S) =

∣∣∣OSr,T

∣∣∣∑
r

∣∣∣OSr,T

∣∣∣ ,
P(T | r,S) =

∣∣∣OSr,T

∣∣∣∑
T

∣∣∣OSr,T

∣∣∣ .
This model naturally takes into account the total number of combinations of mutational and
coalescence events. Note that this model disregards the relative probability of coalescence
versus mutation, essentially assuming that at every time point either are equally likely. The
model can be extended to introduce a mutation rate θ (at the expense of computational
complexity) which is simultaneously learned and is used to refine the posterior probabilities of
each tree. Although the haplotype tree model described provides a way of assigning posterior
probabilities of haplotypes being ancestral, these need to be associated to sampling locations
in order to infer the most ancestral location. BPEC assigns probabilities to each location based
on the haplotypes observed in each. For each posterior sample, if the inferred root haplotype
is observed, then each observed sequence that corresponds to that haplotype contributes
equally to a location being ancestral. In other words, each location will be inferred to be
ancestral with probability equal to the proportion of root haplotypes that were sampled in
it. If the inferred root haplotype is not observed (i.e. extinct or unsampled), then the oldest
observed haplotypes derived from the inferred root are considered equally likely to be the
“most ancestral” and thus each observation of one of these haplotypes contributes equally to
the probability of each sampling location being ancestral. An example of this is shown in
Figure 3. An important feature of this approach is that the probability of each location being
ancestral depends on the proportional representation of each haplotype. This is to circumvent
issues of wide sampling variability across locations.

2.2. Clustering model
The two main requirements to infer migration events for a given tree are: (i) a model for
constructing constrained clusterings conditionally on a haplotype tree, and (ii) a model for the
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Figure 3: Two possible root scenarios for the haplotype tree presented in Figure 2. In the
left-hand panel, the root haplotype (shown in gray) is observed and thus any location will
be inferred to be ancestral according to the proportion of observations of the inferred root
haplotype 4. In the right-hand panel, the inferred root haplotype is not observed and the
two equally divergent descendant haplotypes (shown in gray) are then used to infer ancestral
locations as a function of the proportion of copies of either haplotype in a given location.
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Figure 4: Geographically informed genetic clustering of the coalescent tree from Figure 1.
Different geographic clusters are represented by different colors. The inferred ancestral geo-
graphic area is represented by green with three migration events inferred to give rise to three
derived geographic clusters.

distribution of data within each cluster. A key assumption in our model is that new clusters
are formed through the migration/dispersal/colonization of a single individual (haplotype)
founding a new geographically distinct cluster (De Iorio and Griffiths 2004a,b). All subsequent
descendants of this founding haplotype belong to the new cluster, unless they migrate again.
Given an inferred tree representing the genealogy, possible clusterings of the data are thus
constrained by the tree while at the same time informed via the geographic distribution
(and optionally ecological data) of the observations for each individual. Figure 4 provides an
illustration using the hypothetical coalescent tree of Figure 1.
The coalescent tree determines a set of constrained clusterings which are feasible through
migration events. For example, observations 2, 3 and 6 in Figure 4 could have formed a single
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Figure 5: The clustered haplotype tree corresponding to the subdivided coalescent tree of
Figure 4 where color corresponds to cluster and size of node to the number of individuals sam-
pled with each sequence. Edges represent single effective mutations and black dots represent
unobserved intermediate haplotypes.

cluster together, but 6 and 7 could not. The corresponding constrained clusterings defined
on the collapsed haplotype tree are slightly less intuitive as repeated observations of the same
haplotype (node) can belong to different clusters. In the collapsed haplotype network shown
in Figure 5, all clustered nodes must be directly connected within their cluster. For simplicity,
we shall refer to haplotype 4/6 as haplotype 4 from now on.
Formally, conditionally on a haplotype tree, the clustering model is defined as follows. We
denote the set of distinct haplotypes in the sequence set S (of size N) as H = {H1, . . . ,Hn}
with size n, and use |Hi| to denote the number of copies of haplotype Hi observed in the data.
Let K denote the number of migrations, which is itself allowed to vary. Each migration event
is associated with a haplotype which migrated, denoted as m = {m1, . . . ,mK}. Although
colonization events happen in order, here we do not model the events temporally, so the
order of m is irrelevant. Note that the haplotypes in this list need not be distinct, as two
different copies of the same haplotype may have colonized, or a single sequence may have
colonized twice. The set of colonies/clusters with which each migrating haplotype is associated
is denoted by C(mk), k = 1, . . . ,K; in the example above, K = 3, m = {4, 4, 4} and
C(4) = {blue, yellow, pink, green}, since all migrations were of the same haplotype. This
means that, in general, the sample space of m has size nK/K!.
Conditionally on a set of migrating haplotypes, the space of constrained clusterings is then
such that all observations of that haplotype must belong to one of the corresponding clusters
C(mk) (i.e., either the original cluster or the one which was a result of migration). Equiva-
lently, all adjacent haplotypes must also belong to one of these clusters (unless one of them
also migrated, and so on).
Once the clustering has been established, the geographical and ecological observations Yi, i =
1, . . . , N in each cluster ci are Normally distributed with mean µc and variance Σc, such that

Yi ∼ N(µci ,Σci), i = 1, . . . , N, (1)

where ci denotes the cluster of observation i.
To complete the model, prior distributions are defined on the model parameters. The number
of migrations is assumed to be uniform between 0 and Kmax (corresponding to 1 and Kmax +1
clusters). Other prior distributions (e.g., Poisson) could be used instead, but we do not explore
this direction here. The |mk| observations of each of the migrating haplotypes mk are each
assigned uniformly to one of the clusters in Ck, similarly with the deg(mk) clades connected
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to it (where degree represents the number of edges connected to node mk), so the prior
probability of each clustering conditional of the migrating haplotypes (and their clusters) is
simply a combinatorial coefficient.

K ∼U{0, . . . ,Kmax},
m | S ∼Multinomial{|H1|, . . . , |Hn|}

p(c |m, T ) =
K∏

k=1

( 1
|Ck|

)|mk|+deg(mk)
(2)

The means and variances of each clustering are assigned different priors for the longitude-
latitude versus the remaining covariates:

Σk,(1:2,1:2) ∼IW(γ, ψI2), k = 1, . . . , (Kmax + 1),
Σk,(3:d) ∼IG(γ, ψ), k = 1, . . . , (Kmax + 1),

γ ∼U{4, . . . , g},
µk |Σk ∼N (0, V ) , k = 1, . . . , (Kmax + 1),

(3)

and we assume that any off-diagonal entries of Σk in dimensions 3 : d are 0. By convention,
the first two coordinates of Y always represent longitude and latitude, normalized such that
the mean of both is zero and the average (between longitude and latitude) variance 1, using
the same normalizing factor for both longitude and latitude to reflect the isotropy of the two
dimensions. Note that longitude and latitude are treated as Euclidean coordinates, which
means that datasets spanning a very large region may result in distorted results. The re-
maining coordinates correspond to environmental or phenotypic characteristics (if available),
which are normalized to sample mean 0 and marginal variance 1. We impose uncorrelated
environmental/phenotypic characteristics by forcing the covariance matrices to be 0 on any
off-diagonal entries except for the one corresponding to longitude-latitude. This is because
the concentration parameter γ of an Inverse-Wishart needs to be at least as dΣ + 2 in order
to be well-defined, where dΣ is the dimension of the covariance matrix modeled. In our case,
if we model the entire covariance matrix through an Inverse-Wishart, γ would be forced to a
minimum of 3 + d, which (for moderate d) corresponds to low prior variance and can be too
restrictive. We thus restrict the Inverse-Wishart prior for the geographical covariates only
and place independent Inverse-Gamma priors on the remaining diagonal elements of Σk.
Perhaps the most important prior distributions here are the ones relating to the shape Σ of
each cluster, namely the parameters of the Inverse-Wishart prior γ and ψ, as these define
the prior belief of the spread of each cluster. Although the parameter γ is allowed to vary
and hence can adapt depending on information from the data, nevertheless too large or too
small values of ψ (corresponding to a prior belief of geographically widely spread versus tiny
clusters) will have an impact on the posterior inference. The default setting in BPEC is that
clusters are a priori expected to span about 30% of the total range.

3. Bayesian computation
The entire model consists of the model of the root and tree posterior distribution together with
the distribution of the migration and clustering model. Inferences are drawn simultaneously,
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such that we can borrow information from the tree to the migration parameters and vice
versa. The complexity of this phylogeographic model implies that drawing inferences about
the posterior distribution of the parameters is challenging. We proceed via tailored Markov
chain Monte Carlo (MCMC) using a combination of adaptive proposals, auxiliary variables
and data-driven proposals. This is especially crucial for the clustering, which here is restricted
to tree-based clusterings, since the space of clusterings is vast and discrete without natural
local moves.

3.1. Markov chain Monte Carlo sampler

The Markov chain Monte Carlo sampler alternates between updates of the tree parameters and
the clustering parameters. We adopt a scheme whereby updates of parameters are performed
at varying frequencies, reflecting the difficulty of accepting or rejecting a move and allowing
both local and global exploration of the parameter space. Four different updates are described
below, which are then combined into a sampler at varying frequencies.
The tree T , root r, colonized haplotypes m, clustering c and cluster means µ and variances
Σ.

1. Conditionally on a given tree T , propose to change the root along with a mutation
history. Accept or reject the proposed root and mutation history.

2a. Conditionally on the root r, propose a new tree T and mutation history uniformly.

2b. Conditionally on the proposed tree T propose to change one of the colonized haplotypes
in m.

2c. Conditionally on the colonized haplotypes, propose to change the set of clusterings c
along with the means µ and variances Σ of each cluster.

2d. The proposed tree topology and history, root, clustering and means and variances are
accepted or rejected together. However, steps (2a), (2b) and (2c) need not all occur
at the same time. Specifically, steps (2a–b) are only performed (roughly) every 5th
iteration.

3. Conditionally on a given clustering, update the cluster means conditionally on all other
parameters, and subsequently the sample covariance conditionally on all other param-
eters.

4. Propose to increase or decrease the number of clusters. Then propose to add or subtract
a colonized sequence, then set of clusterings together with means and variances of each
cluster. Accept or reject the entire move.

The precise mechanics of the sampler are not shown here; some additional technical issues
are discussed in Appendix B.

3.2. Technical considerations

Almost as important as how the method works is when it is sound to use (or not). Since the
package is intended to be used primarily by practitioners, one of the aims of this paper is
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to clarify what types of questions BPEC can potentially answer as well as what underlying
assumptions are necessary and implicit.

Bayesian phylogeographic and ecological clustering assumes that non-recombinant (typically
mtDNA) data are available from a set of geographical locations (in the form of longitude/latitude).
The haplotype tree model takes a relaxed parsimony approach which may be unreliable under
conditions of mutational saturation or excessive homoplasy. BPEC is programmed to produce
appropriate error messages to inform the user in such cases, but will not be foolproof.

The geographical model assumes a constant population size and migration rate, and thus as
real data departs from this model the inferences from BPEC are expected to depart from
the true demographic history. However, simulation analyses will be required to address this
quantitatively. Also, the clustering and migration model does not explicitly take into account
geographical distance between clusters. It simply separates observations in distinct geograph-
ical clusters. Therefore, it is possible for a migration to result in two distant clusters.

Notice that we assume a uniform prior over the number of migrations K. In general, K migra-
tions can lead to up to K + 1 clusters; often, however, some of these may be empty, resulting
in fewer “effective” migrations. The uniform prior applies to the total number of migrations
rather than the number of effective ones, whereas the posterior distribution over the number
of migrations actually refers to effective migrations. This somewhat convoluted approach is
preferred because enumerating scenarios of different effective migrations is computationally
cumbersome.

As discussed earlier, an important consideration when using BPEC for the inference of ances-
tral areas is the distribution of haplotype observations within each location. Since ancestral
area probabilities are determined through the proportion of inferred ancestral haplotypes, a
site with, for example, a single haplotype which happens to be ancestral, will always result
in high probability of being ancestral. Consequently, ancestral location probabilities should
be more reliable when there are more observations per location. It also frequently occurs
that uncertainty about the root haplotype is high, where a range of different haplotypes
carry significant posterior mass. As long as no convergence errors are reported, this is not a
convergence issue but merely reflects uncertainty in the data.

One of the limitations of Markov chain Monte Carlo methods is that the samplers require a
large number of iterations to satisfy convergence diagnostics. The convergence diagnostics in
BPEC are split into two pieces: convergence of the clustering and convergence of the root
haplotype. If either of these two pieces has not converged, the sampler will return an error
to that effect. Ideally, both pieces should satisfy the convergence diagnostics; however, it is
sometimes the case (especially when dealing with a large number of clusters) that, for any
reasonable number of MCMC iterations, the diagnostics fail. In these cases, inferences should
be taken with caution.

BPEC cannot deal with unknown nucleotides and will ignore any nucleotide sites at which
at least one of the sequences has an ambiguity code. This means that ambiguous nucleotides
result in information loss. On the other hand, BPEC will treat true alignment gaps “–” as a
5th character such that a deletion/insertion is treated as a type of mutation. Care should be
taken in the interpretation of the output when lots of missing nucleotides are present, since
this could lead to significant loss of resolution (Joly, Stevens, and Van Vuuren 2007).
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Figure 6: The sampling localities for R. m. camerani and R. m. macrocnemis overlayed onto
the map. Color represents proportion of R. m. camerani versus R. m. macrocnemis individu-
als sampled, with red corresponding to 100% R. m. camerani, black 100% R. m. macrocnemis
and brown corresponding to mixed populations.

4. Brown frog data
The BPEC package will be implemented on a brown frog dataset which will be used through-
out the next few sections for illustration. We used 40 mitochondrial cytochrome b se-
quences of Near Eastern brown frogs – Rana macrocnemis (Boulenger 1885) to demonstrate
a combined phylogeographic and ecological analysis with BPEC. Previous molecular anal-
yses (Tarkhnishvili et al. 2001; Veith, Schmidtler, Kosuch, Baran, and Seitz 2003b; Veith,
Kosuch, and Vences 2003a) have attributed range expansion and fragmentation triggered by
Pleistocene glaciation cycles as drivers of demographic change within the brown frog.
R. macrocnemis is represented by a number of recognized subspecies across its entire range,
and here we focus on two widespread subspecies that are geographically distinct in the South-
West Caucasus and separated by a narrow transition zone (Tarkhnishvili et al. 2001). The
nominotypic R. macrocnemis macrocnemis (Boulenger 1885) is found on the forested slopes
of the Trialeti ridge Northwest and in montane meadows on both sides of the Great Caucasus,
while R. macrocnemis camerani (Boulenger 1885) occurs in Southern Georgia on the Javakheti
plateau (Tarkhnishvili et al. 2001). A map of the sampling localities, indicating proportion
of R. macrocnemis macrocnemis versus R. macrocnemis camerani, is shown in Figure 6.
BPEC was applied to investigate geographic and environmental aggregation of haplotypes
within R. macrocnemis. We included predictive environmental and climate covariates (topo-
graphic and land cover conditions, and annual trend patterns of temperature, precipitation
and seasonality) to examine environment and geography as agents for the structuring of ge-
netic variation. Grid-based attribute values of a set of predictor variables associated with
each cell position of the map layers were subsequently extracted at the point locations of
the georeferenced mtDNA haplotypes from six raster grids by means of the extract function
of the raster package (Hijmans 2019): four bioclimatic variables (annual mean temperature
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(degrees Celsius × 10), temperature annual range (100 × standard deviation of monthly mean
temperature), annual precipitation (in mm), precipitation seasonality (coefficient of variation
(CV)), from the bioclim database available in the dismo package (Hijmans, Phillips, Leath-
wick, and Elith 2017), altitude in meters as a proxy for a digital elevation model and the land
cover map (GLC2000; Bartholomé and Belward 2005) from the subdomain land cover/land
use housed under http://worldgrids.org/ global environmental layers. We re-classified
the total information of the land cover map into two classes of forested and non-forested
areas to introduce a simplistic landscape dependent habitat variable (COV). These six vari-
ables altogether describe climatic, topographic, and land cover conditions that are potentially
informative predictors in terms of species distribution.

5. User interface

5.1. Inputs

BPEC takes two main inputs: the set of mtDNA sequences (in NEXUS format) and the set of
coordinates and haplotypes observed in each location. Sequences need not be collapsed into
unique haplotypes, but labeling of sequences in the NEXUS file and the locations file must be
consistent. In order to load these two variables into R from two files called haplotypes.nex
and coordsLocsFile.txt (for example), the following commands can be used. For an exam-
ple of input files, use the files provided through system.file("haplotypes.nex", package
= "BPEC") and system.file("coordsLocsFile.txt", package = "BPEC") or see the sup-
plementary materials.
The sequences can be loaded using the bpec.loadSeq command.

R> library("BPEC")
R> rawSeqs <- bpec.loadSeq("haplotypes.nex")

The file coordsLocsFile.txt, containing the list of coordinates, covariates and haplotypes,
needs to have (in each row): latitude, longitude, environmental/phenotypic covariate values
(if available), plus a set of numbers corresponding to the haplotypes/sequences with these
attributes. For example, for two locations with 5 observations in total from 3 haplotypes,
with no additional covariates, the file might read

40.3 45.2 1 2 2
45.3 50.1 2 3

All haplotypes/sequences found in a location can be entered in one line, or only one per row,
such that we could also have used

40.3 45.2 1 2
40.3 45.2 2
45.3 50.1 2 3

or any such combination.
When additional environmental or phenotypic covariates are available, these can also be
entered as a column right after the longitude and latitude, such as

http://worldgrids.org/
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40.3 45.2 18.1 1
40.3 45.2 22.5 2 2
45.3 50.1 25.0 2 3

where 18.1, 22.5, 25.0 are, for example, temperatures. Names for the covariates at each lo-
cation can optionally be provided through the header row using the option header = TRUE,
these will later appear in the output plots to aid interpretation.

lon lat temp
40.3 45.2 18.1 1
40.3 45.2 22.5 2 2
45.3 50.1 25.0 2 3

Environmental covariates can be extracted, for example, from publicly available databases
such as bioclim by means of the R package raster (Hijmans 2019).
Use the bpec.loadCoords command to load the file containing the coordinates, covariates
and observed haplotypes/sequences of each location. When the first row includes variable
names, use the option header = TRUE.

R> coordsLocs <- bpec.loadCoords("coordsLocsFile.txt", header = TRUE)

The brown frog dataset is in-built and can be loaded through

R> data("MacrocnemisRawSeqs", package = "BPEC")
R> data("MacrocnemisCoordsLocs", package = "BPEC")
R> rawSeqs <- MacrocnemisRawSeqs
R> coordsLocs <- MacrocnemisCoordsLocs

which contain the 40 sequences together with their corresponding longitude/latitude, along
with 6 environmental covariates. Other datasets that are available in BPEC can be found
using data(package = "BPEC").

5.2. Main MCMC command and options

Once the rawSeqs and coordsLocs variables have been loaded, the Markov chain Monte
Carlo sampler can be run through the command

R> bpecout <- bpec.mcmc(rawSeqs, coordsLocs, maxMig = 3, iter = 1000000,
+ ds = 3, postSamples = 1000, dims = 8)

The arguments are described in Table 1.
In the case of the brown frog dataset, the dimensionality of the data was dims = 8 (geograph-
ical dimensions longitude and latitude plus the six additional environmental covariates). We
ran the BPEC analysis taking the maximum parsimony level option at ds = 0, increasing
up to ds = 3 (to potentially explore more candidate trees) for 1,000,000 iterations (iter)
each. No change to the results was observed, since the brown frog haplotypes formed a fully
connected tree without missing intermediate haplotypes. Convergence diagnostics of the max-
imum a posteriori clusterings and root were not violated (i.e., no convergence error message
was reported). The output of the function is shown below.
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Argument Description
maxMig The maximum number of migrations to be considered. In terms of in-

ference, the higher maxMig, the better the results, since more models are
considered. However, that comes at a computational cost. We recommend
using a low but intuitive value based on the study system to begin an it-
erative assessment. For example, if using a value of 6 (corresponding to 7
clusters), and if the inference shows significant posterior probability on 7
clusters, increase maxMig and re-run. Similarly, if, e.g., a value of 5 is used
and convergence diagnostics are not satisfied, but posterior mass seems to
be minimal around 4/5 migrations, then one can reduce maxMig to 4 (which
will reduce complexity) and re-run.

iter The number of MCMC iterations to run the sampler for. By default, two
chains will be run from different starting values. The value of iter is
important, as it will determine how long the chains will run for and whether
convergence (both in terms of the root haplotype as well as the clustering)
diagnostics will be satisfied. A value of 100,000 is usually reasonable to start
with; if convergence diagnostics are not satisfied, or if the post-processing
plots look inconsistent, increase iter by a factor of 10 (and so on).

ds The parsimony relaxation parameter ds. We recommend starting with ds =
0 and increasing once reasonable values of iter and maxMig have been
established. Note that increasing ds past an (unknown) value dmax, which
depends on the individual dataset, has no effect on the inference.

postSamples The number of posterior samples (per chain) to be saved for posterior sum-
mary statistics. We recommend using a value around 1,000. The higher
the better for inference, but this comes at a memory storage cost.

dims The number of covariates (including longitude and latitude) available. If
only geographical data are used (and no environmental or phenotypic in-
formation), dims = 2. Otherwise increase as appropriate.

Table 1: The list of inputs required to use bpec.mcmc().

The dataset appears to have some integer-valued environmental/phenotypic
entries.
If this is not correct, check the value you have given for dims.

Starting bpec...
Inferring possible missing sequences....
Counting loops in the network...

The program found no loops that need to be resolved in the network

Number of iterations is 1000000
Number of saved iterations 1000
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Output Description
seqCountOrig The number of sequences in the data.

seqLengthOrig The length of the input sequences.
iter The number of MCMC iterations.

ds The parsimony relaxation parameter.
coordsLocs The input coordinates (and optional additional ecological measurements)

and their corresponding sequence indices.
coordsDims The dimension of the input measurements (2 if purely longitude and

latitude, +1 for every additional one).
locNo The number of distinct sampling locations.

locData The coordinates and measurements of each sampled sequence.

Table 2: The list of outputs of input(), corresponding to all the inputs and arguments that
were provided to bpec.mcmc().

Sample size is 40
Effective sequence length is 8
Total number of haplotypes (including missing) 10
Dimension is 8
Parsimony relaxation is 3
Maximum number of migrations is 3

Starting MCMC sampler (burn-in ends at 90% and acceptance rate re-started):
Chain 1: |====================|100% (accepted samples 2763 time 24 minutes)
Chain 2: |====================|100% (accepted samples 2823 time 49 minutes)

The most likely root node is 2
The most likely ancestral locations are 38,34,4

5.3. Outputs
The bpec.mcmc command outputs an R object of class ‘BPEC’ which can be summarized
using generic functions such as plot(), summary() and plot(), as well as accessor functions
input(), preproc(), output.tree(), output.clust(), output.mcmc(). The output of each
of these accessor functions is shown in Tables 2–6.

5.4. Visualizations and post-processing
As described in the previous section, the Markov chain Monte Carlo sampler returns many
different types of outputs. In order to obtain a summarized picture of the inference, a number
of visualizations are available through BPEC to aid interpretation.

Geographical contour plot
The command bpec.contourPlot provides a color-coded contour plot of the geographical
clusters superimposed onto a map (provided accurate longitude and latitude coordinates have
been provided) using
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Output Description
seq The output DNA sequences of distinct haplotypes, collapsed to effective

nucleotide sites (both sampled and missing sequences which were inferred).
seqsFile A vector of the numerical labels of each haplotype.

seqLabels Correspondence vector for each of the processed observations to the original
haplotype labels.

seqIndices Correspondence vector for each of the original observations to the resulting
haplotype labels.

seqLength The effective length of the input sequences, given by the number of variable
nucleotide sites which are informative. In other words, if two or more nu-
cleotide sites describe the same subsets of sequences, then they are collapsed
to a single informative nucleotide.

noSamples The number of times each haplotype was observed in the sample.
count The number of output sequences.

Table 3: The list of outputs of preproc(), corresponding to values arising from the data
before the Bayesian analysis.

Output Description
clado The adjacency matrix for the maximum a posteriori tree in vectorized

format. For two haplotypes i,j, the (i,j)th entry of the matrix is 1 if
the haplotypes are connected in the network and 0 otherwise.

levels Starting from the root (level 0) all the way to the tips, the discrete depth
for the maximum a posteriori tree.

edgeTotalProb Posterior probabilities of each edge being present in the tree, so that
any edge which is not part of a loop will have posterior probability 1.

rootProbs A vector of the posterior probabilities that each haplotype is the root of
the tree.

treeEdges Contains the same information as cladoR, but in a different format.
The set of edges (from and to haplotypes) of the maximum a posteriori
haplotype tree are represented as an edge list of from/to vectors which
could be used in the graph and network modeling R package igraph
(Csardi and Nepusz 2006) if needed.

rootLocProbs A vector of the posterior probabilities of each sampling location being the
most ancestral location. If several rows in the file coordsLocsFile.txt
correspond to the same geographical location, the first of these will carry
the total posterior probability for the location, with the remaining hav-
ing 0.

migProbs A vector of the posterior probabilities of {0 . . . maxMig} migrations.

Table 4: The list of outputs of output.tree(), corresponding to the output of the tree model.

R> par(mar = c(0, 0, 0, 0), mfrow = c(1, 2))
R> bpec.contourPlot(bpecout, GoogleEarth = 0, mapType = "google",
+ colorCode = c(7, 5, 6, 3, 2), mapCentre = NULL, zoom = 7)
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Output Description
sampleMeans A set of postSamples posterior samples of the cluster centers.
sampleCovs A set of postSamples posterior samples of the cluster covariances.

sampleIndices A set of posterior samples of the cluster allocations of each observation.
clusterProbs For each haplotype, posterior probabilities that it belongs to each clus-

ter.

Table 5: The list of outputs of output.clust(), corresponding to the output of the geo-
graphical clustering model.

Output Description
MCMCparams Various tuning parameters used in the MCMC sampler, this is only impor-

tant for development.
codaInput Posterior samples from the two MCMC chains for the cluster means, clus-

ter covariance entries, as well as the root haplotype. Note that, since the
number of clusters varies from iteration to iteration, some samples are sim-
ply draws from the prior (corresponding to empty clusters). This variable
can be loaded directly into the coda package (Plummer, Best, Cowles, and
Vines 2006) for convergence analysis.

Table 6: The list of outputs of output.mcmc(), corresponding to technical MCMC aspects.

to use Google maps, or

R> bpec.contourPlot(bpecout, GoogleEarth = 0, mapType = "osm",
+ colorCode = c(7, 5, 6, 3, 2), mapCentre = NULL, zoom = 7)

to use OpenStreetMap.
In order to convey not only posterior means but also uncertainty, a set of posterior draws of
these contours are plotted using transparency, so that the user can assess the stability of the
inference.
The sampling locations are also shown on this contour plot, with the top three sampling
locations in terms of their probability of being ancestral shown as larger points. The precise
posterior probabilities (which may all be low in the presence of uncertainty) of each of the
localities being ancestral can be found through output.tree(bpecout)$rootLocProbs.
The colors can be changed through the optional argument colorCode (with default value
(7, 5, 6, 3, 2, 8, 4, 9)) which controls the color of the first, second, third cluster etc;
if not specified, the default color scheme is used. There are four options for the argument
mapType: "none" will show the posterior distribution of the clusters against a white back-
ground, "plain" will use the in-built outline R maps, "google" will superimpose the contours
on a map downloaded from Google maps (requires an internet connection), and "osm" will do
the same using OpenStreetMap. The optional arguments mapCentre and zoom allow the user
to specify the center of the map and level of zooming when using the Google maps option.
In the case of the brown frog dataset, the contour plot is shown in Figure 7. The poste-
rior mass for the number of clusters strongly concentrates around 2 (as indicated by the
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Figure 7: An example of the contour plot for the brown frog dataset using bpec.contourPlot,
using OpenStreetMap (left) and Google Maps (right). Each transparent geographical ellipse
represents a posterior draw for the geographic center of the cluster within the 50% level
contour of that draw. The 50% contour represents the boundary where probability density
of the cluster is 50% of the maximum density (i.e., the center of the cluster). Solid ellipses
represent posterior means. Larger triangles represent most likely ancestral locations. The
black jagged lines show the outline of the geographical map of the area.

output output.clust(bpecout)$migProbs), with the posterior probability of 2 clusters be-
ing greater than 0.99. The yellow cluster can be taxonomically aligned to the subspecies
R. m. macrocnemis lineage, while the turquoise cluster includes individuals of R. m. macroc-
nemis from the humid and forested mountain region, and individuals assigned to R. m. cam-
erani from the drier area of the Southern treeless mountain steppe habitats of the Javakheti
plateau. The contour ellipses overlap in the heart of the geographic transition zone South of
the Minor Caucasus.
Instead of using the R interface, the contour plot can also be exported into Google Earth
primary exchange format using the option GoogleEarth = 1. This will produce a set of files
with extension kml which can be loaded directly into Google Earth.
Finally, a “messy” looking plot such as the toy example in Figure 8 either implies poor MCMC
convergence or high uncertainty in terms of the clustering.

Environmental and/or phenotypic covariates plot

In cases where environmental or phenotypic covariates have also been used, posterior draws
for the distribution of the covariates within clusters are available in the list returned by
output.clust(bpecout) through the named elemented for cluster means sampleMeans and
covariances sampleCovs. These can be summarized through posterior medians and 5/95%
credible regions, color-coded using the same coding as the contour plot. To aid plotting and
interpretation, the covariate names of each of the columns of coordsLocs are used. The first
two (corresponding to longitude and latitude) are automatically ignored in this function.

R> par(mfrow = c(2, 3))
R> bpec.covariatesPlot(bpecout, colorCode = c(7, 5, 6, 3, 2))
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Figure 8: A toy example of a posterior distribution of phylogeographic clustering which shows
high uncertainty. Many of the clusters “jump” from one location to another from iteration to
iteration, indicating uncertainty about the location (and number) of clusters.

The plot produced in the case of the brown frog dataset is shown in Figure 9.

Clustered tree plot

To visualize the maximum a posteriori haplotype tree, the command bpec.treePlot plots
the haplotype tree most supported by the data. The size of each node in the tree represents
the number of times each haplotype was observed, black dots corresponding to missing inter-
mediate haplotypes. The thickness of each edge represents the posterior probability that each
mutation occurred (thin edges corresponding to mutations with high uncertainty). Observed
haplotypes are color-coded according to their posterior probability of belonging to each clus-
ter. As long as the same colorCode variable is used, the cluster colors correspond to the ones
used in the geographical and covariate contour plots.

R> bpec.tree <- bpec.treePlot(bpecout, colorCode = c(7, 5, 6, 3, 2))

The corresponding plot for the brown frog dataset is shown in Figure 10. BPEC collapsed
sequences to 10 distinct haplotypes with effective length 8 displayed in the maximum a pos-
teriori haplotype tree shown.
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Figure 9: Plot of the distribution of the covariates for each cluster for the brown frog dataset
using bpec.covariatesPlot. Shaded regions correspond to 5% and 95% pointwise credibility
bands of each cluster, with solid lines showing the pointwise median. Color corresponds to
the same clusters as the contour plot above.

Tree plot on geographical map
The tree plot can also be partially visualized geographically through the bpec.geoTree com-
mand which superimposes the haplotype tree onto a map through a file that can be loaded
into Google Earth. The function uses the igraph package (Csardi and Nepusz 2006) as well
as phytools (Revell 2012; Valiente 2010) in order to visualize the network as an interactive
tree. Finally, to overlay the tree onto the map, the archived package R2G2 is used (Arrigo,
Albert, Mickelson, and Barker 2012; Arrigo 2013). Since haplotypes can be observed in mul-
tiple locations, clicking on particular nodes of the tree shows the locations where each copy of
the haplotype was found. However, when multiple haplotypes were found in a single location,
only one will be displayed, so the bpec.geoTree may not tell the whole story. Also note that
only existing tip haplotypes are possible to identify on the map.

R> bpec.geo <- bpec.geoTree(bpecout, file = "GoogleEarthTree.kml")

Tip haplotypes are connected to a tree by a single branch, internal node haplotypes have
three or more connections, whereas branch haplotypes exactly two connections.

6. Analysis of the brown frog data
In the case of the brown frog data, the three locations with highest probability of being
ancestral are approximately located at the intersection between the yellow and turquoise
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Figure 10: Clustered tree plot of the brown frog dataset using bpec.treePlot. Color cor-
responds to cluster membership probability and size of node to the number of individuals
sampled with each sequence. Edges represent single effective mutations and black dots repre-
sent unobserved intermediate haplotypes. In this case all edges have effectively no posterior
uncertainty under the model, so they all appear with equal thickness.

cluster, shown as larger dots in Figure 7. These three locations correspond to (a) Paravani
lake, treeless mountain steppe, 2100m, Javakheti plateau, posterior probability 24%, (b)
Tsalka, treeless mountain steppe, close to the Southern slopes of the Trialeti Ridge, posterior
probability 12% and (c) Cross Mountain Pass, alpine habitat, 2000–2500m, Great Caucasus,
posterior probability 10%. However, it is important to condition any conclusions drawn from
these inferences on their associated probability values, and in the case of R. macrocnemis it
is clear that there is high uncertainty associated with these inferences that is related to the
limited information content of the data rather than issues of convergence. Further sampling
(more localities and more individuals per locality) may improve posterior probabilities, but
it may also be possible to develop BPEC to incorporate outgroup sequences for the inference
of ancestral haplotypes (see Section 7), something that should improve posterior probabilities
for ancestral areas.
Differences within bioclimatic (annual mean temperature, annual range of temperature, an-
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nual precipitation, precipitation seasonality) and altitude variables between the two clusters
(Figure 9) are largely due to their mean values rather than their variances. Differences in
means are especially apparent for the annual mean temperature (> 5℃ for the yellow clus-
ter and around 5℃ for the turquoise cluster), annual range of temperature (high amplitude
of variation, typical for mountain climates: CV < 320% for the yellow cluster, > 320%
for populations of the turquoise cluster), annual precipitation (higher for populations of the
turquoise cluster, nearly 800mm), annual distribution of precipitation (much higher in the yel-
low cluster, CV > 45% which results in higher variation in the timing and intensity of annual
precipitation). Altitude is rather similar around 1500–1800m. Finally, the landscape depen-
dent variable “open vs. forested habitat” is clearly different for the clusters. These findings
suggest that individuals within the sampled area for R. macrocnemis are best described by
two geographic clusters of mtDNA sequence variation and that they also differ with respect
to specific environmental conditions. These data therefore offer support to the hypothesis
that both processes of geographic isolation and divergent selection have contributed to diver-
sification within the group, with the suggestion that taxonomy recognizes these entities. As
such, the results of BPEC provide specific hypotheses than can be further tested with a more
extensive genetic marker based approach for hypothesis testing (see Section 7) .

7. Discussion
We have described BPEC, an implementation of the phylogeographic and ecological clustering
methods described in Manolopoulou et al. (2011); Manolopoulou and Emerson (2012). We
have introduced several visualization and post-processing tools in order to aid data analysis
and interpretation, along with details of the significance of different types of output. BPEC
will continue to be improved. The main focus of the extensions will revolve around speeding
up the convergence of the sampler and improving the approximation stemming from the
auxiliary tree parameter.
We recommend caution when extrapolating conclusions from BPEC output, and as is the
case for many software packages it is important that users do not take a black box approach.
Users should condition their conclusions on the biology of their organism of interest, the
completeness of their sampling, and the idiosyncrasies of their data (e.g. the proportion of
unsampled haplotypes). In terms of extensions to the actual model, more generic evolutionary
models for subdivided haplotype trees will be gradually introduced, such as the one recently
developed by De Maio, Wu, O’Reilly, and Wilson (2015). Similarly, explicitly modeling the
migration process as a spatial transition will allow additional information from the spatial
distribution to inform the tree and vice versa. As currently configured, BPEC is best treated
as a tool that can potentially reduce model space for subsequent hypothesis testing. As an
example, in the case of the brown frog Rana macrocnemis BPEC identified geographic clusters
of mtDNA sequence variation that are associated with differing environmental environmental
conditions that could underpin divergent selection. Thus, BPEC presents evidence that both
neutral and selective processes are driving diversification within the group. However, as
BPEC is limited to the analysis of a single DNA sequence locus, inferences should not be
extrapolated to ultimate biological/ecological conclusions. BPEC should lend itself to the
integration of inferences across multiple loci within a species, and this is an area that we
are investigating for future updates. Of particular relevance is the increasing accessibility of
reduced genome sequencing data (McCormack, Hird, Zellmer, Carstens, and Brumfield 2013)
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that can provide up to tens of thousands of loci per individual. Filtering for loci characterized
by multiple SNPs could provide a rich data source for a multi-locus BPEC implementation.
Analogous to a single species multi-locus analysis, it should also be possible to integrate
across different species sampled from the same locations within BPEC. Such an approach
would provide for quantitative measures for comparative phylogeography, and this will also
be explored for future updates of BPEC.
Outgroup sequences can potentially directly inform about the probability of a haplotype
being the most recent common ancestor (MRCA) of a set of sequences, and future versions
of BPEC will explore the possibility of incorporating outgroup sequences to for this purpose.
Sequences immediately derived from an inferred MRCA are also expected to provide some
information regarding ancestral areas, and integrating information across the MRCA and
sequences immediately derived from it will also be explored.
Finally, we are investigating whether we can extend the applicability of BPEC to the analysis
of geographic population structure derived from vicariant processes – i.e., where populations
become isolated and thus initially share genetic variation, but diverge through time through
lineage sorting effects and the accumulation of new population specific mutations. BPEC
should be applicable to the examination of genealogy among such closely related populations
under the evolutionary model of population splitting. In the absence of opposing gene flow
among populations, all populations will eventually become diagnosable as descending from
a single haplotype unique to that population (lineage sorting). This diagnostic is equivalent
to the pattern derived from a colonization event, and as such it must be borne in mind that
clusters defined by BPEC may indeed have a vicariant origin. Incorporating a vicariance
model into BPEC may prove challenging, but it would (i) facilitate the detection of more
subtle geographic structuring than that derived from the dispersal model, and (ii) provide a
more realistic model of phylogeographic structure.
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A. Temporal orderings
Suppose the haplotype tree is given by the top tree of Figure 11 (Manolopoulou and Emerson
2012). For ease of exposition, the numbers on the nodes here represent the sample sizes of
each haplotype rather than the label of each haplotype.
Simulating a temporal ordering implies that, starting with the ancestral sequence, we specify
a series of replication and mutation events which occurred by mimicking evolution, eventually
resulting in the observed haplotype tree. A possible series of events is shown in Figure 11
through 7 timepoints, where node numbers indicate number of copies of each haplotype.
Notice that, if the root node had replicated further, we would have had three copies of the root
haplotype. Although in theory this could have happened, with one of the copies eventually
becoming extinct, we do not take into account any such scenarios, instead we only account
for the observed sequences. Additionally, it would not have been possible for the intermediate
haplotype to mutate after Step 3 above, since then it would disappear from the ancestral
sequences, and another mutation would not have been possible.

B. Computational issues

B.1. Haplotype tree likelihood

When calculating the Metropolis-Hastings ratio for a proposal from root r to r′, one needs to
calculate

p(r′ | T,S)
p(r | T,S) =

∣∣∣OSr′,T ∣∣∣∑
r

∣∣OSr,T

∣∣∣∣OSr,T

∣∣∑
r

∣∣OSr,T

∣∣ =

∣∣∣OSr′,T ∣∣∣∣∣∣OSr,T

∣∣∣ .
However, computing the size of the two sets of temporal orderings is a computational bot-
tleneck. To overcome this issue, an unbiased estimator of the likelihood is used instead.
Conditionally on a root r and tree T , a particular ordering O∗ is generated by moving from
the root to the tips and randomly choosing among the available replicate/mutate moves at
each step, according to some distribution q(O∗), such that any possible ordering of OSr,T can
arise. Then calculate ∣̂∣∣OSr′,T ∣∣∣ = 1

q(O∗) ,

such that

E
(∣̂∣∣OSr′,T ∣∣∣) =

∑
O∗∈OSr,T

1
q(O∗) × q(O

∗) =
∣∣∣OSr′,T ∣∣∣ ,

so it provides an unbiased estimator of the likelihood. Note here that the latent variable
O is not accepted/rejected together with the root, so the Markov chain Monte Carlo does
not maintain detailed balance (see Manolopoulou and Emerson 2012; Beaumont 2003). This
is because variance of q(O∗) can be huge and detrimental to the MCMC, causing it to get
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Figure 11: Top panel: In this tree the oldest haplotype of the sample (the top haplotype)
is observed twice in the sample, whereas the intermediate haplotypes in not observed at all.
Bottom panel: a possible time evolution of how the haplotypes arose. Nodes without a number
correspond to haplotypes which have not appeared yet. At first one sequence is present, the
ancestral sequence, which replicated into two (the first event is always a replication, otherwise
that haplotype would disappear). Then one of those two identical sequences may replicate
again to give us a total of three (or could have mutated to give a new haplotype). One of
those three then mutate to give us the intermediate haplotype, which in turn here replicates
and then mutates (and goes extinct) to give us the right-hand leaf. Finally, the intermediate
haplotype mutates again to give us the left-hand leaf, which then also replicates to give
another copy of itself.

“stuck”; future improvements of q(O∗) could allow O∗ to be accepted/rejected together with
the root r. Multiple realizations of O∗ could also be used instead, but BPEC only considers 1.

B.2. MCMC exploration and convergence

The BPEC model faces two additional key computational bottlenecks. The first comes from
learning the posterior probability of the root haplotype. Since it relies upon an estimator
of the likelihood, a large number of iterations are required in order to allow for reasonable
convergence. However, the total number of haplotypes (and as such the number of possible
roots) is generally low (usually up to a few hundreds), so with enough iterations the sampler
can explore the whole root parameter space sufficiently.
On the other hand, the clustering parameter space is challenging to adequately explore. In-
stead, sophisticated local proposals are required. Manolopoulou et al. (2011) implement a
clustering proposal which cumulatively adds observation branches (as shown in Figure 5) to
clusters by starting with empty clusters with mean and variance equal to their corresponding
prior means. As each observation branch is added to one of the clusters (in random order),
the means and variances of that cluster are updated according to the corresponding poste-
rior means. This allows the sampler to propose clusters for each branch according to the
cluster in which it fits best, while randomizing the order of the allocation meant that no
branches were given higher weight than others. In BPEC we tweak the proposal distribu-
tion of Manolopoulou et al. (2011) by introducing an auxiliary variable wc, representing the
weight of the previous clustering in the MCMC sampler. Rather than simply allocating each
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observation branch to one of the existing clusters simply by assessing the fit of each branch
to each of the clusters, we assign it to the same cluster as the previous iteration (where pos-
sible) with probability wc. This favors clusterings similar to the previous iteration, thereby
ensuring that local moves are proposed more frequently. Since wc is an auxiliary variable,
it is accepted/rejected together with the proposed parameters, so the sampler automatically
chooses a value of wc that is reasonable.

B.3. Label-switching

In order to draw cluster-specific inferences, cluster labels need to be assigned for every pos-
terior sample available. This is known as the label-switching problem (Stephens 2000a,b;
Papastamoulis and Iliopoulos 2010) and it is especially challenging in the case of a vari-
able number of clusters. Here we take a pivoting approach to assign cluster labels on-line
(i.e., without the need of post-processing). The algorithm works as follows:

1. During burn-in of the first chain, record the cluster labels of the posterior sample with
the highest value of the posterior density, denoted by c∗.

2. Once this clustering is fixed, subsequent labels of the posterior sample of the set (µ,Σ)
are chosen such that

p (Y | µc∗ ,Σc∗ , c
∗)

is maximized. In other words, labels of the set of means and covariances are chosen
such that the likelihood relative to (approximate) maximum a posteriori clustering c∗
is maximized.

B.4. Hashing

In contrast to coalescent trees, which are binary and can be represented simply by the pairs
of subsequent coalescence events, haplotype trees do not have shorthand representations.
Instead, a standard way to represent a haplotype tree is through its corresponding graph
adjacency matrix. However, keeping track of posterior samples of trees requires storing entire
matrices at each iteration of the sampler, which creates a memory bottleneck.
In our case, we can take advantage of the fact that not all adjacency matrices are possible;
most edges are either certainly present or absent as determined by Ω. Uncertainty only arises
through edges that are part of a loop in the network, so each tree is characterized by the set of
deleted edges. Trees are then reduced to vectors of length nloop with integer entries. Standard
hashing techniques can thus be used to store the number of times each tree (i.e., each integer
vector) appears in the MCMC posterior samples.
Hashing algorithms allow us to represent integer vectors by an single integer. In our case,
we can store the index of the edge deleted from each loop at each iteration of the MCMC,
keeping track of them via the “hashing index” of the entire vector. Hash functions create a
short (as short as possible) address book where each of these numbers is stored in a specific
page, in such a way that it can easily be retrieved (see Knuth 1998).
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