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Abstract

We propose new statistical tools to analyze and to estimate the characteristics of time
periods based on the posterior distribution of an associated collection of dates. These
tools are implemented in the R package ArchaeoPhases. The required inputs are simu-
lated samples from the posterior distribution of a collection of dates. Such Markov chain
Monte Carlo samples are provided, for instance, by BCal, ChronoModel, or OxCal, freely
available software applications built for the chronological modeling of estimated dates.
We give a practical introduction to the package ArchaeoPhases using published data and
comment on the statistical results.

Keywords: Bayesian modeling, Markov chain Monte Carlo samples, tempo plot, time range
interval, transition interval, gap interval, gap test.

1. Introduction
Statistical modeling within the Bayesian framework is widely used for constructing chronolo-
gies based on relative and absolute chronological information. This consists of the estimation
of a collection of dates where

• the observations are measurements (along with their error) coming from possibly dif-
ferent dating methods (radiocarbon, archaeomagnetism, thermoluminescence, . . . ),

• prior information about these dates is induced by archaeological, geological, historical,
environmental or any other considerations.

Bayesian inference is a probabilistic estimation method, in the sense that the information on
the estimated parameters is given by a probability distribution called the posterior distribu-
tion. Usually the analytic expression of the posterior distribution is not easily computable.

https://doi.org/10.18637/jss.v093.c01
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However, inferences may be drawn using a sample generated from the posterior distribution.
More precisely, it is possible to compute a Markov chain whose target distribution is the pos-
terior distribution. Indeed, Markov chain Monte Carlo (MCMC) algorithms provide a way of
drawing samples from the joint posterior distribution in high-dimensional Bayesian models.
Software applications available to estimate chronologies include: BCal (see Buck, Boden,
Christen, James, and Sonnenwald 2018; Buck, Christen, and James 1999), ChronoModel
(see Lanos, Philippe, Lanos, and Dufresne 2016; Vibet, Philippe, Lanos, and Dufresne 2016;
Lanos and Philippe 2017, 2018) and OxCal (see Bronk Ramsey 2016, 2009), but also JAGS
(Plummer 2003) via the package rjags (Plummer 2019), or via the package ArchaeoChron
(see Philippe and Vibet 2017), and Stan (Carpenter et al. 2017) via the package rstan (Stan
Development Team 2020). These applications return the marginal posterior distribution of all
the estimated dates with elementary statistics (mean, standard deviation, highest posterior
density HPD region, . . . ). It is also possible to export the output of MCMC simulations from
the joint posterior distribution of the dates. These simulated samples can be imported into
R (R Core Team 2020). Hence, we can explore the joint distribution of a collection of dates
using the ArchaeoPhases package (Philippe and Vibet 2020).
The ArchaeoPhases package provides new statistical tools for the analysis of chronologies
based on the joint distribution of estimated dates and it is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=ArchaeoPhases. Two
tools explore, for a collection of dates, the rate of occurrence of these dates (TempoPlot() and
TempoActivityPlot()). Three other tools summarize periods of time, or what we call phases,
defined by some archaeological, paleo-environmental, geographical, . . . criterion. A phase is
associated with a collection of calendar dates estimated from the chronological model.
In this article, we will explain and illustrate the use of the following new statistical tools:

• Tempo plot: introduced by Thomas Dye (see Dye 2016), is a statistical graphic designed
for the archaeological study of long term rate that embodies a theory of archaeological
evidence for the occurrence of events and its associated activity plot.

• Time range interval: a time interval that characterizes the period of time during which
a phase happened.

• Transition range interval: a time interval that characterizes the period of time during
which a transition between two successive phases happened.

• Testing procedure to check the presence of a gap: between two successive phases. A
gap range interval is estimated, if we accept its existence, and characterizes the hiatus
between two successive phases.

The R package ArchaeoPhases presents a list of functions for calculating these statistics. The
inputs of these R functions are samples simulated from the posterior distribution of dates (e.g.,
the Markov chains simulated by BCal, ChronoModel, or OxCal). For non-R users, a web ap-
plication has been developed in order to take advantages of these functions without having to
know R. This application is freely available at https://archaeology-bayesian-modelling.
shinyapps.io/ArchaeoPhases and can also be used by calling app_ArchaeoPhases() within
package ArchaeoPhases.
In Section 2, we describe the statistical aspects of our new tools developed for the analysis of
phases (or their associated collection of dates) in a Bayesian framework. Section 3 provides

https://CRAN.R-project.org/package=ArchaeoPhases
https://archaeology-bayesian-modelling.shinyapps.io/ArchaeoPhases
https://archaeology-bayesian-modelling.shinyapps.io/ArchaeoPhases
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a short description of the data published by Bosch et al. (2015) used to illustrate the use of
ArchaeoPhases and explanations about the problem. Then we construct a Bayesian model
with ChronoModel in order to estimate four Palaeolithic periods based on the information
of the stratigraphic sequence and on radiocarbon dates found at Ksâr ’Akil (Lebanon). In
Section 4, we give a practical introduction to the first steps with package ArchaeoPhases
(version 1.3). Then in Section 5, we analyze the MCMC output of the modeling done with
ChronoModel and estimate the four Palaeolithic periods using the information found at Ksâr
’Akil.

2. Statistical aspects
We define a chronology as a collection of calendar dates τ1, . . . , τn. Usually, the dates τ1, . . . , τn
are not observed, they are estimated from a Bayesian chronological model that includes rela-
tive and absolute chronological information (e.g., BCal, ChronoModel, OxCal). The relative
information relates to the temporal ordering of dates whereas the absolute information usually
arises from possibly different dating methods.

Notation: We denote by M the set of measurements coming from dating methods. We
assume that MCMC samples from the joint posterior distribution p(τ1, . . . , τn |M) of all the
dates τ1, . . . , τn are available.
Two types of questions may arise when considering a chronology of dates: the rate of occur-
rence of these dates and the periods of time during which these collections of dates happened.
We propose new statistical tools built as post-processing steps of the MCMC sample of the
chronology in order to give answers to these questions.

2.1. Rate of occurrence of dates
Dye (2016) defined a graphical tool, called tempo plot, to evaluate the rate of occurrence of
the dates. We propose a Bayesian interpretation of this estimate. The quantity of interest
cannot be viewed as a counting process because the dates of the events (τ1, . . . , τn) are not
observed. For each date t, the aim is to estimate the number of dates N(t) which occur before
the date t. We have

N(t) =
n∑
i=1

I]−∞,t](τi).

As N(t) is a function of the parameters (τ1, . . . , τn), we can easily estimate N(t) from the
joint posterior distribution of (τ1, . . . , τn). The Bayes estimate of N(t) (under quadratic loss)
is the posterior mean of N(t), i.e.,

N̂(t) = E(N(t) |M) = E
(

n∑
i=1

I]−∞,t](τi) |M
)

=
n∑
i=1

P(τi < t |M). (1)

Using the output of the MCMC algorithm
(
τ

(k)
1 , . . . , τ

(k)
n

)
k=1,...,NMCMC

, we can approximate

the Bayes estimate N̂(t) by taking

N̂(t) ≈
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i=1
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NMCMC

NMCMC∑
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I]−∞,t]
(
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= n
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NMCMC∑
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F (k)(t),
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where F (k) is the empirical cumulative distribution of the sample
(
τ

(k)
1 , . . . , τ

(k)
n

)
(output of

the iteration number of k of MCMC algorithms):

F (k)(t) = 1
n

n∑
i=1

I]−∞,t]
(
τ

(k)
i

)
.

The NMCMC functions nF (k) (·) provide a sample from the posterior distribution of N . There-
fore we can easily build a credible region for the function N . Indeed for each t we take the
smaller posterior interval approximated from the sample nF (k)(t), k = 1, . . . , NMCMC. An
alternative is to use Gaussian approximation to get the credible intervals. To visualize the
rhythms, an alternative to the tempo plot consists in representing the first derivative of N̂
defined in Equation 1. This graphical tool is called activity plot.

2.2. Periods of time

The question about a chronology is not only a matter of estimation of these calendar dates
τ1, . . . , τn but also the characterization of historical, or geological, or archaeological, . . . periods
of time, or what we call phases. A phase is a collection of dates estimated from the chronology.
We define a phase (denoted P ) by a collection of dates gathered on some criterion, τi for i ∈ I
where I is a subset of {1, . . . , n} and n the total number of calendar dates.
In this section, we present the classical way of summarizing a period of time, or a phase, and
we introduce our new concepts where the aim is to further interpret the MCMC sample from
the joint distribution of the chronology of dates.

Classical summary

A phase is commonly summarized by two parameters: the start and the end dates of the
corresponding period of time. Two different approaches are considered in order to estimate
these two dates.

1. The start and end dates are modeled, and so additional parameters are incorporated in
the model. This approach is implemented in an OxCal application where the parameters
are denoted by ta and tb. This requires prior assumptions on the distribution of the dates
belonging to the phase on the estimated period [ta, tb], such as a uniform distribution on
[ta, tb]. See Naylor and Smith (1988); Buck, Litton, and Smith (1992); Christen (1994);
Buck, Litton, and Cavanagh (1996); Nicholls and Jones (2002) for different choices of
prior distributions.

2. The start (resp. the end) date is estimated by the date of the minimum (resp. the
maximum) of the associated collection of dates. This approach does not model any
additional parameter to define the phase. It is only a reflection of the time period
covering the collection of dates, a post-processing step based on the MCMC sample of
the collection of dates. These statistics are implemented in ChronoModel and OxCal
applications.

With both approaches, a phase is characterized by two dates (start and end) for which a
credible interval may be given. However, these two estimated parameters do not provide a
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localization of the phase in time. For instance, one could use the Bayes estimate of the start
and end dates of a phase in order to build an interval. However, it is impossible to determine
the probability that all the dates of the collection belong to that interval.
Our new tools are built in order to characterize a phase by a time interval with fixed proba-
bility that the dates of the collection belong to it.

Time range interval

We propose characterizing a phase by a time period that contains all the dates of the associated
collection with a given probability. The period called time range interval gives an idea of the
start, the end and the duration of the phase. It locates a phase in time.

Definition 1. Let P = {τi i ∈ I ⊂ {1, . . . , n}} be a collection of dates gathered in a phase.
The 100(1− γ)% time range is the shortest interval (a, b) such that

P(τi ∈ [a, b], ∀i ∈ I)|M) = 1− γ. (2)

This means that the time interval [a, b] contains all the collection of dates {τi i ∈ I} with a
fixed posterior probability 1− γ (e.g., 95%, 68%, . . . ).
We denote α = start(τi, ∀i ∈ I) and β = end(τi, ∀i ∈ I). Equation 2 can also be rewritten in
the form

P(a ≤ α , β ≤ b |M) = 1− γ. (3)

Therefore the construction of the time range interval depends only on the joint posterior
distribution of (α, β).
The intervals [a, b] satisfying Equation 3 are those that satisfy:

{[a(ε) ; b(ε)], ε ∈ [0, γ]},

where

• a(ε) = F−α (ε |M) with F−α (· |M) is the quantile function of the posterior distribution
of α,

• b(ε) = F−β (1−γ
1−ε |α ≥ a(ε),M) with F−β (· |α ≥ a(ε),M) is the quantile function of the

conditional distribution of β given α ≥ a(ε) andM.

So we have

P(a(ε) ≤ α ; β ≤ b(ε) |M) = P(β ≤ b(ε) | a(ε) ≤ α,M)P(a(ε) ≤ α |M)

= 1− γ
1− ε (1− ε).

The last equality comes from the definition of a(ε) and b(ε). Therefore the shortest interval
is obtained by taking [a(ε∗), b(ε∗)] where

ε∗ = argminε∈]0,γ[ (b(ε)− a(ε)).

In practice, the values of a(ε) and b(ε) are estimated by the empirical quantiles calculated on
the MCMC outputs. Using the output of the MCMC algorithm

(
τ

(k)
1 , . . . , τ

(k)
n

)
k=1,...,NMCMC

,



6 ArchaeoPhases: Analysis of Archaeological Phases in R

we produce
(
α(k), β(k)

)
t=1,...,NMCMC

the MCMC sample corresponding to the posterior distri-
bution of (α, β),

α(k) = start
(
τ

(k)
i , i ∈ I

)
and β(k) = end

(
τ

(k)
i , i ∈ I

)
.

a(ε) is estimated by the empirical quantile of the sample
{
α(1), . . . , α(NMCMC)

}
(sample cor-

responding to the marginal posterior distribution of α). b(ε) is estimated by the empirical
quantile of

{
β(t), t ∈ T

}
, where T =

{
j |α(j) ≥ a(ε)

}
.

Transition interval between two successive phases
We propose to characterize the transition of time between two successive phases, for phases
in temporal order relationship, by a transition interval. This tool gives an estimation of the
period of time during which the older phase has not yet ended and the younger phase has
just begun.
For phases in temporal order relationship, the transition range interval between two successive
phases is the shortest interval that covers the end date of the older phase and the start date
of the younger phase. From a computational point of view this is equivalent to the time range
interval calculated between the end of the older phase and the start of the younger phase.

Definition 2. Consider a succession of two phases, P1 and P2. Assume P1 is older than P2.
We denote by αi (respectively βi) the start date (respectively the end date) of the collection
of dates Pi (i = 1, 2). The 100(1− γ)% transition interval is the shortest interval [a, b] such
that

P(a ≤ β1 ≤ α2 ≤ b |M) = 1− γ. (4)

The construction of this interval is obtained in the same way as the time range interval by
replacing (α, β) by (β1, α2).

Testing procedure for gap between two successive phases
Phases in temporal order relationship may be separated in time by a gap, or a hiatus. We
propose a testing procedure in order to check whether a gap of time exists between two
successive phases with fixed probability.
For phases in temporal order relationship, if a gap exists, it is the longest interval in-between
the end date of the older phase and the start date of the younger one with fixed posterior
probability.

Definition 3. Consider a succession of two phases, P1 and P2. Assume P1 is older than P2.
We denote by αi (respectively βi) the start date (respectively the end date) of the collection of
dates Pi (i = 1, 2). The 100(1− γ)% gap between these successive phases (if it exists) is the
longest interval (a, b) such that

P(β1 ≤ a ≤ b ≤ α2 |M) = 1− γ. (5)

The first step consists in the construction of all the couples a(ε), b(ε) such that

P(β1 ≤ a(ε) , b(ε) ≤ α2 |M) = 1− γ,

where
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• a(ε) = F−β1
(1−ε |M) and F−β1

(· |M) is the quantile function of the posterior distribution
of β1,

• b(ε) = F−α2

(
γ−ε
1−ε |β1 < a(ε),M

)
and F−α2(· |β1 < a(ε),M) is the quantile function of the

conditional distribution of α2 given β1 < a(ε) andM.

Indeed

P(β1 ≤ a(ε) , b(ε) ≤ α2 |M) = P(β1 ≤ a(ε) |M)P(b(ε) ≤ α2 |β1 ≤ a(ε) ,M)

= (1− ε)
(

1− γ − ε
1− ε

)
= 1− γ.

Testing procedure: If the set E = {ε | a(ε) < b(ε)} is empty, then we conclude that no gap
exists between these successive phases, with probability 1−γ. However the probability 1−γ is
difficult to interpret as a confidence level because it corresponds to the posterior probability of
interval satisfying Equation 5. Otherwise, the gap interval is the longest interval [a(ε∗), b(ε∗)],
where

ε∗ = argmaxε∈E (b(ε)− a(ε)).

3. Bayesian modeling for the stratigraphy of Ksâr ’Akil
We illustrate the use of the ArchaeoPhases package and some of the functions described in
Section 2 with the construction and the estimation of a Palaeolithic chronology based on the
stratigraphic information and measurements made on the site of Ksâr ’Akil (Lebanon).
We estimate the Palaeolithic chronology thanks to a Bayesian model which is implemented in
ChronoModel (see Vibet et al. 2016). This software application has a user-friendly graphical
interface easily manipulated in order to define the Bayesian hierarchical model developed in
Lanos and Philippe (2017, 2018). As this application is not connected with R, we should
first construct the model with ChronoModel, then extract from this application the MCMC
sample of the joint posterior distribution, and finally import the MCMC sample into the R
application and apply the ArchaeoPhases functions.

3.1. The stratigraphy of Ksâr ’Akil

At Ksâr ’Akil (Lebanon), a deep Palaeolithic stratigraphic sequence was investigated in order
to establish the chronology of the site (see Bosch et al. 2015). This stratigraphic sequence
is constituted of a succession of thirty-six layers. Based on the lithic assemblages found
throughout the sequence, twenty-five layers were associated with four Palaeolithic deposits:
Initial Upper Palaeolithic (IUP), from layer XXV (the bottom of the sequence) to layer XXI;
Ahmarian, from layer XX to layer XIV; Upper Palaeolithic (UP), from layer XV to layer VI;
and Epi-Palaeolithic (EPI), from layer V to layer I. The aim of this modeling is to establish
the chronology of these four successive Palaeolithic periods (IUP, Ahmarian, UP and EPI)
thanks to the chronology of the stratigraphy.
Sixteen consumed shellfish were found throughout the stratigraphy and dated by AMS ra-
diocarbon technique in order to estimate the date of their death. Dating the death of these
consumed shellfish, whose shells were directly discarded after consumption, gives an indication
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of human activity on the site. Hence it gives also an indication of the different Palaeolithic
periods associated with this human activity. Thus, the chronology of the site was established
on these evidences of human activity and on the stratigraphic information.

3.2. Modeling with ChronoModel

Based on the information given by Bosch et al. (2015), we propose a Bayesian model for the
stratigraphy of Ksâr ’Akil implemented in ChronoModel (version 1.5).
In this model, the study period is set from −50 000 to −10 000 (dates are in calendar years
Before the Common Era; BCE) out of historical information on the Upper Palaeolithic.
As the aim of this modeling is to date the human occupations of the site, sixteen molluskan
species collected for consumption and whose shells were directly discarded after consumption
were dated by radiocarbon. This technique estimates the date of the death of these mollusks.
Hence, dated events (death of mollusk) and target events (evidence of human activity) are
nearly identical (see Dean 1978). We use these dated events in order to date human activity
in the layer in which these food remains were found.
Figure 1 presents the modeling realized with the ChronoModel application (KsarAkil.chr,
provided in the supplements, is the ChronoModel file which reproduces this modeling of the
dataset). Dated events (death of mollusk) are called according to the name given by the
laboratory (for instance: GrA-53081). Each dated event is a proxy of the human occupation
in the layer in which the mollusk has been found. Target events (evidence of human activity)
are named according to the associated layer. In the best cases, several mollusks were found in
the same layer, and so all of these dates give an estimation of the period of time corresponding
to human activity in that layer. Stratigraphic constraints, that give a temporal order to the
occupation of the different layers, are also included in the model; they are symbolized by
black arrows in Figure 1.
Then, layers and the 16 related events, are gathered in Palaeolithic periods in order to give an
estimation of these Palaeolithic periods. In ChronoModel, four phases were constructed based
on the evidences of human activity found in several layers. Figure 1 shows the stratigraphy
of the layers in which sellfish were found, and the four Palaeolithic deposits.

3.3. Extracting the MCMC sample of the joint distribution

For this Bayesian modeling, 3 Markov chains are run in parallel. For each chain, 1 000
iterations are generated during the burn-in period, 20 batches of 500 iterations are used in
the adapt period, 100 000 iterations are drawn in the acquire period with only 1 out of 10
kept in order to break the correlation structure.
Now, the Markov chains simulated by ChronoModel have to be extracted and then imported

into R in order to use the ArchaeoPhases package. To do that, use on the right hand
side of the window in the Results tab (see Figure 2).
Several CSV files are created: a file called events.csv containing the MCMC samples of all
events (target events), a file called phases.csv containing the date of the minimum (called
alpha) and the date of the maximum (called beta) of each phase, if at least one phase is
modeled, and a file per phase (if any) containing the MCMC samples of the parameters of
the phase (the minimum and the maximum date) and all events included in it. Note that the
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Figure 1: ChronoModel interface showing the modeling step of the chronology. Rectangular
nodes represent the evidences of human activity (target events) associated with the radiocar-
bon date of the death of a mollusk (dated events). An arrow between two rectangular nodes
symbolizes a temporal constraint, it points from oldest event to most recent event. Gray lines
symbolize the four Palaeolithic deposits and the layers associated with these deposits.

minimum (resp. maximum) of a group of dates is an estimation of the start (resp. end) of the
group of dates.

All those files may be imported into R in order to use the ArchaeoPhases package.



10 ArchaeoPhases: Analysis of Archaeological Phases in R

Figure 2: ChronoModel interface showing the posterior distribution of a target event with
associated dated events. The icon CSV (red box) should be used to export the CSV files
containing MCMC samples.

4. First steps with ArchaeoPhases

4.1. Installing the ArchaeoPhases package

When R is launched, one must install (only the first time) the package ArchaeoPhases using
the following code:

R> install.packages("ArchaeoPhases", dependencies = TRUE)

Then the first step is to load the package:

R> library("ArchaeoPhases")

4.2. Importing data into the R software

To import a data file into R, you may use the ImportCSV() function. For CSV files extracted
from the ChronoModel software, there is no need to specify any other parameters than the
name of the file (and the path to it). Otherwise, you may change the specification after sep
= and dec =. The parameter comment.char = is used to define how comments are written in
the file to be imported. Comments of all CSV files generated by ChronoModel are specified
by “#”.
For example,

R> KADatesChronoModel <- ImportCSV("events.csv")
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In the package ArchaeoPhases, a dataset containing the MCMC samples of the posterior
distribution of the 16 events identified in Ksâr ’Akil, and generated by the ChronoModel
application as explained in the previous section, is already included.

R> data("KADatesChronoModel", package = "ArchaeoPhases")

This dataset contains 3 Markov chains run in parallel. The first column corresponds to the
iteration number, the following ones correspond to the posterior distribution of the 16 target
events.

4.3. Diagnostic tools

Before any analysis, the convergence of the MCMC sample should always be checked (for
more details on diagnostics of Markov chains, see Robert and Casella 2009). In this section,
we show how this can be checked using R and the coda package (Plummer, Best, Cowles, and
Vines 2006). Note that the ChronoModel application has also its own diagnostic tools.
In order to use any function from the coda package, data has to be transformed in a
‘mcmc.list’ using the function coda.mcmc(). This function takes two parameters: the name
of the dataset and the number of parallel chains generated by the application.

R> Dates_mcmc <- coda.mcmc(data = KADatesChronoModel, numberChains = 3)

Now, we can trace the history plot of each parameter and see whether the chains have reached
their equilibrium before the acquire period. The column 1 containing the iteration number
should be omitted.

R> plot(Dates_mcmc[, -1])

A part of the results is given in Figure 3. We can see that the 3 chains give similar results.
For each parameter, traces visit the same time space of values, traces are correctly overlaid,
and they seem to have a stationary behavior. Indeed, within each subinterval, the same time
space is visited. Hence, we can assume that the 3 chains have properly reached the same
equilibrium, and finally that the overall MCMC sample (the concatenation of the 3 chains)
has converged.
The Gelman-Rubin diagnostic can also be tested:

R> gelman.diag(Dates_mcmc[, -1])

Potential scale reduction factors:

Point est. Upper C.I.
Layer.V 1 1
Layer.VI 1 1
Layer.XI 1 1
Layer.XII 1 1
Layer.XVI.4 1 1
Layer.XVI.3 1 1
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The values of the Gelman-Rubin criterion are equal to 1 meaning that the different Markov
chains run in parallel have converged. In summary, the Markov chains have properly reached
their equilibrium. We can concatenate the 3 chains and go further in the analysis.

4.4. Examining a series of dates

First, we analyze the individual marginal posterior density of the 16 events that correspond
to evidence of human activity on the site.
In a Bayesian framework, an estimation of a date can be summarized by its credible interval
given at a 95% probability thanks to the marginal posterior density of the related date. This
gives an interval of time that has 95% to contain the true date of interest. This interval is
not assumed to have equal tail probabilities on the left and right but it is optimized in order
to be the shortest. However, this statistical tool is not adapted if the posterior density is
bimodal, where highest posterior density (HPD) regions would be preferred.
The estimation of credible interval can be done for a collection of dates using the function
MultiCredibleInterval that takes at least two parameters: data the name of the dataset
in which the MCMC samples are stocked, position the column numbers referring to the
MCMC sample of the dates of interest in the dataset.

R> MultiCredibleInterval(KADatesChronoModel, position = 2:17, level = 0.95)

Level CredibleIntervalInf CredibleIntervalSup
Layer.V 0.95 -29071 -27105
Layer.VI 0.95 -31492 -29123
Layer.XI 0.95 -37422 -35021
Layer.XII 0.95 -38546 -36756
Layer.XVI.4 0.95 -40305 -37791
Layer.XVI.3 0.95 -40340 -37826
Layer.XVI.1 0.95 -39244 -37589
Layer.XVI.2 0.95 -39997 -38349
Layer.XVII.2 0.95 -40821 -38970
Layer.XVII.1 0.95 -40992 -39047
Layer.XVII.3 0.95 -41196 -39566
Layer.XVII.4 0.95 -40793 -39606
Layer.XVIII 0.95 -41417 -40124
Layer.XIX 0.95 -41626 -40511
Layer.XX 0.95 -42130 -40851
Layer.XXII 0.95 -43215 -41105

As expected, the evidence of human activity in Layer XXII, the deepest dated layer, is
associated with the oldest 95% credible interval. Layer XVII and layer XVI are associated
with four dates as four shellfish were found in them. The 95% credible interval of the four
evidences of human activity in Layer XVII are more or less similar.
A highest posterior density (HPD) region (see Hyndman 2018) is another way of summarizing
the estimation of a parameter in a Bayesian framework. It is relevant in the case of multimodal
densities. Otherwise, it gives the same interval as the optimized credible interval calculated
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Figure 4: Graphical summary of the estimated dates included in the chronology of Ksâr ’Akil.

by the CredibleInterval function. The function MultiHPD gives the HPD region of the
specified collection of dates (results not shown).

R> MultiHPD(KADatesChronoModel, position = 2:17, level = 0.95)

All these intervals may be drawn on a graph using the function MultiDatesPlot. The fol-
lowing lines show two examples of its use, but only the result of the first line is presented in
Figure 4.

R> MultiDatesPlot(KADatesChronoModel, position = 2:17, level = 0.95
+ intervals = "CI", title = " 95% CI of the dates", order = "increasing")
R> MultiDatesPlot(KADatesChronoModel, position = 2:17, level = 0.95,
+ intervals = "HPD", title = " 95% HPD of the dates",
+ order = "increasing")

We can see that dates are properly sorted according to the stratigraphic order. Credible
intervals are close to each other from layer to layer, except between layer XI and layer VI.
Indeed no shellfish were found in the layers VII to X leading to a gap of time in this series of
dates.
We can examine the rate of occurrence of the human activity throughout the stratigraphy.
To do that two functions may be used: TempoPlot and TempoActivityPlot.
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Figure 5: Tempo plot of the chronology of Ksâr ’Akil.

R> TempoPlot(KADatesChronoModel, position = 2:17, level = 0.95,
+ title = " Tempo plot")
R> TempoActivityPlot(KADatesChronoModel, position = 2:17, level = 0.95)

Figures 5 and 6 display the tempo plot and the activity plot of the evidences of human activity
found at Ksâr ’Akil. From these graphs, we can see that the highest part of the human activity
is dated between −43 000 to −35 000 and two evidences are younger, at about −31 000 and
−28 000. The activity plot shows that there is an increasing amount of activity after −43 000
with a peak at −40 000, then the activity decreases until −35 000 where it is null. Then two
other activities appear later in time. There seem to be a gap of time between the first 14
dates and the two remaining ones.

4.5. First conclusions

From these three last graphs, we can see that there is a continuity in the occurrences of
human activity found at Ksâr ’Akil between −43 000 and −35 000. This corresponds to the
activity found in layers XXII to XI. Then there is a hiatus until −29 000. Then two other
occurrences of human activity appear. These occurrences were found in layer VI and layer
V. The detected hiatus may correspond to the hiatus linked to the time elapsed between the
deposit of layer XI and of layer VI.
In this context, the tempo plot and the activity plot characterize more the sampling of the
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Figure 6: Activity plot of the chronology of Ksâr ’Akil.

evidences of human activity, that is the sampling of a peculiar kind of consumed shellfish
throughout the stratigraphy. In addition, only 16 of these shellfish could be dated by radio-
carbon. This is probably due to a random process. In some layers, several shells were found
and dated. Hence human activity related to these layers were more precisely dated than in
a layer with only one shell. The gap of time is probably due to the absence of dated shells
rather than to the absence of human activity.
In all, human activity found at Ksâr ’Akil is dated at a period of time in coherence with
other results, such as Bosch et al. (2015); Douka, Bergman, Hedges, Wesselingh, and Higham
(2013). However, the analysis can be further refined by the inspection of the Palaeolithic
periods of time, called phases hereafter, and by the use of our new statistical tools.

5. Palaeolithic chronology
The lithic assemblages found throughout the stratigraphy of Ksâr ’Akil allowed us to associate
the first XXV layers to four Palaeolithic periods: Initial Upper Palaeolithic (IUP), from layer
XXV (the bottom of the sequence) to layer XXI; Ahmarian, from layer XX to layer XIV;
Upper Palaeolithic (UP), from layer XV to layer VI; and Epi-Palaeolithic (EPI), from layer
V to layer I. The aim of this modeling is to establish the chronology of these four successive
Palaeolithic periods thanks to the chronology of the stratigraphy.
In ChronoModel, we defined 4 phases in order to estimate the characteristics of these four
Palaeolithic periods. As said in Section 3, several CSV files are created by ChronoModel
and in particular, a file called phases.csv containing an estimation of the minimum date
(called alpha) and maximum date (called beta) of each phase, as long as at least one phase
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is modeled. In ChronoModel the start date (resp. end date) of a phase is estimated by the
minimum date (resp. the maximum date) of the collection of dates associated to this phase.
In the ArchaeoPhases package, a dataset containing the MCMC samples of the start date
(called alpha) and the end date (called beta) of each Palaeolithic phase, and generated by
ChronoModel application, is already included.

R> data("KAPhasesChronoModel", package = "ArchaeoPhases")
R> attach(KAPhasesChronoModel)

Let us first analyze a unique period of time, the period called Ahmarian, then we will examine
the succession of the four Palaeolithic periods.

5.1. Examining the Ahmarian period

Let us analyze the Ahmarian period that gathers 11 dates of the 16 from the chronology.

Classical summary

A period of time is classically summarized by its start and end dates. From these two dates,
we can estimate the duration of the period. The function PhaseStatistics() gives the
classical summary statistics of the characteristics of a phase: specifically, mean, median,
credible interval and HPD region. This function takes a minimum of two parameters: a
MCMC sample of the marginal posterior distribution of the start date and a MCMC sample
of the marginal posterior distribution of the end date.

R> PhaseStatistics(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

Minimum Maximum Duration
mean -41463.00 -38249.00 3214.00
MAP -41436.00 -38248.00 3207.00
sd 334.00 403.00 517.00
Q1 -41659.00 -38496.00 2875.00
median -41437.00 -38249.00 3202.00
Q2 -41238.00 -38001.00 3535.00
level 0.95 0.95 0.95
CredibleInterval Inf -42130.00 -39076.00 2200.00
CredibleInterval Sup -40851.00 -37456.00 4242.00
HPDRInf 1 -42092.00 -39063.00 2183.00
HPRDSup 1 -40801.00 -37437.00 4227.00

PhaseStatistics() results in a matrix of several summary statistics according to the marginal
posterior density of the start date, the end date and the duration of the phase. The default
credible level is 0.95.
The start of Ahmarian is estimated between −42 130 and −40 851 (dates are in calendar year
BCE) with a 95% probability. Its end date is estimated between −39 076 and −37 456, and
its duration between 2 200 to 4 242 years.
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Time range interval

We can try to locate in time the Ahmarian period by its time range interval. This gives an
interval of time that resumes the start, the end and the duration of the period at a given
credible level.
The following code gives the endpoints of the time range interval of the phase Ahmarian.

R> PhaseTimeRange(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

level TimeRangeInf TimeRangeSup
0.95 -42189.00 -37461.00

Hence, all dates of events in the Ahmarian period belong to the interval [−42 189 ; −37 461]
(years in BCE) with a 95% probability.
The endpoints of the time range of Ahmarian are close to the inferior endpoint of the 95%
credible interval of the start date and the superior endpoint of the 95% credible interval of
the end date. However, only the time range gives an interval that covers the collection of
dates of the phase with a 95% probability.

Graphical illustration

Function PhasePlot() may be used to draw a plot of the marginal posterior density of the
start and end dates of a phase on the same graph. In addition, the time interval of the phase
at the desired level (default = 95%) is also presented by a solid line above the curves. The
result is shown on Figure 7 and displays the characteristics of a phase.

R> PhasePlot(Ahmarian.alpha, Ahmarian.beta, level = 0.95,
+ title = "Characteristics of the Palaeolithic period called Ahmarian")

5.2. Examining the four Palaeolithic periods

Now, let us analyze the succession of the four Palaeolithic periods: IUP, Ahmarian, UP and
EPI.

Time range intervals

The function MultiPhaseTimeRange() gives the time range intervals of several phases. It
takes at least two parameters, data the name of the dataset, and position_minimum is
a vector of positions that identify the start dates of the corresponding phases in the data
matrix. By default, the vector of positions that identify the end dates is assumed to be
position_maximum = position_minimum + 1.
Let us estimate the time range of phases IUP, Ahmarian, UP and EPI, whose start date
outputs are respectively in column number 8, 6, 4 and 2 in the data matrix.

R> MultiPhaseTimeRange(data = KAPhasesChronoModel,
+ position_minimum = c(8, 6, 4, 2))
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Characteristics of the Palaeolithic period called Ahmarian
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Figure 7: Characteristics of the Palaeolithic period called “Ahmarian”. The density of the
start date is drawn in dashed line, the density of the start date is drawn in solid line. The
segment above the curve represents the 95% time range interval.

Level TimeRangeInf TimeRangeSup
IUP.alpha IUP.beta 0.95 -43217 -41106
Ahmarian.alpha Ahmarian.beta 0.95 -42189 -37461
UP.alpha UP.beta 0.95 -38559 -29335
EPI.alpha EPI.beta 0.95 -29071 -27102

Phase EPI whose start date output is in column 2 has a time range = [−29071,−27102] at a
credible level of 95% and the phase IUP whose start date output is in column 8 has a time
range = [−43217,−41106].

Transition intervals
Now, let us estimate the transition intervals between two successive phases.
For this function the order of the succession is important. The vector of positions of the start
date (referring to the column number in the data matrix) should be ordered from the oldest
phase to the youngest one.

R> MultiPhasesTransition(KAPhasesChronoModel,
+ position_minimum = c(8, 6, 4, 2))

0.95 TransitionRangeInf TransitionRangeSup
IUP.beta & Ahmarian.alpha 0.95 -43241 -40728
Ahmarian.beta & UP.alpha 0.95 -39075 -36686
UP.beta & EPI.alpha 0.95 -31504 -26960

The transition period between IUP and Ahmarian is estimated from −43 241 (in calendar
years BCE) to −40 728. Between Ahmaria and UP the transition period started at −39 075
till −36 686. Between UP and EPI the transition period is estimated from −31 504 to −26 960.
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Ksar Akil − Succession of phases: IUP, Ahmarian, UP, EPI 
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Figure 8: Plot of the succession of phases from Ksâr ’Akil. The characteristics of phase IUP
are drawn in green, those of phase Ahmarian are in purple, those of phase UP are in light blue
and those of phase EPI are in red. Time range are displayed by segments above the curves.
Two-colored segments correspond to transition interval or to the gap range. As there are no
gaps between phases IUP and Ahmarian, and Ahmarian and UP, a cross is drawn instead.

Gap intervals
We can test if a the gap between these successive phases exists. Again, for this function,
the order of the succession is important. The vector of the start positions (referring to the
column number in the data matrix) should be ordered from the oldest phase to the youngest
one. This may be done using the following code:

R> MultiPhasesGap(KAPhasesChronoModel, position_minimum = c(8, 6, 4, 2))

Level HiatusIntervalInf HiatusIntervalSup
IUP.beta & Ahmarian.alpha 0.95 NA NA
Ahmarian.beta & UP.alpha 0.95 NA NA
UP.beta & EPI.alpha 0.95 -29180 -28977

With probability 95% there is no gap between the succession of phases IUP, Ahmarian and
UP. Indeed we cannot construct an interval satisfying Equation 5 with posterior probability
95%. On the other hand there exists a gap of 203 years between phase UP and phase EPI.
This gap interval, with posterior probability 95%, starts at −29 180 and ends at −28 977.

Graphical illustration
The function MultiSuccessionPlot() draws the characteristics of a succession of groups.
Figure 8 presents the resulting plot.
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Palaeolithic period Start date End date Time range
Inf Sup Inf Sup Start End

IUP −43 215 −41 105 −43 215 −41 105 −43 217 −41 106
Ahmarian −42 130 −40 851 −39 076 −37 456 −42 189 −37 461
UP −38 546 −36 756 −31 492 −29 123 −38 559 −29 335
EPI −29 071 −27 105 −29 071 −27 105 −29 071 −27 102

Table 1: Classical and new summaries of the four Palaeolithic phases in succession. Endpoints
(Inf and Sup values) of the 95% credible interval of the start and end dates of each phase and
95% time range intervals. Dates are in years BCE.

Succession of Transition range Gap range
Palaeolithic periods Start End Start End
IUP & Ahmarian −43 241 −40 728 No gap
Ahmarian & UP −39 075 −36 686 No gap
UP & EPI −31 504 −26 960 −29 180 −28 977

Table 2: New summary statistics of the four Palaeolithic phases in succession: transition
range intervals and gap range intervals given with a credible level of 95%. Dates are in years
BCE.

R> MultiSuccessionPlot(KAPhasesChronoModel, position_minimum = c(8, 6, 4, 2),
+ title = "Ksar Akil - Succession of phases: IUP, Ahmarian, UP, EPI ")

In this plot, a group of dates is identified by a color.

• The density curves represent the densities of the minimum (solid line) or the maximum
(dashed line) of each phase. When a group is defined by one only date, the minimum
equals the maximum date of the group. Hence, in that case, only one curve is presented
(see the phase IUP in Figure 8).

• Segments above the density curves correspond to the time range of the phase.

• Two-colored segments correspond to the transition interval and to the the gap range.
When there is no gap between the succession of phases, the two-colored segment is
replaced by a a cross (see Figure 8 between phases IUP and Ahmarian, and Ahmarian
and UP).

5.3. Summary

We can summarize the succession of the four Palaeolithic periods estimated from the site
of Ksâr ’Akil, using the data published by Bosch et al. (2015) and the modeling done with
ChronoModel described in Section 3.2, by the Tables 1 and 2.
Results from Table 1 are similar as those given by Bosch et al. (2015). We can see that for
phases containing only one event, such as EPI and IUP, the 95% credible interval of the start
(or end) date is equal (up to numeric approximations) to the 95% time range interval. For
phases containing several events such as Ahmarian and UP the time range intervals provide
a rigorous alternative to the usual approach consisting of taking the interval whose endpoints



22 ArchaeoPhases: Analysis of Archaeological Phases in R

are the inferior value of the credible interval of the start date and the superior value of the
credible interval of the end date. However, only the time range interval gives a 95% credible
interval for the period covering all the dates included in the phase.
Table 2 gives also the endpoints of the transition range intervals and the gap range intervals if
existing. Again, the 95% transition intervals are similar to the interval built with the inferior
value of the 95% credible interval of the end date of the older phase and the superior value of
the 95% credible interval of the start date of the younger phase. However, the only interval
that gives a 95% probability to include all the dates is the transition interval.
The gap range intervals are similar to an interval built with the superior value of the 95%
credible interval of the end date of the older phase and the inferior value of the 95% credible
interval of the start date of the younger phase.
Our new statistical tools aim at summarizing periods of time by intervals that cover all the
dates with a fixed probability. Instead of summarizing a phase by two credible intervals, one
for the start date, one for the end date, the time range interval is a unique interval given with
fixed probability.
In conclusion, we can summarize the succession of the Paleolithic phases by saying that from
the data found at the site of Ksâr ’Akil, using the data published by Bosch et al. (2015)
and the modeling done with ChronoModel described in Section 3.2, we estimate with 95%
probability, the periods of the four phases by [−43 217 ; −41 106] for IUP, [−42 189 ; −37 461]
for Ahmarian, [−38 559 ; −29 335] for IP and [−29 071 ; −27 102] for EPI.

6. Conclusion
The ArchaeoPhases package provides new statistical tools that help interpret the MCMC sam-
ple generated from the posterior distribution of a chronology of dates. Among these tools, two
of them explore the rate of occurrence of dates (TempoPlot() and TempoActivityPlot()).
Three other tools summarize periods of time, or what we call phases, defined by some archae-
ological, paleo-environmental, geographical, . . . criterion. A phase is associated with a collec-
tion of dates estimated from the chronology. PhaseTimeRange() (or MultiPhaseTimeRange())
gives an interval of time that characterizes the period corresponding to that phase with a
fixed probability. PhasesTransition() (or MultiPhasesTransition()) gives an interval of
time that characterizes the transition between two successive phases with a fixed probability.
PhasesGap() (or MultiPhasesGap()) tests the existence of a hiatus between two successive
phases, and if so, gives an interval of time that characterizes the hiatus between these two
successive phases with a fixed probability. See Guérin et al. (2017) and Philippe and Vibet
(2018) for an application of these tools.
We chose to illustrate the use of these statistical tools, in comparison with the classical ones,
by the analysis of four Palaeolithic periods and the stratigraphy of Ksâr ’Akil. The Bayesian
modeling made with ChronoModel, a software application adapted for the construction of
chronologies of estimated dates, resulted in a chronology similar to the one given by Bosch
et al. (2015). Our new tools add complementary information to classical ones. The time
range interval summarizes a phase by a unique interval with a fixed probability. Transition
range and gap range intervals result in a unique interval that defines a transition between two
phases or a gap between two phases.
The ArchaeoPhases package has been applied to archaeology (see Philippe and Vibet 2018;
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Duvivier and Florent 2017; Philippe, Vibet, and Bahain 2018) but it could also be used in
other fields such as paleo-environment research (see Guérin et al. 2017), forensic physics and
so on as long as dates are estimated.
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