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Abstract

Manifold optimization appears in a wide variety of computational problems in the ap-
plied sciences. In recent statistical methodologies such as sufficient dimension reduction
and regression envelopes, estimation relies on the optimization of likelihood functions
over spaces of matrices such as the Stiefel or Grassmann manifolds. Recently, Huang,
Absil, Gallivan, and Hand (2016) have introduced the library ROPTLIB, which provides
a framework and state of the art algorithms to optimize real-valued objective functions
over commonly used matrix-valued Riemannian manifolds. This article presents Mani-
foldOptim, an R package that wraps the C++ library ROPTLIB. ManifoldOptim enables
users to access functionality in ROPTLIB through R so that optimization problems can
easily be constructed, solved, and integrated into larger R codes. Computationally inten-
sive problems can be programmed with Rcpp and RcppArmadillo, and otherwise accessed
through R. We illustrate the practical use of ManifoldOptim through several motivating
examples involving dimension reduction and envelope methods in regression.
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1. Introduction
Optimization on Riemannian manifolds has been a topic of much interest over the past years
due to many important applications in computer vision, signal processing, numerical linear al-
gebra, statistics, among others. However, the substantial background required to successfully
design and apply Riemannian optimization algorithms is an impediment for many potential
users. Ready-to-use tools are being developed to improve accessibility to Riemannian opti-
mization. This article presents ManifoldOptim (Adragni, Martin, Raim, and Huang 2020), an
R (R Core Team 2019) package for the optimization of real-valued functions on Riemannian
manifolds. ManifoldOptim is a wrapper for ROPTLIB (Huang, Absil, Gallivan, and Hand
2017), a C++ library that provides a variety of cutting edge algorithms for optimization on
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manifolds and a framework for constructing such optimization problems.1 ROPTLIB pro-
vides reliable and efficient implementations of many familiar optimization algorithms that
have been extended to operate on Riemannian manifolds. The third author of this article
(Wen Huang) is the creator of ROPTLIB, while the remaining authors were involved in the
development and application of the R interface.
Consider the problem of minimizing f(U) over U ∈ M where M is a Riemannian mani-
fold. Manifolds are generalizations of smooth curves and surfaces within higher dimensions.
Riemannian manifolds are a class of manifolds which have rules to compute distances and
angles. Stating a precise definition of a manifold requires mathematical exposition which is
beyond this article; Lee (2000, 2003) and Tu (2011) provide introductions. Intuitively, some
constrained spaces which are frequently encountered in practice are examples of manifolds. In
this article, we focus on the following manifolds: Euclidean, Grassmann, low-rank manifold,
manifold of n-dimensional vectors on the unit sphere, Stiefel, and space of positive definite
matrices. We also consider spaces formed by taking Cartesian products of these manifolds.
Some optimization problems are readily solved without consideration of manifolds. Methods
are abound in the literature for optimization problems without constraints or with linear
constraints (Fletcher 1987; Nocedal and Wright 1999). Problems with nonlinear constraints
sometimes become unconstrained by an appropriate transformation. For example, suppose
M = {U ∈ R2 : U2

1 + U2
2 = 1} is the unit circle in R2. Using the transformation

h(x) =
(

cos
( 2π

1 + e−x

)
, sin

( 2π
1 + e−x

))
: R→M,

minimization of f(U) over U ∈ M may be carried out practically without constraints by
minimizing f(h(x)) over x ∈ R.
Some optimization problems are not easily solved with classical methods, but constraints are
naturally honored by restricting to an appropriate manifold. For example, let U be a p × d
semi-orthogonal matrix where U>U = Id and d < p. This problem naturally lies in a Stiefel
manifold, where orthonormality of the argument U is intrinsic to the manifold. When f is
invariant under right orthogonal transformations of U, so that f(U) = f(UO) for any d × d
orthogonal matrix O, then the problem lies in a Grassmann manifold. If U is a p×p symmetric
positive definite (SPD) matrix, such as a covariance matrix, the problem is naturally defined
on the manifold of SPD matrices. Manifold optimization problems are often characterized by
symmetry or invariance properties of the objective function.
Formulating optimization algorithms on manifolds requires endowing the manifolds with a
differentiable structure. The gradient and Hessian are often used in Euclidean optimization
to find the direction for the next iterate, but these notions must be extended to honor the
curved structure of the manifold within Euclidean space. Each manifold is unique with respect
to its differential geometry and requires some individual consideration.
There is a growing literature on manifolds and manifold optimization. Optimization on
Riemannian manifolds generalizes Euclidean optimization algorithms to curved and smoothed
surfaces (Absil, Mahony, and Sepulchre 2008; Wong 1967; Edelman, Arias, and Smith 1998;
Chikuse 2003). Applications are found in many areas including signal processing (Comon

1Currently, the ROPTLIB source code is included directly in the ManifoldOptim package code under the
subdirectories: src/Manifolds, src/Others, src/Problems, src/Solvers. As of this writing, ManifoldOptim
uses version 0.3 of ROPTLIB.
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and Golub 1990), data mining (Berry, Drmac, and Jessup 1999), and control theory (Patel,
Laub, and Van Dooren 1994). Many eigenvalue problems are, in fact, optimization problems
on manifolds (Absil et al. 2008; Edelman et al. 1998). Manifold optimization appears in
a wide variety of computational problems in the applied sciences, and has recently gained
prominence in the statistics literature. Optimization over a Grassmann manifold is featured
in several models for sufficient dimension reduction (SDR) in regression (Cook 1998). SDR
methods include principal fitted components (Cook 2007), covariance reducing models (Cook
and Forzani 2008), and likelihood-based sufficient dimension reduction (Cook and Forzani
2008; Cook and Li 2009; Cook and Forzani 2009). Adragni, Cook, and Wu (2012) provide
some relevant examples. Recent methodology on envelopes for regression (Cook, Li, and
Chiaromonte 2010; Su and Cook 2011, 2012; Cook and Su 2013; Cook and Zhang 2015) also
relies on optimization over manifolds.
ManifoldOptim makes many of the optimization algorithms in the ROPTLIB library accessible
to R users. Available algorithms include: the Riemannian trust-region Newton (Absil, Baker,
and Gallivan 2007), Riemannian symmetric rank-one trust-region (RTRSR1) (Huang, Absil,
and Gallivan 2015a), limited-memory RTRSR1 (Huang et al. 2015a), Riemannian trust-region
steepest descent (Absil et al. 2008), Riemannian line-search Newton (Absil et al. 2008), Rie-
mannian Broyden family (Huang, Gallivan, and Absil 2015b), Riemannian Broyden-Fletcher-
Goldfarb-Shannon (RBFGS) (Ring and Wirth 2012; Huang et al. 2015b), limited memory
RBFGS (Huang et al. 2015b), Riemannian conjugate gradients (Nocedal and Wright 1999;
Absil et al. 2008; Sato and Iwai 2013), and Riemannian steepest descent (Absil et al. 2008).
In a typical use of ManifoldOptim, the user provides an objective function, its gradient and
action of the Hessian, a specification of the manifold, the solver, and the optimization method
to be used. Numerical gradient and Hessian functions are provided, as defaults, for problems
where closed-form expressions are not easily programmed. ManifoldOptim users can construct
problems in plain R for convenience and quick prototyping. If performance becomes a concern,
users can implement the objective, gradient, and Hessian functions in C++ and otherwise
interact with ManifoldOptim through R. We make use of the Rcpp (Eddelbuettel and Francois
2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages to reduce the burden
of C++ programming for R users, and to facilitate seamless integration with R. The ROPTLIB
library itself is written in C++ and uses standard linear algebra libraries such as BLAS and
LAPACK (Anderson et al. 1999) to ensure generally good performance.
ROPTLIB can be readily used in MATLAB (The MathWorks Inc. 2019) through its included
mex-based wrapper. Interfaces to ROPTLIB for other high level languages, such as Julia
(Bezanson, Karpinski, Shah, and Edelman 2012), have also been developed (Huang et al.
2016). Other manifold optimization software packages are found in the literature: sg_min
written by Lippert (2008) which was adapted from Edelman et al. (1998), and Manopt of
Boumal, Mishra, Absil, and Sepulchre (2014) are available in MATLAB. The Pymanopt
package for Python (Van Rossum et al. 2019), introduced in Townsend, Koep, and Weich-
wald (2016), offers similar functionality as Manopt. In R, Adragni et al. (2012) developed
GrassmannOptim specifically for Grassmann manifold optimization via a simulated anneal-
ing stochastic gradient algorithm. Material for a package called rOptManifold exists on the
internet (see He, He, Huang, and Xie 2014); it appears to be a general framework for opti-
mization over matrix manifolds in R, much like ROPTLIB with ManifoldOptim, which was
not released for widespread use. To our knowledge, there are no other publicly available R
packages for manifold optimization.
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The following notations are adopted throughout this article: Gd,p represents the Grassmann
manifold, the set of all d-dimensional subspaces in Rp; Sd,p represents the Stiefel manifold,
the set of all d-dimensional orthonormal matrices in Rp; S+

p represents the manifold of all
p× p symmetric positive definite matrices, and Sp is the unit sphere manifold.
The remainder of this article is organized as follows. Section 2 introduces several applica-
tions of manifold optimization which will be used to illustrate ManifoldOptim. Section 3
demonstrates basic usage of the package through brief examples. Section 4 presents more
involved examples based on statistical methods introduced in Section 2. Discussions and con-
clusions follow in Section 5. The ManifoldOptim package is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=ManifoldOptim. R
code for the examples demonstrated in this article has been provided as supplementary ma-
terial; see the included README.txt file for a description of the contents. The supplementary
code has been tested with ManifoldOptim version 0.1.4, and results shown in this article have
been produced with this version.

2. Optimization on manifolds
Consider the Brockett problem (Absil et al. 2008, Section 4), which amounts to minimizing
the objective function

f(X) = Trace(X>BXD), X ∈ Rp×d (1)

subject to X>X = Ip. Here, D = Diag(µ1, . . . , µp) with µ1 ≥ · · · ≥ µp ≥ 0 and B ∈ Rn×n is a
given symmetric matrix. The optimization can be carried out over a Stiefel manifold Sd,p. It
is known that a global minimizer of f is the matrix whose columns are the eigenvectors of B
corresponding to the d smallest eigenvalues λp−d+1, . . . , λp. This is essentially an eigenvalue
problem reminiscent of the generalized Rayleigh quotient for discriminant analysis (Adragni
et al. 2012). It will be later used in Section 3 to illustrate practical use of the package.
In statistical applications, optimization is primarily focused on maximizing a likelihood func-
tion to find maximum likelihood estimators (MLE). With multiple parameters constrained
to different spaces, a common approach to maximum likelihood estimation is to optimize
one parameter at a time while keeping the others fixed, alternating through such steps until
meeting convergence criteria for the overall problem. This method of optimization, known
as an alternating procedure, can provably converge to a global maximum only under specific
conditions (Csiszar and Tusnady 1984). Alternating procedures may also involve different
methods of optimization. Algorithm 1 of Cook and Zhang (2015) alternates between con-
strained optimization of variable estimates on the Grassmann manifold, and then optimiza-
tion of variable estimates in Euclidean space using Fisher scoring iterations. To simplify these
situations, ManifoldOptim supports a product space of manifolds which are composed from
simpler manifolds and can include Euclidean spaces. Here, optimization algorithms work over
all parameters jointly rather than alternating through partial optimizations. In our experi-
ence, joint optimization has produced comparable results to the alternating approach with a
reduced programming burden. This is demonstrated in Sections 4.2 and 4.3.
We next present three algorithms in statistics that can be formulated as manifold optimization
problems. The first is the recently developed minimum average deviance estimation method
for SDR (Adragni 2017). Second is Cook’s principal fitted components model for SDR (Cook
2007). Third is an envelope method for regression initially proposed by Cook et al. (2010).
These problems will be explored further in Section 4.

https://CRAN.R-project.org/package=ManifoldOptim
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2.1. Minimum average deviance estimation

Minimum average deviance estimation (MADE) is a dimension reduction method based on
local regression (Adragni 2017). This approach was first proposed by Xia, Tong, Li, and
Zhu (2002) under the assumption of additive errors. Suppose Y ∈ R is a response, X is a
p-dimensional predictor, and the distribution of Y | X is an exponential family distribution
of the form

f(Y | θ(X)) = f0(Y, φ) exp
{
Y · θ(X)− b(θ(X))

a(φ)

}
, (2)

with dispersion parameter φ assumed to be free ofX. The canonical parameter θ(X) possesses
the main information that connects Y to X; it relates to the mean function E(Y | X) through
a link function g so that g(E(Y | X)) = θ(X). Let (Yi, Xi), i = 1, . . . , n, represent an
independent sample from the distribution of (Y,X) so that Yi | Xi has the distribution (2). If
there exists a semi-orthogonal B ∈ Rp×d with d < p and θ(X) = ϑ(B>X) for some function
ϑ, then X ∈ Rp can be replaced by B>X ∈ Rd in the regression of Y on X, and B is the
basis of a dimension reduction subspace. MADE simultaneously estimates the reduction B
and the unknown regression function ϑ from the sample.
Regression based on the local log-likelihood evaluated at a given X0 ∈ Rp can be written as

LX0(α0, γ0, B) =
n∑
i=1

w(Xi, X0) log f(Yi | α0 + γ>0 B
>(Xi −X0)),

using the first-order Taylor expansion

ϑ(B>Xi) ≈ ϑ(B>X0) + [∇ϑ(B>X0)]>(B>Xi −B>X0)
= α0 + γ>0 B

>(Xi −X0),

taking α0 = ϑ(B>X0) and γ0 = ∇ϑ(B>X0). The subscript in α0 and γ0 emphasizes that
the parameters vary with the choice of X0. The weights w(X1, X0), . . . , w(Xn, X0) represent
the contribution of each observation toward LX0(α0, γ0, B). The objective in MADE is to
maximize the sum of local likelihoods

Q(B) =
n∑
j=1

max
(αj ,γj)

LXj (αj , γj , B)

=
n∑
j=1

max
(αj ,γj)

[
n∑
i=1

w(Xi, Xj) log f(Yi | αj + γ>j B
>(Xi −Xj))

]
. (3)

Here, the α̂j ∈ R and γ̂j ∈ Rd which maximize the inner summation are considered to be
functions of B. Once a solution B̂ is obtained for (3), predictions for given X0 ∈ Rp may be
computed as Ŷ0 = g−1(α̂0), using

(α̂0, γ̂0) = arg max
(α0,γ0)

LX0(α0, γ0, B̂). (4)

The kernel weights are taken to be

w(Xi, X0) = KH(Xi −X0)∑n
`=1KH(X` −X0) , KH(u) = |H|−1/2K(H−1/2u). (5)
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Here, K(u) denotes one of the usual multidimensional kernel density functions and the band-
width H is a p×p symmetric and positive definite matrix; for example, see Duong (2007). We
will use the Gaussian kernel K(x) = (2π)−p/2 exp(−x>x/2) with H = h2I. We also consider
refined weights w(Xi, X0) = w(B>Xi, B

>X0) which make use of the unknown B; we will
explicitly write w(B>Xi, B

>X0) hereafter.
For any orthogonal matrix V ∈ Rd×d, γ>B> = γ>V V >B>, which implies that γ and B
are not uniquely determined but obtained up to an orthogonal transformation. Further-
more, refined weights based on our choice of Gaussian kernel depend on B only through
BB> = BV V >B>. In this setting, the MADE objective function (3) is invariant to orthogo-
nal transformation of B in the sense that Q(B) = Q(BV ). Therefore the parameter space of
B is a Grassmann manifold Gd,p.
When the outcome is assumed to be Gaussian, MADE coincides with minimum average
variance estimation (MAVE) introduced by Xia et al. (2002), who suggest an algorithm based
on quadratic programming to fit the model. Computation becomes more challenging when
other distributions for the outcome are considered. In the initial formulation of MADE,
Adragni (2017) used an iterative algorithm to maximize (3), solving (αj , γj) ∈ Rd+1 for
j = 1, . . . , n, optimizing B ∈ Sd,p, and updating the refined weights in successive steps. In
the present article, we directly optimize the objective function (3) over Gd,p.
Appropriate selection of the bandwidth h is crucial to obtain a reasonable model. Taking h
too small leads to overfitting, where the model fits the observed data very well but generalizes
poorly to new observations. On the other hand, taking h too large leads to oversmoothing,
where important features of the data are not taken into account. Here we will summarize a
cross-validation approach to select h. Further details are given in Section 4.1.
To carry out K-fold cross-validation with a prespecified K, randomly partition the n obser-
vations into subsets S1, . . . ,SK . For each k = 1, . . . ,K and a particular candidate value of
h, let B̂CV(k) be the solution to (3) using the training set {1, . . . , n} \ Sk. Predictions for the
validation set j ∈ Sk are computed as ŶCV,j = g−1(α̂CV,j), where (α̂CV,j , γ̂CV,j) are obtained
from (4) using B̂ = B̂CV(k). The maximized local likelihood is computed as

Q̂CV,j = LXj (α̂CV,j , γ̂CV,j , B̂CV(k)).

Candidate values of h may be compared using
• mean square prediction error MSPE = n−1∑n

j=1(Yj − ŶCV,j)2,

• mean absolute prediction error MAPE = n−1∑n
j=1 |Yj − ŶCV,j |, and

• MADE objective value OBJ = ∑n
j=1 Q̂CV,j

obtained from cross-validation.
Offsets are fixed intercept terms which are commonly used in count regression, often to
focus the analysis on a rate of exposure rather than on the raw counts. For the example in
Section 4.1, an offset will help to avoid numerical issues due to large counts. When an offset
wi is available for the ith observation, it is simply added to the local regression function as

α0 + γ>0 B
>(Xi −X0) + wi

in all previous expressions. Also, predictions are adjusted with the offset as Ŷj = g−1(α̂j+wi).
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2.2. Principal fitted components
The principal fitted components (PFC) model was initially proposed by Cook (2007) as a
likelihood-based method for sufficient dimension reduction in regression. Let X be a p-vector
of random predictors and Y be the response. Using the stochastic nature of the predictors,
Cook (2007) proposed the model

Xy = µ+ Γβfy + ∆1/2ε. (6)

Here, Xy denotes the conditional X given Y = y and fy ∈ Rr is a user-selected function of the
response which helps capture the dependency of X on Y . The other parameters are µ ∈ Rp,
a semi-orthogonal matrix Γ ∈ Rp×d, and β ∈ Rd×r. The error term ε ∈ Rp is assumed to be
normally distributed with mean 0 and variance ∆.
This model can be seen as a way to partition the information in the predictors given the
response into two parts: one part Γβfy = E(Xy − X) that is related to the response and
another part µ + ε that is not. The form of the related part suggests that the translated
conditional means E(Xy −X) fall in the d-dimensional subspace SΓ.
Cook (2007) showed that a sufficient reduction of X is η>X, where η = ∆−1Γ, so that X can
be replaced by η>X without loss of information about the regression of Y on X. However,
as η>X is a sufficient reduction, O>η>X is also sufficient for any d× d orthogonal matrix O.
Thus, Γ is not estimable but the subspace spanned by its columns is estimable. The goal of
an analysis is then to estimate the subspace SΓ spanned by the columns of Γ.
The estimation of SΓ depends on the structure of ∆. Various structures for ∆ can be modeled,
including isotropic ∆ = σ2I, diagonal ∆ = Diag(σ2

1, . . . , σ
2
p), the heterogeneous structure

∆ = ΓΩΓ> + Γ0Ω0Γ>0 , and the general unstructured case ∆ > 0. In the heterogeneous
structure of ∆, Γ0 is the orthogonal completion of Γ such that (Γ,Γ0) is a p × p orthogonal
matrix. The matrices Ω ∈ Rd×d and Ω0 ∈ R(p−d)×(p−d) are assumed to be symmetric and
full-rank.
We now focus on maximum likelihood estimation in PFC under the heterogeneous and general
unstructured forms of ∆. Assuming that a sample of n data points is observed, let X̄ be the
sample mean of X and let X denote the n × p matrix with rows (Xy − X̄)>. Let F denote
the n × r matrix with rows (fy − f̄)> and set PF to denote the linear operator that projects
onto the subspace spanned by the columns of F. Also let X̂ = PFX denote the n × p matrix
of the fitted values from the multivariate linear regression of X on fy. Let Σ̂ = X>X/n and
Σ̂fit = X̂>X̂/n. For the heterogeneous and the unstructured ∆, the log-likelihood functions
are respectively

L(Ω,Ω0,Γ) = −n2 log |Ω| − n

2 log |Ω0| − Trace
{

Γ>Σ̂resΓΩ−1 − Γ>0 Σ̂Γ0Ω−1
0

}
, (7)

L(∆,Γ) = −n2 log |∆| − n

2 Trace
{[

Σ̂− Σ̂fit∆−1Γ(Γ>∆−1Γ)−1Γ>
]

∆−1
}
. (8)

These functions are real-valued, with parameter spaces expressed as Cartesian products of
manifolds (Ω,Ω0,Γ) ∈ S+

d × S
+
p−d × Gd,p and (∆,Γ) ∈ S+

p × Gd,p, respectively. Maximum
likelihood estimators are obtained as

(Ω̂, Ω̂0, ŜΓ) = arg max
(Ω,Ω0,SΓ)

L(Ω,Ω0,Γ), (9)

(∆̂, ŜΓ) = arg max
(∆,SΓ)

L(∆,Γ). (10)
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2.3. Envelope method for regression

Enveloping is a novel and nascent method initially introduced by Cook et al. (2010) that has
the potential to produce substantial gains in efficiency for multivariate analysis. The initial
development of the envelope method was in terms of the standard multivariate linear model

Y = µ+ βX + ε, (11)

where µ ∈ Rr, the random response Y ∈ Rr, the fixed predictor vector X ∈ Rp is centered
to have sample mean zero, and the error vector ε ∼ N(0,Σ). In this context some linear
combinations of Y are immaterial to the regression because their distribution does not depend
on X, while other linear combinations of Y do depend on X and are thus material to the
regression. In effect, envelopes separate the material and immaterial parts of Y , and thereby
allow for gains in efficiency.
Suppose that we can find a subspace S ⊆ Rr so that

QSY | X ∼ QSY and QSY PSY | X, (12)

where ∼ means identically distributed, PS projects onto the subspace S and QS = Ir − PS .
For any S with those properties, PSY carries all of the material information and perhaps
some immaterial information, while QS carries just immaterial information. Denoting B :=
span(β), expressions (12) hold if and only if B ⊆ S and Σ = ΣS+ΣS⊥ , where ΣS = VAR(PSY )
and ΣS⊥ = VAR(QSY ). The subspace S is not necessarily unique nor minimal, because there
may be infinitely many subspaces that satisfy these relations in a particular problem. Cook
et al. (2010) showed that S is a reducing subspace of Σ if and only if Σ = ΣS + ΣS⊥ , and
defined the minimal subspace to be the intersection of all reducing subspaces of Σ that contain
B, which is called the Σ-envelope of B and denoted as EΣ(B). Let u = dim{EΣ(B)}. Then

B ⊆ EΣ(B) and Σ = ΣS + ΣS⊥ ,

where EΣ(B) is shortened to E for subscripts. These relationships establish a unique link
between the coefficient matrix β and the covariance matrix Σ of model (11), and it is this
link that has the potential to produce gains in the efficiency of estimates of β relative to the
standard estimator of β. Su and Cook (2011), Su and Cook (2012), and Cook and Su (2013)
among others expanded the applications of this envelope method.
Cook and Zhang (2015) recently further expanded the envelope method to generalized linear
regression models (GLMs). The response belongs to an exponential family of the form (2).
Let C(ϑ) = yϑ−b(ϑ) andW (ϑ) = C′′(ϑ)/E(C′′(ϑ)). They reparameterized ϑ(α, β) = α+β>X
to ϑ(α, β) = a+ β>{X − E(WX)} with a = α + β>E(WX) so that a and β are orthogonal.
The asymptotic variance of β̂ is then obtained as AVAR(

√
nβ̂) = Vββ(a, β) = {E(−C′′E{[X −

E(WX)][X − E(WX)]>}}. With a reparameterization β = Γη, the parameter η is estimated
using a Fisher scoring method fitting the GLM of Y on Γ>X. The partially maximized
log-likelihood for Γ is

Ln(Γ) =
n∑
i=1
C(α+ η̂>Γ>Xi)−

n

2 {log |Γ>SXΓ|+ log |Γ>S−1
X Γ|+ log |SX |},

where SX is the sample covariance of X. This function is optimized over a Grassmann
manifold to obtain Γ̂.
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3. Using ManifoldOptim
We now describe use of the ManifoldOptim package. The primary function for users is
manifold.optim, which has the following interface.

manifold.optim(prob, mani.defn, method = "LRBFGS", x0 = NULL,
has.hhr = FALSE, mani.params = get.manifold.params(),
H0 = NULL, solver.params = get.solver.params())

A typical call to manifold.optim involves four essential pieces: a problem prob, the choice
of manifold mani.defn, configuration for the manifold mani.params, and configuration for
the solver solver.params.
A problem encapsulates the objective function to be minimized, and, optionally, the corre-
sponding gradient and Hessian functions. Analytical expressions of the gradient and Hessian
are desirable, but may be either tedious or intractable to compute. Numerical approximations
to the gradient and Hessian via finite differences are used by default. There are two options
for constructing a problem with ManifoldOptim: writing the problem in R as an ‘RProblem’
and writing the problem in C++ as a ‘ManifoldOptimProblem’. ManifoldOptim treats the
optimization variable as a single vector which the user must reshape into the matrices and
vectors specific to the problem at hand. This approach is similarly taken by the standard
optim function in the R package stats (R Core Team 2019).
The method argument specifies the algorithm to be used in the optimization; "LRBFGS" is
the default method. A list of possible values for method is provided in Table 1. ROPTLIB
provides solvers for at least nine commonly encountered manifolds at the time of this writing.
In the first version of ManifoldOptim, we have focused on six manifolds: unconstrained Eu-
clidean space, the Stiefel manifold, the Grassmann manifold, the unit sphere, the orthogonal
group, and the manifold of symmetric positive definite matrices. As ROPTLIB continues de-
velopment, and as the need arises in the R community, support for more solvers and manifolds
will be added to ManifoldOptim.
The focus of the initial release ManifoldOptim has been on ease of use. ROPTLIB provides
additional constructs to assist C++ programmers in avoiding redundant computations and re-
dundant memory usage, which can significantly improve run time during optimization (Huang
et al. 2016). This functionality is currently not yet exposed in ManifoldOptim, but may be
considered in future versions.
Note that optimization outputs may differ slightly from those reported in the following ex-
amples depending on the computer used to run them. This is in part because solutions on
Stiefel/Grassman manifolds are not necessarily unique. Additionally, the optimization algo-
rithms are numerical in nature and may differ based on the computer used. Such differences
are common in numerical algorithms and are the subject of work to better quantify how well
numerical algorithms run on different computer architectures (Louboutin, Lange, Herrmann,
Kukreja, and Gorman 2017).

3.1. Solving the Brockett problem
We revisit the Brockett problem described in Section 2 to illustrate the use of ManifoldOptim.
The gradient for the objective function can be obtained in closed form as

∇f(X) = 2BXD.
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Code Description
"RTRNewton" Riemannian trust-region Newton (Absil et al. 2007)
"RTRSR1" Riemannian trust-region symmetric rank-one update (Huang

et al. 2015a)
"LRTRSR1" Limited-memory RTRSR1 (Huang et al. 2015a)
"RTRSD" Riemannian trust-region steepest descent (Absil et al. 2008)
"RNewton" Riemannian line-search Newton (Absil et al. 2008)
"RBroydenFamily" Riemannian Broyden family (Huang et al. 2015b)
"RWRBFGS" and "RBFGS" Riemannian BFGS (Ring and Wirth 2012; Huang et al.

2015b)
"LRBFGS" Limited-memory RBFGS (Huang et al. 2015b)
"RCG" Riemannian conjugate gradients (Absil et al. 2008; Sato and

Iwai 2013)
"RSD" Riemannian steepest descent (Absil et al. 2008)

Table 1: List of optimization algorithms available in the ManifoldOptim package.

Denoting ⊗ as the Kronecker product operator, we may write vec(∇f(X)) = 2(D⊗B)vec(X)
to obtain the Hessian ∇2f(vec(X)) = 2(D⊗B). It should be noted that the usual Euclidean
gradient and Hessian are to be computed here, ignoring manifold constraints. The ROPTLIB
library can also work with the Riemannian gradient, but this is not exposed in ManifoldOptim.
We set the matrices B and D to prepare a concrete instance of the problem and ensure that
B is symmetric.

R> set.seed(1234)
R> n <- 150
R> p <- 5
R> B <- matrix(rnorm(n * n), nrow = n)
R> B <- B + t(B)
R> D <- diag(p:1, p)

The objective and gradient functions are coded in R as follows.

R> tx <- function(x) {
+ matrix(x, n, p)
+ }
R> f <- function(x) {
+ X <- tx(x)
+ Trace(t(X) %*% B %*% X %*% D)
+ }
R> g <- function(x) {
+ X <- tx(x)
+ 2 * B %*% X %*% D
+ }

The tx function reshapes an np-dimensional point from the solver into an n×p matrix, which
can then be evaluated by the f and g functions. We will initially select a solver that does not
make use of a user-provided Hessian function.
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We first consider an ‘RProblem’, where all functions are programmed in R. This provides a
convenient way to code a problem, but may face some performance limitations. In general,
functions coded in R tend to be much slower than similar functions written in C++, especially
if they cannot be vectorized. With an ‘RProblem’, each evaluation of the objective, gradient,
and Hessian by the solver incurs the overhead of a call from C++ to a function defined in
R. Having noted the potential performance issues, we now proceed with construction of an
‘RProblem’.

R> mod <- Module("ManifoldOptim_module", PACKAGE = "ManifoldOptim")
R> prob <- new(mod$RProblem, f, g)

The ‘Module’ construct (Eddelbuettel and François 2016) has been utilized in the user interface
of ManifoldOptim. When constructing a module in R, the user implicitly creates a C++
problem object which can be accessed by the C++ solver, eliminating one source of potential
overhead.
The Brockett function is to be optimized over a Stiefel manifold, so we use get.stiefel.defn
to create the specification. Additionally, we set software parameters for the manifold and
solver via the get.manifold.params and get.solver.params functions.

R> mani.defn <- get.stiefel.defn(n, p)
R> mani.params <- get.manifold.params(IsCheckParams = TRUE)
R> solver.params <- get.solver.params(DEBUG = 0, Tolerance = 1e-4,
+ Max_Iteration = 1000, IsCheckParams = TRUE)

The argument IsCheckParams = TRUE requests some useful information to be printed on the
console for either the manifold or solver, depending where it is placed. DEBUG is an integer
that sets the verbosity of the solver during iterations; the lowest verbosity is DEBUG = 0,
which prints no debugging information. Max_Iteration and Tolerance set the maximum
iteration and tolerance to determine when the solver will halt. More extensive descriptions
for the arguments are given in the ManifoldOptim manual.
A starting value for the optimization can be specified by the argument x0 in the call of the
function manifold.optim. If available, a good initial value can assist the solver by reducing
the time to find a solution and improving the quality of the solution when multiple local
optima are present. If no initial value is given, the optimizer will select one at random from
the given manifold. In this case of the Brockett problem, we consider the following initial
value.

R> x0 <- as.numeric(diag(n)[, 1:p])

Now that we have specified the problem, manifold definition, software parameters for the
manifold and solver, an algorithm, and an initial value, we can invoke the optimizer through
the manifold.optim function.

R> res <- manifold.optim(prob, mani.defn, x0 = x0, method = "RTRSR1",
+ mani.params = mani.params, solver.params = solver.params)

Upon completion, manifold.optim produces a result res which contains the quantities listed
below.
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R> names(res)

[1] "xopt" "fval" "normgf" "normgfgf0"
[5] "iter" "num.obj.eval" "num.grad.eval" "nR"
[9] "nV" "nVp" "nH" "elapsed"

[13] "funSeries" "gradSeries" "timeSeries" "message"

The ManifoldOptim manual gives a description of each of these items. The most important
output is the solution xopt, which is the solution to the optimization problem. Using tx to
reshape the solution into a matrix, the first six rows are given below.

R> head(tx(round(res$xopt, digits = 4)))

[,1] [,2] [,3] [,4] [,5]
[1,] 0.1688 -0.1100 -0.0876 -0.0396 -0.0520
[2,] -0.0075 0.1275 -0.1243 0.0486 0.1053
[3,] 0.0956 -0.0249 0.0396 -0.0008 -0.0134
[4,] -0.0381 -0.1710 -0.0477 -0.0142 0.0660
[5,] -0.1239 -0.0207 0.1199 -0.1236 -0.1112
[6,] -0.0296 -0.0049 0.0511 -0.1352 -0.0129

We may now compare the solution from the optimizer to the closed-form solution.

R> eig <- eigen(B)
R> X.star <- eig$vectors[, seq(n, n-p+1)]
R> f(res$xopt)

[1] -474.4818

R> f(as.numeric(X.star))

[1] -474.4819

The solutions have objective values which match to three decimal places; the precision from
the optimizer can be further increased by specifying a smaller tolerance.
Solvers such as "RNewton" (Absil et al. 2008) make use of the Hessian function for the problem.
If a Hessian function is required by the solver but not provided by the user, a numerical ap-
proximation will be used. This provides a convenient default, but can be slow and potentially
inaccurate. We briefly illustrate the use of a Hessian function for the Brockett ‘RProblem’.
Treating the optimization variable vec(X) as a q-dimensional vector, the q×q Hessian function
∇2f(vec(X)) is programmed by coding the action [∇2f(vec(X))]η for a given η in the tangent
space to the manifold at X. Further detail on the implementation of this action for either
line search or trust region solver algorithms is given in Huang et al. (2016) and Absil et al.
(2008). For the Brockett problem, this becomes the matrix multiplication 2(D⊗B)η. For an
‘RProblem’, this expression can be specified as the third argument of the constructor.
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R> h <- function(x, eta) {
+ 2 * (D %x% B) %*% eta
+ }
R> prob <- new(mod$RProblem, f, g, h)

We note that the efficiency of the h function can be greatly improved by avoiding direct
computation of D ⊗B, but proceed with this simple coding to facilitate the demonstration.
ROPTLIB provides a diagnostic to check correctness of the gradient and Hessian. It produces
two outputs: the first uses the starting value, and the second uses the solution obtained from
the optimizer. If the quantity (fy - fx) / <gfx, eta> is approximately 1 for some interval
within the first output, it is an indication that the gradient function is correct. If the quantity
(fy - fx - <gfx, eta>) / <0.5 eta, Hessian eta> is approximately 1 for some interval
within the second output, it indicates that the Hessian function is correct. See the ROPTLIB
manual for details. The diagnostic is requested by setting the IsCheckGradHess option in
the solver.

R> solver.params <- get.solver.params(IsCheckGradHess = TRUE)
R> res <- manifold.optim(prob, mani.defn, method = "RNewton",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)

The first output validates the gradient function.

i:0,|eta|:1.000e+02,(fy-fx)/<gfx,eta>:-1.463e-04,(fy-fx-<gfx,eta>)/<0.5 eta,
Hessian eta>:-2.524e+01

...
i:28,|eta|:3.725e-07,(fy-fx)/<gfx,eta>:1.000e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:-4.147e-01
i:29,|eta|:1.863e-07,(fy-fx)/<gfx,eta>:1.000e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:2.441e-01
i:30,|eta|:9.313e-08,(fy-fx)/<gfx,eta>:1.000e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:-1.669e+01
...
i:34,|eta|:5.821e-09,(fy-fx)/<gfx,eta>:1.000e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:5.574e+02

The second output validates the Hessian function.

i:0,|eta|:1.000e+02,(fy-fx)/<gfx,eta>:1.556e+03,(fy-fx-<gfx,eta>)/<0.5 eta,
Hessian eta>:3.823e-04

...
i:21,|eta|:4.768e-05,(fy-fx)/<gfx,eta>:2.939e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:1.000e+00
i:22,|eta|:2.384e-05,(fy-fx)/<gfx,eta>:1.970e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:1.000e+00
i:23,|eta|:1.192e-05,(fy-fx)/<gfx,eta>:1.485e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:1.000e+00
...
i:34,|eta|:5.821e-09,(fy-fx)/<gfx,eta>:1.008e+00,(fy-fx-<gfx,eta>)/<0.5 eta,

Hessian eta>:3.368e+01
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3.2. Coding a problem in C++

For optimization problems which require intensive computation or which will be evaluated
repeatedly, it may be worth investing some additional effort to write the problem in C++.
A working knowledge of C++ programming and Rcpp will be assumed here; R users lacking
this background can refer to Eddelbuettel (2013) as a starting point. We now illustrate
the Brockett problem in C++. To proceed, we will consider the ‘ManifoldOptimProblem’
class within ManifoldOptim. A ‘ManifoldOptimProblem’ object has objective, gradient, and
Hessian functions coded in C++ using the Armadillo library (Sanderson and Curtin 2016).2
The user implements this problem type by extending the abstract ‘ManifoldOptimProblem’
class.
The ‘BrockettProblem’ class can be written as follows.

Rcpp::sourceCpp(code = '
// [[Rcpp::depends(RcppArmadillo,ManifoldOptim)]]
#include <RcppArmadillo.h>
#include <ManifoldOptim.h>

using namespace Rcpp;

class BrockettProblem : public ManifoldOptimProblem
{
public:

BrockettProblem(const arma::mat& B, const arma::mat& D)
: ManifoldOptimProblem(), _B(B), _D(D) { }

virtual ~BrockettProblem() { }

double objFun(const arma::vec& x) const {
arma::mat X;
tx(X, x);
return arma::trace(X.t() * _B * X * _D);

}
arma::vec gradFun(const arma::vec& x) const {

arma::mat X;
tx(X, x);
return reshape(2 * _B * X * _D, x.n_elem, 1);

}
arma::vec hessEtaFun(const arma::vec& x, const arma::vec& eta) const {

return 2 * arma::kron(_D, _B) * eta;
}
void tx(arma::mat& X, const arma::vec& x) const {

X = x;
X.reshape(_B.n_rows, _D.n_rows);

}
2To make the distinction between Armadillo and RcppArmadillo clear, Armadillo is a C++ library for linear

algebra, and RcppArmadillo enables use of Armadillo from Rcpp programs.
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const arma::mat& GetB() const { return _B; }
const arma::mat& GetD() const { return _D; }

private:
arma::mat _B;
arma::mat _D;

};
RCPP_MODULE(Brockett_module) {

class_<BrockettProblem>("BrockettProblem")
.constructor<arma::mat,arma::mat>()
.method("objFun", &BrockettProblem::objFun)
.method("gradFun", &BrockettProblem::gradFun)
.method("hessEtaFun", &BrockettProblem::hessEtaFun)
.method("GetB", &BrockettProblem::GetB)
.method("GetD", &BrockettProblem::GetD)
;

}')

Some points to mention about the C++ code are:

1. ManifoldOptim has been specified in the Rcpp::depends attribute. This ensures that
the ManifoldOptim C++ library is utilized during compilation and linking.

2. The constructor BrockettProblem(const arma::mat& B, const arma::mat& D) cre-
ates new instances of a ‘BrockettProblem’ for given B and D matrices. It begins by
initializing its ‘ManifoldOptimProblem’ base class.

3. We defined an empty destructor ~BrockettProblem(); no action is necessary here be-
cause we did not dynamically allocate memory.

4. The tx function is responsible for reshaping the flat vector x into variable(s) specific
to the problem. In this case, we simply rearrange the vector x into an n by p matrix
X using the Armadillo reshape function. Note that X is passed by reference, so that
the value set by the tx function is available to the caller. If x were to contain multiple
variables, the tx function could be extended to have multiple output arguments.

5. The objective, gradient, and Hessian functions make use of tx before carrying out the
computations described in Section 3.1. If no gradient or Hessian functions are specified
here, the gradFun and hessEtaFun functions in the ‘ManifoldOptimProblem’ base class
will be used to provide numerical derivatives.

6. The return type of gradFun is a vector, but our formulation of the Brockett gradient
function in Section 3.1 produces a matrix. Therefore, we explicitly reshape the matrix
into a column vector via the Armadillo reshape function.

7. In addition to defining the ‘BrockettProblem’ class, we define a module which allows
‘BrockettProblem’ objects to be constructed and manipulated from R. Specifically, the
constructor, objective, gradient, Hessian, and accessor functions for B and D can be
called from R.
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8. If gradFun and hessEtaFun are left at their numerical defaults, but it is desired to call
them from R, they may be defined as follows for inclusion in the module.

arma::vec gradFun(const arma::vec& x) const
{

return ManifoldOptimProblem::gradFun(x);
}

arma::vec hessEtaFun(const arma::vec& x,
const arma::vec& eta) const

{
return ManifoldOptimProblem::hessEtaFun(x, eta);

}

Note that we have used sourceCpp to compile the source code as a string from within R. It
is also possible to write the C++ code in a standalone file and compile it using sourceCpp,
or to have it compiled within the build of your own custom package; refer to the Rcpp
documentation for details.
Using the same B and D as in the previous section, we can now invoke the constructor
through R.

R> prob <- new(BrockettProblem, B, D)

Setting the manifold definition, manifold configuration, and solver configuration is done in
the same way as before.

R> mani.defn <- get.stiefel.defn(n, p)
R> mani.params <- get.manifold.params(IsCheckParams = TRUE)
R> solver.params <- get.solver.params(DEBUG = 0, Tolerance = 1e-4,
+ Max_Iteration = 1000, IsCheckParams = TRUE)

We use the same initial value as before. Our Rcpp module allows us to call the problem
functions from R, which makes them easy to test.

R> x0 <- as.numeric(diag(n)[, 1:p])
R> eta <- rnorm(n * p)
R> prob$objFun(x0)
R> prob$gradFun(x0)
R> prob$hessEtaFun(x0, eta)

Note that, because x0 is taken to be a flat vector of length n * p, gradFun and hessEtaFun
both return a vector of length n * p. We may now invoke the solver.

R> res <- manifold.optim(prob, mani.defn, method = "RTRSR1",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)

After obtaining a solution, our first task will be to reshape it from a vector to a matrix.
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R> tx <- function(x) {
+ matrix(x, n, p)
+ }
R> head(tx(res$xopt))

The result is close to the one obtained in the previous section and is therefore not shown.

3.3. Product manifold

A product of manifolds can be used to optimize jointly over multiple optimization variables.
As a demonstration, consider observing a random sample Y1, . . . , Yn from a p-variate normal
distribution with mean µ constrained to the unit sphere and symmetric positive definite
variance Σ. The maximum likelihood estimators are obtained as

(µ̂, Σ̂) = arg max
µ∈Sp,Σ∈S+

p

{
−np2 log(2π)− n

2 log |Σ| − 1
2

n∑
i=1

(Yi − µ)>Σ−1(Yi − µ)
}
.

To code this problem, let us first generate an example dataset. We make use of the mvtnorm
package (Genz et al. 2017) for multivariate normal calculations.

R> set.seed(1234)
R> n <- 400
R> p <- 3
R> mu.true <- rep(1/sqrt(p), p)
R> Sigma.true <- diag(2, p) + 0.1
R> y <- rmvnorm(n, mean = mu.true, sigma = Sigma.true)

Next we define the objective, and a function tx which reshapes a dimension p+p2 vector into
a p-dimensional vector and a p× p matrix.

R> tx <- function(x) {
+ list(mu = x[1:p], Sigma = matrix(x[1:p^2 + p], p, p))
+ }
R> f <- function(x) {
+ par <- tx(x)
+ Sigma <- (par$Sigma + t(par$Sigma)) / 2
+ -sum(dmvnorm(y, mean = par$mu, sigma = Sigma, log = TRUE))
+ }
R> mod <- Module("ManifoldOptim_module", PACKAGE = "ManifoldOptim")
R> prob <- new(mod$RProblem, f)

We have constructed an ‘RProblem’ so that the objective function can be specified as an R
function. The negative of the log-likelihood has been given as the objective to achieve a
maximization. We have not specified gradient or Hessian functions so that numerical approx-
imations will be used by the solver. The dmvnorm function requires the sigma argument to be
a symmetric matrix, but the Sigma provided by the optimizer may not be exactly symmetric
due to numerical error, so we symmetrize it to ensure that the optimization can proceed.
A product manifold definition is now constructed for the problem using unit sphere manifold
Sp and SPD manifold S+

p definitions. We also specify options for the manifold and solver.
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R> mani.defn <- get.product.defn(get.sphere.defn(p), get.spd.defn(p))
R> mani.params <- get.manifold.params()
R> solver.params <- get.solver.params(Tolerance = 1e-4)

Note that, for any unconstrained parameters, the get.euclidean.defn function can be used
in the product of manifolds. We now give an initial value and invoke the solver.

R> mu0 <- diag(1, p)[, 1]
R> Sigma0 <- diag(1, p)
R> x0 <- c(mu0, as.numeric(Sigma0))
R> res <- manifold.optim(prob, mani.defn, method = "LRBFGS",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)

The following result is produced.

R> tx(res$xopt)
$mu
[1] 0.5076017 0.7054302 0.4946805

$Sigma
[,1] [,2] [,3]

[1,] 2.0005530 0.1362844 -0.1718265
[2,] 0.1362844 2.0289096 0.2664935
[3,] -0.1718265 0.2664935 2.0936074

If exact symmetry is needed for Σ, the symmetric part can be extracted as the estimate.

R> S <- tx(res$xopt)$Sigma
R> Sigma.hat <- 1/2 * (S + t(S))

To implement this problem in C++, consider the following ‘ConstrainedMLEProblem’ class
and suppose it is saved to a file named constrained-mle.cpp.

// [[Rcpp::depends(RcppArmadillo,ManifoldOptim)]]
#include <RcppArmadillo.h>
#include <ManifoldOptim.h>
using namespace Rcpp;

class ConstrainedMLEProblem : public ManifoldOptimProblem {
public:

ConstrainedMLEProblem(const arma::mat& Y)
: ManifoldOptimProblem(), _Y(Y) { }

virtual ~ConstrainedMLEProblem() { }

double objFun(const arma::vec& x) const {
size_t n = _Y.n_rows; size_t p = _Y.n_cols;
arma::vec mu(p); arma::mat Sigma(p,p);
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tx(mu, Sigma, x);

double ll = -0.5 * n * p * log(2*arma::datum::pi);
ll -= 0.5 * n * arma::log_det(Sigma).real();
for (size_t i = 0; i < n; i++) {

arma::vec q_i = trans(_Y.row(i)) - mu;
ll -= 0.5 * arma::dot(q_i, arma::solve(Sigma, q_i));

}
return -ll;

}
void tx(arma::vec& mu, arma::mat& Sigma, const arma::vec& x) const {

size_t p = _Y.n_cols;
mu = x(arma::span(0, p-1));
Sigma = x(arma::span(p, p*(p+1)-1));
Sigma.reshape(p, p);

}
const arma::mat& GetY() const { return _Y; }

private:
arma::mat _Y;

};

RCPP_MODULE(NormalMLE_module) {
class_<ConstrainedMLEProblem>("ConstrainedMLEProblem")
.constructor<arma::mat>()
.method("objFun", &ConstrainedMLEProblem::objFun)
.method("GetY", &ConstrainedMLEProblem::GetY)
;

}

Here we are computing the log-likelihood manually using Armadillo, and do not need to
symmetrize the Sigma proposed by the optimizer as we did before. We now compile the code
with Rcpp and create an instance of the problem with the same y generated previously.

R> sourceCpp("constrained-mle.cpp")
R> prob_cpp <- new(ConstrainedMLEProblem, y)

Replacing the ‘RProblem’ with the ‘ConstrainedMLEProblem’ and proceeding with the same
optimization yields a similar result (and is therefore not shown).

R> res_cpp <- manifold.optim(prob_cpp, mani.defn, method = "LRBFGS",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)
R> tx(res$xopt)

3.4. Customizing line search
Line search algorithms are analogous to the method of gradient descent. As described in
detail in Absil et al. (2008), they are based on an update

xk+1 = xk + tkηk, (13)
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where ηk ∈ Rn is the search direction and tk ∈ R is the step size. Determining a step size
on the curved surface of a manifold requires special consideration beyond what is needed for
Euclidean space. The concept of a retraction mapping is employed to move in the direction
of a tangent vector while staying on the manifold. Several line search algorithms are available
in the ROPTLIB library, along with options to customize the search. Some of these options
can be configured through the R interface.
As an example, consider the product manifold example from Section 3.3. Several line search
parameters are specified below. In particular, LineSearch_LS = 1 corresponds to the Wolfe
line search method.

R> solver.params <- get.solver.params(Tolerance = 1e-4, IsCheckParams = TRUE,
+ LineSearch_LS = 1, Accuracy = 2e-4, Initstepsize = 1/2)

Now, using the "LRBFGS" solver results in the following output.

R> res <- manifold.optim(prob, mani.defn, method = "LRBFGS",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)

GENERAL PARAMETERS:
Stop_Criterion: GRAD_F_0[YES], Tolerance : 0.0001[YES]
Max_Iteration : 1000[YES], Min_Iteration : 0[YES]
OutputGap : 1[YES], DEBUG NOOUTPUT[YES]
LINE SEARCH TYPE METHODS PARAMETERS:
LineSearch_LS : WOLFE[YES], LS_alpha : 0.0001[YES]
LS_beta : 0.999[YES], Initstepsize : 0.5[YES]
Minstepsize : 2.22045e-16[YES], Maxstepsize : 1000[YES]
Accuracy : 0.0002[YES], Finalstepsize : 1[YES]
Num_pre_funs : 0[YES], InitSteptype : QUADINTMOD[YES]
LRBFGS METHOD PARAMETERS:
nu : 0.0001[YES], mu : 1[YES]
isconvex : 0[YES], LengthSY : 4[YES]

Observe that the selected line search options are reported in the output. The full list of
available line search options can be found in Huang et al. (2016). At this time, a user-defined
line search algorithm (LineSearch_LS = 5) cannot be specified via R, but support will be
considered for a future release of ManifoldOptim.

4. Examples with statistical methods
This section demonstrates the use of ManifoldOptim in the MADE, PFC, and envelope re-
gression methodologies presented in Section 2.

4.1. Minimum average deviance estimation

We consider an application of MADE to the fishing dataset from the COUNT package (Hilbe
2016). The data are adapted from Bailey, Collins, Gordon, Zuur, and Priede (2009), who
were interested in how certain deep-sea fish populations were impacted when commercial
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Figure 1: Exploratory results for the fishing dataset: (a) a scatterplot of log(density)
against log(totabund); (b) observed totabund values versus predictions from a Poisson
GLM with log(density) as a covariate.

fishing began in locations with deeper water than in previous years. The dataset has 147
observations and three continuous predictors: density, meandepth, and sweptarea, which
are, respectively, foliage density index, mean water depth per site, and the adjusted area of
the site. The predictors are centered to have mean zero and scaled to have unit variance.
The response totabund is the total number of fish counted per site. We use log(sweptarea
/ 100) as a fixed offset term.

R> data("fishing", package = "COUNT")
R> X <- model.matrix(~ density + meandepth + sweptarea - 1, data = fishing)
R> Xc <- scale(X, TRUE, TRUE)
R> y <- fishing$totabund
R> offs <- log(fishing$sweptarea / 100)
R> n <- nrow(Xc)
R> p <- ncol(Xc)
R> d <- 1

Our goal is to find a sufficient reduction of the three predictors to capture all regression
information between the response and the predictors. Figure 1(a) reveals that the variable
log(density) is highly correlated with log(totabund) in this dataset. Making use of this
transformation, consider the following Poisson GLM.

R> glm.out <- glm(totabund ~ log(density) + meandepth + sweptarea +
+ offset(offs), family = poisson(), data = fishing)
R> y.hat <- predict(glm.out, type = "response")

(Note that uncentered and unscaled predictors were used here.) This leads to an almost
perfect fit of the observed data shown in Figure 1(b). As an illustrative example of MADE
methodology, we will learn the logarithmic nature of the relationship between density and
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totabund from the observed data. The dimension of the reduction d = 1 will be fixed
throughout the analysis.
We now present an abbreviated version of the MADE code to explain how it is implemented
using ManifoldOptim. The reader should refer to the supplemental materials for a fully
composed MADE program. We begin by writing the MADE objective function (3) in R,
focusing specifically on Poisson outcomes.

R> tx <- function(theta) {
+ matrix(theta, p, d)
+ }
R> f <- function(theta) {
+ B <- tx(theta)
+ objvals <- numeric(n)
+ for (j in 1:n) {
+ ww <- kern.weights(X %*% B, X[j, ] %*% B, h = h)
+ res <- solve.local(y, X, x0 = X[j, ], B = B, h = h,
+ offset = offs)
+ a.j <- res[1]; b.j <- res[-1]
+ X.j <- matrix(X[j, ], n, p, byrow = TRUE)
+ theta.j <- a.j + (X - X.j) %*% B %*% b.j + offs
+ logf <- dpois(y, exp(theta.j), log = TRUE)
+ objvals[j] <- sum(ww * logf)
+ }
+ return(-sum(objvals))
+ }

Here, h is a prespecified bandwidth, kern.weights is a function to compute kernel weights
as in (5), and solve.local computes local regression coefficients by solving (4). We define
an ‘RProblem’ based on the objective function.

R> mod <- Module("ManifoldOptim_module", PACKAGE = "ManifoldOptim")
R> prob <- new(mod$RProblem, f)

The gradient and Hessian are left unspecified so that numerical approximations will be used
if needed. We now invoke the manifold.optim function using the "RTRSD" solver on a
Grassmann manifold.

R> solver.params <- get.solver.params(Tolerance = 1e-4, Max_Iteration = 100)
R> mani.defn <- get.grassmann.defn(p, d)
R> res <- manifold.optim(prob, mani.defn, method = "RTRSD",
+ solver.params = solver.params, x0 = as.numeric(B.init))

A made function can now be defined to encapsulate the ‘RProblem’ and the call to Mani-
foldOptim. We can also define a predict function to compute predictions via (4). A typical
call to these functions would appear as follows.

R> made.out <- made(y = y, X = Xc, offset = offs, h = 1,
+ B.init = as.matrix(c(0, 1)))
R> pred.out <- predict(made.out, X.new = X[1:5, ], offset.new = offs[1:5])
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h MSPE MAPE OBJ
0.029487 1.584051e+07 4.267500e+02 −3867.20
0.040358 3.748522e+45 5.049767e+21 −3930.46
0.051229 8.410842e+22 2.391999e+10 −2718.32
0.062101 1.405407e+04 5.066000e+01 −2279.33
0.072972 1.160946e+04 3.783000e+01 −1940.06
0.083844 3.467290e+03 9.660000e+00 −572.26
0.094715 3.478510e+03 1.016000e+01 −590.50
0.105586 3.492600e+03 1.068000e+01 −610.02
0.116458 3.508750e+03 1.129000e+01 −630.26
0.127329 3.525610e+03 1.189000e+01 −650.61
0.138200 3.543140e+03 1.249000e+01 −670.64
0.149072 3.561170e+03 1.307000e+01 −690.10
0.159943 3.579530e+03 1.364000e+01 −708.93
0.170815 3.519300e+03 1.350000e+01 −727.16
0.181686 3.005800e+02 1.008000e+01 −744.89
0.192557 3.264500e+02 1.063000e+01 −762.25
0.203429 3.527200e+02 1.118000e+01 −779.30
0.214300 3.798100e+02 1.173000e+01 −796.19

Table 2: Quantities measuring goodness-of-fit in fishing cross-validation study of bandwidth.

With an implementation of the MADE algorithm, we now turn to the selection of an appropri-
ate bandwidth h for the fishing data. We have taken B = (0, 1, 0)> as the initial value for all
optimizations. This starting value provides a test for our implementation; it emphasizes the
variable meandepth, while our exploratory analysis suggests that the response depends pri-
marily on density and therefore we expect the solution B̂ ≈ (1, 0, 0)>. We performed 5-fold
cross-validation as described in Section 2.1 based on an evenly spaced grid of 100 bandwidths,

h =
[
0.08 + j

100− 1(3.0− 0.08)
]
n−1/(d+4), j = 0, . . . , 99,

≈ (0.029487, 0.040358, . . . , 1.105752).

Here, n−1/(d+4) is the order of the asymptotically optimal bandwidth; see Adragni (2017) for
discussion on this. Note that our MADE implementation encounters numerical issues if the
bandwidth is taken smaller than the minimum value of the grid. Table 2 displays the MSPE,
MAPE, and OBJ quantities obtained using the first 18 values of the grid. Recall that smaller
values of MSPE and MAPE are desired, while larger values of OBJ are preferred. The best
values of MAPE and OBJ are obtained with h = 0.083844. However, the MSPE drastically
improves when h is increased to 0.181686; this indicates that at least one observation was
being overfit with h ≤ 0.170815. As h is increased beyond 0.214300, the MSPE, MAPE, and
OBJ all gradually worsen (results are not shown).
Using the bandwidth h = 0.181686 selected by cross-validation, we obtain the fit

B̂made =

−0.9989
0.0458
0.0049

 , Q(B̂made) = −741.1762.
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Figure 2: Fit of MADE to fishing dataset using h determined by cross-validation: (a) the
estimated reduction B̂>X versus the response Y , with LOESS curve in red; (b) the observed
response Y versus the predicted response Ŷ .

As anticipated, the reduction emphasizes the first coordinate corresponding to density, and
deemphasizes the second and third coordinates corresponding to meandepth and sweptarea.
Figure 2 shows that MADE has recovered the logarithmic nature of the relationship between
density and the response totabund.

4.2. Principal fitted components

We now consider a simulation study using the PFC model from Section 2.2 to evaluate the
performance of ManifoldOptim. The datasets were generated using n = 300 observations with
response Y ∈ Rn from the normal distribution with mean 0 and variance 9. The matrix of
basis functions F ∈ Rn×2 was obtained as (Y, |Y|) and is column-wise centered to have sample
mean 0. We obtained Γ as two eigenvectors of a p × p generated positive definite matrix.
The data matrix of the predictors X ∈ Rn×p was obtained as X = FΓ> + E, with error term
E ∈ Rn×p generated from the multivariate normal distribution with mean 0 and variance ∆.
Two structures were used for the covariance ∆. The first was an unstructured covariance
matrix ∆u = U>U where U is a p × p matrix with entries from the standard normal distri-
bution. The second was an envelope structure ∆e = ΓΩΓ> + Γ0Ω0Γ>0 with Ω ∈ R2×2 and
Ω0 ∈ R(p−2)×(p−2). The value of Γ is obtained from the first two eigenvectors of the un-
structured ∆. The remaining eigenvectors are used for the value of Γ0. These two structures
correspond to the two models discussed in Section 2.2. The likelihood (8) corresponds to the
unstructured ∆u while the likelihood function (7) corresponds to the envelope structure ∆e.
The parameters are then (Γ,∆) in the unstructured PFC case, and (Γ,Ω,Ω0) for the envelope
PFC. We note that in the case of the envelope structure, Γ0 is the orthogonal completion of
Γ so that ΓΓ> + Γ0Γ>0 = I.
Estimation methods for these two PFC models exist. Cook and Forzani (2009) provide closed-
form solutions for estimation of Γ and ∆ in the unstructured case. For the envelope PFC,
Cook (2007) provided a maximum likelihood estimation over a Grassmann manifold for Γ
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while Ω and Ω0 have a closed-form that depends on Γ and Γ0. Our implementation relies
on three R packages: MASS (Venables and Ripley 2002), ldr (Adragni and Raim 2014), and
mvtnorm (Genz et al. 2017). The objective function is coded as follows.

R> f <- function(x) {
+ Deltahat <- tx(x)
+ InvDeltahat <- solve(Deltahat)
+ Gam <- fit$Gammahat
+ temp0 <- -(n * p/2) * log(2 * pi)
+ temp1 <- -(n/2) * log(det(Deltahat))
+ temp2 <- -(n/2) * Trace((Sigmahat - Sfit %*% InvDeltahat %*% Gam %*%
+ solve(t(Gam) %*% InvDeltahat %*% Gam) %*% t(Gam)) %*% InvDeltahat)
+ loglik <- Re(temp0 + temp1 + temp2)
+ return(-loglik)
+ }
R> tx <- function(x) {
+ S <- matrix(x, p, p)
+ S[lower.tri(S)] <- t(S)[lower.tri(S)]
+ return(S)
+ }

The goal here is to evaluate the optimization and compare its performance to the closed-form
solutions. Moreover, a product manifold is used so that the estimation of (Γ,∆) is done
once instead of a typical alternating procedure that alternates between holding certain values
constant and optimizing over them.
To proceed, we coded the objective function under both setups. For each dataset generated
in the simulation, the closed-form solutions were obtained and compared to the solutions
obtained via ManifoldOptim. A call for the optimization involves the following snippet.

R> mod <- Module("ManifoldOptim_module", PACKAGE = "ManifoldOptim")
R> prob <- new(mod$RProblem, f)
R> mani.params <- get.manifold.params(IsCheckParams = TRUE)
R> solver.params <- get.solver.params(DEBUG = 0, Tolerance = 1e-12,
+ Max_Iteration = 1000, IsCheckParams = TRUE, IsCheckGradHess = FALSE)
R> mani.defn <- get.spd.defn(p)
R> res <- manifold.optim(x0 = Sres, prob, method = "RTRSR1",
+ mani.defn = mani.defn, mani.params = mani.params,
+ solver.params = solver.params)

We compared the true parameter Γ to the estimate Γ̂ using the subspace distance ρ(Γ, Γ̂) =
‖(I − Γ̂Γ̂>)Γ‖ suggested by Xia et al. (2002). The true and estimated covariance were com-
pared using d(∆, ∆̂) = Trace{(∆ − ∆̂)>(∆ − ∆̂)}. One hundred replications were used for
the simulation. The estimated mean distances d(∆, ∆̂) and ρ(Γ, Γ̂) are reported in Tables 4
and 3 with their standard errors in parentheses.
The results indicate that both forms of optimization perform comparably. Thus, the prod-
uct manifold in ManifoldOptim provides an alternative form of optimization which can ease
implementation. Also note that the difference between the true and estimated covariance is
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Algorithm d(∆, ∆̂) ρ(Γ, Γ̂)
Classical 2.67 (0.125) 0.17 (0.004)
ManifoldOptim 2.68 (0.125) 0.17 (0.004)

Table 3: Comparison of classical estimation and manifold optimization using ManifoldOptim
of unstructured-∆ PFC parameters.

Algorithm d(Ω, Ω̂) d(Ω0, Ω̂0) ρ(Γ, Γ̂)
Classical 0.03 (0.003) 0.36 (0.008) 0.28 (0.005)
ManifoldOptim 0.03 (0.003) 0.35 (0.008) 0.28 (0.005)

Table 4: Comparison of classical estimation and manifold optimization using ManifoldOptim
of envelope-∆ PFC parameters.

Algorithm β1 β2
Truth 0.25 0.25
GLM −0.12 0.63
Cook’s algorithm 1 with ManifoldOptim 0.25 0.24
Product manifold optimization 0.25 0.24

Table 5: Comparison of estimators between truth, Cook’s algorithm 1 and product manifold
using ManifoldOptim.

significantly less for the envelope-∆ PFC, since there are less parameters to estimate in this
case. Optimization was carried out using Σ̂ and Σ̂res as initial values for ∆; the results were
similar to the classical closed form method. The full code is provided as a supplement to this
article.

4.3. Envelope models

We consider a simulation in Cook and Zhang (2015) to compare the results using ManifoldOp-
tim to results using the three algorithms in Cook and Zhang (2015) under a logistic regression.
We generated 150 independent observations using Yi | Xi ∼ Bernoulli(logit−1(β>Xi)), with
β = (β1, β2)> = (0.25, 0.25)> and Xi ∼ N(0,ΣX). We let v1 = span(β) be the principal
eigenvector of ΣX with eigenvalue 10 and let the second eigenvector v2 be the orthogonal
completion with eigenvalue of 0.1 such that v1v

>
1 + v2v

>
2 = I. This example is compelling be-

cause of the collinearity during construction of ΣX. Consequently, this causes poor estimates
when using a standard generalized linear model (GLM).
Three algorithms are considered in this section, namely GLM, Algorithm 1 in Cook and
Zhang (2015), and a product manifold optimization. Both Algorithm 1 and the product
manifold are constructed using functionality in ManifoldOptim. In the case of Algorithm
1, a Grassmann optimization is performed along with Fisher scoring in an iterative fashion.
Within the product manifold optimization, Γ is optimized over the Grassmann manifold while
η and α are estimated over the Euclidean manifold. Numerical derivatives are calculated with
ManifoldOptim instead of using the analytical expression from Cook and Zhang (2015) since
the latter pertains only to Grassmann manifold optimization. In all cases the LRBFGS
(Huang et al. 2015b) algorithm is used for optimizing over manifolds with the objective
function given by Equation 3.7 in Cook and Zhang (2015).



Journal of Statistical Software 27

An implementation of the optimization step 2 in Algorithm 1 is shown in the following R
code, where the iteration is performed ten times.
R> for (iter in 1:10) {
+ # perform an optimization over Grassman for gamma only
+ mani.params <- get.manifold.params(IsCheckParams = TRUE)
+ solver.params <- get.solver.params(DEBUG = 0, Tolerance = 1e-300,
+ Max_Iteration = 1000, IsCheckParams = TRUE, IsCheckGradHess = FALSE)
+ mani.defn <- get.grassmann.defn(r, u)
+ res2 <- manifold.optim(prob, mani.defn, method = "LRBFGS",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)
+ par2 <- tx(res2$xopt)
+
+ # perform a logistic regression to find eta and alpha
+ m2 <- glm(as.factor(Y) ~ (t(X) %*% par2$gammahat), family = binomial())
+
+ # update eta and alpha
+ eta <- matrix(m2$coefficients[2], nr = 1)
+ alpha <- 1 / eta
+ }

Alternatively, an implementation of the product manifold is shown in the following R code.
R> mani.params <- get.manifold.params(IsCheckParams = TRUE)
R> solver.params <- get.solver.params(DEBUG = 0, Tolerance = 1e-300,
+ Max_Iteration = 1000, IsCheckParams = TRUE, IsCheckGradHess = FALSE)
R> mani.defn <- get.product.defn(get.grassmann.defn(r, u),
+ get.euclidean.defn(u, 1), get.euclidean.defn(u, 1))
R> res <- manifold.optim(prob, mani.defn, method = "LRBFGS",
+ mani.params = mani.params, solver.params = solver.params, x0 = x0)

Observe the reduced code complexity when using a product manifold. To avoid local maxima,
which is a problem with all optimization methods considered in this section, optimization
was repeated several times from random starting points. Out of the many estimates at
convergence, the one with the largest likelihood value was selected. The full code, provided
as a supplement to this article, makes use of the R packages far (Damon and Guillas 2015),
ldr (Adragni and Raim 2014), MASS (Venables and Ripley 2002), and also mvtnorm (Genz
et al. 2017).
By examining the results shown in Table 5 it is immediately clear that the collinearity causes
serious issues with classical methods of estimation such as GLM. The estimates in this case are
not even close to the true values. However, both of the other methods perform well. Similar
to Section 4.2, also note that the alternating optimization method shown in Cook’s Algorithm
1 provides comparable results to the product manifold generated using ManifoldOptim. Since
the product manifold is easier to implement, it can be a viable alternative.

5. Conclusions
We have presented ManifoldOptim, an R package for optimization on Riemannian manifolds.
ManifoldOptim fills a need for manifold optimization in R by making the functionality of
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ROPTLIB accessible to R users. The package so far deals with optimization on the Stiefel
manifold, Grassmann manifold, unit sphere manifold, the manifold of positive definite ma-
trices, the manifold of low rank matrices, the orthogonal group, and Euclidean space. We
discussed basic usage of the package and demonstrated coding of problems in plain R or
with C++. Furthermore, we demonstrated the product space of manifolds to optimize over
multiple variables where each is constrained to its own manifold. Optimization over manifold-
constrained parameters is needed for emerging statistical methodology in areas such as suf-
ficient dimension reduction and envelope models. We have discussed several applications of
such models, and demonstrated ways in which ManifoldOptim could practically be applied.
We hope that availability of this package will facilitate exploration of these methodologies by
statisticians and the R community.

Disclaimer
This article is released to inform interested parties of ongoing research and to encourage dis-
cussion of work in progress. The views expressed are those of the authors and not necessarily
those of the U.S. Census Bureau.
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