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Abstract

This paper is devoted to the R package JSM which performs joint statistical modeling
of survival and longitudinal data. In biomedical studies it has been increasingly com-
mon to collect both baseline and longitudinal covariates along with a possibly censored
survival time. Instead of analyzing the survival and longitudinal outcomes separately,
joint modeling approaches have attracted substantive attention in the recent literature
and have been shown to correct biases from separate modeling approaches and enhance
information. Most existing approaches adopt a linear mixed effects model for the longitu-
dinal component and the Cox proportional hazards model for the survival component. We
extend the Cox model to a more general class of transformation models for the survival
process, where the baseline hazard function is completely unspecified leading to semi-
parametric survival models. We also offer a non-parametric multiplicative random effects
model for the longitudinal process in JSM in addition to the linear mixed effects model.
In this paper, we present the joint modeling framework that is implemented in JSM, as
well as the standard error estimation methods, and illustrate the package with two real
data examples: a liver cirrhosis data and a Mayo Clinic primary biliary cirrhosis data.

Keywords: B-splines, EM algorithm, multiplicative random effects, semi-parametric models,
transformation model.

1. Introduction

In medical studies it is common to record important longitudinal measurements (e.g., biomark-
ers) up to a possibly censored event time (or survival time) along with additional baseline
covariates collected at the onset of the study. The objectives of investigations based on this
kind of data often are to characterize the effects of the longitudinal biomarkers as well as
baseline covariates on the survival time to understand the pattern of changes of the longitu-
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dinal biomarkers, and to study the joint evolution of the longitudinal and survival processes.
Examples that appear frequently in the literature are HIV (human immunodeficiency virus)
clinical trials where the CD4 (cluster of differentiation 4) counts are collected at baseline
and subsequent clinical visits and the event of interest is progression to AIDS (acquired im-
munodeficiency syndrome) or death. Many existing methods are well-suited to analyze the
two outcomes separately, however, difficulties arise when: (1) the longitudinal measurements
are only available intermittently or may be contaminated by measurement errors, and (2)
occurrence of the event, such as death, results in patient’s informative drop-out from the lon-
gitudinal study. To overcome these difficulties and provide valid inference, jointly modeling
the survival and longitudinal processes is necessary and has become a mainstream research
topic.

Under the joint modeling framework, the hazard for the survival time and the model for the
longitudinal process are assumed to depend jointly on some latent random effects. Many
different methods have been proposed for parameter estimation, e.g., the two-stage method
(Tsiatis, Degruttola, and Wulfsohn 1995), the Bayesian approach (Faucett and Thomas 1996;
Xu and Zeger 2001; Brown and Ibrahim 2003), the maximum likelihood approach (Wulfsohn
and Tsiatis 1997; Song, Davidian, and Tsiatis 2002; Hsieh, Tseng, and Wang 2006) and
the conditional score approach (Tsiatis and Davidian 2001). For the maximum likelihood
approach, computations are typically performed by the EM (expectation and maximization)
algorithm (Dempster, Laird, and Rubin 1977). Several excellent review papers, e.g., Tsiatis
and Davidian (2004), Yu, Law, Taylor, and Sandler (2004), and Gould et al. (2015), are
available. The edited volume by Verbeke and Davidian (2008), a 2012 book by Rizopoulos
(2012), a special issue in Statistical Methods in Medical Research by Rizopoulos and Lesaffre
(2014), and a recent book by Elashoff, Li, and Li (2016) provide additional perspectives of
the joint modeling approaches.

Parametric assumptions on the baseline hazard functions of the survival times are common
in the joint modeling literature to facilitate likelihood inference. These lead to tractable
computation and are practical when the assumptions can be verified. The joint modeling
implementation in SAS (SAS Institute Inc. 2013) and WinBUGS (Lunn, Thomas, Best, and
Spiegelhalter 2000; Spiegelhalter, Thomas, Best, and Lunn 2003) as discussed by Guo and
Carlin (2004) are based on such parametric assumptions, where the baseline hazard func-
tions are assumed to follow Weibull distributions. To avoid the strong model assumptions
and extra effort of goodness-of-fit tests, some later software tools proposed to approximate
the baseline hazard function by piecewise constant or spline functions, e.g., the SAS macro
JMFit (Zhang, Chen, Ibrahim, Boye, and Shen 2016), R (R Core Team 2020) packages JM
(Rizopoulos 2010), JMBayes (Rizopoulos 2016), lcmm (Proust-Lima, Philipps, and Liquet
2017; Proust-Lima, Philipps, Diakite, and Liquet 2019) and frailtypack (Rondeau, Mazroui,
and Gonzalez 2012; Król, Mauguen, Mazroui, Laurent, Michiels, and Rondeau 2017), as well
as Stata (StataCorp 2019) module stjm (Crowther, Abrams, and Lambert 2013). Both piece-
wise constant and spline function approximations are in the spirit of non-parametrics and the
survival component can indeed be modeled non-parametrically if the number of knots is al-
lowed to increase with the sample size when selected by a model selection criterion. However,
as currently implemented in these software packages, the tuning parameters (e.g., the num-
ber and locations of the knots) for the survival component are fixed and not data adaptive.
Therefore, the approximations correspond to flexible parametric models, which have their
merits but may contain non-ignorable bias. Some other software packages, e.g., R packages



Journal of Statistical Software 3

joineR (Philipson, Sousa, Diggle, Williamson, Kolamunnage-Dona, and Henderson 2020) and
joineRML (Hickey, Philipson, Jorgensen, and Kolamunnage-Dona 2018), adopted the Cox
proportional hazards model (Cox 1972) for the survival times, leaving the baseline hazard
completely unspecified. However, joineR and joineRML estimate the standard errors of the
regression parameters through the bootstrap method of Efron (1994), which is computation-
ally intensive and may suffer from convergence problems. The package JM also has an option
to apply a completely unspecified baseline hazard, but it underestimates the standard errors
of the regression parameters in that case.
In light of this and the difficulty to choose a parametric baseline hazard function, we follow
the semi-parametric spirit of the Cox model to focus on joint modeling with semi-parametric
models for the survival time and provide valid and computationally efficient standard error
estimates in the JSM package (Xu, Hadjipantelis, and Wang 2020) which is freely available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=JSM. The acronym JSM stands for “joint statistical modeling” and reflects the
fact that the package explores many different joint models. The semi-parametric models
are not restricted to the Cox proportional hazards model and can be chosen from a class of
transformation models presented in Section 2. For the longitudinal process, both a linear
mixed effects model and a non-parametric multiplicative random effects model (Ding and
Wang 2008) are incorporated. Since it might be difficult to detect the time trends in the
linear mixed effects model, just like JM, JSM also allows users to employ B-spline basis
functions as an option to model the time trend of the longitudinal data. This adds flexibility
to an otherwise parametric approach for the longitudinal component. An additional feature
of JSM is that we also include two ways to link the longitudinal and survival processes, one
where the longitudinal process serves as a covariate of the survival outcome and another
setting where the longitudinal and survival data each have their own model but are linked
together by sharing some common random effects. This results in four different types of joint
models between the survival and longitudinal components. Details are given in Section 2,
where model fitting and estimation are presented. Precision estimation for the procedures is
presented in Section 3, where two standard error estimation approaches are described. These
are the profile likelihood method by Murphy and Van der Vaart (1999, 2000) and the method
of numerically differentiating the profile Fisher score by Xu, Baines, and Wang (2014). Details
about the implementation of the algorithms in JSM and two illustrating data examples (a
liver cirrhosis data and a primary biliary cirrhosis data) are provided in Sections 4 and 5,
respectively. Finally, Section 6 concludes with a short summary and discussion.

2. Joint modeling framework

2.1. Model setup

In Wulfsohn and Tsiatis (1997), the longitudinal and survival outcomes are modeled with a
linear mixed effects model and a Cox proportional hazards model, respectively. We adopt a
more flexible framework here as described below.
For subject i (i = 1, 2, . . . , n), let Ti be the event time which may be right censored by
the censoring time Ci. Thus, instead of observing Ti, we are only able to observe Vi =
min(Ti, Ci) and the censoring indicator ∆i = I(Ti ≤ Ci). Let Yi(t) denote the longitudinal
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outcome for subject i evaluated at time t which is the sum of a “true” underlying value
mi(t) and a measurement error. The longitudinal measurements are recorded intermittently
at ti = (ti1, ti2, . . . , tini) so that the observed data are Yi = Yi(ti) = (Yi1, Yi2, . . . , Yini) with
Yij = mi(tij) + εij and εij

iid∼ N (0, σ2
e). Two models for mi(t) are incorporated. The first

model is the frequently used linear mixed effects model

mi(t) = X>i (t)β + Z>i (t)bi, (1)

where Xi(t) and Zi(t) are vectors of observed covariates for the fixed and random effects,
respectively. Each of the covariates in Xi(t) and Zi(t) can be either time-independent or
time-dependent. The vector β denotes the unknown regression coefficients for the fixed effects
while the vector bi denotes the random effects. Model (1) is an additive model with users
specifying what kind of covariates Xi and Zi they prefer. We note here that users can choose
to model both covariates through B-spline bases with their choice of knots or through a model
selection criterion. Thus, model (1) can be adapted to be a non-parametric approach.
The second model incorporated in JSM is the non-parametric multiplicative random effects
model proposed in Ding and Wang (2008)

mi(t) = bi ×B>(t)γ and E(bi) = 1, (2)

where B(t) = (B1(t), . . . , BL(t))> is a vector of B-spline basis functions and γ is the corre-
sponding regression coefficient vector. The number of basis functions involved in B(t) (i.e.,
L) is not fixed and instead is chosen by some model selection criterion, e.g., AIC (Akaike
information criterion) or BIC (Bayesian information criterion). Hence, this makes model (2)
“non-parametric” in the sense that the mean function of mi(t) is modeled non-parametrically.
Note that the bi in (2) is different from the bi in (1): bi is a vector of random effects while bi
is a single scalar random effect which dramatically lowers the computational cost. In model
(2), B>(t)γ is the population mean and each subject is assumed to have a longitudinal profile
proportional to it with bi capturing the variation. Such a model may seem restrictive at first
glance but is applicable in many real life examples and has the advantage that it allows for
non-parametric fixed effects. For instance, it is applicable when the major mode of variation
is along the population mean function and the first functional principal component (Yao,
Müller, and Wang 2005) explains a high proportion of the total variation of the data. This
is illustrated by the primary biliary cirrhosis data in Section 5, where the first functional
principal component explains about 80% of the total variation. To make the model more ap-
plicable, we also allow for the inclusion of baseline covariates as columns of B(t) in addition
to the B-spline basis functions.
To complete the model specification of the longitudinal processes, we need to pose proper
distribution assumptions on bi in (1) and bi in (2). Assuming normality for bi and bi is a
standard choice which provides computational advantages as will be described in Section 2.3.
Although this is a parametric assumption, simulation studies reported in Song et al. (2002)
suggest that the maximum likelihood estimates in these joint models are remarkably robust
against departures from normal random effects. A theoretical explanation for such robustness
properties was later provided in Hsieh et al. (2006). Therefore, we assume bi ∼ N (0,Σb) and
bi ∼ N (1, σ2

b ) in our JSM package.
For the survival processes, the Cox proportional hazards model is used most frequently where
the hazard functions are modeled as

λ(t|bi,mi(t),Wi(t)) = λ0(t) exp{W>
i (t)φ+ αmi(t)},
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where Wi(t) is also a vector of observed covariates that can include both baseline covariates,
which are constant overtime t, and other longitudinal covariates that were observed continu-
ously without errors, such as interactions between treatments and time effects. In reality, the
proportional hazards assumption may be violated. For example, it is a common phenomenon
in clinical studies that patients under a more aggressive treatment may suffer elevated risk of
death in the beginning but benefit in the long term if they manage to tolerate the treatment.
In such cases, the proportional hazards assumption does not hold and more flexible models
for the survival processes are needed. The transformation model proposed by Dabrowska and
Doksum (1988) and studied in Zeng and Lin (2007) is a general class of models which includes
both the Cox proportional hazards model and the proportional odds model (Bennett 1983)
as special cases; so we consider such a general approach in JSM. We make a remark here
about the terminology “transformation model”. There are several transformation models in
the literature but we adopt the original name proposed in Dabrowska and Doksum (1988),
which is the most commonly used designation in the survival literature. For a strictly in-
creasing and continuously differentiable function G(·), the cumulative hazard functions in the
transformation model (Zeng and Lin 2007) are modeled as:

Λ(t|bi,mi(t),Wi(t)) = G

[∫ t

0
λ0(s) exp{W>

i (s)φ+ αmi(s)}ds
]
. (3)

Common choices for G(·) include the Box-Cox transformations and the logarithmic transfor-
mations. In our JSM package, we focus on the logarithmic transformations

G(x) = log(1 + ρx)
ρ

, ρ ≥ 0, (4)

where ρ = 0 corresponds to G(x) = x, yielding the Cox proportional hazards model, and
ρ = 1 corresponds to G(x) = log(1 + x) yielding the proportional odds model. For general
ρ > 0, it yields the “proportional γ odds model” (Dabrowska and Doksum 1988). Here we use
ρ instead of γ since γ has already been used in (2). Note that we leave the baseline hazard
λ0(·) completely unspecified, as discussed in Section 1, so the resulting survival model is a
very flexible semi-parametric model.
Lastly, we enlarge the scope of JSM by introducing another type of dependency between
the survival and longitudinal outcomes, which differs from model (3). In (3), the entire
longitudinal process (free of error) enters the survival model as a covariate. In JSM we also
incorporate the dependency where the survival and longitudinal outcomes only share the same
random effects:

Λ(t|bi,Zi(t),Wi(t)) = G

[∫ t

0
λ0(s) exp{W>

i (s)φ+ αZ>i (s)bi}ds
]
, (5)

and
Λ(t|bi,Wi(t)) = G

[∫ t

0
λ0(s) exp{W>

i (s)φ+ αbi}ds
]
, (6)

with (5) and (6) corresponding to longitudinal models (1) and (2), respectively. Such a shared
random effects model is quite common and has been adopted by Henderson, Diggle, and Dob-
son (2000) among others. The choice between (3) and (5)/(6) depends on the primary focus
of the analysis. If the focus is on the survival time conditional on the longitudinal measure-
ments, then (3) is typically used. If the focus is on the joint evolution of the longitudinal and



6 JSM: Semi-Parametric Joint Modeling of Survival and Longitudinal Data in R

survival processes, then (5)/(6) would be a reasonable choice. Altogether package JSM offers
four different types of joint models between the survival and longitudinal data. Specifically,
the four types are: (i) survival model (3) and longitudinal model (1), (ii) survival model
(3) and longitudinal model (2), (iii) survival model (5) and longitudinal model (1), and (iv)
survival model (6) and longitudinal model (2).

2.2. Likelihood formulation

In the JSM package, we focus on the maximum likelihood approach and follow the model setup
in Section 2.1. In the following, we illustrate only one of the four joint models discussed in
Section 2.1. The likelihood based on the joint model of form (1) and (3) and the corresponding
EM algorithm are derived as an illustrating example, those based on other joint models follow
analogously.
Let Oi = (Yi,Xi,Zi,Wi, Vi,∆i) and Ci = (Oi,bi) denote the observed and complete data,
respectively. The parameter to be estimated is ψ = (θ,Λ0) with θ = (φ, α,β, σ2

e ,Σb) being
the finite dimensional (p-dimensional) parameter and Λ0 being the non-parametric cumulative
baseline hazard. To derive the joint-likelihood function, the following common assumptions
are made: (i) the measurement errors εij and the random effects bi are independent; (ii)
the censoring time and longitudinal measurement times are both non-informative; (iii) the
random effect bi fully captures the association between the longitudinal and survival outcomes
(i.e., the longitudinal and survival outcomes are conditionally independent given bi). Then
the joint likelihood for the observed data can be expressed as

Ln(ψ|O) = fn(O|ψ) =
n∏
i=1

∫
f(Yi|bi;θ)f(Vi,∆i|bi;ψ)f(bi;θ)dbi, (7)

with

f(Yi|bi;θ) =
ni∏
j=1

1√
2πσ2

e

exp
{
−

(Yij −X>ijβ − Z>ijbi)2

2σ2
e

}
,

f(Vi,∆i|bi;ψ) =
(
λ0(Vi) exp{W>

i (Vi)φ+ αmi(Vi)} (8)

G′
[∫ Vi

0
exp{W>

i (t)φ+ αmi(t)}dΛ0(t)
])∆i

× exp
{
−G

[∫ Vi

0
exp{W>

i (t)φ+ αmi(t)}dΛ0(t)
]}

, (9)

f(bi;θ) = 1√
|2πΣb|

exp
{
−1

2b>i Σ−1
b bi

}
.

Direct maximization of (7) is computationally challenging due to the integral (possibly multi-
dimensional) and the infinite dimensional parameter Λ0. Fortunately, by treating the random
effects bi as “missing data”, the EM algorithm can be readily applied to obtain the maximum
likelihood estimates (MLEs). Note that the likelihood approach leads to non-parametric max-
imum likelihood estimates (NPMLEs; Kiefer and Wolfowitz 1956) for the parameters where
Λ̂0, the estimate for Λ0, is a step function with jumps only at the uncensored survival times.
Details of the algorithm are provided in the next section.
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2.3. EM algorithm

Since first introduced systematically by Dempster et al. (1977), the EM algorithm has been
extensively used to find the MLEs in statistical models where unobserved latent variables are
involved. When a general class of transformation models is assumed for the survival outcomes,
the EM algorithm is not as straightforward as that described in Wulfsohn and Tsiatis (1997),
where the Cox proportional hazards model is assumed and the Breslow-type form suggested
by Breslow (1972) is available for estimating Λ0 in the M-step without relying on any numer-
ical maximization method. The transformation G(·) would prohibit the simple Breslow-type
estimator for Λ0 in the M-step, instead a high dimensional non-linear optimization would be
needed to estimate Λ0. To overcome this difficulty, we adopt the clever idea of Zeng and
Lin (2007) to introduce an artificial random effect and treat it as “missing data” in the EM
algorithm.

To elaborate on this idea let exp{−G(x)} be the Laplace transformation of some density
function π(x) (this function exists for the class of logarithmic transformations defined in (4)),
i.e.,

exp{−G(x)} =
∫ ∞

0
exp(−xt)π(t)dt.

If ξi follows the distribution with density π(x), f(Vi,∆i|bi;ψ) in (8) can be rewritten as:

f(Vi,∆i|bi;ψ) =
∫ ∞

0

(
ξiλ0(Vi) exp{W>

i (Vi)φ+ αmi(Vi)}
)∆i

× exp
{
−ξi

∫ Vi

0
exp{W>

i (t)φ+ αmi(t)}dΛ0(t)
}
π(ξi)dξi,

where the integrand is the likelihood function under the Cox proportional hazards model
with conditional hazard function ξiλ0(t) exp{W>

i (t)φ+ αmi(t)}. Treating both bi and ξi as
“missing data”, the complete-data joint log-likelihood can be written as, up to a constant,

`cn(ψ) = −N2 log σ2
e −

1
2σ2

e

n∑
i=1

ni∑
j=1

(Yij −X>ijβ − Z>ijbi)2 +
n∑
i=1

∆i [log ξi + log λ0(Vi)

+W>
i (Vi)φ+ αmi(Vi)

]
−

n∑
i=1

ξi

∫ Vi

0
exp{W>

i (t)φ+ αmi(t)}dΛ0(t)

− n

2 log |Σb| −
1
2

n∑
i=1

b>i Σ−1
b bi, (10)

where N =
∑n
i=1 ni. Let K be the number of distinct uncensored survival times ({Vi :

∆i = 1}) with t1 < t2 < . . . < tK the corresponding ordered statistics, then the NPMLE
of Λ0 is a step function with jumps at {t1, t2, . . . , tK}. Replacing Λ0(·) by the jump sizes
{Λ1,Λ2, . . . ,ΛK}, the target function to be evaluated in the E-step and maximized in the
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M-step can be written as

Q(ψ|ψ̃) = Eψ̃ (`cn(ψ)|O) = −N2 log σ2
e −

1
2σ2

e

n∑
i=1

ni∑
j=1

Eψ̃
[
(Yij −X>ijβ − Z>ijbi)2|Oi

]

+
n∑
i=1

∆i

[
Eψ̃(log ξi|Oi) +

K∑
k=1

log ΛkI(Vi = tk) + W>
i (Vi)φ+ αEψ̃(mi(Vi)|Oi)

]

−
n∑
i=1

K∑
k=1

ΛkI(Vi ≥ tk)Eψ̃
[
ξi exp{W>

i (tk)φ+ αmi(tk)}|Oi

]
− n

2 log |Σb| −
1
2

n∑
i=1

Eψ̃
(
b>i Σ−1

b bi|Oi

)
, (11)

with ψ̃ = (θ̃, Λ̃0) being the current parameter estimate. By maximizing Q(ψ|ψ̃) w.r.t. Λk,
we obtain the NPMLE:

Λ̂k =
∑n
i=1 ∆iI(Vi = tk)∑n

i=1 I(Vi ≥ tk)Eψ̃
(
ξi exp{W>

i (tk)φ+ αmi(tk)}|Oi
) , (12)

which is a Breslow-type estimate. Moreover, it is straightforward to get

σ̂2
e = 1

N

n∑
i=1

ni∑
j=1

Eψ̃
[
(Yij −X>ijβ − Z>ijbi)2|Oi

]
,

Σ̂b = 1
n

n∑
i=1

Eψ̃
(
bib>i |Oi

)
.

However, there are no explicit expressions for the NPMLEs of β, φ and α so one-step
Newton-Raphson updates in each EM iteration are needed. The score functions needed
for the Newton-Raphson updates are computed by taking the derivative of (11) w.r.t. the
corresponding parameters and are not shown here. Note that in the E-step, to evaluate
Eψ̃
(
ξi exp{W>

i (tk)φ+ αmi(tk)}|Oi

)
with mi(t) = X>i (t)β+ Z>i (t)bi, we are not integrating

over both bi and ξi. Instead we compute

Eψ̃ (ξi|bi,Oi) =
∫
ξ
ξif(ξi|bi,Oi; ψ̃)dξi =

∫
ξ ξif(Oi|ξi,bi; ψ̃)π(ξi)dξi

f(Oi|bi; ψ̃)

= G′
[
K∑
k=1

Λ̃k exp
{
η(tk|bi,Oi; ψ̃)

}
I(tk ≤ Vi)

]

−∆i ×
G′′
[∑K

k=1 Λ̃k exp
{
η(tk|bi,Oi; ψ̃)

}
I(tk ≤ Vi)

]
G′
[∑K

k=1 Λ̃k exp
{
η(tk|bi,Oi; ψ̃)

}
I(tk ≤ Vi)

] , (13)

with η(t|bi,Oi; ψ̃) = W>
i (t)φ̃+α̃m̃i(t) = W>

i (t)φ̃+α̃
[
X>i (t)β̃ + Z>i (t)bi

]
, and subsequently

obtain

Eψ̃
(
ξi exp{W>

i (tk)φ+ αmi(tk)}|Oi

)
= Eψ̃

[
Eψ̃ (ξi|bi,Oi)× exp{W>

i (tk)φ+ αmi(tk)}|Oi

]
,
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which is an integration over bi only by plugging in (13). Therefore, the E-step involves in-
tegrations over bi only. This suggests that by introducing an artificial random effect ξi, we
greatly simplify the M-step while not complicating the E-step. We note that the integrations
over bi in the E-step do not have explicit solutions and have to be computed numerically.
Fortunately, assuming a normal distribution for bi enables the application of the (adaptive)
Gauss-Hermite quadrature, providing more numerical precision and efficiency than other nu-
merical integration methods, e.g., Monte Carlo integration and Laplace approximation.

3. Standard error estimation
For the standard error (SE) estimation under semi-parametric joint modeling settings, i.e.,
when the baseline hazard function λ0(t) is left completely unspecified, Xu et al. (2014) pro-
posed two new methods and systematically examined their performance along with the profile
likelihood method by Murphy and Van der Vaart (1999, 2000) and the bootstrap method of
Efron (1994). According to their results, numerically differentiating the profile Fisher score
with Richardson extrapolation (PRES) is recommended as the best choice. In our JSM pack-
age, we apply the PRES method as the default but also provide two alternative approaches:
the PFDS (numerically differentiating the profile Fisher score with forward difference) method
in Xu et al. (2014) and the PLFD (numerically deriving the second derivative of the profile
likelihood function with forward difference) method in Murphy and Van der Vaart (1999).
The bootstrap method, being computationally intensive, is not implemented in JSM but users
can easily construct their own bootstrap SE estimators using our code. Details of the methods
are described below.

3.1. PLFD: Numerically differentiating the profile likelihood function
Our interests are mainly to infer the finite dimensional parameter θ. The PLFD method
obtains the observed-data information matrix Io of θ at θ∗ (here ψ∗ = (θ∗,Λ∗0) denotes the
NPMLE of ψ) by taking the second derivative of the profile likelihood function with forward
difference. The profile likelihood function is

pln(θ) = max
Λ0
{logLn(θ,Λ0|O)}

and we have (1 ≤ i, j ≤ p)

Io(i, j) ≈
pln(θ∗ + δei + δej)− pln(θ∗ + δei)− pln(θ∗ + δej)− pln(θ∗)

δ2 , (14)

where Ln is defined in (7), ei is the ith coordinate vector and δ > 0 is the increment used by
forward difference. Then the variance-covariance matrix estimate of θ at θ∗ is obtained by
V = I−1

o . Note that to evaluate pln(θ), we need to compute

Λ∗(θ) = argmax
Λ0

logL(θ,Λ0|O), (15)

i.e., the estimate of Λ0 given any θ.

3.2. PRES/PFDS: Numerically differentiating the profile Fisher score
The key idea of the PRES and PFDS methods is that the observed-data information matrix
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can be approximated by numerically differentiating the Fisher score defined as

S(ψ̃) = ∂Q(ψ|ψ̃)
∂ψ

∣∣∣∣
ψ=ψ̃

with Q(ψ|ψ̃) defined by (11). Note that S(·) is a (p + K)-dimensional vector where K is
the number of distinct uncensored survival times, which is usually large and increases with
the sample size. Luckily, differentiating the entire Fisher score vector is unnecessary and Xu
et al. (2014) proposed a profile version of the Fisher score, i.e., the profile Fisher score with
the form:

Sθ(ψ̃) =
[
∂Q(ψ|ψ̃)

∂θ

∣∣∣∣
Λk=Λ̂k(θ)

] ∣∣∣∣
θ=θ̃

, (16)

which is a p-dimensional vector with Λ̂k(θ) corresponding to the Λ̂k defined in (12). Then
the step-by-step algorithm of the PRES and PFDS methods is:

1. For i = 1, . . . , p, let θ(i)
1 = θ∗+δei, θ(i)

2 = θ∗−δei, θ(i)
3 = θ∗+2δei, and θ(i)

4 = θ∗−2δei,
obtain Λ∗

(
θ

(i)
1

)
, Λ∗

(
θ

(i)
2

)
, Λ∗

(
θ

(i)
3

)
and Λ∗

(
θ

(i)
4

)
defined by (15).

2. For l = 1, 2, 3, 4, let ψ(i)
l =

(
θ

(i)
l ,Λ∗

(
θ

(i)
l

))
and evaluate Sθ

(
ψ

(i)
l

)
defined by (16).

3. Compute the ith row of Io:

PRES: Io(i, ) =
Sθ
(
ψ

(i)
4

)
− 8Sθ

(
ψ

(i)
2

)
+ 8Sθ

(
ψ

(i)
1

)
− Sθ

(
ψ

(i)
3

)
12δ .

PFDS: Io(i, ) =
Sθ
(
ψ

(i)
1

)
− Sθ (ψ∗)
δ

. (17)

4. Obtain V by V = I−1
o .

In step 3, the difference between the PRES and PFDS method is in that PFDS adopts
the forward differencing method to estimate a derivative while PRES adopts the stabled
Richardson extrapolation method for derivatives. The PRES method costs more computing
time but provides more reliable SE estimates based on the numerical experiments in Xu et al.
(2014).

4. JSM: Implementation details
The JSM package is an add-on package to R which has two model-fitting functions named
jmodelTM() and jmodelMult(). It requires additional packages from R: nlme (Pinheiro,
Bates, DebRoy, Sarkar, and R Core Team 2020), Rcpp (Eddelbuettel and François 2011),
RcppEigen (Bates and Eddelbuettel 2013), splines (R Core Team 2020), statmod (Giner
and Smyth 2016) and survival (Therneau and Grambsch 2000). For the longitudinal out-
come, jmodelTM() fits the linear mixed effects model in (1) while jmodelMult() fits the
non-parametric multiplicative random effects model in (2) as described in Section 2.1. For
the survival outcome, both jmodelTM() and jmodelMult() accommodate the transformation
models with the class of logarithmic transformations defined by (4).
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The model argument of jmodelTM() and jmodelMult() specifies the dependency between
the survival and longitudinal outcomes adopted by the joint model. If model = 1, the entire
longitudinal outcome enters the survival model as a covariate described by (3); otherwise,
the survival model only shares the same random effects with the longitudinal model as in (5)
(for jmodelTM()) and (6) (for jmodelMult()). In addition, the rho argument allows users to
choose the ρ in the logarithmic transformations (4) to specify the survival models they would
like to fit. For example, the default rho = 0 indicates that a Cox proportional hazards model
is fitted whereas a proportional odds model is fitted with rho = 1. Sophisticated users can
also perform their own model selection method to choose the value of rho using the code in
JSM, see the example shown in Section 5.1.
The control argument of jmodelTM() and jmodelMult() is a list of control values for the
estimation algorithm with components: tol.P, tol.L, max.iter, SE.method, delta and
nknot. Section 2.3 provides the EM algorithm, an iterative algorithm, used to obtain the
parameter estimates. Naturally, a convergence criterion is needed to implement the algorithm
and in JSM we claim convergence whenever

max{|θ(t) − θ(t−1)|/(|θ(t−1)|+ .Machine$double.eps× 2)} < tol.P, or
|`n(ψ(t))− `n(ψ(t−1))|/(|`n(ψ(t−1))|+ .Machine$double.eps× 2) < tol.L

is satisfied. Here ψ(t) =
(
θ(t),Λ(t)

0

)
denote the estimated parameters in the tth EM iteration,

where `n(ψ) = logLn(ψ|O) is defined by (7). The default values of tol.P and tol.L are
10−3 and 10−6, respectively, which are the standard choices to claim convergence of iterative
algorithms. The component max.iter states the maximum number of iterations for the EM
algorithm with the default value being 250. The method to compute the standard error
estimates is specified via SE.method and users could assign "PRES" (the default), "PFDS" or
"PLFD" to it (refer to Section 3 for detailed explanation). Moreover, the increment δ used
for numerical differentiation (as in (14) and (17)) can be customized through the component
delta. By default, delta = 10−5 if SE.method = "PRES" and delta = 10−3 otherwise,
according to the simulation studies performed in Xu et al. (2014).
On the other hand, nknot stands for the number of quadrature points used in the Gauss-
Hermite rule for numerical integration. As mentioned at the end of Section 2.3, the integra-
tions involved in the E-step of the EM algorithm are computed by applying the Gauss-Hermite
quadrature rule. In JSM, we implement the adaptive Gauss-Hermite rule (Pinheiro and Bates
1995) which centers and scales the quadrature points in each EM iteration according to the
conditional distribution of the random effects with current parameter ψ(t), i.e., f(bi|Yi;ψ(t)).
Although it seems to demand more computational effort, the adaptive rule is actually more
efficient since it requires fewer quadrature points to reach the same level of precision. The de-
fault values of nknot differ between jmodelTM() and jmodelMult(). For jmodelTM(), nknot
= 9 for a one-dimensional random effect; nknot = 7 for a two-dimensional random effect;
nknot = 5 for a higher-dimensional random effect. For jmodelMult(), nknot = 11. The rea-
son why we assign a larger default value to nknot for jmodelMult() is that the model assumes
a multiplicative random effect which requires more quadrature points to reach a satisfactory
level of accuracy. These default values are selected based on a numerical study regarding the
performance of the model-fitting functions with different values of nknot, which is provided
in Appendix A.
The following commonly used methods are currently available for the objects returned by



12 JSM: Semi-Parametric Joint Modeling of Survival and Longitudinal Data in R

jmodelTM() and jmodelMult(): AIC() and BIC() for computing AIC and BIC values;
confint() for returning the confidence intervals of the parameter estimates; fitted() and
ranef() for extracting the fitted values and random effects; residuals() for computing the
residuals; summary() for outputting model-fitting details; vcov() for returning the variance-
covariance matrix of the parameter estimates. Although the residuals() method is provided,
we do not encourage its usage for diagnostic or model-assessment purposes under the joint
modeling setting. An example is demonstrated in Section 5.1 to explain the reason.
The JSM package also provides a data preprocessing function called dataPreprocess() to
prepare the data in a format that could be used to fit the joint model. An example is given
in Section 5.1.

5. Real data analysis using JSM
The usage of jmodelTM() and jmodelMult() are illustrated through two examples.

5.1. Example I: Liver cirrhosis data analysis
Consider a randomized control trial involving 488 liver cirrhosis patients who were randomly
allocated to prednisone (251) or placebo (237). The patients were followed until death or
end of the study and variables such as prothrombin index (a measure of liver function) were
recorded at study entry and several follow-up visits during the trial which differed among
patients. Therefore, both survival and longitudinal data were collected and the main purpose
is to investigate the development of prothrombin level over time as well as its relationship with
the survival outcome. The data, available in JSM under the named liver, were reported in
Andersen, Borgan, Grill, and Keiding (1993) and have been analyzed by Henderson, Diggle,
and Dobson (2002). Figure 1 summarizes the data.

R> library("JSM")
R> liver.unq <- liver[!duplicated(liver$ID), ]
R> liver.pns <- liver[liver$Trt == "prednisone", ]
R> liver.pcb <- liver[liver$Trt == "placebo", ]
R> times.pns <- sort(unique(liver.pns$obstime))
R> times.pcb <- sort(unique(liver.pcb$obstime))
R> means.pns <- tapply(liver.pns$proth, liver.pns$obstime, mean)
R> means.pcb <- tapply(liver.pcb$proth, liver.pcb$obstime, mean)
R> par(mfrow = c(1, 2))
R> plot(lowess(times.pns, means.pns, f = 0.3), type = "l", col = "blue",
+ ylab = "Prothrombin index", xlab = "Time (years)", ylim = c(50, 150),
+ main = "Smoothed mean prothrombin index", lwd = 2)
R> grid()
R> lines(lowess(times.pcb, means.pcb, f = 0.3), col = "red", lty = 2,
+ lwd = 2)
R> legend("topright", c("Prednisone", "Placebo"), col = c("blue", "red"),
+ lty = 1:2, lwd = 2, bty = "n")
R> plot(survfit(Surv(Time, death) ~ Trt, data = liver.unq), lty = c(2, 1),
+ col = c("red", "blue"), mark.time = FALSE, ylab = "Survival",
+ xlab = "Time (years)", main = "Kaplan-Meier survival curves", lwd = 2)
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Figure 1: Smoothed mean prothrombin index (left) and Kaplan-Meier survival curves (right)
for the liver cirrhosis patients, separately for the prednisone (treatment) and placebo groups.

R> grid()
R> legend("topright", legend = c("Prednisone", "Placebo"), lty = 1:2,
+ col = c("blue", "red"), lwd = 2, bty = "n")

We observe from the left plot of Figure 1 that the average prothrombin level increases over
time in both groups and that the trend is approximately linear. Therefore, we fit a linear
mixed effects model for the mean prothrombin response Y assuming a linear trend in time
with different intercept and slope for each treatment group. For the survival component we
first adopt the proportional hazards model with a single treatment effect, as was done in
Andersen et al. (1993) and Henderson et al. (2002), and then fit the joint model:

Yij = Yi(tij) = mi(tij) + εij = β1 + β2Trti + β3tij + β4Trti × tij + b1i + b2itij + εij ,

λ(t|bi,Trti) = λ0(t) exp{φTrti + αmi(t)}. (18)

We start by fitting the linear mixed effects model and proportional hazards model separately:

R> fitLME <- lme(proth ~ Trt * obstime, random = ~ obstime | ID,
+ data = liver)
R> fitCOX <- coxph(Surv(start, stop, event) ~ Trt, data = liver, x = TRUE)

Note that the variables start and stop denote the limits of the time intervals between visits,
and event denotes whether death occurred by the end of each interval. When the user does
not have the longitudinal and survival data in a single dataset, dataPreprocess() could help
to merge the data and generate the corresponding start, stop, and event columns. For
example, liver.long contains only the longitudinal data for the liver cirrhosis patients, with
one row per longitudinal measurement, while liver.surv contains only the survival data,
with one row per patient. Then liver.join returned by the following code could be used
similarly as the liver data which we are using:

R> liver.join <- dataPreprocess(liver.long, liver.surv, "ID", "obstime",
+ "Time", "death")
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The argument x = TRUE is required in the call to coxph() to include the design matrix of the
fitted model in the returned object fitCOX. Then objects fitLME and fitCOX are supplied to
jmodelTM() to fit the joint model:

R> fitJT.ph <- jmodelTM(fitLME, fitCOX, liver, timeVarY = "obstime")
R> summary(fitJT.ph)

Call:
jmodelTM(fitLME = fitLME, fitCOX = fitCOX, data = liver,

timeVarY = "obstime")

Data Descriptives:
Longitudinal Process Survival Process
Number of Observations: 2968 Number of Events: 292 (59.8%)
Number of Groups: 488

AIC BIC logLik
30130.18 30172.08 -15055.09

Coefficients:
Longitudinal Process: Linear mixed-effects model

Estimate StdErr z.value p.value
(Intercept) 69.82578 1.39294 50.1284 < 2.2e-16 ***
Trtprednisone 7.08300 1.94243 3.6465 0.0002659 ***
obstime 0.67446 0.47773 1.4118 0.1580119
Trtprednisone:obstime -0.27292 0.63254 -0.4315 0.6661296
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Survival Process: Proportional hazards model with unspecified
baseline hazard function

Estimate StdErr z.value p.value
Trtprednisone 0.1841093 0.1244622 1.4792 0.1391
proth -0.0392174 0.0036416 -10.7693 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance Components:
StdDev Corr

(Intercept) 18.8699
obstime 3.9396 0.0216
Residual 17.2195

Integration: (Adaptive Gauss-Hermite Quadrature)
quadrature points: 7

StdErr Estimation:
method: profile Fisher score with Richardson extrapolation



Journal of Statistical Software 15

Optimization:
convergence: success
iterations: 28

Note that jmodelTM() requires the argument timeVarY to specify the name of the time
variable used in the linear mixed effects model. The results suggest that the linear trend in
time of the longitudinal process is not statistically significant since the p value of β3 is 0.158.
This seems contradictory to the strong linear upward trend of the prothrombin level in the
left plot of Figure 1 but is in fact a perfect example to demonstrate the bias incurred by a
marginal, i.e., separate, analysis of the longitudinal data. This bias, as also pointed out by
Henderson et al. (2002), is due to the fact that the observed mean profiles are based on the
average values over all patients who remain alive at each time point so that the observed
linear trend is not due to a substantive increase in mean prothrombin level, but to the loss
of data from high-risk patients with low prothrombin levels as time increases. This bias is
corrected in the joint analysis, by leveraging information from the survival component, as the
fitted mean profiles for both groups now appear to be quite flat in the left plot of Figure 2
(generated by the R code below) which provides the observed and fitted mean longitudinal
profiles.

R> fittedVal <- fitted(fitJT.ph)
R> fitted.pns <- fittedVal[liver$Trt == "prednisone"]
R> fitted.pcb <- fittedVal[liver$Trt == "placebo"]
R> residVal <- residuals(fitJT.ph)
R> par(mfrow = c(1, 2))
R> plot(lowess(times.pns, means.pns, f = 0.3), type = "l", col = "blue",
+ ylab = "Prothrombin index", xlab = "Time (years)", ylim = c(50, 150),
+ main = "Smoothed mean prothrombin index", lwd = 2)
R> grid()
R> lines(lowess(liver.pns$obstime, fitted.pns, f = 0.3),
+ lwd = 2, col = "deepskyblue")
R> lines(lowess(liver.pcb$obstime, fitted.pcb, f = 0.3),
+ lwd = 2, lty = 2, col = "lightsalmon")
R> plot(fittedVal, residVal, pch = 20, col = "gray", xlab = "Fitted Values",
+ ylab = "Residuals", main = "Residuals vs. Fitted Values")
R> grid()
R> lines(lowess(fittedVal, residVal, f = 0.5), lwd = 2, col = "red")
R> abline(h = 10, lty = 5, lwd = 2)

Caution about residual plots. The right plot of Figure 2 shows the residuals versus
fitted values for the prothrombin index, which is commonly used to check misspecification
of the mean structure. If the mean structure has been correctly specified, the residual plot
should show a random behavior around zero. However, a caveat in the joint modeling setting
is the bias induced by the informative dropout inherited in the longitudinal data when the
event time is death. Thus, it is not surprising that the residual plot shows a systemic pattern.
Therefore, a systemic behavior of the residuals does not necessarily indicate a lack-of-fit under
the joint modeling setting and model diagnostics based on residual plots are not encouraged.
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Figure 2: Observed and fitted mean prothrombin index (left); residuals versus fitted values
for the prothrombin index (right).

Our next analysis is to fit a joint model with a proportional odds model for the survival
outcome instead of a proportional hazards model. This is motivated by the fact that the two
survival functions in the right plot of Figure 1 cross each other in the right tail, suggesting
that the proportional odds model might be a better fit than the proportional hazards model
for these data. Thus, we adopt the following survival model:

Λ(t|bi,Trti) = log
(

1 +
∫ t

0
λ0(s) exp{φTrti + αmi(s)}ds

)
and the same model as in (18) for the longitudinal outcome. This could be realized by
specifying rho = 1 in jmodelTM() and the corresponding R code is given below with the
AIC values. fitJT.po has a smaller AIC value than fitJT.ph, suggesting that under the
Akaike information criterion, the proportional odds model is preferred over the proportional
hazards model for the survival outcome in the joint model for the liver cirrhosis data (AIC
value 30130.2 against 30128.2).

R> fitJT.po <- jmodelTM(fitLME, fitCOX, liver, rho = 1, timeVarY = "obstime")
R> AIC(fitJT.ph); AIC(fitJT.po)

[1] 30130.18
[1] 30128.19

In addition to the proportional odds model, we also tried the logarithmic transformation
model (4) with other values for ρ. Since a very huge sample size will be needed to estimate
the optimal transformation parameter ρ and it is not necessary to have the exact optimal ρ
in practice, we conduct a simple grid search over the candidate ρ values.
The results (Figure 3) strongly suggest that the value ρ = 1 offers the best model (i.e., the
proportional odds model) according to AIC. While interpreting the covariate effects on the
hazard function under the logarithmic transformation is straightforward when ρ = 0 or ρ = 1,
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Figure 3: AIC curve for model fittings with different transformation parameter.

the interpretation under more general values of ρ is less transparent. Below we provide an
interpretation.
Following the idea of Dabrowska and Doksum (1988), we define the “odds function”:

ΓT (t) = 1
ρ

(1− P ρ(T > t)
P ρ(T > t)

)
, ρ > 0. (19)

When ρ is a positive integer, ρΓT (t) is the odds that ρ independent individuals (with the same
covariate values) would not all survive to time t. By a simple derivation, our transformation
model with transformation parameter ρ is equivalent to

ΓT (t) =
∫ t

0
λ0(s) exp{φTrti + αmi(s)}ds, (20)

so that the regression parameters under our transformation model can be interpreted similarly
as those under the proportional hazards model, the only difference being that their effects are
on the “odds function” instead of on the hazard function.
Therefore, if the data analysis has an emphasis on interpretation, the researcher can choose ρ
as the value that results in the smallest AIC value among all possible integers. For the liver
cirrhosis data, this leads to ρ = 1, i.e., the proportional odds model.

R> summary(fitJT.po)

Call:
jmodelTM(fitLME = fitLME, fitCOX = fitCOX, data = liver, rho = 1,

timeVarY = "obstime")

Data Descriptives:
Longitudinal Process Survival Process
Number of Observations: 2968 Number of Events: 292 (59.8%)
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Number of Groups: 488
AIC BIC logLik

30128.19 30170.09 -15054.1

Coefficients:
Longitudinal Process: Linear mixed-effects model

Estimate StdErr z.value p.value
(Intercept) 69.70937 1.39046 50.1339 < 2.2e-16 ***
Trtprednisone 6.99834 1.93739 3.6123 0.0003035 ***
obstime 0.49102 0.48250 1.0176 0.3088475
Trtprednisone:obstime -0.19597 0.63209 -0.3100 0.7565271
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Survival Process: Proportional odds model with unspecified baseline hazard
function

Estimate StdErr z.value p.value
Trtprednisone 0.2805809 0.1838791 1.5259 0.127
proth -0.0546661 0.0052977 -10.3188 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance Components:
StdDev Corr

(Intercept) 18.8399
obstime 3.9620 0.0332
Residual 17.2232

Integration: (Adaptive Gauss-Hermite Quadrature)
quadrature points: 7

StdErr Estimation:
method: profile Fisher score with Richardson extrapolation

Optimization:
convergence: success
iterations: 45

For the longitudinal process, the results indicate that the clinical trial was not well-randomized
as the prednisone group had higher baseline prothrombin index than the placebo group, as
β̂2 = 6.998 with p value < 0.05 and 95% confidence interval [3.201, 10.796]. The p values
of β3 and β4 are 0.309 and 0.757, respectively, suggesting that the mean prothrombin index
did not significantly vary over time for both treatment groups. For the survival process, the
p value of φ is 0.127, indicating the lack of efficacy of prednisone. Lastly, α̂ = −0.055 with
p value < 0.05 and 95% confidence interval [−0.065, −0.044] provides evidence that high
prothrombin index is associated with long-term survival. Note that the confidence intervals
reported above are obtain by running confint(fitJT.po).
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5.2. Example II: Mayo Clinic primary biliary cirrhosis data analysis

Here we consider a data set collected by the Mayo Clinic from a randomized control trial on
PBC (primary biliary cirrhosis) patients during a ten-year interval, from 1974 to 1984. PBC
is a rare chronic liver disease which develops slowly but would eventually lead to cirrhosis and
even death. PBC patients usually display abnormalities in their blood values related to liver
function, such as serum bilirubin, albumin and alkaline phosphatase, however, what triggers
PBC remains unclear. A total of 312 PBC patients were included in the trial with 158 of
them given the drug D-penicillamine and the other 154 given a placebo. Detailed descriptions
of the clinical background and the variables recorded in the trial can be found in Fleming and
Harrington (2011). Several baseline covariates, e.g., age at first diagnosis, gender and presence
of some physical symptoms, were recorded at the study entry; some longitudinal covariates
such as the blood values mentioned above were also collected at irregular subsequent visits
until death or the end of the trial. Here, we focus on the serum bilirubin, the most significant
biomarker, and include the drug type as the only time-independent covariate as in Ding and
Wang (2008) did.

R> library("lattice")
R> xyplot(log(serBilir) ~ obstime | drug, group = ID, data = pbc,
+ type = "l", xlab = "Years", ylab = "log(serum bilirubin)",
+ col = "darkgray")

Figure 4 (generated by the R code above) shows the observed log-transformed serum bilirubin
trajectories for all of the 312 patients. Apparently, the variations of the trajectories are large so
a non-parametric multiplicative random effects model described by (2) may be more suitable
than a traditional parametric model. Further support for the multiplicative random effects,
based on functional principal component analysis (Yao et al. 2005), was provided in Ding and
Wang (2008) and we refer the reader to that paper for more details.
We proceed by fitting a joint model where the mean log-transformed serum bilirubin Y follows

Years

lo
g(

se
ru

m
 b

ili
ru

bi
n)

−2

−1

0

1

2

3

0 5 10

placebo

0 5 10

D−penicil

Figure 4: Subject-specific serum bilirubin trajectories in logarithmic scale, separately for the
D-penicillamine and placebo groups.
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a non-parametric multiplicative random effects model with two internal knots and quadratic
B-spline basis. To show that baseline covariates can also be incorporated, drug is included in
the model for Y . For the survival model we adopt the proportional hazards model, as it has
been shown in the literature to fit these data well,

Yij = Yi(tij) = mi(tij) + εij = bi × [γ1 + γ2drugi + γ3B1(tij) + γ4B2(tij) + γ5B3(tij)+
γ6B4(tij) + γ7drugi ×B1(tij) + γ8drugi ×B2(tij)+
γ9drugi ×B3(tij) + γ10drugi ×B4(tij)] + εij ,

λ(t|bi,drugi) = λ0(t) exp{φdrugi + αmi(t)}. (21)

The R code corresponding to the model is provided below. Note that we need fitLME.pbc as
an input of jmodelMult() just to specify the B(t) in model (2) but not to fit a linear mixed
effects model for the longitudinal outcome. The Boundary.knots argument is recommended
and should include the longest follow-up period among all subjects in the trial.

R> fitLME.pbc <- lme(log(serBilir) ~ drug * bs(obstime, df = 4, degree = 2,
+ Boundary.knots = c(0, 15)), random = ~ 1 | ID, data = pbc)
R> fitCOX.pbc <- coxph(Surv(start, stop, event) ~ drug, data = pbc, x = TRUE)
R> fitJT.pbc <- jmodelMult(fitLME.pbc, fitCOX.pbc, pbc, timeVarY = "obstime")
R> summary(fitJT.pbc)

Call:
jmodelMult(fitLME = fitLME.pbc, fitCOX = fitCOX.pbc, data = pbc,

timeVarY = "obstime")

Data Descriptives:
Longitudinal Process Survival Process
Number of Observations: 1945 Number of Events: 140 (44.9%)
Number of Groups: 312

AIC BIC logLik
5092.394 5144.796 -2532.197

Coefficients:
Longitudinal Process: Nonparametric multiplicative random effects model

Estimate StdErr z.value p.value
(Intercept) 0.640394 0.061081 10.4843 < 2.2e-16 ***
drugD-penicil -0.101691 0.050756 -2.0035 0.04512 *
bs1 0.064151 0.038368 1.6720 0.09452 .
bs2 0.279446 0.054820 5.0975 3.441e-07 ***
bs3 1.418953 0.214824 6.6052 3.970e-11 ***
bs4 2.127941 0.469246 4.5348 5.766e-06 ***
drugD-penicil:bs1 -0.109590 0.053631 -2.0434 0.04101 *
drugD-penicil:bs2 0.066800 0.067901 0.9838 0.32522
drugD-penicil:bs3 -0.201956 0.235751 -0.8567 0.39164
drugD-penicil:bs4 -0.911742 0.529450 -1.7221 0.08506 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 5: AIC curve for model fittings with different transformation parameter.

Survival Process: Proportional hazards model with unspecified baseline
hazard function

Estimate StdErr z.value p.value
drugD-penicil 0.074350 0.180128 0.4128 0.6798
log(serBilir) 1.093954 0.087129 12.5555 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance Components:
StdDev

Random 1.4245091
Residual 0.4501207

Integration: (Adaptive Gauss-Hermite Quadrature)
quadrature points: 11

StdErr Estimation:
method: profile Fisher score with Richardson extrapolation

Optimization:
convergence: success
iterations: 198

The choice of two internal knots is based on the AIC as it offers the smallest AIC value
(Figure 5).
For the longitudinal outcome, we plot the expected logarithm serum bilirubin trajectories of
six randomly selected patients in Figure 6 (R code given below). It demonstrates that the
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Figure 6: Expected log-transformed serum bilirubin trajectories (solid line) of six randomly
selected patients. The dots represent the observed log-transformed serum bilirubin.

shape of the longitudinal trajectories are relatively well captured by the fitted joint model,
given that only a one-dimensional random effect is assumed in the model. Had a linear mixed
effects model been fitted, at least a random intercept as well as a random slope would be
needed to capture the feature that some of the individual trajectories are increasing over time
while some are not. Although there appears to be some lack of fit, one needs to bear in mind
that this could be due to the bias issue discussed in Example 1, where the effect is more
prominent for the fitted mean trajectory. For individual trajectories the effect of bias due to
informative dropout is less prominent but still exists.
For the survival outcome, the estimated α is 1.094; the extremely small p value indicates a
strong association between the serum bilirubin and time-of-death. While the estimated φ is
0.074 with p value 0.680 suggesting that there is no direct effect of D-penicillamine on survival
after adjusting for serum bilirubin, there is an indirect effect through the association of D-
penicillamine with serum bilirubin, as shown by the estimated γ7 and γ10. D-penicilamine is
associated with lower serum bilirubin, which is in turn associated with improved survival.

R> set.seed(123)
R> patient <- sort(sample(replace = FALSE, size = 6, x = 312))
R> fittedPBC <- fitted(fitJT.pbc, type = "Conditional")
R> par(mfrow = c(2, 3))
R> for (i in 1:6) {
+ inds <- which(pbc$ID == patient[i])
+ times <- pbc$obstime[inds]
+ data <- pbc[inds, ]
+ mui <- fittedPBC[inds]
+ plot(times, mui, ylim = c(-1.5, 4.5), type = "l", col = "chocolate",
+ xlab = "Time (years)", ylab = "log(serBilir)", lwd = 2,
+ main = paste("Patient", patient[i], seq = " "))
+ points(data$obstime, log(data$serBilir), pch = 19, col = "darkgreen")
+ }
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6. Summary
Joint modeling has emerged as a key tool in data analysis as evident by the addition of several
recent software tools. We have briefly mentioned a number of software tools in Section 1 and
here we present them with more details. The R package JM and joineR, as well as Stata
module stjm can be considered as the first generation of software tools for joint modeling,
allowing the joint analysis of a single continuous longitudinal outcome and a single survival
outcome based on a mixed effects model for the longitudinal outcome and a relative risk model
for the survival outcome. Each of them has its own characteristics, e.g., JM and joineR
can model competing risks survival outcome while JM and stjm offers various association
structures to link the survival and longitudinal processes. The more recent software tools
try to explore the functionality of joint modeling from different aspects. For instance, the
R package JMBayes fits joint models under a Bayesian approach using Markov chain Monte
Carlo algorithms; the R package joineRML extends the joineR package to incorporate the joint
modeling of a survival outcome and multiple continuous longitudinal outcomes by a Monte
Carlo EM algorithm. Other than these tools originally designed for joint modeling, some
tools designed for other purposes have also been extended to fit joint models of survival and
longitudinal outcomes. For example, the R package frailtypack has added two new functions,
i.e., longiPenal() (joint model for longitudinal data and a terminal event) and trivPenal()
(trivariate joint model for longitudinal data, recurrent events and a terminal event).
To summarize, this paper presents the R package JSM, which complements existing packages
by offering a variety of joint models of survival and longitudinal data, most of which are not
available elsewhere. The choice for the survival process is much broader compared to existing
packages that typically are confined to the proportional hazards formulation. Package JSM
is able to fit a whole class of transformation models, including the Cox proportional hazards
model and the proportional odds model as special cases. Two different ways to model the
longitudinal component (i.e., the linear mixed effects model and the non-parametric multi-
plicative random effects model) further distinguish JSM from existing packages. Moreover,
a number of the package’s internal functionalities are written in C++ in the background
to improve computational speed. Last but not least, JSM provides reliable standard error
estimates for valid statistical inference.
The JSM package is being actively curated and developed further to include additional fea-
tures. Possible future developments are more sophisticated model selection methods, the
capability to handle categorical and multiple longitudinal outcomes, and the incorporation of
more complicated censoring patterns of the survival outcome.
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A. Effect of the number of quadrature points

Here we present a numerical study to explore the performance of the two model-fitting func-
tions, i.e., jmodelTM() and jmodelMult(), running with different number of quadrature
points. The results, obtained by running on an Intel Core i7 4.0 GHz iMac with 16GB
DDR3, are summarized in Tables 1 and 2. Note that nknot is always odd as an odd number
of quadrature points provides higher degree of precision. From Table 1, we observe that the
parameter estimates and log-likelihood values are quite stable under varying nknot. Specifi-
cally, the model fits with nknot = 7 and code = 11 yield exactly the same parameter estimates.
On the other hand, Table 2 indicates that although not as stable as jmodelTM(), the model
fits by jmodelMult() with nknot = 11 and nknot = 15 yield very similar results.

Parameter nknot = 3 nknot = 5 nknot = 7 nknot = 11
β1 69.82709 69.82579 69.82578 69.82578
β2 7.08302 7.08299 7.08300 7.08300
β3 0.67439 0.67445 0.67446 0.67446
β4 −0.27302 −0.27292 −0.27292 −0.27292
φ 0.18419 0.18411 0.18411 0.18411
α −0.03922 −0.03922 −0.03922 −0.03922

log-likelihood −15055.08 −15055.09 −15055.09 −15055.09
run time 13.031 24.554 43.425 86.864

Table 1: Parameter estimates, log-likelihood values, and elapsed time in seconds when fitting
model (18) using jmodelTM() with different values of nknot.

Parameter nknot = 3 nknot = 7 nknot = 11 nknot = 15
γ1 0.63386 0.63968 0.64039 0.64037
γ2 −0.10009 −0.10156 −0.10169 −0.10169
γ3 0.06325 0.06408 0.06415 0.06415
γ4 0.27655 0.27913 0.27945 0.27944
γ5 1.40227 1.41714 1.41895 1.41891
γ6 2.10635 2.12563 2.12794 2.12788
γ7 −0.10822 −0.10946 −0.10959 −0.10959
γ8 0.06663 0.06676 0.06680 0.06680
γ9 −0.19700 −0.20155 −0.20196 −0.20197
γ10 −0.90054 −0.91095 −0.91174 −0.91174
φ 0.07542 0.07427 0.07435 0.07434
α 1.09165 1.09348 1.09395 1.09394

log-likelihood −2532.285 −2532.217 −2532.197 −2532.198
run time 10.761 22.102 29.012 36.707

Table 2: Parameter estimates, log-likelihood values, and elapsed time in seconds when fitting
model (21) using jmodelMult() with different values of nknot.
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