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Abstract

An R package for computing the all-subsets regression problem is presented. The
proposed algorithms are based on computational strategies recently developed. A novel
algorithm for the best-subset regression problem selects subset models based on a pre-
determined criterion. The package user can choose from exact and from approximation
algorithms. The core of the package is written in C++ and provides an efficient imple-
mentation of all the underlying numerical computations. A case study and benchmark
results illustrate the usage and the computational efficiency of the package.
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1. Introduction

An important problem in statistical modeling is that of subset selection regression or, equiva-
lently, of finding the best regression equation (Clarke 1981; Hastie et al. 2001). Given a set of
possible variables to be included in the regression, the problem consists in selecting a subset
that optimizes some statistical criterion. The evaluation of the criterion function typically
involves the estimation of the corresponding submodel (Miller 2002). Consider the standard
regression model

y = Xβ + ǫ , (1)

where y ∈ R
M is the output variable, X ∈ R

M×N is the regressor matrix of full column rank,
β ∈ R

N is the coefficient vector, and ǫ ∈ R
M is the noise vector. The ordinary least squares

(OLS) estimator of β is the solution of

β̂OLS = argmin
β

RSS(β) , (2)

∗Corresponding author: marc.hofmann@gmail.com
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where the residual sum of squares (RSS) of β is given by

RSS(β) = ‖y − Xβ‖2
2 . (3)

That is, β̂OLS minimizes the norm of the residual vector. The regression coefficients β do not
need to be explicitly computed in order to determine the RSS, which can be obtained through
numerically stable orthogonal matrix decomposition methods (Golub and Van Loan 1996).

Let V = {1, . . . , N} denote the set of all independent variables. A subset model (or submodel)
is denoted by S, S ⊆ V . Given a criterion function f , the best-subset selection problem
consists in solving

S∗ = argmin
S⊆V

f(S) . (4)

Here, the value f(S) = F (n, ρ) is seen as a function of n = |S| and ρ = RSS(S), the number
of selected variables and the RSS of the OLS estimator for S, respectively. Furthermore, it is
assumed that f(S) is monotonic with respect to RSS(S) for fixed n, that is

RSS(S1) ≤ RSS(S2) =⇒ f(S1) ≤ f(S2) , when |S1| = |S2| . (5)

Common information criteria (IC) exhibit this property, such as those belonging to the AIC
family and defined by the formula

AICk = M + M log 2π + M log(RSS/M) + k(n + 1) , (6)

where the scalar k represents a penalty per parameter (k > 0). The usual AIC and BIC are
obtained for k = 2 and k = log M , respectively (Miller 2002). It follows that (4) is equivalent
to

S∗ = S∗
ν , where ν = argmin

n
f(S∗

n)

and
S∗

n = argmin
|S|=n

RSS(S) for n = 1, . . . , N . (7)

Finding the solution to (7) is called the all-subsets selection problem. Thus, solving (4) can
be seen as an indirect, two-stage procedure:

Stage 1 For each size n, find the subset S∗
n (|S∗

n| = n) with the smallest RSS.

Stage 2 Compute f(S∗
n) for all n, and determine ν such that f(S∗

ν) is minimal.

By explicitly solving the all-subsets regression problem (7) once and for all (Stage 1), the
list of all N submodels is made readily available for further exploration: evaluating multiple
criterion functions (e.g., AIC and BIC), or conducting a more elaborate statistical inference,
can be performed at a negligible cost (Stage 2). Thus, it may be advisable to adopt a two-
stage approach within the scope of a broader and more thorough statistical investigation.
On the other hand, precursory knowledge of the search function and of its characteristics
opens up the possibility for a custom-tailored computational strategy to solve the best-subset
selection problem (4) in one go; by exploiting more information about the problem at hand,
the solution strategy will be rendered more efficient.

Brute-force (or exhaustive) search procedures that enumerate all possible subsets are often
intractable even for a modest number of variables. Exact algorithms must employ techniques
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to reduce the size of the search space—i.e., the number of enumerated subsets—in order
to tackle larger problems. Heuristic algorithms renounce optimality in order to decrease
execution times: they are designed for solving a problem more quickly, but make no guarantees
on the quality of the solution produced; genetic algorithms and simulated annealing count
among the well-known heuristic algorithms (Goldberg 1989; Otten and van Ginneken 1989).
The solution returned by an approximation algorithm, on the other hand, can be proven to
lie within well specified bounds of the optimum.

Several packages that deal with variable subset selection are available on the R platform.
Package leaps (Lumley and Miller 2017) implements exact, exhaustive and non-exhaustive
algorithms for subset selection in linear models (Miller 2002); it has been extended to gener-
alized linear models by package bestglm (McLeod and Xu 2017). An active set algorithm for
solving the best subset selection problem in generalized linear models is proposed by package
BeSS (Wen et al. 2018). Package subselect (Orestes Cerdeira et al. 2017) proposes simulated
annealing and genetic algorithms that search for subsets of variables which are optimal under
various criteria. Package glmulti (Calcagno 2013) provides IC-based automated model selec-
tion methods for generalized linear models in the form of exhaustive and genetic algorithms.
Package kofnGA (Wolters 2015) uses a genetic algorithm to choose a fixed-size subset under
a user-supplied objective function. Procedures for regularized estimation of generalized linear
models with elastic-net penalties are implemented in package glmnet (Friedman et al. 2010).

Here, the lmSubsets package (Hofmann et al. 2018) for exact variable-subset regression is
presented. It offers methods for solving both the best-subset (4) and the all-subsets (7)
selection problems. It implements the algorithms presented by Gatu and Kontoghiorghes
(2006) and Hofmann et al. (2007). A branch-and-bound strategy is employed to reduce the size
of the search space. A similar approach has been employed for exact least-trimmed-squares
regression Hofmann et al. (2010). The package further proposes approximation methods that
compute non-exact solutions very quickly: the exigencies toward solution quality are relaxed
by means of a tolerance parameter that steers the permitted degree of error. The core of
the package is written in C++. The package is available for the R system for statistical
computing (R Core Team 2017) from the Comprehensive R Archive Network at https://

CRAN.R-project.org/package=lmSubsets.

Section 2 reviews the theoretical background and the underlying algorithms. The package’s
R interface is presented in Section 3. A usage example is given in Section 4, while benchmark
results are illustrated in Section 5.

2. Computational strategies

The linear regression model (1) has 2N possible subset models which can be efficiently orga-
nized in a regression tree. A dropping column algorithm (DCA) was devised as a straight-
forward approach to solve the all-subsets selection problem (7). The DCA evaluates all
possible variable subsets by traversing a regression tree consisting of 2(N−1) nodes (Gatu and
Kontoghiorghes 2003; Gatu et al. 2007; Smith and Bremner 1989).

Each node of the regression tree can be represented by a pair (S, k), where S = {s1, . . . , sn}
corresponds to a subset of n variables, n = 0, . . . , N , and k = 0, . . . , n − 1. The subleading
models are defined as {s1, . . . , sk+1}, . . . , {s1, . . . , sn}, the RSS of which are computed for each
visited node. The root node (V, 0) corresponds to the full model. Child nodes are generated
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Figure 1: All-subsets regression tree for N = 5 variables. Nodes are shown together with
their subleading models.

by dropping (deleting) a single variable:

drop(S, j) = (S \ {sj}, j − 1) , where j = k + 1, . . . , n − 1 .

Numerically, this is equivalent to downdating an orthogonal matrix decomposition after a col-
umn has been deleted (Golub and Van Loan 1996; Kontoghiorghes 2000; Smith and Bremner
1989). Givens rotations are employed to efficiently move from one node to another. The DCA
maintains a subset table r with N entries, where entry rn contains the RSS of the current-
best submodel of size n (Gatu and Kontoghiorghes 2006; Hofmann et al. 2007). Figure 1
illustrates a regression tree for N = 5 variables. The index k is symbolized by a bullet (•).
The subleading models are listed in each node.

The DCA is computationally demanding, with a theoretical time complexity of O(2N ). A
branch-and-bound algorithm (BBA) has been devised to reduce the number of generated
nodes by cutting subtrees which do not contribute to the current-best solution. It relies on
the fundamental property that the RSS increases when variables are deleted from a regression
model, that is:

S1 ⊆ S2 =⇒ RSS(S1) ≥ RSS(S2) .

A cutting test is employed to determine which parts of the DCA tree are redundant: A new
node drop(S, j) is generated only if RSS(S) < rj (j = k + 1, . . . , n − 1). The quantity RSS(S)
is called the bound of the subtree rooted in (S, k): no subset model extracted from the subtree
can have a smaller RSS (Gatu and Kontoghiorghes 2006). Note that the BBA is an exact
algorithm, i.e., it computes the optimal solution of the all-subsets regression problem (7).

To further reduce the computational cost, the all-subsets regression problem can be restricted
to a range of submodel sizes (Hofmann et al. 2007). In this case, the problem (7) is reformu-
lated as

S∗
n = argmin

|S|=n

RSS(S) for n = nmin, . . . , nmax , (8)



Marc Hofmann, Cristian Gatu, Erricos J. Kontoghiorghes, Ana Colubi, Achim Zeileis 5

where nmin and nmax are the subrange limits (1 ≤ nmin ≤ nmax ≤ N). The search will
span only a part of the DCA regression tree. Specifically, nodes (S, k) are not computed if
|S| < nmin or k ≥ nmax.

The size of subtrees rooted in the same level decreases exponentially from left to right. In
order to encourage the pruning of large subtrees by the BBA cutting test, the variables in a
given node can be ordered such that a child node will always have a larger RSS (i.e., bound)
than its right siblings (Gatu and Kontoghiorghes 2006). This strategy can be applied in
nodes of arbitrary depth. However, computing the variable bounds incurs a computational
overhead. Thus, it is not advisable to indiscriminately preorder variables. A parameter—the
preordering radius p—has been introduced to control the degree of preordering (Hofmann
et al. 2007). It accepts a value between p = 0 (no preordering) and p = N (preordering in all
nodes); when p = 1, preordering is performed in the root node only.

The computational efficiency of the BBA is improved by allowing the algorithm to prune non-
redundant branches of the regression tree. The approximation branch-and-bound algorithm
(ABBA) relaxes the cutting test by employing a set of tolerance parameters τn ≥ 0 (n =
1, . . . , N), one for every submodel size. A node drop(S, j) is generated only if there exists at
least one i = j, . . . , n − 1 such that

(1 + τi) · (RSS(S) − RSSfull) < (ri − RSSfull) , (9)

where RSSfull = RSS(V ) is the RSS of the full model. The algorithm is non-exact if τn > 0
for any n, meaning that the computed solution is not guaranteed to be optimal. The greater
the value of τn, the more aggressively the regression tree will be pruned, thus decreasing the
computational load. The advantage of the ABBA over heuristic algorithms is that the relative
error of the solution is bounded by the tolerance parameter (Gatu and Kontoghiorghes 2006;
Hofmann et al. 2007), thus giving the user control over the tradeoff between solution quality
and speed of execution.

The DCA and its derivatives report the N subset models with the lowest RSS, one for each
subset size. The user can then analyze the list of returned subsets to determine the “best”
subset, for example by evaluating some criterion function. This approach is practical but
not necessarily the most efficient to solve the best-subset selection problem (4). Let f be a
criterion function such that f(S) = F (n, ρ), where n = |S| and ρ = RSS(S), satisfying the
monotonicity property (5). The f -BBA specializes the standard cutting test for f under the
additional condition that F is non-decreasing in n. Specifically, a node drop(S, j) is generated
if and only if

F (j, RSS(S)) < rf , (10)

where rf is the single current-best solution. This results in a more “informed” cutting test,
and in a smaller number of generated nodes.

3. Implementation in R

The R package lmSubsets provides a library of methods for variable subset selection in linear
regression. Two S3 classes are defined, namely “lmSubsets” and “lmSelect”, that address all-
subsets (7) and best-subset (4) selection, respectively. The package offers R’s standard formula
interface: linear models can be specified by means of a symbolic formula, and possibly a data
frame. The model specification is resolved into a regressor matrix and a response vector, which
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S3 class Methods and functions Description

“lmSubsets” lmSubsets() all-subsets selection (generic function)
lmSubsets.matrix() matrix interface
lmSubsets.default() standard formula interface
lmSubsets_fit() low-level matrix interface

“lmSelect” lmSelect() best-subset selection (generic function)
lmSelect.lmSubsets() conversion method
lmSelect.matrix() matrix interface
lmSelect.default() standard formula interface
lmSelect_fit() low-level matrix interface

Table 1: Package structure.

are forwarded to low-level functions for actual processing, together with optional arguments
which further specify the selection problem. A routine to extract the best submodels from
an all-subsets regression solution (i.e., to convert an “lmSubsets” to an “lmSelect” object)
is also provided. An overview of the package structure is given in Table 1.

3.1. Specifying the selection problem

The default methods are closely modeled after R’s standard lm() function: they can be called
with any entity that can be coerced to a formula object (Chambers and Hastie 1992). The
formula object declares the dependent and independent variables, which are typically taken
from a data.frame specified by the user. For example, the call

lmSubsets(mortality ~ precipitation + temperature1 + temperature7 + age +

household + education + housing + population + noncauc + whitecollar +

income + hydrocarbon + nox + so2 + humidity, data = AirPollution)

specifies a response variable (mortality) and fifteen predictor variables, all taken from the
AirPollution dataset (Miller 2002). It is common to shorten the call by employing R’s
practical “dot-notation”:

lmSubsets(mortality ~ ., data = AirPollution) ,

where the dot (.) stands for “all variables not mentioned in the left-hand side of the formula”.
By default, an intercept term is included in the model; that is, the call in the previous example
is equivalent to

lmSubsets(mortality ~ . + 1, data = AirPollution) .

To discard the intercept, the call may be rewritten as follows:

lmSubsets(mortality ~ . - 1, data = AirPollution) .

Submodels can be rejected based on the presence or absence of certain independent variables.
The parameter include specifies that all submodels must contain one or several variables. In
the following example, only submodels containing the variable noncauc are retained:
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lmSubsets(mortality ~ ., include = "noncauc", data = AirPollution) .

Conversely, the exclude parameter can be employed to discard a specific set of variables, as
in the following example:

lmSubsets(mortality ~ ., exclude = "whitecollar", data = AirPollution) .

The same effect can be achieved by rewriting the formula as follows:

lmSubsets(mortality ~ . - whitecollar, data = AirPollution) .

The include and exclude parameters may be used in combination, and both may specify
more than one variable (e.g., include = c("noncauc", "whitecollar")).

The criterion used for best-subset selection is evaluated following the expression

−2 · logLik + penalty · npar ,

where penalty is the penalty per model parameter defined in (6), logLik the log-likelihood
of the fitted model, and npar the number of model parameters (including the error variance).
The penalty value indicates how strongly model parameters are penalized, with large values
favoring parsimonious models. When penalty = 2, the criterion corresponds to Akaike’s
information criterion (AIC, Akaike 1974); when penalty = log(nobs), to Schwarz’s Bayesian
information criterion (BIC, Schwarz 1978), where nobs is the number of observations. For
example, either one of

lmSelect(mortality ~ ., data = AirPollution, penalty = 2)

and

lmSelect(mortality ~ ., data = AirPollution, penalty = "AIC")

will select the best submodel according to the usual AIC; by default, lmSelect() employs
the BIC. The user may also specify a custom criterion function

lmSelect(..., penalty = function (size, rss) ...) ,

where size is the number of regressors, and rss the residual sum of squares of the corre-
sponding submodel. The user-specified function must be non-decreasing in both parameters.

3.2. Core functions

The high-level interface methods process the model specification before dispatching the call to
one of two low-level core functions, passing along a regressor matrix x and a response vector
y, together with problem-specific arguments. The core functions act as wrappers around the
C++ library, and are declared as

lmSubsets_fit(x, y, weights = NULL, offset = NULL, include = NULL,

exclude = NULL, nmin = NULL, nmax = NULL, tolerance = 0, nbest = 1, ...,

pradius = NULL)
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Parameter Description Canonical representation

x data matrix double[nobs,nvar]

y response variable double[nobs]

weights model weights double[nobs]

offset model offset double[nvar]

include regressors to force in logical[nvar]

exclude regressors to force out logical[nvar]

nmin min. number of regressors integer[1] lmSubsets() only
nmax max. number of regressors integer[1] lmSubsets() only
penalty penalty per parameter double[1] lmSelect() only

or criterion function function[1]

tolerance ABBA tolerance parameter double[nvar] lmSubsets()

double[1] lmSelect()

nbest number of best subsets integer[1]

pradius preordering radius integer[1]

Table 2: Core parameters for lmSubsets() and lmSelect().

and

lmSelect_fit(x, y, weights = NULL, offset = NULL, include = NULL,

exclude = NULL, penalty = "BIC", tolerance = 0, nbest = 1, ...,

pradius = NULL) .

The parameters are summarized in Table 2.

The weights and offset parameters correspond to the homonymous parameters of the lm()

function. The include and exclude parameters allow the user to specify variables that are to
be included in, or excluded from all candidate models. They are either logical vectors—with
each entry corresponding to one variable—or automatically expanded if given in the form of
an integer vector (i.e., set of variable indices) or character vector (i.e., set of variable names).

For a large number of variables (see Section 5), execution times may become prohibitive. In
order to speed up the execution, either the search space can be reduced, or one may settle
for a non-exact solution. In the first approach, the user may specify values for the nmin and
nmax parameters as defined in (8), in which case submodels with less than nmin or more than
nmax variables are discarded. Well-defined regions of the regression tree can be ignored by
the selection algorithm, and the search space is thus reduced.

In the second approach, expectations with respect to the solution quality are lowered, i.e.,
non-optimal solutions are tolerated. The numeric value—typically between 0 and 1—passed
as the tolerance argument indicates the degree of “over-pruning” performed by the ABBA
cutting test (9). The solution produced by the ABBA satisfies the following relationship:

f(S) − f(V ) ≤ (1 + tolerance) · (f(S∗) − f(V )) ,

where S is the returned solution, V the full model, S∗ the optimal (theoretical) solution, and
f the cost of a submodel (e.g., deviance, AIC). The lmSubsets_fit() function accepts a
vector of tolerances, with one entry for each subset size.
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Component Description Canonical representation

nobs number of observations integer[1]

nvar number of regressors integer[1]

intercept intercept flag logical[1]

include regressors forced in logical[nvar]

exclude regressors forced out logical[nvar]

size covered subset sizes integer[]

tolerance tolerances used double[nvar]

nbest number of best subsets integer[1]

submodel submodel information data.frame

subset selected variables data.frame

Table 3: Components of “lmSubsets” and “lmSelect” objects.

The nbest parameter controls how many submodels (per subset size) are retained. In the case
of lmSubsets_fit(), a two-dimensional result set is constructed with nbest submodels for
each subset size, while in the case of lmSelect_fit(), a one-dimensional sequence of nbest

submodels is handed back to the user.

The pradius parameter serves to specify the desired preordering radius. The algorithm
employs a default value of ⌊nvar/3⌋. The need to set this parameter directly should rarely
arise; please refer to Section 2 for further information.

3.3. Extracting submodels

The user is handed back a result object that encapsulates the solution to an all-subsets
(class “lmSubsets”) or best-subset (class “lmSelect”) selection problem. An object of class
“lmSubsets” represents a two-dimensional nvar × nbest set of submodels; an object of class
“lmSelect”, a linear sequence of nbest submodels. Problem-specific information is stored
alongside the selected submodels. Table 3 summarizes the components of the result objects.

A wide range of standard methods to visualize, summarize, and extract information are
provided (see Table 4). The print(), plot(), and summary() methods give the user a
compact overview—either textual or graphical—of the information gathered on the selected
submodels in order to help identify “good” candidates. The remaining extractor functions
can be used to extract variable names, coefficients, covariance matrices, fitted values, etc.

In order to designate a submodel, “lmSubsets” methods provide two parameters to specify
the number of regressors and the ranking of the desired submodel, namely size and best,
respectively. For “lmSelect” methods, the size parameter has no meaning and is not defined.
Some methods—i.e., variable.names(), deviance(), sigma(), logLik(), AIC(), BIC(),
and coef()—can extract more than one submodel at a time if passed a numeric vector as
an argument to either size (e.g., size = 5:10) or best (e.g., best = 1:3). The shape
of the return value can be controlled with the drop parameter: a numeric or character

vector (in some cases, a logical or numeric matrix) is returned if drop is TRUE; otherwise,
a data.frame object is handed back.
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Method Description

print() print object
plot() plot RSS or penalty
image() heatmap of selected regressors
summary() summary statistics

variable.names() extract variables names
formula() extract formula object
model.frame() extract (full) model frame
model.matrix() extract model matrix
model_response() extract model response
refit() fit sub-“lm”
deviance() extract deviance (RSS)
sigma() extract residual standard deviation
logLik() extract log-likelihood
AIC() extract AIC values
BIC() extract BIC values
coef() extract regression coefficients
vcov() extract covariance matrix
fitted() extract fitted values
residuals() extract residual values

Table 4: S3 methods for “lmSubsets” and “lmSelect” objects.

4. Case study: Variable selection in weather forecasting

Advances in numerical weather prediction (NWP) have played an important role in the in-
crease of weather forecast skill over the past decades (Bauer et al. 2015). Numerical models
simulate physical systems that operate at a large, typically global, scale. The horizontal (spa-
tial) resolution is limited by the computational power available today. Starting from Glahn
and Lowry (1972) the NWP outputs are post-processed to correct for local and unresolved
effects in order to obtain forecasts for specific locations (see Wilks 2011, Chapter 7, for an
overview). So-called model output statistics (MOS) develops a regression relationship based
on past meteorological observations of the variable to be predicted and forecasted NWP quan-
tities at a certain lead time. Variable-subset selection is often employed to determine which
NWP outputs should be included in the regression model for a specific location.

In the following, package lmSubsets is used to build a MOS regression model predicting tem-
perature at Innsbruck Airport, Austria, based on data from the Global Ensemble Forecast
System (Hamill et al. 2013). The data frame IbkTemperature contains 1824 daily cases for 42
variables: the temperature at Innsbruck Airport (observed), 36 NWP outputs (forecasted),
and 5 deterministic time trend/season patterns. The NWP variables include quantities per-
taining to temperature (e.g., 2-meter above ground, minimum, maximum, soil), precipitation,
wind, and fluxes, among others. See ?IbkTemperature for more details.

First, the dataset is loaded and the few missing values are omitted for simplicity.

R> data("IbkTemperature", package = "lmSubsets")
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MOS0 MOS1 MOS2

(Intercept) -345.252** (109.212) -666.584*** (95.349) -661.700*** (95.225)

t2m 0.318*** ( 0.016) 0.055. ( 0.029)

time 0.132* ( 0.054) 0.149** ( 0.047) 0.147** ( 0.047)

sin -1.234*** ( 0.126) 0.522*** ( 0.147) 0.811*** ( 0.120)

cos -6.329*** ( 0.164) -0.812** ( 0.273)

sin2 0.240* ( 0.110) -0.794*** ( 0.119) -0.870*** ( 0.118)

cos2 -0.332** ( 0.109) -1.067*** ( 0.101) -1.128*** ( 0.097)

sshnf 0.016*** ( 0.004) 0.018*** ( 0.004)

vsmc 20.200*** ( 3.115) 20.181*** ( 3.106)

tmax2m 0.145*** ( 0.037) 0.181*** ( 0.023)

st 1.077*** ( 0.051) 1.142*** ( 0.043)

wr 0.450*** ( 0.109) 0.505*** ( 0.103)

t2pvu 0.064*** ( 0.011) 0.149*** ( 0.028)

mslp -0.000*** ( 0.000)

p2pvu -0.000** ( 0.000)

AIC 9493.602 8954.907 8948.182

BIC 9537.650 9031.992 9025.267

RSS 19506.469 14411.122 14357.943

Sigma 3.281 2.825 2.820

R-sq. 0.803 0.854 0.855

Table 5: Estimated regression coefficients (along with standard errors) and summary statistics
for models MOS0, MOS1, and MOS2.

R> IbkTemperature <- na.omit(IbkTemperature)

A simple output model for the observed temperature (temp) is constructed, which will serve
as the reference model. It consists of the 2-meter temperature NWP forecast (t2m), a linear
trend component (time), as well as seasonal components with annual (sin, cos) and bi-annual
(sin2, cos2) harmonic patterns.

R> MOS0 <- lm(temp ~ t2m + time + sin + cos + sin2 + cos2,

+ data = IbkTemperature)

The estimated coefficients (and standard errors) are shown in Table 5. It can be observed
that despite the inclusion of the NWP variable t2m, the coefficients for the deterministic
components remain significant, which indicates that the seasonal temperature fluctuations
are not fully resolved by the numerical model.

Next, the reference model is extended with selected regressors taken from the remaining
35 NWP variables.

R> MOS1_best <- lmSelect(temp ~ ., data = IbkTemperature,

+ include = c("t2m", "time", "sin", "cos", "sin2", "cos2"),

+ penalty = "BIC", nbest = 20)

R> MOS1 <- refit(MOS1_best)

Best-subset regression is employed to determine pertinent veriables in addition to the regres-
sors already found in MOS0. The 20 best submodels with respect to the BIC are computed.
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Figure 2: Variables selected in MOS1_best and MOS2_all. Submodels MOS1 and MOS2 are
highlighted in red.

The selected subsets and the corresponding BIC values are illustrated in Figures 2a and 3a,
respectively. The “lm” object for the best submodel is extracted (MOS1). Selected coefficients
and summary statistics for MOS1 are listed in Table 5.

Finally, an all-subsets regression is conducted on all 41 variables without any restrictions.
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Figure 3: BIC (and RSS) for submodels in MOS1_best and MOS2_all.

R> MOS2_all <- lmSubsets(temp ~ ., data = IbkTemperature)

R> MOS2 <- refit(lmSelect(MOS2_all, penalty = "BIC"))

The results are illustrated in Figures 2b and 3b. Here, all-subsets regression is employed—
instead of the cheaper best-subsets regression—in order to give insights into possible variable
selection patterns over a range of submodel sizes. The “lm” object for the submodel with the
lowest BIC is extracted (MOS2). See Table 5 for MOS2 summary statistics.

The best-BIC models MOS1 and MOS2 both have 13 regressors. The deterministic trend and
all but one of the harmonic seasonal components are retained in MOS2. In addition, MOS1 and
MOS2 share six NWP outputs relating to temperature (tmax2m, st, t2pvu), pressure (mslp,
p2pvu), hydrology (vsmc, wr), and heat flux (sshnf). However, and most remarkably, MOS1

does not include the direct 2-meter temperature output from the NWP model (t2m). In fact,
t2m is not included by any of the 20 submodels (sizes 8 to 27) shown in Figure 2b, whereas
the temperature quantities tmax2m, st, t2pvu are included by all. The summary statistics
reveal that both MOS1 and MOS2 significantly improve over the simple reference model MOS0,
with MOS2 being slightly better than MOS1.

In summary, this case study illustrates how lmSubsets can be used to easily identify relevant
variables beyond the direct model output for MOS regressions, yielding substantial improve-
ments in forecasting skill. A full meteorological application would require further testing
using cross-validation or other out-of-sample assessments. Recently, there has been increas-
ing interest in MOS models beyond least-squares linear regression, e.g., to take into account
the effects of heteroscedasticity, censoring, and truncation. In this context, other selection
techniques—such as boosting (Messner et al. 2016, 2017)—can be considered.
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5. Benchmark tests

Comparative tests are conducted to evaluate the computational efficiency of the proposed
methods for exact all-subsets and exact best-subset regression. The regsubsets() method
from package leaps, and the bestglm() method from package bestglm serve as benchmarks,
respectively.

Datasets which contain a “true” model are simulated, with nobs observations and nvar in-
dependent variables. The dependent variable y is constructed from a linear combination of
ntrue randomly selected independent variables, a noise vector e, and the intercept:

y = X · ✶true + e + 1 , where e ∼ (0, sigma2) ,

where X is a nobs × nvar matrix of random data, and ✶true a (random) indicator function
evaluating to 1 if the corresponding column of X belongs to the “true” model. All tests
were conducted on a Dell XPS15 laptop with 8GB (7.4 GiB) of memory and an Intel Core
i7-6700HQ CPU@2.60GHz×8 processor, running a Ubuntu 64bit operating system.

Benchmark 1 concerns itself with all-subsets selection. The lmSubsets() method is compared
to regsubsets(). The complexity mainly depends on the number of variables (nvar): The
algorithms employ the QR decomposition to compress the data into a square nvar × nvar

matrix; the initial cost of constructing the QR decomposition is negligible. Data con-
figurations with varying sizes (nvar = 20, 25, 30, 35, 40) and degrees of noise (sigma =
0.05, 0.10, 0.50, 1.00, 5.00) are considered; in all cases, nobs = 1000 and ntrue = ⌊nvar/2⌋.
For each configuration, five random datasets are generated, giving rise to five runs per method
over which average execution times are determined. The performance of regsubsets() can be
improved by “manually” preordering the dataset in advance (Hofmann et al. 2007). The aver-
age running times are summarized in Table 6, along with the relative performance (speedup)
of lmSubsets(). The same setup is used in Benchmark 2, where methods for best-subset
selection are compared, namely bestglm() and lmSelect(). As in the previous benchmark,
average execution times are determined for bestglm() with and without preordering. The
results are illustrated in Table 7.

It is not surprising that bestglm() is very close to regsubsets() in terms of execution
time, as the former post-processes the results returned by the latter; in fact, bestglm()

implements the two-stage approach to solving the best-subset selection problem, where Stage 1
is tackled by regsubsets() (see Section 1 for further details). Manually preordering the
variables improves the performance of regsubsets() (and hence, of bestglm()) by a factor
of approximately 2; for nvar = 40 and a high level of noise (sigma = 5.00), by a factor of
almost 4. In the tests conducted here, lmSubsets() is two orders of magnitude faster than
regsubsets(), even with preordering; lmSelect() is three orders of magnitude faster than
bestglm().

Benchmark 3 pits all-subsets and best-subset selection, exact and approximation algorithms
against one another. The average execution times of lmSubsets() and lmSelect(), for
tolerance = 0.0 and 0.1, are illustrated in Table 8. Note that for large datasets (nvar = 80),
subsets computed by lmSubsets() are restricted to sizes between nmin = 30 and nmax = 50
variables; the restriction does not apply to lmSelect().

In the case of lmSubsets(), the approximation algorithm (tolerance = 0.1) is 2–3 times
faster than the exact algorithm. The speedup of lmSelect() with respect to lmSubsets()

is four orders of magnitude for the exact, three orders of magnitude for the approximation



Marc Hofmann, Cristian Gatu, Erricos J. Kontoghiorghes, Ana Colubi, Achim Zeileis 15

sigma nvar leaps lmSubsets

regsubsets()1 regsubsets()2 lmSubsets() speedup1 speedup2

0.05 20 0.009 s 0.004 s 0.021 s 0.4 0.2

25 0.072 s 0.033 s 0.011 s 6.4 2.9

30 0.829 s 0.474 s 0.027 s 31.2 17.8

35 12.309 s 5.084 s 0.067 s 182.6 75.4

40 172.613 s 82.566 s 0.313 s 550.8 263.5

0.10 20 0.008 s 0.004 s 0.007 s 1.1 0.6

25 0.064 s 0.031 s 0.010 s 6.2 3.0

30 0.970 s 0.457 s 0.027 s 36.5 17.2

35 9.912 s 4.792 s 0.068 s 146.2 70.7

40 208.998 s 93.101 s 0.334 s 626.5 279.1

0.50 20 0.009 s 0.004 s 0.007 s 1.2 0.6

25 0.081 s 0.031 s 0.011 s 7.5 2.9

30 0.995 s 0.462 s 0.026 s 38.0 17.6

35 12.751 s 4.995 s 0.068 s 187.5 73.4

40 204.834 s 82.710 s 0.312 s 656.9 265.3

1.00 20 0.008 s 0.004 s 0.007 s 1.2 0.6

25 0.070 s 0.033 s 0.011 s 6.6 3.1

30 0.971 s 0.461 s 0.026 s 37.6 17.9

35 13.066 s 4.560 s 0.066 s 198.6 69.3

40 171.499 s 62.978 s 0.277 s 620.0 227.7

5.00 20 0.008 s 0.004 s 0.007 s 1.1 0.5

25 0.058 s 0.019 s 0.010 s 5.7 1.9

30 0.588 s 0.198 s 0.021 s 28.5 9.6

35 6.951 s 2.455 s 0.053 s 131.7 46.5

40 117.859 s 30.252 s 0.193 s 609.4 156.4

1 regsubsets() is executed w/out preliminary preordering of the variables
2 regsubsets() is executed with preliminary preordering of the variables

Table 6: Speedup of lmSubsets() relative to regsubsets(); average
execution times in seconds.

algorithm. It is interesting to note, that the computational performance of lmSubsets()

increases for high levels of noise (sigma = 5.00), contrary to lmSelect(). Under these
conditions, the relative speedup of lmSelect() is significantly lower. As the noise increases,
the information in the data is “blurred”, rendering the cutting test (10)—which depends on
the information criterion—less effective; in this respect, lmSubsets() is more robust, as it
only depends on the RSS.

In Benchmark 4, the effects of the nbest parameter (number of computed best submod-
els) on the execution times of lmSelect() are investigated. Two information criteria are
considered (ic = AIC and BIC). The noise level used in the benchmark is sigma = 1.0.
Average execution times are reported in Table 9 for nbest = 1, 5, 10, 15, 20. Finally, Bench-
mark 5 investigates how the AIC penalty per parameter (penalty) affects the performance
of lmSelect(). Table 10 summarizes the results for penalty = 1.0, 2.0, 4.0, 8.0, 16.0, 32.0.
Note that penalty = 2.0 and penalty = log(1000) ≈ 6.9 correspond to the usual AIC
and BIC, respectively (here, nobs = 1000). The results reveal that the execution time of
lmSelect() increases linearly with nbest, and—from the values considered here—is minimal
for penalty = 8.0, which is close to the BIC.



16 lmSubsets: Exact Variable-Subset Selection in Linear Regression for R

sigma nvar bestglm lmSubsets

bestglm()1 bestglm()2 lmSelect() speedup1 speedup2

0.05 20 0.021 s 0.017 s 0.006 s 3.4 2.7

25 0.083 s 0.046 s 0.008 s 10.4 5.7

30 0.835 s 0.489 s 0.008 s 99.4 58.2

35 12.270 s 5.110 s 0.010 s 1202.9 501.0

40 174.041 s 83.399 s 0.012 s 14503.4 6949.9

0.10 20 0.020 s 0.016 s 0.007 s 3.0 2.5

25 0.074 s 0.045 s 0.007 s 10.1 6.1

30 0.974 s 0.471 s 0.009 s 110.7 53.5

35 9.875 s 4.777 s 0.010 s 949.5 459.3

40 210.076 s 93.968 s 0.012 s 17219.3 7702.3

0.50 20 0.020 s 0.017 s 0.006 s 3.3 2.7

25 0.093 s 0.044 s 0.008 s 12.2 5.8

30 1.004 s 0.474 s 0.009 s 114.1 53.8

35 12.744 s 5.067 s 0.011 s 1158.5 460.7

40 205.744 s 83.268 s 0.012 s 17145.4 6939.0

1.00 20 0.021 s 0.017 s 0.006 s 3.2 2.7

25 0.082 s 0.046 s 0.007 s 11.0 6.3

30 0.979 s 0.474 s 0.008 s 119.3 57.8

35 13.002 s 4.568 s 0.011 s 1182.0 415.2

40 172.923 s 63.283 s 0.012 s 14907.2 5455.4

5.00 20 0.020 s 0.016 s 0.006 s 3.2 2.6

25 0.070 s 0.032 s 0.008 s 9.3 4.3

30 0.598 s 0.212 s 0.009 s 63.6 22.6

35 6.942 s 2.467 s 0.012 s 588.3 209.1

40 118.004 s 30.404 s 0.018 s 6555.8 1689.1

1 bestglm() is executed w/out preliminary preordering of the variables
2 bestglm() is executed with preliminary preordering of the variables

Table 7: Speedup of lmSelect() relative to bestglm(); aver-
age execution times in seconds.

5.1. Shrinkage methods

Genetic algorithms for model selection have been considered for comparative study. However,
pertinent R packages have been found to impose restrictions on the class of problems that
can be addressed—limited problem size (glmulti), fixed submodel size (kofnGA), or no imme-
diate support for IC-based search (subselect)—, hampering efforts to conduct a meaningful
comparison.

LASSO (Tibshirani 1996) can be seen as an alternative to exact variable selection methods,
of which package glmnet brings an efficient implementation to R. The function glmnet()

computes an entire regularization path and returns a sequence of sparse estimators. The
method is not IC-based; rather, it employs a modified objective function that induces sparsity
by penalizing the regression coefficients.

The return value of glmnet() can be post-processed for comparison with lmSelect(). For
each (sparse) estimator contained in the sequence returned by glmnet(), the subset model
corresponding to the variables with non-zero coefficients is identified; the submodel is fitted
(in the OLS sense), and the BIC extracted. The list of submodels thus obtained is sorted in
order of increasing BIC, after removal of duplicates.

Comparative results are illustrated in Table 11. For each data configuration, five datasets are
simulated. The ten best submodels are computed by lmSelect() (i.e., nbest = 10). Average
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sigma nvar nmin nmax tolerance = 0.0 tolerance = 0.1

lmSubsets() lmSelect() speedup lmSubsets() lmSelect() speedup

0.05 20 - - 0.021 s 0.022 s 1.0 0.006 s 0.007 s 1.0

40 - - 0.327 s 0.012 s 26.8 0.227 s 0.012 s 18.6

60 - - 217.028 s 0.020 s 10961.0 101.557 s 0.020 s 5181.5

80 30 50 413.982 s 0.032 s 12936.9 163.629 s 0.031 s 5312.6

0.10 20 - - 0.007 s 0.006 s 1.1 0.007 s 0.007 s 1.0

40 - - 0.315 s 0.012 s 26.2 0.220 s 0.012 s 18.4

60 - - 208.721 s 0.020 s 10332.7 97.096 s 0.020 s 4953.9

80 30 50 465.824 s 0.031 s 14835.2 185.665 s 0.031 s 5989.2

0.50 20 - - 0.007 s 0.007 s 1.0 0.007 s 0.007 s 1.0

40 - - 0.336 s 0.012 s 28.0 0.231 s 0.012 s 19.2

60 - - 197.147 s 0.020 s 9956.9 93.936 s 0.020 s 4744.2

80 30 50 486.858 s 0.032 s 15406.9 195.240 s 0.031 s 6217.8

1.00 20 - - 0.007 s 0.006 s 1.1 0.007 s 0.007 s 1.0

40 - - 0.290 s 0.012 s 24.2 0.205 s 0.012 s 17.1

60 - - 228.710 s 0.020 s 11668.9 106.009 s 0.019 s 5464.4

80 30 50 374.452 s 0.032 s 11701.6 148.421 s 0.043 s 3467.8

5.00 20 - - 0.007 s 0.007 s 1.1 0.007 s 0.007 s 1.0

40 - - 0.196 s 0.017 s 11.4 0.146 s 0.015 s 9.5

60 - - 89.244 s 0.195 s 458.1 47.399 s 0.114 s 416.5

80 30 50 154.836 s 8.056 s 19.2 58.246 s 3.012 s 19.3

Table 8: Speedup of lmSelect() relative to lmSubsets(), with and without tolerance; aver-
age execution times in seconds.

nvar ic nbest

1 5 10 15 20

100 AIC 2.159 s 2.334 s 2.457 s 2.557 s 2.639 s

BIC 0.051 s 0.058 s 0.068 s 0.074 s 0.079 s

200 BIC 23.987 s 49.622 s 82.175 s 104.860 s 119.064 s

Table 9: Average execution times (in seconds) of lmSelect(), by number of computed subset
models (nbest).

nvar penalty

1.0 2.0 4.0 8.0 16.0 32.0

80 0.293 s 0.300 s 0.050 s 0.033 s 0.032 s 0.068 s

100 4.223 s 0.894 s 0.084 s 0.048 s 0.054 s 0.341 s

120 14.178 s 6.420 s 0.531 s 0.085 s 0.168 s 3.925 s

Table 10: Average execution times (in seconds) of lmSelect(), by AIC penalty per parameter
(penalty).

execution times of lmSelect() and glmnet() are reported, as well as the average number
of matches—i.e., the number of best subsets correctly identified—and the speedup of the
LASSO. Each function returns an ordered sequence of submodels; the number of matches is k
if and only if the two sequences are identical in the first k entries and differ in the (k + 1)-th.

The takeaway it that the LASSO is computationally very efficient; it is much less affected
by the dimension of the problem than lmSelect(). On the other hand, while lmSelect()

always finds the global optimum—or a solution with provable error bounds when a tolerance
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sigma nvar lmSubsets glmnet

lmSelect() glmnet() speedup matches

0.05 60 0.020 s 0.006 s 3.6 0.8

100 0.075 s 0.009 s 8.0 0.6

140 1.012 s 0.016 s 63.2 0.6

0.10 60 0.019 s 0.005 s 4.0 0.8

100 0.070 s 0.009 s 7.4 0.6

140 1.148 s 0.016 s 71.7 0.6

0.50 60 0.020 s 0.006 s 3.4 1.2

100 0.068 s 0.012 s 5.7 1.2

140 0.784 s 0.021 s 37.7 0.8

1.00 60 0.019 s 0.006 s 3.5 1.6

100 0.062 s 0.012 s 5.2 1.2

140 0.600 s 0.021 s 28.8 0.6

Table 11: Speedup and average number of matches of glmnet(); average execution times in
seconds.

is employed—, glmnet() does not provide any guarantees on the distance of the result from
the optimal solution (in the OLS sense).

6. Conclusions

An R package for all-subsets variable selection is presented. It is based on threoretical strate-
gies that have been recently developed. A novel algorithm for best-subset variable selection is
proposed, which selects the best variable-subset model according to a pre-determined search
criterion. It performs considerably faster than all-subsets variable selection algorithms that
rely on the residual sum of squares only. Approximation algorithms allow to further increase
the size of tackled datasets. The package implements R’s standard formula interface. A case
study is presented, and the performance of the package is illustrated in a benchmark with
various configurations of simulated datasets. An extension of the package to handle missing
data merits investigation.
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