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Abstract

This paper introduces the funData R package as an object-oriented implementation of
functional data. It implements a unified framework for dense univariate and multivariate
functional data on one- and higher dimensional domains as well as for irregular functional
data. The aim of this package is to provide a user-friendly, self-contained core toolbox for
functional data, including important functionalities for creating, accessing and modifying
functional data objects, that can serve as a basis for other packages. The package further
contains a full simulation toolbox, which is a useful feature when implementing and testing
new methodological developments.

Based on the theory of object-oriented data analysis, it is shown why it is natural
to implement functional data in an object-oriented manner. The classes and methods
provided by funData are illustrated in many examples using two freely available datasets.
The MFPCA package, which implements multivariate functional principal component
analysis, is presented as an example for an advanced methodological package that uses
the funData package as a basis, including a case study with real data. Both packages are
publicly available on GitHub and the Comprehensive R Archive Network.

Keywords: functional data analysis, functional principal component analysis, multivariate
functional data, object orientation, simulation.

1. Introduction
Functional data analysis is a branch of modern statistics that has seen a rapid growth in
recent years. The technical progress in many fields of application allows to collect data in
increasingly fine resolution, e.g., over time or space, such that the observed datapoints form
quasi-continuous, possibly noisy, samples of smooth functions and are thus called functional
data. One central aspect of functional data analysis is that the focus of the analysis is not a
single data point, but the entirety of all datapoints that are considered to stem from the same
curve. Researchers in functional data analysis have developed many new statistical methods
for the analysis of this type of data, linking the concept of functional data also to related
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branches of statistics, such as the study of longitudinal data, which can be seen as sparse
and often also irregular samples of smooth functions, or image data, that can be represented
as functions on two-dimensional domains. New approaches focus on even more generalized
functional objects (next generation functional data analysis; Wang, Chiou, and Müller 2016).
When it comes to the practical application of new methods to real data, appropriate software
solutions are needed to represent functional data in an adequate manner and ideally in a way
that new theoretical developments can be implemented easily. The most widely used R (R
Core Team 2019) package for functional data is fda (Ramsay, Wickham, Graves, and Hooker
2020), which is related to the popular textbook of Ramsay and Silverman (2005). There are
many other R packages for functional data that build on it, e.g., Funclustering (Soueidatt
2014), funFEM (Bouveyron 2015) or funHDDC (Schmutz, Jacques, and Bouveyron 2019)
or provide interfaces to fda, e.g., fda.usc (Febrero-Bande and Oviedo de la Fuente 2012)
or refund (Goldsmith et al. 2019). The fda package contains a class ‘fd’ for representing
dense functional data on one-dimensional domains together with many functionalities for ‘fd’
objects, such as plotting or summaries. It implements a variety of functional data methods,
for example principal component analysis, regression models or registration. The ‘fd’ objects
represent the data as a finite linear combination of given basis functions, such as splines
or Fourier bases, i.e., they store the basis functions and the individual coefficients for each
curve. This representation of course works best if the underlying function is smooth and can
be represented well in the chosen basis. Moreover, the data should be observed with only a
small degree of noise.
Alternatively to the basis function representation, the raw, observed data can be saved di-
rectly. There are two different approaches for organizing the observations: Many packages
use matrices, that contain the data in a row-wise (e.g., fda.usc, refund) or column-wise (e.g.,
rainbow; Shang and Hyndman 2019) manner. This representation is most suitable for rather
densely sampled data, where missing values can be coded via NA, which is supported by most
of the packages. When it comes to irregular data, this way of storing functional data becomes
quite inefficient, as the matrices then contain mostly missing values. Alternative solutions for
sparse data or single points in 2D are list solutions (e.g., fdapace; Chen et al. 2020) or data
frame based versions containing the data in a long format (e.g., fpca; Peng and Paul 2011,
fdaPDE; Lila, Sangalli, Ramsay, and Formaggia 2020 or sparseFLMM; Cederbaum 2019).
Some packages also accept different formats (funcy; Yassouridis 2018; Yassouridis, Ernst, and
Leisch 2018 or FDboost; Brockhaus and Ruegamer 2018). A recent development is the tidy-
fun package (Scheipl and Goldsmith 2018), which provides representations of functional data
both in a raw data format as well as in a basis representation and is particularly suited to be
used in combination with packages from the tidyverse (https://www.tidyverse.org/).
Technically, realizations of functional data on one-dimensional domains can also be inter-
preted as multivariate time series. The CRAN task view for time series analysis (https:
//CRAN.R-project.org/view=TimeSeries; Hyndman 2020) lists a lot of packages for this
type of data, among which the zoo package (Zeileis, Grothendieck, and Ryan 2020; Zeileis
and Grothendieck 2005) provides global infrastructure for regular and irregular time series.
The main difference between functional data analysis and time series analysis is that for
the former, each curve represents one observation of the same process, while for the latter
the individual time points form the observations. Consequently, (multivariate) time series
analysis aims more at analyzing the temporal dependence between curves and extrapola-
tion/prediction of new time points, whereas the goal of functional data analysis is more in
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finding common structures between the curves (for example in principal component analysis
or clustering) and using them as predictors or response variables in regression models. More
details on this topic can be found in the book of Ramsay and Silverman (2005).
Image data, i.e., functions on two-dimensional domains are supported in refund, refund.wave
(Huo, Reiss, and Zhao 2014) and fdasrvf (Tucker 2019). Some others, e.g., fda and fda.usc,
implement image objects, but use them rather for representing covariance or coefficient sur-
faces from function-on-function regression than for storing data in form of images. The
majority of the R packages for functional data, however, are restricted to single functions
on one-dimensional domains. Methods for multivariate functional data, consisting of more
than one function per observation unit, have also become relevant in recent years. The roahd
package (Tarabelloni, Arribas-Gil, Ieva, Paganoni, and Romo 2018) provides a special class
for this type of data, while some others simply combine the data from the different functions
in a list (e.g., fda.usc, Funclustering or RFgroove; Gregorutti 2016). For all of these pack-
ages, the elements of the multivariate functional data must be observed on one-dimensional
domains, which means that combinations of functions and images for example are not sup-
ported. In addition, the one-dimensional observation grid must be the same for most of the
implementations.
In summary, there exist already several software solutions for functional data, but there is still
need for a unified, flexible representation of functional data, univariate and multivariate, on
one- and higher dimensional domains and for dense and sparse functional data. The funData
package (Happ-Kurz 2020a), which is in the main focus of this article, attempts to fill this
gap. It provides a unified framework to represent all these different types of functional data
together with utility methods for handling the data objects. In order to take account of
the particular structure of functional data, the implementation is organized in an object-
oriented manner. In this way, a link is established between the broad methodological field
of object-oriented data analysis (Wang and Marron 2007), in which functional data analysis
forms an important special case, and object-oriented programming (e.g., Meyer 1988), which
is a fundamental concept in modern software engineering. It is shown why it is natural and
reasonable to combine these two concepts for representing functional data.
In contrast to most R packages mentioned above, the funData package is not related to a
certain type of methodology, such as regression, clustering or principal component analysis.
Instead, it aims at providing a flexible and user-friendly core toolbox for functional data,
which can serve as a basis for other packages, similarly to the Matrix package for linear
algebra calculations for matrices (Bates and Maechler 2019). It further contains a complete
simulation toolbox for generating functional data objects, which is fundamental for testing
new functional data methods. The MFPCA package (Happ-Kurz 2020b), which is also pre-
sented in this article, is an example of a package that depends on funData. It implements
a new methodological approach – multivariate functional principal component analysis for
data on potentially different dimensional domains (Happ and Greven 2018) – that allows to
calculate principal components and individual score values for, e.g., functions and images,
taking covariation between the elements into account. All implementation aspects that relate
to functional data, i.e., input data, output data and all calculation steps involving func-
tions are implemented using the object-oriented functionalities of the funData package. Both
packages are publicly available on GitHub (https://github.com/ClaraHapp) and from the
Comprehensive R Archive Network (CRAN; https://CRAN.R-project.org/).
The structure of this article is as follows: Section 2 contains a short introduction to the concept
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of object orientation in statistics and computer science and discusses how to adequately
represent functional data in terms of software objects. The next section presents the object-
oriented implementation of functional data in the funData package. Section 4 introduces the
MFPCA package as an example on how to use the funData package for the implementation
of new functional data methods. The final section contains a discussion and an outlook to
potential future extensions.

2. Object orientation and functional data

Concepts of object orientation exist both in computer science and statistics. In statistics, the
term object-oriented data analysis (OODA) has been introduced by Wang and Marron (2007).
They define it as “the statistical analysis of complex objects” and draw their attention on
what they call the “atom” of the analysis. While in many parts of statistics these atoms are
numbers or vectors (multivariate analysis), Wang and Marron (2007) argue that they can be
much more complex objects such as images, shapes, graphs or trees. Functional data analysis
(Ramsay and Silverman 2005) is an important special case of object-oriented data analysis,
where the atoms are functions. In most cases, they can be assumed to lie in L2(T ), the space
of square integrable functions on a domain T . This space has infinite dimension, but being a
Hilbert space, its mathematical structure has many parallels to the space Rp of p-dimensional
vectors, which allows to transfer many concepts of multivariate statistics to the functional
case in a quite straightforward manner.
In computer science, object orientation (Booch, Maksimchuk, Engle, Young, Conallen, and
Houston 2007; Armstrong 2006; Meyer 1988) is a programming paradigm which has pro-
foundly changed the way how software is structured and developed. The key concept of
object-oriented programming (OOP) is to replace the until then predominant procedural pro-
grams by computer programs made of objects, that can interact with each other and thus
form, in a way, the “atoms” of the program. These objects usually consist of two blocks. First,
a collection of data, which may have different data types, such as numbers, character strings
or vectors of different length and is organized in fields. Second, a collection of methods, i.e.,
functions for accessing and/or modifying the data and for interacting with other objects. The
entirety of all objects and their interactions forms the final program.
The main idea of the funData package is to combine the concepts of object orientation that
exist in computer science and in statistics for the representation of functional data. The atom
of the statistical analysis should thus be represented by the “atom” of the software program.
The package therefore provides classes to organize the observed data in an appropriate man-
ner. The class methods implement functionalities for accessing and modifying the data and
for interaction between objects, which are primarily mathematical operations. The object ori-
entation is realized in R via the S4 object system (Chambers 2008). This system fulfills most
of the fundamental concepts of object-oriented programming listed in Armstrong (2006) and
is thus more rigorous than R’s widely used S3 system, which is used, e.g., by fda or fda.usc.
In particular, it checks for example if a given set of observation (time) points matches the
observed data before constructing the functional data object.
For the theoretical analysis of functional data, the functions are mostly considered as elements
of a function space such as L2(T ). For the practical analysis, the data can of course only
be obtained in finite resolution. Data with functional features therefore will always come in
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pairs of the form (tij , xij) with

xij = xi(tij), j = 1, . . . , Si, i = 1, . . . , N,

for some functions x1, . . . , xN that are considered as realizations of a random process X :
T → R. The domain T ⊂ Rd here is assumed to be a compact set with finite (Lebesgue-)
measure and in most cases, the dimension d will be equal to 1 (functions on one-dimensional
domains), sometimes also 2 (images) or 3 (3D images). The observation points tij ∈ T in
general can differ in their number and location between the individual functions.
When implementing functional data in an object-oriented way, it is thus natural to collect
the data in two fields: the observation points {(ti1, . . . , tiSi) : i = 1, . . . , N} on one hand
and the set of observed values {(xi1, . . . , xiSi) : i = 1, . . . , N} on the other hand. Both
fields form the data block of the functional data object as an inseparable entity. This is a
major advantage compared to non object-oriented implementations, that can consider the
observation points and the observed values as parameters in their methods, but cannot map
the intrinsic dependence between both of them.
In the important special case that the functions are observed on a one-dimensional domain
and that the arguments do not differ across functions, they can be collected in a single
vector (t1, . . . , tS) and the observed values can be stored in a matrix X with entries xij , i =
1, . . . , N, j = 1, . . . , S. The matrix-based concept can be generalized to data observed on
common grids on higher dimensional domains. In this case, the observation grid can be
represented as a matrix (or array) or, in the case of a regular and rectangular grid, as a
collection of vectors that define the marginals of the observation grid. The observed data are
collected in an array with three or even higher dimensions.
In recent years, the study of multivariate functional data that takes multiple functions at the
same time into account, has led to new insights. Each observation unit here consists of a
fixed number of functions p, that can also differ in their domain (e.g., functions and images;
Happ and Greven 2018). Technically, the observed values are assumed to stem from a random
process X = (X(1), . . . , X(p)), with random functions X(k) : Tk → R, Tk ∈ Rdk , k = 1, . . . , p,
that we call the elements of X. Realizations x1, . . . , xN of such a process all have the same
structure as X. If for example p = 2 and d1 = 1, d2 = 2, the realizations will all be bivariate
functions with one functional and one image element. As data can only be obtained in finite
resolution, observed multivariate functional data are of the form

(t(k)
ij , x

(k)
ij ) j = 1, . . . , S(k)

i , i = 1, . . . , N, k = 1, . . . , p.

Each element thus can be represented separately by its observation points and the observed
values, and the full multivariate sample constitutes the collection of all the p elements.

3. The funData package
The funData package implements the object-oriented approach for representing functional
data in R. It provides three classes for functional data on one- and higher dimensional domains,
multivariate functional data and irregularly sampled data, which are presented in Section 3.1.
Section 3.2 presents the methods associated with the functional data classes based on two
example datasets and Section 3.3 contains details on the integrated simulation toolbox.
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t1 t2 tST

x1

x2

x3

As funData object:

@argvals: list (t1, t2, . . . , tS)

@X: matrix



x11 x12 . . . x1S

x21 NA . . . x2S

x31 x32 . . . NA




Figure 1: Left: An example of N = 3 observations of functional data on a one-dimensional
domain T , observed on a common discrete grid (t1, . . . , tS), where the observed values xij =
xi(tj) are represented by solid circles. The functions x2 and x3 have one missing value, each
(open circles). Right: Representation of the data in a ‘funData’ object. The @argvals slot
is a list of length one, containing the observation grid as a vector. The @X slot is a matrix of
dimension N × S that contains the observed values in row-wise format. Missing values are
coded with NA.

3.1. Three classes for functional data

For the representation of functional data in terms of abstract classes – which, in turn, define
concrete objects – we distinguish three different cases.

1. Class ‘funData’ for dense functional data of “arbitrary” dimension (in most cases the
dimension of the domain is d ∈ {1, 2, 3}) on a common set of observation points t1, . . . , tS
for all curves. The curves may have missing values coded by NA.

2. Class ‘irregFunData’ for irregularly sampled functional data with individual sampling
points tij , j = 1, . . . , Si, i = 1, . . . , N for all curves. The number Si and the location of
observation points can vary across individual observations. At the moment, only data
on one-dimensional domains is implemented.

3. Class ‘multiFunData’ for multivariate functional data, which combines p elements of
functional data that may be defined on different dimensional domains (e.g., functions
and images).

In the case of data on one-dimensional domains, the boundaries between the ‘funData’ and the
‘irregFunData’ class may of course be blurred in practice. The conceptual difference is that in
case 1. all curves are ideally supposed to be sampled on the full grid T = {t1, . . . , tS} ⊂ T and
differences in the number of observation points per curve are mainly driven by anomalies or
errors in the sampling process, such as missing values, which can be coded by NA. In contrast,
case 2. a priori expects that the curves can be observed at different observation points tij ,
and that the number of observations per curve may vary.
For ‘funData’ and ‘irregFunData’, the data are organized in two fields or slots, as they are
called for S4 classes (Chambers 2008): The slot @argvals contains the observation points and
the slot @X contains the observed data. For ‘funData’, the @argvals slot is a list, containing
the common sampling grid for all functions and @X is an array containing all observations. In
the simplest case of functions defined on a one-dimensional domain and sampled on a grid
with S observation points, @argvals is a list of length one, containing a vector of length S
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ySy

As funData object:

@argvals: list
(y1, . . . , ySy

)

(x1, . . . , xSx
)

@X: array

Figure 2: Left: An example of N = 3 observations of functional data on a two-dimensional
domain T . The functions are observed on a common discrete grid having Sx points in x- and
Sy points in y-direction, i.e., each observation forms an image with Sx × Sy pixels. Right:
Representation of the data in a ‘funData’ object. The @argvals slot is a list of length 2,
containing the marginal sampling points. The slot @X is an array of dimension N × Sx × Sy.

T
t11 t1S1

x1

t21 t2S2

x2

t31 t3S3

x3

As irregfunData object:

@argvals: list

(t31, . . . , t3S3
)

(t21, . . . , t2S2)

(t11, . . . , t1S1
)

@X: list

(x31, . . . , x3S3)

(x21, . . . , x2S2
)

(x11, . . . , x1S1
)

Figure 3: Left: An example of N = 3 irregular observations of functional data on a one-
dimensional domain T . The observation points for each function differ in number and location.
Right: Representation of the data in an ‘irregFunData’ object. Both the @argvals and the
@X slot are a list of length N , containing the observation points tij and the observed values xij .

and @X is a matrix of dimension N × S, containing the observed values for each curve in a
row-wise manner. For an illustration, see Figure 1. If the ‘funData’ object is supposed to
represent N images with Sx×Sy pixels, @argvals is a list of length 2, containing two vectors
with Sx and Sy entries, respectively, that represent the sampling grid. The slot @X is an
array of dimension N × Sx × Sy, cf. Figure 2. For the ‘irregFunData’ class, only functions
on one-dimensional domains are currently implemented. The @argvals slot here is a list of
length N , containing in its ith entry the vector (ti1, . . . , tiSi) with all observation points for
the ith curve. The @X slot organizes the observed values analogously, i.e., it is also a list
of length N with the ith entry containing the vector (xi1, . . . , xiSi). An illustration is given
in Figure 3. The ‘multiFunData’ class, finally, represents multivariate functional data with
p elements. An object of this class is simply a list of p ‘funData’ objects, representing the
different elements. For an illustration, see Figure 4. Given specific data, the realizations of
such classes are called ‘funData’, ‘irregFunData’ or ‘multiFunData’ objects. We will use the
term functional data object in the following for referring to objects of all three classes.

3.2. Methods for functional data objects

Essential methods for functional data objects include for example the creation of an object
from the observed data, methods for modifying and subsetting the data, plotting, arithmetics.
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(
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21 NA . . . x

(1)
2S1




@argvals: list

(
x
(2)
1 , . . . , x
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Figure 4: Left: An example of N = 2 observations of bivariate functional data on different
domains, i.e., each observation (red/blue) consists of two elements, a curve and an image.
Right: Representation of the data as a ‘multiFunData’ object. As the data is bivariate, the
‘multiFunData’ object is a list of length 2, containing the two elements as ‘funData’ objects.

The methods in the funData package are implemented such that they work on functional data
objects as the atoms of the program, i.e., the methods accept functional data objects as input
and/or have functional data objects as output. Moreover, all functions are implemented for
the three different classes with appropriate sub-methods. This corresponds to the principle of
polymorphism in Armstrong (2006), as different classes have their own implementation, e.g.,
of a plot function. In most cases, the methods for ‘multiFunData’ objects will simply call the
corresponding method for each element and concatenate the results appropriately.

Data used in the examples

The following code examples use the Canadian weather data (Ramsay and Silverman 2005),
that is available, e.g., in the fda package and the CD4 cell count data (Goldsmith, Greven,
and Crainiceanu 2013) from the refund package. In both cases, the data is observed on a
one-dimensional domain. Examples for image data are included in the description of the
simulation toolbox (Section 3.3).
The Canadian weather dataset contains daily and monthly observations of temperature (in
◦C) and precipitation (in mm) for N = 35 Canadian weather stations, averaged over the
years 1960 to 1994. We will use the daily temperature as an example for dense functional
data on a one-dimensional domain. Moreover, it is combined with the monthly precipitation
data to multivariate functional data with elements on different domains (T1 = [1, 365] for the
temperature and T2 = [1, 12] for the precipitation).
The CD4 cell count data reports the number of CD4 cells per milliliter of blood for N = 366
subjects who participated in a study on AIDS (MACS, Multicenter AIDS Cohort Study).
CD4 cells are part of the human immune system and are attacked in the case of an infection
with HIV. Their number thus can be interpreted as a proxy for the disease progression. For
the present data, the CD4 counts were measured roughly twice a year and centered at the time
of seroconversion, i.e., the time point when HIV becomes detectable. In total, the number of
observations for each subject varies between 1 and 11 in the period of 18 months before and
42 months after seroconversion. The individual time points do also differ between subjects.
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The dataset thus serves as an example for irregular functional data. For more information on
the data, please see Goldsmith et al. (2013).

Creating new objects and accessing an object’s information

The following code creates ‘funData’ objects for the Canadian temperature and precipitation
data:

R> data("CanadianWeather", package = "fda")
R> dailyTemp <- funData(argvals = 1:365,
+ X = t(CanadianWeather$dailyAv[, , "Temperature.C"]))
R> monthlyPrec <- funData(argvals = 1:12,
+ X = t(CanadianWeather$monthlyPrecip))

It is then very easy to create a bivariate ‘multiFunData’ object, containing the daily temper-
ature and the monthly precipitation for the 35 weather stations:

R> canadWeather <- multiFunData(dailyTemp, monthlyPrec)

The cd4 data in the refund package is stored in a matrix with 366 × 61 entries, containing
the CD4 counts for each patient on the common grid of all sampling points. Missing values
are coded as NA. Since each patient has at least 1 and at most 11 observations, more than
90% of the dataset consists of missings. Particularly, the time of seroconversion (time 0) is
missing for all subjects. The ‘irregFunData’ class stores only the observed values and their
time points and is therefore more parsimonious. The following code extracts both separately
as lists and then constructs an ‘irregFunData’ object:

R> data("cd4", package = "refund")
R> allArgvals <- seq(-18, 42)
R> argvalsList <- apply(cd4, 1, function(x) allArgvals[complete.cases(x)])
R> obsList <- apply(cd4, 1, function(x) x[complete.cases(x)])
R> cd4Counts <- irregFunData(argvals = argvalsList, X = obsList)

When a functional data object is called in the command line, some basic information is printed
to standard output. For the ‘funData’ object containing the Canadian temperature data one
obtains:

R> dailyTemp

Functional data with 35 observations of 1-dimensional support
argvals:

1 2 ... 365 (365 sampling points)
X:

array of size 35 x 365

The ‘multiFunData’ version lists the information of the different elements:

R> canadWeather
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An object of class "multiFunData"
[[1]]
Functional data with 35 observations of 1-dimensional support
argvals:

1 2 ... 365 (365 sampling points)
X:

array of size 35 x 365

[[2]]
Functional data with 35 observations of 1-dimensional support
argvals:

1 2 ... 12 (12 sampling points)
X:

array of size 35 x 12

For ‘irregFunData’ objects there is some additional information about the total number of
observations. Note that time 0 has been dropped here, as there are no observations.

R> cd4Counts

Irregular functional data with 366 observations of 1-dimensional support
argvals:

Values in -18 ... 42.
X:

Values in 10 ... 3184.
Total:

1888 observations on 60 different argvals (1 - 11 per observation).

More information can be obtained using the usual summary or str functions:

R> summary(dailyTemp)
R> options(max.print = 24, digits = 4, scipen = 1)
R> summary(dailyTemp[1:6])

Argument values (@argvals):
Min. 1st Qu. Median Mean 3rd Qu. Max.

Dim. 1 : 1 92 183 183 274 365

Observed functions (@X):
St. Johns Halifax Sydney Yarmouth Charlottvl Fredericton

Min. -7.00 -8.10 -8.40 -5.300 -10.400 -12.400
1st Qu. -2.10 -2.60 -2.40 -0.100 -3.800 -4.700
Median 4.50 6.40 5.40 7.400 5.700 6.300
Mean 4.69 6.15 5.51 6.812 5.232 5.263
[ reached getOption("max.print") -- omitted 2 rows ]
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R> options(max.print = 12, digits = 7, scipen = 0)
R> str(cd4Counts)

IrregFunData:
366 observations of 1-dimensional support on 60 different argvals (1 - 11 per
curve).

@argvals: List of 366
$ : int [1:3] -9 -3 3
$ : int [1:4] -3 3 9 15
$ : int [1:8] -15 -9 -3 3 9 17 22 29
[list output truncated]

@X: List of 366
$ : Named int [1:3] 548 893 657
..- attr(*, "names")= chr [1:3] "-9" "-3" "3"

$ : Named int [1:4] 752 459 181 434
..- attr(*, "names")= chr [1:4] "-3" "3" "9" "15"

$ : Named int [1:8] 846 1102 801 824 866 704 757 726
..- attr(*, "names")= chr [1:8] "-15" "-9" "-3" "3" ...
[list output truncated]

The slots can be accessed directly via @argvals or @X. The preferable way of accessing and
modifying the data in the slots, however, is via the usual get/set methods, following the
principle of limited access (or encapsulation; Armstrong 2006), as an example:

R> argvals(monthlyPrec)

[[1]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12

The names can be set or get by the names function:

R> names(monthlyPrec) <- names(dailyTemp)
R> names(monthlyPrec)

[1] "St. Johns" "Halifax" "Sydney" "Yarmouth" "Charlottvl"
[6] "Fredericton" "Scheffervll" "Arvida" "Bagottville" "Quebec"

[11] "Sherbrooke" "Montreal"
... [output truncated] ...

The method nObs returns the number of observations (functions) in each object:

R> nObs(dailyTemp)

[1] 35
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R> nObs(cd4Counts)

[1] 366

R> nObs(canadWeather)

[1] 35

The number of observation points is given by nObsPoints. The functions in the ‘funData’
object dailyTemp are densely sampled and therefore nObsPoints returns a single number.
Analogously, for the ‘multiFunData’ object canadWeather one obtains two numbers, one for
each element (daily temperature values with 365 observation points and monthly precipitation
with 12 observation points). For the irregularly sampled data in cd4Counts, the method
returns a vector of length N = 366, containing the individual number of observations for each
subject:

R> nObsPoints(dailyTemp)

[1] 365

R> nObsPoints(cd4Counts)

[1] 3 4 8 4 8 3 4 7 2 6 8 3
... [output truncated] ...

R> nObsPoints(canadWeather)

[[1]]
[1] 365

[[2]]
[1] 12

The dimension of the domain can be obtained by the dimSupp method:

R> dimSupp(dailyTemp)

[1] 1

R> dimSupp(cd4Counts)

[1] 1

R> dimSupp(canadWeather)

[1] 1 1
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The output for the ‘multiFunData’ object canadWeather reflects the fact that it consists
of two elements, daily temperature and monthly precipitation, which both have a one-
dimensional support. Finally, a subset of the data can be extracted using R’s usual bracket
notation or via the function extractObs (alias subset). We can for example extract the
temperature data for the first five weather stations:

R> dailyTemp[1:5]

Functional data with 5 observations of 1-dimensional support
argvals:

1 2 ... 365 (365 sampling points)
X:

array of size 5 x 365

or the CD4 counts of the first 8 patients before seroconversion (i.e., until time 0):

R> extractObs(cd4Counts, obs = 1:8, argvals = -18:0)

Irregular functional data with 8 observations of 1-dimensional support
argvals:

Values in -17 ... -3.
X:

Values in 429 ... 1454.
Total:

15 observations on 6 different argvals (1 - 3 per observation).

In both cases, the method returns an object of the same class as the argument with which
the function was called (‘funData’ for dailyTemp and ‘irregFunData’ for cd4Counts), which
is seen by the output.

Plotting
The more complex the data, the more important it is to have adequate visualization methods.
The funData package comes with two plot methods for each class, one based on R’s standard
plotting engine (plot.default and matplot) and one based on the ggplot2 implementation of
the grammar of graphics (Wickham 2009; Wickham et al. 2019). The plot function inherits
all parameters from the plot.default function from the graphics package, i.e., colors, axis
labels and many other options can be set as usual. The following code plots all 35 curves of
the Canadian temperature data:

R> plot(dailyTemp, main = "Daily Temperature Data", xlab = "Day of Year",
+ ylab = "Temperature in °C")

and the CD4 counts of the first five patients on the log-scale:

R> plot(cd4Counts, obs = 1:5, xlim = c(-18, 45), log = "y",
+ main = "CD4 Counts for Individuals 1-5",
+ xlab = "Month since seroconversion",
+ ylab = "CD4 cell count (log-scale)")
R> legend("topright", legend = 1:5, col = rainbow(5), lty = 1, pch = 20,
+ title = "Individual")
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Figure 5: Results of the plot commands for functional data objects. First row: The daily
temperature in 35 Canadian weather stations (‘funData’ object, left) and the CD4 counts for
the first five individuals (‘irregFunData’ object, right). Second row: The Canadian weather
data for ten weather stations (‘multiFunData’ object). See text for the commands used; all
other options were kept as defaults.

For multivariate functional data, the different elements are plotted side by side, as shown
here for the last ten Canadian weather stations:

R> plot(canadWeather, obs = 26:35, lwd = 2, log = c("", "y"),
+ main = c("Temperature", "Precipitation (log-scale)"),
+ xlab = c("Day of Year", "Month"),
+ ylab = c("Temperature in °C", "Precipitation in mm"))

The resulting plots are shown in Figure 5.
The optional autoplot / autolayer functions create a ‘ggplot’ object that can be further
modified by the user by loading the ggplot2 package and using the functionality provided
therein. The following codes produce analogous plots to the plot examples above for the
Canadian temperature data:

R> library("ggplot2")
R> tempPlot <- autoplot(dailyTemp)
R> tempPlot + labs(title = "Daily Temperature Data",
+ x = "Day of Year", y = "Temperature in °C")
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Figure 6: Results of the autoplot commands for functional data objects. First row: The daily
temperature in 35 Canadian weather stations (‘funData’ object, left) and the CD4 counts for
the first five individuals (‘irregFunData’ object, right). Second row: The Canadian weather
data for ten weather stations (‘multiFunData’ object). See text for the commands used. For
all plots the option theme_bw() has been added for optimal print results; all other parameters
were kept as defaults.

and for the CD4 counts:

R> cd4Plot <- autoplot(cd4Counts, obs = 1:5)
R> cd4Plot + geom_line(aes(colour = obs)) +
+ labs(title = "CD4 Counts for Individuals 1-5", color = "Individual",
+ x = "Month since seroconversion",
+ y = "CD4 cell count (log-scale)") +
+ scale_y_log10(breaks = seq(200, 1000, 200))

For the bivariate Canadian weather data, the bivariate plot is obtained via:

R> weatherPlot <- autoplot(canadWeather, obs = 26:35)

The subplots of the different elements can be customized separately, by changing for example
the colors of the curves or adding axis labels, using functions from the ggplot2 package.

R> weatherPlot[[1]] <- weatherPlot[[1]] + geom_line(aes(colour = obs)) +
+ labs(title = "Temperature", colour = "Weather Station",
+ x = "Day of Year", y = "Temperature in °C")
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R> weatherPlot[[2]] <- weatherPlot[[2]] + geom_line(aes(colour = obs)) +
+ labs(title = "Precipitation (log-scale)", colour = "Weather Station",
+ x = "Month", y = "Precipitation in mm") +
+ scale_x_continuous(breaks = 1:12) +
+ scale_y_log10(breaks = c(0.1, 0.5, 1, 5, 10))

For the final plot, the subplots are arranged side by side using the gridExtra package (Auguie
2017):

R> gridExtra::grid.arrange(grobs = weatherPlot, nrow = 1)

The corresponding plots for all three data examples are shown in Figure 6.

Coercion
As discussed earlier, there is no clear boundary between the ‘irregFunData’ class and the
‘funData’ class for functions on one-dimensional domains. The package thus provides coercion
methods to convert ‘funData’ objects to ‘irregFunData’ objects, as seen in the output:

R> as.irregFunData(dailyTemp)

Irregular functional data with 35 observations of 1-dimensional support
argvals:

Values in 1 ... 365.
X:

Values in -34.8 ... 22.8.
Total:

12775 observations on 365 different argvals (365 - 365 per
observation).

Vice versa the union of all observation points of all subjects is used as the common one and
missing values are coded with NA (as.funData(cd4Counts)). Similarly, ‘funData’ objects
can also be coerced to ‘multiFunData’ objects with only one element.
In order to simplify working with other R packages, functional data objects can be converted
to a long data format via the function as.data.frame, here exemplarily shown for the CD4
count data:

R> as.data.frame(cd4Counts)

obs argvals X
1 1 -9 548
2 1 -3 893
3 1 3 657
4 2 -3 752

... [output truncated] ...

The funData package further provides coercion methods between “funData” objects and ‘fd’
objects from package fda (funData2fd and fd2funData), which provides analysis tools for
functional data and is also the basis of many other R packages.
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Figure 7: Demeaned versions of the ten CanadianWeather observations shown in Figure 6.
The curves have been obtained by canadWeather - meanFunction(canadWeather), i.e., the
bivariate mean function of all 35 weather stations has been subtracted from each observation.
The horizontal gray lines mark zero, corresponding to the original mean function.

Mathematical operations for functional data objects
With the funData package, mathematical operations can directly be applied to functional
data objects, with the calculation made pointwise and the return being again an object of the
same class. The operations build on the Arith and Math group generics for S4 classes. We
can for example convert the Canadian temperature data from Celsius to Fahrenheit:

R> 9/5 * dailyTemp + 32

or calculate the logarithms of the CD4 count data:

R> log(cd4Counts)

Arithmetic operations such as sums or products are implemented for scalars and functional
data objects as well as for two functional data objects. Note that in the last case, the functional
data objects must have the same number of observations (in this case, the calculation is done
with the ith function of the first object and the ith function of the second object) or one object
may have only one observation (in this case, the calculation is made with each function of
the other object). This is particularly useful, e.g., for subtracting a common mean from all
functions in an object, as in the following example, which uses the meanFunction method:

R> canadWeather - meanFunction(canadWeather)

Some of the demeaned curves are shown in Figure 7. Note that the functions also need to
have the same observation points, which is especially important for ‘irregFunData’ objects.
The tensorProduct function allows to calculate tensor products of functional data objects
f1, f2 on one-dimensional domains T1, T2, respectively, i.e.,

fTens(t1, t2) = f1(t1)f2(t2) t1 ∈ T1, t2 ∈ T2.

The following code calculates the tensor product of the Canadian weather data and the output
shows that the result is a ‘funData’ object on a two-dimensional domain:
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Figure 8: Two observations of the tensor product of daily temperature and monthly pre-
cipitation from the Canadian weather data, calculated via tensorProduct(dailyTemp,
monthlyPrec). As seen in the plot, the domains of the functions have to be one-dimensional,
but can be different. The result is an object of class ‘funData’ on the two-dimensional domain
[1, 356]× [1, 12] with 352 = 1225 observations, from which two are shown here.

R> tensorData <- tensorProduct(dailyTemp, monthlyPrec)
R> tensorData

Functional data with 1225 observations of 2-dimensional support
argvals:

1 2 ... 365 (365 sampling points)
1 2 ... 12 (12 sampling points)

X:
array of size 1225 x 365 x 12

Two observations in tensorData are shown in Figure 8. Note that for image data, a single
observation has to be specified for plotting.
Another important aspect when working with functional data is integration, e.g., in the
context of principal component analysis or regression, where scalar products between functions
replace the usual scalar products between vectors from multivariate analysis. The funData
package implements two quadrature rules, "midpoint" and "trapezoidal" (the default).
The data are always integrated over the full domain and in the case of multivariate functional
data, the integrals are calculated for each element and the results are added. For irregular
data, the integral can be calculated on the observed points or they can be extrapolated linearly
to the full domain. For the latter, curves with only one observation point are assumed to be
constant.
Based on integrals, one defines the usual scalar product on L2(T ) 〈f, g〉2 =

∫
T f(t)g(t)dt and

the induced norm ||f ||2 = 〈f, f〉21/2 for f, g ∈ L2(T ). For multivariate functional data on
domains T1 × . . .× Tp, the scalar product can be extended to

〈〈f, g〉〉 =
p∑

j=1
f (j)(t)g(j)(t)dt
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with the induced norm |||f ||| = 〈〈f, f〉〉1/2. The multivariate scalar product can further be
generalized by introducing weights wj > 0 for each element (cf. Happ and Greven 2018):

〈〈f, g〉〉w =
p∑

j=1
wj〈f (j), g(j)〉2. (1)

Scalar products and norms are implemented for all three classes in the funData package. Here
also, the scalar product can be calculated for pairs of functions f1, . . . , fN and g1, . . . , gN ,
hence 〈fi, gi〉2, or for a sample f1, . . . , fN and a single function g, returning 〈fi, g〉2. The norm
function accepts some additional arguments, such as squared (logical, should the squared
norm be calculated) or weight (a vector containing the weights w1, . . . , wp for multivariate
functional data):

R> all.equal(scalarProduct(dailyTemp, dailyTemp),
+ norm(dailyTemp, squared = TRUE))

[1] TRUE

3.3. Simulation toolbox

The funData package comes with a full simulation toolbox for univariate and multivariate
functional data, which is a very useful feature when implementing and testing new method-
ological developments. The data are simulated based on a truncated Karhunen-Loève repre-
sentation of functional data, as for example in the simulation studies in Scheipl and Greven
(2016) or Happ and Greven (2018). All examples in the following text use set.seed(1)
before calling a simulation function for reasons of reproducibility.
For univariate functions xi : T → R, the Karhunen-Loève representation of a function xi

truncated at M ∈ N is given by

xi(t) = µ(t) +
M∑

m=1
ξi,mφm(t), i = 1, . . . , N, t ∈ T , (2)

with a common mean function µ(t) and principal component functions φm, m = 1, . . . ,M .
The individual functional principal component scores ξi,m = 〈xi, φm〉2 are realizations of
random variables ξm with E(ξm) = 0 and VAR(ξm) = λm with eigenvalues λm ≥ 0 that
decrease towards 0. This representation is valid for domains of arbitrary dimension, hence
also for T ⊂ R2 (images) or T ⊂ R3 (3D images).
The simulation algorithm constructs new data from a system ofM orthonormal eigenfunctions
φ1 . . . φM and scores ξi,m according to the Karhunen-Loève representation in Equation 2 with
µ(t) ≡ 0. For the eigenfunctions, the package implements Legendre polynomials, Fourier basis
functions and eigenfunctions of the Wiener process including some variations (e.g., Fourier
functions plus an orthogonalized version of the linear function). The scores are generated via

ξi,m
iid∼ N(0, λm), m = 1, . . . ,M, i = 1, . . . , N. (3)

For the eigenvalues λm, one can choose between a linear (λm = M−m+1
M ) or exponential

decrease (exp(−m+1
2 )) or those of the Wiener process. New eigenfunctions and eigenvalues

can be added to the package in an easy and modular manner.
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The next code chunk simulates N = 8 curves on the one-dimensional observation grid
{0, 0.01, 0.02, . . . , 1} based on the firstM = 10 Fourier basis functions on [0, 1] and eigenvalues
with a linear decrease:

R> simUniv1D <- simFunData(N = 8, argvals = seq(0, 1, 0.01),
+ eFunType = "Fourier", eValType = "linear", M = 10)

The function returns a list with 3 entries: the simulated data (simData, a ‘funData’ object
shown in Figure 9), the true eigenvalues (trueVals) and eigenfunctions (trueFuns, also as a
‘funData’ object).
For simulating functional data on a two- or higher dimensional domain, simFunData con-
structs eigenfunctions based on tensor products of univariate eigenfunctions. The user thus
has to supply the parameters that relate to the eigenfunctions as a list (for argvals) or as a
vector (M and eFunType), containing the information for each marginal. The total number of
eigenfunctions equals the product of the entries of M . The following example code simulates
N = 5 functions on T = [0, 1] × [−0.5, 0.5]. The eigenfunctions are calculated as tensor
products ofM1 = 10 eigenfunctions of the Wiener process on [0, 1] andM2 = 12 Fourier basis
functions on [−0.5, 0.5]. In total, this leads to M = M1 ·M2 = 120 eigenfunctions. For each
eigenfunction and each observed curve, the scores ξi,m are generated as in Equation 3 with
linearly decreasing eigenvalues:

R> argvalsList <- list(seq(0, 1, 0.01), seq(-0.5, 0.5, 0.01))
R> simUniv2D <- simFunData(N = 5, argvals = argvalsList,
+ eFunType = c("Wiener", "Fourier"), eValType = "linear", M = c(10, 12))

The first simulated image is shown in Figure 9. As for functions on one-dimensional domains,
the function returns the simulated data together with the true eigenvalues and eigenfunctions.
For multivariate functional data, the simulation is based on the multivariate version of the
Karhunen-Loève Theorem (Happ and Greven 2018) for multivariate functional data xi =
(x(1)

i , . . . , x
(p)
i ) truncated at M ∈ N:

xi(t) = µ(t) +
M∑

m=1
ρi,mψm(t), i = 1, . . . , N, t = (t1, . . . , tp) ∈ T1 × . . .× Tp, (4)

with a multivariate mean function µ and multivariate eigenfunctions ψm that have the same
structure as xi (i.e., if xi consists of a function and an image, then µ and ψm will also be
bivariate functions, consisting of a function and an image). The individual scores ρi,m =
〈〈xi, ψm〉〉 for each observation xi and each eigenfunction ψm are real numbers and have the
same properties as in the univariate case, i.e., they are realizations of random variables ρm

with E(ρm) = 0 and VAR(ρm) = νm with eigenvalues νm ≥ 0 that again form a decreasing
sequence that converges towards 0. As in the univariate case, the multivariate functions are
simulated based on eigenfunctions and scores according to Equation 4 with µ(t) ≡ 0. The
scores are sampled independently from a N(0, νm) distribution with decreasing eigenvalues
νm, analogously to Equation 3. For the construction of multivariate eigenfunctions, Happ
and Greven (2018) propose two approaches based on univariate orthonormal systems, which
are both implemented in the simMultiFunData function.
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Figure 9: Left: N = 8 simulated curves on [0, 1] based on the first M = 10 Fourier basis
functions and eigenvalues with a linear decrease. Right: One simulated image on [0, 1] ×
[−0.5, 0.5] based on tensor products of M1 = 10 eigenfunctions of the Wiener process on [0, 1]
and M2 = 12 Fourier basis functions on [−0.5, 0.5] and linearly decreasing eigenvalues.
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Figure 10: N = 7 simulated bivariate curves on [−0.5, 0.5] and [0, 1] with eigenfunctions
obtained from the first M = 10 Fourier basis functions by the splitting algorithm (type =
"split") and linearly decreasing eigenvalues.
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Figure 11: One observation of simulated bivariate data on [−0.5, 0.5] and [0, 1]× [−1, 1] using
weighted orthonormal elements (type = "weighted"). See text for details.
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Calling simMultiFunData with the option "split" constructs multivariate eigenfunctions by
splitting orthonormal functions into p pieces and shifting them to where the elements should
be defined. This works only for functions on one-dimensional domains. The following code
simulates N = 7 bivariate functions on [−0.5, 0.5] and [0, 1], based on M = 10 Fourier basis
functions and linearly decreasing eigenvalues.

R> argvalsList <- list(seq(-0.5, 0.5, 0.01), seq(0, 1, 0.01))
R> simMultiSplit <- simMultiFunData(N = 7, argvals = argvalsList,
+ eFunType = "Fourier", eValType = "linear", M = 10, type = "split")

As an alternative, multivariate eigenfunctions can be constructed as weighted versions of
univariate eigenfunctions. With this approach, one can also simulate multivariate functional
data on different dimensional domains, e.g., functions and images. It is implemented in
funData’s simMultiFunData method using the option type = "weighted". The following
code simulates N = 5 bivariate functions on T1 = [−0.5, 0.5] and T2 = [0, 1] × [−1, 1]. The
first elements of the eigenfunctions are derived from M1 = 12 Fourier basis functions on
T1 and the second elements of the eigenfunctions are constructed from tensor products of 4
eigenfunctions of the Wiener process on [0, 1] and 3 Legendre polynomials on [−1, 1], which
give together M2 = 12 eigenfunctions on T2. The scores are sampled using exponentially
decreasing eigenvalues:

R> argvalsList <- list(list(seq(-0.5, 0.5, 0.01)), list(seq(0, 1, 0.01),
+ seq(-1, 1, 0.01)))
R> simMultiWeight <- simMultiFunData(N = 5, argvals = argvalsList,
+ eFunType = list("Fourier", c("Wiener", "Poly")),
+ eValType = "exponential", M = list(12, c(4, 3)), type = "weighted")

In both cases, the result contains the simulated data as well as the eigenfunctions and eigen-
values. The simulated functions are shown in Figures 10 and 11. For more technical details
on the construction of the eigenfunctions, see Happ and Greven (2018).
Once simulated, the data can be further processed by adding noise (function addError) or
by artificially deleting measurements (sparsification, function sparsify). The latter is done
in analogy to Yao, Müller, and Wang (2005). Examples for modified versions of simulated
functions can be computed as follows:

R> addError(simUniv1D$simData, sd = 0.5)
R> sparsify(simUniv1D$simData, minObs = 5, maxObs = 10)
R> addError(simMultiWeight$simData, sd = c(0.5, 0.3))
R> sparsify(simMultiSplit$simData, minObs = c(5, 50), maxObs = c(10, 80))

The results are shown in Figure 12 for the univariate case and in Figure 13 for the multivariate
case.
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Figure 12: Transforming the simulated univariate functions in simUniv1D (see Figure 9). Left:
Adding noise with a standard deviation of σ = 0.5. Right: The effect of sparsification, keeping
five to ten observations per curve. Solid lines show the original data, filled dots correspond
to the observed values of the sparsified version.
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Figure 13: Transforming the simulated bivariate data. First row: A noisy version of the
first observation of simMultiWeight (see Figure 11). Second row: All 7 observations of
simMultiSplit after sparsification (see Figure 10). Solid lines show the original data, filled
dots correspond to the observed values of the sparsified version. Note that the standard
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4. The MFPCA package
The MFPCA package implements multivariate functional principal component analysis (MF-
PCA) for data on potentially different dimensional domains (Happ and Greven 2018).1 It
heavily builds upon the funData package, i.e., all functions are implemented as functional
data objects. The MFPCA package thus illustrates the use of funData as a universal basis
for implementing new methods for functional data. Section 4.1 gives a short review of the
MFPCA methodology and Section 4.2 describes the implementation including a detailed de-
scription of the main functions and a practical case study. For theoretical details, please refer
to Happ and Greven (2018).

4.1. Methodological background

The basic idea of MFPCA is to extend functional principal component analysis to multivariate
functional data on different dimensional domains. The data are assumed to be iid samples
x1, . . . , xN of a random process X = (X(1), . . . , X(p)) with p elements X(j) ∈ L2(Tj) on
domains Tj ⊂ Rdj with potentially different dimensional dimensions dj ∈ N. Happ and
Greven (2018) provide an algorithm to estimate multivariate functional principal components
and scores based on their univariate counterparts. The algorithm starts with demeaned
samples x1, . . . , xN and consists of four steps:

1. Calculate a univariate functional principal component analysis for each element j =
1, . . . , p. This results in principal component functions φ̂(j)

1 , . . . , φ̂
(j)
Mj

and principal com-
ponent scores ξ̂(j)

i,1 , . . . , ξ̂
(j)
i,Mj

for each observation unit i = 1, . . . , N and suitably chosen
truncation lags Mj .

2. Combine all coefficients into one big matrix Ξ ∈ RN×M+ with M+ = M1 + . . . + Mp,
having rows

Ξi,· =
(
ξ̂

(1)
i,1 , . . . , ξ̂

(1)
i,M1

, . . . , ξ̂
(p)
i,1 , . . . , ξ̂

(p)
i,Mp

)
and estimate the joint covariance matrix Ẑ = 1

N−1Ξ>Ξ.

3. Find eigenvectors ĉm and eigenvalues ν̂m of Ẑ for m = 1, . . . ,M for some truncation lag
M ≤M+.

4. Calculate estimated multivariate principal component functions ψ̂m and scores ρ̂i,m

based on the results from steps 1 and 3:

ψ̂(j)
m =

Mj∑
n=1

[ĉm](j)
n φ̂(j)

n , ρ̂i,m =
p∑

j=1

Mj∑
n=1

[ĉm](j)
n ξ̂

(j)
i,n = Ξi,·ĉm, m = 1, . . . ,M.

The advantage of MFPCA with respect to univariate functional principal component analysis
(FPCA) for each component can be seen in steps 2 and 3: The multivariate version takes
covariation between the different elements into account, by using the joint covariance of the
scores of all elements.

1Not to be confused with multilevel functional principal component analysis, which is implemented in refund
as mfpca.
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As discussed for the simulation in Section 3.3, the multivariate principal component functions
will have the same structure as the original samples, i.e., ψ̂m =

(
ψ̂

(1)
m , . . . , ψ̂

(p)
m

)
with ψ̂(j)

m ∈
L2(Tj) for m = 1, . . . ,M . The scores ρ̂i,m give the individual weight of each observation
xi for the principal component ψ̂m in the empirical version of the truncated multivariate
Karhunen-Loève representation:

xi ≈ µ̂+
M∑

m=1
ρ̂i,mψ̂m, (5)

with µ̂ being an estimate for the multivariate mean function, cf. Equation 4.
In some cases, it might be of interest to replace the univariate functional principal component
analysis in Step 1 by a representation in terms of fixed basis functions B(j)

1 , . . . , B
(j)
Kj

, such
as splines. In Happ and Greven (2018) it is shown how the algorithm can be extended
to arbitrary basis functions in L2(Tj). Mixed approaches with some elements expanded in
principal components and others for instance in splines are also possible. Another very likely
case is that the elements of the multivariate functional data differ in their domain, range
or variation. For this case, Happ and Greven (2018) develop a weighted version of MFPCA
with weights wj > 0 for the different elements j = 1, . . . , p. The weights have to be chosen
depending on the data and the question of interest. One possible choice is to use the inverse
of the integrated pointwise variance for the weights, as proposed in Happ and Greven (2018):
wj =

(∫
Tj

V̂AR(X(j)(t))dt
)−1

.

4.2. MFPCA implementation

The main function in the MFPCA package is MFPCA, that calculates the multivariate func-
tional principal component analysis. It requires as input arguments a ‘multiFunData’ object
for which the MFPCA should be calculated, the number of principal components M to calcu-
late and a list uniExpansions specifying the univariate representations to use in Step 1. It
returns an object of class ‘MFPCAfit’, which has methods for printing, plotting and summa-
rizing. Before discussing the detailed options, we illustrate the usage of MFPCA with a real
data application.

Case study: Calculating the MFPCA for the Canadian weather data

The following example calculates a multivariate functional principal component analysis for
the bivariate Canadian weather data with three principal components, using univariate FPCA
with five principal components for the daily temperature (element 1) and univariate FPCA
with four principal components for the monthly precipitation (element 2). The univariate
expansions are specified in a list uniExpansions with two list entries, one for each element,
in the same order as in the data. This list is passed to the main function, together with
the data and the option M = 3 for calculating the first three multivariate functional principal
components:

R> uniExpansions <- list(list(type = "uFPCA", npc = 5),
+ list(type = "uFPCA", npc = 4))
R> MFPCAweather <- MFPCA(canadWeather, M = 3, uniExpansions = uniExpansions)
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The full analysis takes roughly nine seconds on a standard laptop, with most time spent for
the univariate decompositions (if the elements are for example expanded in penalized splines,
the total calculation time reduces to one second).
The resulting object MFPCAweather contains the following elements: the multivariate mean
function (meanFunction, as the data is demeaned automatically before the analysis), the
empirical multivariate principal component functions (functions), the individual scores for
each city (scores) and the estimated eigenvalues (values). Two additional elements can
be used for calculating out-of-sample predictions (vectors and normFactors). The summary
function gives a basic overview of the results.

R> summary(MFPCAweather)

3 multivariate functional principal components estimated with 2 elements,
each.

* * * * * * * * * *
PC 1 PC 2 PC 3

Eigenvalue 1.55e+04 1.48e+03 3.30e+02
Proportion of variance explained 8.96e-01 8.54e-02 1.90e-02
Cumulative proportion 8.96e-01 9.81e-01 1.00e+00

The eigenvalues here are rapidly decreasing, i.e., the first principal component already explains
almost 90% of the variability in the data. The decrease of the eigenvalues is graphically
illustrated by the screeplot function (see Figure 17 in Appendix A).
All functions in MFPCAweather are represented as functional data objects and can thus be
plotted using the methods provided by the funData package (see Figure 14). The mean
function of the temperature element is seen to have low values below −10◦C in the winter
and a peak at around 15◦C in the summer, while the mean of the monthly precipitation
data is slightly increasing over the year. The first principal component is negative for both
elements, i.e., weather stations with positive scores will in general have lower temperatures
and less precipitation than on average. The difference is more pronounced in the winter
than in the summer, as both the temperature as well as the precipitation element of the first
principal component have more negative values in the winter period. This indicates that there
is covariation between both elements, that can be captured by the MFPCA approach. An
alternative visualization, plotting the principal component as perturbation of the mean as in
the fda package, can be obtained via plot(MFPCAweather) (see Figure 18 in Appendix A). In
total, the first bivariate eigenfunction can be associated with arctic and continental climate,
characterized by low temperatures, especially in the winter, and less precipitation than on
average. Weather stations with negative score values will show an opposite behavior, with
higher temperatures and more rainfall than on average, particularly in the winter months.
This is typical for maritime climate.
The estimated scores for the first principal component support this interpretation, as weather
stations in arctic and continental areas mainly have positive scores, while stations in the
coastal areas have negative values in most cases (see Figure 15). Moreover, weather stations
in the arctic and pacific regions are seen to have more extreme score values than those in
continental areas and on the Atlantic coast, meaning that the latter have a more moderate
climate. An alternative visualization of the scores is given by the scoreplot function (see
Figure 19 in Appendix A).
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Figure 14: MFPCA results for the Canadian weather data. First row: The bivariate mean
function, which is subtracted from the data before calculating the MFPCA. Second row:
The first three bivariate functional principal components. The gray horizontal lines in the
principal component plots mark zero.
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Figure 15: Scores of the first three bivariate functional principal components (PCs) for the
Canadian weather data depending on the region of each weather station. The gray vertical
lines mark zero.
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More details on the MFPCA function
In the above example, both univariate elements have been decomposed in univariate functional
principal components in Step 1. The MFPCA package implements some further options for
the univariate expansions, that can easily be extended in a modular way. The most common
basis expansions are uFPCA (univariate FPCA) and splines1D / splines1Dpen (splines) for
elements on a one-dimensional domain and splines2D / splines2Dpen (tensor splines) and
DCT2D/DCT3D (tensor cosine basis) for elements on higher dimensional domains. If the data
have been smoothed, for example in a preprocessing step, the basis functions and coefficients
can also be passed using type = "given" for the univariate basis expansions. All currently
implemented basis expansions are presented in detail in Appendix B.
With the mean function, the principal components and the individual scores calculated in
the MFPCA function, the observed functions x1, . . . , xN can be reconstructed based on the
truncated Karhunen-Loève representation with plugged-in estimators as in Equation 5. The
reconstructions can be obtained by setting the option fit = TRUE, which adds a multivariate
functional data object fit with N observations to the result object, where the ith entry
corresponds to the reconstruction x̂i of an observation xi. For a weighted version of MFPCA,
the weights can be supplied to the MFPCA function in form of a vector weights of length p,
containing the weights wj > 0 for each element j = 1, . . . , p. Both options are used in the
following example for the canadWeather data, which uses the weights based on the integrated
pointwise variance, as discussed in Happ and Greven (2018):

R> varTemp <- funData(argvals = canadWeather[[1]]@argvals,
+ X = matrix(apply(canadWeather[[1]]@X, 2, var), nrow = 1))
R> varPrec <- funData(argvals = canadWeather[[2]]@argvals,
+ X = matrix(apply(canadWeather[[2]]@X, 2, var), nrow = 1))
R> weightWeather <- c(1/integrate(varTemp), 1/integrate(varPrec))

Given the weights, the MFPCA is calculated including reconstructions of the observed func-
tions:

R> MFPCAweatherFit <- MFPCA(canadWeather, M = 3,
+ uniExpansions = uniExpansions, weights = weightWeather, fit = TRUE)

Figure 16 shows some original functions of the canadWeather data and their reconstructions
saved in MFPCAweatherFit. Alternatively, reconstructions can be obtained by applying the
predict function to the ‘MFPCAfit’ object.
If elements are expanded in fixed basis functions, the number of basis functions that are needed
to represent the data well will in general be quite high, particularly for elements with higher
dimensional domains. As a consequence, the covariance matrix of all scores in Step 2 of the
estimation algorithm can become large and the eigendecompositions in Step 3 can get compu-
tationally very demanding. By setting the option approx.eigen = TRUE, the eigenproblem
is solved approximately using the augmented implicitly restarted Lanczos bidiagonalization
algorithm (IRLBA; Baglama and Reichel 2005) implemented in the irlba package (Baglama,
Reichel, and Lewis 2019). The MFPCA function also implements nonparametric bootstrap
on the level of functions to quantify the uncertainty in the estimation (cf. Happ and Greven
2018). Setting bootstrap = TRUE calculates pointwise bootstrap confidence bands for the
principal component functions and bootstrap confidence bands for the associated eigenvalues.
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Figure 16: The ten observations of the bivariate Canadian weather data shown in Figure 6
(solid lines) and their reconstruction (dashed lines) based on the truncated Karhunen-Loève
representation with estimates found by a weighted version of MFPCA (MFPCAweatherFit).

5. Summary and outlook
The funData package implements functional data in an object-oriented manner. The aim of
the package is to provide a flexible and unified toolbox for dense univariate and multivariate
functional data with different dimensional domains as well as irregular functional data. The
package implements basic utilities for creating, accessing and modifying the data, upon which
other packages can be built. This distinguishes the funData package from other packages for
functional data, that either do not provide a specific data structure together with basic utilities
or mix this aspect with the implementation of advanced methods for functional data.
The funData package implements three classes for representing functional data based on the
observed values and without any further assumptions such as basis function representations.
The classes follow a unified approach for representing and working with the data, which means
that the same methods are implemented for all the three classes (polymorphism). The package
further includes a full simulation toolbox for univariate and multivariate functional data on
one- and higher dimensional domains. This is a very useful feature when implementing and
testing new methodological developments.
The MFPCA package is an example for an advanced methodological package, which builds
upon the funData functionalities. It implements a new approach, multivariate functional
principal component analysis for data on different dimensional domains (Happ and Greven
2018). All calculations relating to the functional data, data input and output use the basic
funData classes and methods.
Both packages, funData and MFPCA, are publicly available on CRAN (https://CRAN.
R-project.org/) and GitHub (https://github.com/ClaraHapp). They come with a com-
prehensive documentation, including many examples. Both of them use the testthat system
for unit testing (Wickham 2011), to make the software development more safe and stable and
currently reach a code coverage of roughly 95%.
As potential future extensions, the funData package could also include ‘irregFunData’ objects
with observation points in a higher dimensional space or provide appropriate plotting methods
for one-dimensional curves in 2D or 3D space. For MFPCA, new basis functions, such as,
e.g., wavelets, could be implemented.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://github.com/ClaraHapp
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A. MFPCA: Additional plots for the case study
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Figure 17: Screeplots for visualizing the decrease of the eigenvalues for an ‘MFPCAfit’ ob-
ject, here obtained via screeplot(MFPCAweather). Left: The default plot (option type =
"lines"). Right: The barplot version (type = "barplot").
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Figure 18: The first principal component of the Canadian weather data as perturbation of
the mean via plot(MFPCAweather, combined = TRUE). The plots show the effects of adding
(’+’) and subtracting (’-’) a multiple of the principal component to the bivariate mean func-
tion.
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Figure 19: The scores of the first two principal components of the Canadian weather data
plotted via scoreplot(MFPCAweather). The labels give the names of the 35 weather stations.

B. MFPCA: Univariate basis expansions

given: Given basis functions. This can for example be useful if a univariate FPCA was
already calculated for each element. For one element, uniExpansions looks as follows:

R> list(type = "given", functions, scores, ortho)

Here functions is a ‘funData’ object on the same domain as the data and contains the
given basis functions. The parameters scores and ortho are optional. The first represents
the coefficient matrix of the observed functions for the given basis functions in a row-wise
manner, while ortho specifies whether the basis functions are orthonormal or not. If ortho
is not supplied, the functions are treated as non-orthonormal.

uFPCA: Univariate functional principal component analysis for data on one-dimensional do-
mains. This option was used in the previous example. The list entry for one element has the
form:

R> list(type = "uFPCA", nbasis, pve, npc, makePD, cov.weight.type)

The implementation is based on the PACE approach (principal components analysis through
conditional expectation; Yao et al. 2005) with the mean function and the covariance surface
smoothed with penalized splines (Di, Crainiceanu, Caffo, and Punjabi 2009), following the
implementation in the refund package. The MFPCA function returns the smoothed mean
function, while for all other options, the mean function is calculated pointwise. Options for
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this expansion include the number of basis functions nbasis used for the smoothed mean
and covariance functions (defaults to 10; for the covariance this number of basis functions is
used for each marginal); pve, a value between 0 and 1, giving the proportion of variance that
should be explained by the principal components (defaults to 0.99); npc, an alternative way
to specify the number of principal components to be calculated explicitly (defaults to NULL,
otherwise overrides pve); makePD, an option to enforce positive definiteness of the covariance
surface estimate (defaults to FALSE) and cov.weight.type, which characterizes the weighting
scheme for the covariance surface (defaults to "none").

spline1D and spline1Dpen: These options calculate a spline representation of functions on
one-dimensional domains using the gam function in the mgcv package (Wood 2011, 2019).
When using this option, the uniExpansions entry for one element is of the form:

R> list(type = "splines1D", bs, m, k)
R> list(type = "splines1Dpen", bs, m, k, parallel)

For spline1Dpen, the coefficients are found by a penalization approach, while for spline1D
the observations are simply projected on the spline space without penalization. Thus, the
spline1Dpen option will in general lead to smoother representations than spline1D. Possible
options passed for these expansions are bs, the type of basis functions to use (defaults to
"ps" for possibly penalized B-spline functions); m, the order of the spline basis (defaults to
NA, i.e., the order is chosen automatically); k, the number of basis functions to use (default
value is -1, which means that the number of basis functions is chosen automatically). For
the penalized version, there is an additional option parallel which, if set to TRUE, calculates
the spline coefficients in parallel. In this case, a parallel backend must be registered before
(defaults to FALSE).

spline2D and spline2Dpen: These are analogue options to spline1D and spline1Dpen for
functional data on two-dimensional domains (images):

R> list(type = "splines2D", bs, m, k)
R> list(type = "splines2Dpen", bs, m, k, parallel)

The parameters bs, m and k for the type, order and number of basis functions can be either a
single number/character string that is used for all marginals or a vector with the specifications
for all marginals. For the penalized version, the function bam in mgcv is used to speed up the
calculations and reduce memory load. Setting parallel = TRUE enables parallel calculation
of the basis function coefficients. As for the one-dimensional case, this requires a parallel
backend to be registered before.

fda: This option allows to use all basis functions expansions implemented in the package
fda, such as for example the leading 15 basis functions of the Fourier basis on [0, 1]:

R> basis <- fda::create.fourier.basis(c(0, 1), nbasis = 15)
R> list(type = "fda", basis)

All parameters are passed to the coercion method funData2fd, which heavily builds on the
function eval.fd from the fda package. If this package is not available, an error is thrown
and the calculation is stopped.
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FCP_TPA: This option uses the functional CP-TPA (tensor power algorithm) algorithm of
Allen (2013) to compute an eigendecomposition of image observations, which can be in-
terpreted as functions on a two-dimensional domain. The algorithm assumes a CANDE-
COMP/PARAFRAC (CP) representation of the data tensor X ∈ RN×Sx×Sy containing all
observations xi with Sx × Sy pixels, each:

X =
M∑

m=1
dmum ◦ vm ◦ wm

Here, dm is a scalar, um ∈ RN , vm ∈ RSx , wm ∈ RSy are vectors and ◦ denotes the outer
product. We can thus interpret vm ◦ wm as the mth univariate eigenfunction evaluated at
the same pixels as the originally observed data. The vector dm · um ∈ RN can in turn be
interpreted as the score vector containing the scores for themth principal component function
and each observation. The algorithm proposed in Allen (2013) includes smoothing parameters
λu, λv, λw ≥ 0 to smooth along all dimensions, extending the approach of Huang, Shen, and
Buja (2009) from one-dimensional to two-dimensional functions. As smoothing along the
observations um ∈ RN is not required in the given context, the parameter λu is fixed to zero
and the smoothing is implemented only for the v and w directions. When decomposing images
with this algorithm, the user has to supply a list of the following form for the corresponding
element:

R> list(type = "FCP_TPA", npc, smoothingDegree, alphaRange,
+ orderValues, normalize)

Required options are npc, the number of eigenimages to be calculated, and alphaRange,
the range of the smoothing parameters. The latter must be a list with two entries named
v and w, giving the possible range for λv, λw as vectors with the minimal and maximal
value, each (e.g., alphaRange = list(v = c(10^-2, 10^2), w = c(10^-3, 10^3)) would
enforce λv ∈ [10−2, 102] and λw ∈ [10−3, 103]). Optimal values for λv and λw are found
by numerically optimizing a generalized cross-validation criterion (cf. Huang et al. 2009,
in the one-dimensional case). Further options are the smoothing degree, i.e., the type of
differences that should be penalized in the smoothing step (smoothingDegree, defaults to
second differences for both directions) and two logical parameters concerning the ordering of
the principal components and their normalizations: If orderValues is TRUE, the eigenvalues
and associated eigenimages and scores are ordered decreasingly (defaults to TRUE), i.e., the first
eigenimage corresponds to the highest eigenvalue that has been found, the second eigenimage
to the second highest eigenvalue and so on. The option normalize specifies whether the
eigenimages should be normalized (defaults to FALSE).

UMPCA: This option implements the UMPCA (uncorrelated multilinear principal compo-
nent analysis; Lu, Plataniotis, and Venetsanopoulos 2009) algorithm for finding uncorrelated
eigenimages of two-dimensional functions (images). Essentially, this implements the UMPCA
toolbox for MATLAB (Lu 2012) in R:

R> list(type = "UMPCA", npc)

The number of eigenimages that are calculated has to be supplied by the user (npc). Note
that this algorithm aims more at uncorrelated features than at an optimal reconstruction of
the images and thus may lead to unsatisfactory results for the MFPCA approach.
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DCT2D/DCT3D: This option calculates a representation of functional data on two- or three-
dimensional domains in a tensor cosine basis. For speeding up the calculations, the imple-
mentation is based on the fftw3 C-library (Frigo and Johnson 2005, developer version). If the
fftw3-dev library is not available during the installation of the MFPCA package, the DCT2D
and DCT3D options are disabled and throw an error. After installing fftw3-dev on the sys-
tem, MFPCA has to be re-installed to activate DCT2D/DCT3D. The uniExpansions entry for
a cosine representation of 2D/3D elements is:

R> list(type = "DCT2D", qThresh, parallel)
R> list(type = "DCT3D", qThresh, parallel)

The discrete cosine transformation is a real-valued variant of the fast Fourier transform (FFT)
and usually results in a huge number of non-zero coefficients that mostly model “noise” and
can thus be set to zero without affecting the representation of the data. The user has to
supply a threshold between 0 and 1 (qThresh) that defines the proportion of coefficients to
be thresholded. Setting, e.g., qThresh = 0.9 will set 90% of the coefficients to zero, leaving
only the 10% of the coefficients with the highest absolute values. The coefficients are stored
in a ‘sparseMatrix’ (package Matrix) object to reduce the memory load for the following
computations. The calculations can be run in parallel for the different observations by setting
the parameter parallel to TRUE (defaults to FALSE), if a parallel backend has been registered
before.
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