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Abstract

Sparse estimation via penalized likelihood (PL) is now a popular approach to learn the
associations among a large set of variables. This paper describes an R package called lslx
that implements PL methods for semi-confirmatory structural equation modeling (SEM).
In this semi-confirmatory approach, each model parameter can be specified as free/fixed
for theory testing, or penalized for exploration. By incorporating either a L1 or minimax
concave penalty, the sparsity pattern of the parameter matrix can be efficiently explored.
Package lslx minimizes the PL criterion through a quasi-Newton method. The algorithm
conducts line search and checks the first-order condition in each iteration to ensure the
optimality of the obtained solution. A numerical comparison between competing packages
shows that lslx can reliably find PL estimates with the least time. The current package
also supports other advanced functionalities, including a two-stage method with auxiliary
variables for missing data handling and a reparameterized multi-group SEM to explore
population heterogeneity.
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1. Introduction
For the past two decades, statistical modeling with sparsity has become a popular approach
to learn associations among a large number of variables. In a sparse model, only a relatively
small number of parameters play an important role (Hastie, Tibshirani, andWainwright 2015).
From a substantive view point, it is easier to interpret a sparse model than a dense one. From
a statistical view point, a sparse model can yield an estimator with smaller mean squared
error (e.g., Knight and Fu 2000; Negahban, Ravikumar, Wainwright, and Yu 2012). Since the
exact sparsity pattern of a model is generally unknown in advance, the model is often probed
by a sparse estimation procedure with penalization (or regularization; e.g., Tibshirani 1996;
Fan and Li 2001; Zhang 2010). Package glmnet (Friedman, Hastie, and Tibshirani 2010)
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and library LIBLINEAR (Fan, Chang, Hsieh, Wang, and Lin 2008) are well-known software
solutions for sparse linear models with regularization.

Psychometric models mostly impose a strong sparsity assumption for identification or inter-
pretation purpose (e.g., Thurstone 1947). Recently, several penalized likelihood (PL) based
data-driven methods have been proposed to depict sparsity patterns in psychometric models
(e.g., Chen, Liu, Xu, and Ying 2015; Hirose and Yamamoto 2015, 2014; Huang, Chen, and
Weng 2017; Jacobucci, Grimm, and McArdle 2016; Tutz and Schauberger 2015). The present
work describes an R (R Core Team 2020) package called lslx (latent structure learning ex-
tended; Huang and Hu 2020) that implements PL methods for structural equation modeling
(SEM), one of the most popular multivariate techniques for psychological studies (Hersh-
berger 2003) and which is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=lslx.

There are many popular software packages for conducting SEM analysis, including commercial
programs like LISREL (Jöreskog and Sörbom 2015), EQS (Bentler 2006), and Mplus (Muthén
and Muthén 2010), as well as non-commercial R packages such as sem (Fox, Nie, and Byrnes
2017), lavaan (Rosseel 2012), and OpenMx (Neale et al. 2016). However, none of them can
directly conduct sparse estimation via PL. It might be a challenging task to incorporate PL
methods in these well-developed software solutions because PL requires (1) a modified syntax
for model specification; (2) a re-designed algorithm for optimizing non-differentiable objective
functions; and (3) a new data-structure to store fitting results.

Before lslx, there were four packages that could fit SEM-related models via PL: sparseSEM
(Huang 2014), lsl (Huang 2017b), regsem (Jacobucci et al. 2020), and lvnet (Epskamp 2019).
However, only lsl and regsem were able to fit the commonly used class of SEM models.
Package sparseSEM cannot handle latent variables (Cai, Bazerque, and Giannakis 2013),
while package lvnet mainly utilizes PL to explore the precision matrix of the latent factors
or residuals (Epskamp, Rhemtulla, and Borsboom 2017).

Package lsl employs the PL method developed by Huang et al. (2017), and it is a predecessor
of lslx. It supports SEM models that can be represented by the Jöreskog-Keesling-Wiley
model (Keesling 1972; Jöreskog 1973; Wiley 1973) via matrix specifications. Except for vari-
ance parameters, every coefficient can be set as free, fixed, or penalized. The solution path of
the PL estimates can be obtained by an expectation-conditional maximization (ECM) algo-
rithm (Meng and Rubin 1993). However, lsl has two major drawbacks: (1) model specification
through pattern matrices is not user-friendly; (2) the optimization via the ECM algorithm has
only linear convergence (Meng 1994). In addition, since ECM relies on the functional form of
normal theory likelihood, it cannot be extended to other types of fitting functions. Package
regsem implements the regularized SEM proposed by Jacobucci et al. (2016), adopting the
reticular action model (RAM; McArdle and McDonald 1984) as a framework for model rep-
resentation. Because it receives the outputs from lavaan for subsequent PL analysis, model
specification in regsem is relatively convenient. The central problem with regsem is that its
optimization algorithm often misses optimal solutions. A detailed account of this issue is
presented in Section 6.

Package lslx was constructed to overcome the drawbacks of existing packages for SEM with
PL. The author believes that lslx has at least four advantages: (1) Model specification is
relatively easy. It adopts a lavaan-like model syntax with carefully designed operators and
prefixes. Through the model syntax, users can set each coefficient as free, fixed, or penalized.

https://CRAN.R-project.org/package=lslx
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When the syntax is not convenient enough, built-in methods can be also used to modify
the initially specified model. (2) The optimization algorithm in lslx is reliable. Motivated
by the works of Friedman et al. (2010) and Yuan, Ho, and Lin (2012), lslx implemented a
quasi-Newton method that conducts line-search and checks the first-order condition in every
iteration to ensure optimality. Furthermore, related numerical conditions can be plotted to
monitor the optimization quality. (3) lslx is reasonably fast. The implemented quasi-Newton
algorithm can achieve locally superlinear convergence under suitable conditions (Yuan et al.
2012). In addition, the core of lslx is written via Rcpp (Eddelbuettel and François 2011) and
RcppEigen (Bates and Eddelbuettel 2013). As we shall see in Section 6, lslx is significantly
faster than both lsl and regsem. (4) lslx has several additional functionalities. Like usual SEM
packages, lslx provides formal statistical test results, including tests for goodness-of-fit and
coefficients. Besides, lslx handles missing data via a two-stage method with auxiliary variables
(Savalei and Bentler 2009), and conducts multi-group analysis with a reparameterized SEM
formulation (Huang 2018).
This paper is organized as follows. Section 2 describes the PL method for semi-confirmatory
SEM. In Section 3, a quasi-Newton algorithm for optimizing the PL criterion is introduced.
Section 4 demonstrates how to implement the semi-confirmatory SEM with lslx. In Section 5,
advanced functionalities for lslx are described, including a two-stage method for missing data
and multi-group SEM analysis. Section 6 presents a numerical comparison. Finally, merits,
limitations, and further directions concerning lslx are discussed.

2. Semi-confirmatory SEM and PL
In this section, the SEM formulation adopted for lslx and the theory of a semi-confirmatory
SEM via PL are described.

2.1. SEM and theory testing

Let η denote a (P + M)-dimensional random column vector, which we partition into a P -
dimensional observable response y and an M -dimensional latent factor f , that is, η> =
(y>, f>). In lslx, the following SEM model formulation is adopted

η = α+ Bη + ζ, (1)

where α is a (P +M)-dimensional intercept, B is a (P +M)× (P +M) regression coefficient
matrix, and ζ is a (P + M)-dimensional random residual with zero mean and covariance
matrix Φ. Let θ denote a Q-dimensional parameter vector with general component θq. The
parameter vector contains the non-trivial elements from α, B, and Φ. Under the assumption
that (I − B)−1 exists, the model-implied mean and covariance of y can be written as

µ(θ) = G(I − B)−1α,

Σ(θ) = G(I − B)−1Φ(I − B)−1>G>,
(2)

where I is the identity matrix and G is a selection matrix such that y = Gη. Equations 1
and 2 can be understood as the RAM formulation (McArdle and McDonald 1984) covering
the well-known Jöreskog-Keesling-Wiley model (Keesling 1972; Jöreskog 1973; Wiley 1973)
and the Bentler-Weeks model (Bentler and Weeks 1980). Many statistical techniques can
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be represented in this framework, including linear regression with random covariates, path
analysis, factor analysis, and growth curve models. Note that lslx users are not required to
understand how Equations 1 and 2 represent any of these models. They only need to correctly
specify the relationship between y and f via operators and variables (see Section 4.1 for model
syntax).
The aim of a SEM analysis is to verify if there exists a θ∗ such that the population mean
and the covariance of y are closely represented by the implied moments, i.e., µ ≈ µ(θ∗)
and Σ ≈ Σ(θ∗). Because µ, Σ, and θ∗ are unknown population quantities, their sample
counterparts m, S, and θ̂ are considered for actual calculations. Given a random sample
Y = {yn}Nn=1 of size N , the most commonly used estimation procedure is to minimize the
maximum likelihood (ML) loss function

D(θ) = tr(SΣ(θ)−1)− log|SΣ(θ)−1| − P + [m− µ(θ)]>Σ(θ)−1[m− µ(θ)],

where m = 1
N

∑N
n=1 yn and S = 1

N

∑N
n=1(yn −m)(yn −m)>. The plausibility of the specified

model can be evaluated by the likelihood ratio (LR) test on ND(θ̂) and by many other
goodness-of-fit indices (see West, Taylor, and Wu 2012, for a review). If the specified model
does not fit data well, the model should be abandoned.
In practice, an initially specified model is rarely abandoned immediately. Jöreskog (1993)
distinguished three situations for applying SEM: strict theory confirmation, model compar-
ison, and model generation. He argued that model generation is the most common case.
Under model generation, users successively improve the initially specified model via modi-
fication indices (e.g., Sörbom 1989) or other strategies. Discussing whether a confirmatory
or exploratory study is more appropriate is beyond the scope of this paper. From the au-
thor’s perspective, however, several instances of SEM analysis are both confirmatory and
exploratory. On the one hand, the analyst aims to test the core hypotheses in the specified
model; on the other hand, the analyst seeks an optimal pattern for the exploratory part to
avoid the price of model misspecification (e.g., Bentler and Mooijaart 1989; Yuan, Marshall,
and Bentler 2003). The author’s preference is best called a semi-confirmatory approach.

2.2. PL for semi-confirmatory SEM

Huang et al. (2017) proposed a semi-confirmatory method for SEM via PL. In this method,
a SEM model contains two parts: a confirmatory part and an exploratory part. The confir-
matory part includes all freely estimated parameters and fixed parameters that are allowed
for theory testing. The exploratory part is composed of a set of penalized parameters to de-
scribe relations that cannot be determined by existing substantive theory. By implementing
a sparsity-inducing penalty and choosing an optimal penalty level, the relationships in the
exploratory part can be efficiently determined. This semi-confirmatory method can be seen
as a methodology that links the traditional SEM with the exploratory SEM (Asparouhov and
Muthén 2009).
To conduct the semi-confirmatory approach for SEM, lslx considers the following optimization
problem

min
θ

U(θ, λ), (3)

where U(θ, λ) is a PL objective function with the form

U(θ, λ) = D(θ) +R(θ, λ).
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R(θ, λ) is a penalty term (or regularizer), and λ > 0 is a regularization parameter to
control the penalty level. In particular, the penalty term can be written as R(θ, λ) =∑Q
q=1 cθqρ(|θq|, λ) with ρ(|θq|, λ) being a penalty function and cθq ∈ {0, 1} being an indi-

cator to show whether θq is penalized. The current version of lslx implements the minimax
concave penalty (MCP; Zhang 2010):

ρ(|θq|, λ) =

λ|θq| −
θ2
q

2δ if |θq| ≤ λδ,
1
2λ

2δ if λδ < |θq|,

where δ is a parameter to control the convexity of MCP. The MCP produces a sparse es-
timator, and has many good theoretical properties (see Mazumder, Friedman, and Hastie
2011; Zhang 2010). If δ → ∞, the MCP reduces to the case of L1 penalty or LASSO (least
absolute shrinkage and selection operator; Tibshirani 1996). On the other hand, a small value
of δ makes the MCP behave like hard thresholding. In linear regression with standardized
covariates, δ must be larger than one. However, when incorporating MCP in SEM, the lower
bound of δ depends on the Hessian matrix of the ML loss function (see Section 3.2).
Given a penalty level λ and a convexity level δ, a PL estimator θ̂ ≡ θ̂(λ, δ) is defined as
a solution of Equation 3. In practice, an optimal pair of (λ, δ), denoted by (λ̂, δ̂), is often
selected by minimizing an information criterion (or cross-validation error) over Λ×∆, where
Λ and ∆ are two user-defined sets formed by λ1 < λ2 < . . . < λK and δ1 < δ2 < . . . < δL,
respectively. lslx utilizes several information criteria that can be written as

IC (θ̂) = D(θ̂)− CNdf(θ̂), (4)

where CN is a sequence that depends on sample size N and df(θ̂) is the degrees of freedom. In
a usual case, df(θ̂) is calculated by P (P + 3)/2− e(θ̂) with e(θ̂) being the number of non-zero
elements in θ̂. The Bayesian information criterion (BIC; Schwarz 1978) corresponds to the case
when CN = log(N)/N and the Akaike information criterion (AIC; Akaike 1974) corresponds
to the case when CN = 2/N . Other information criteria include AIC with penalty 3 (AIC3;
Sclove 1987), consistent AIC (CAIC; Bozdogan 1987), adjusted BIC (ABIC; Sclove 1987),
and Haughton’s BIC (HBIC; Haughton 1988). In addition, a robust version of information
criterion is also available in lslx. The robust version is taken as the usual information criterion
with degrees of freedom being replaced by the expectation of LR statistics under general
conditions (e.g., Yuan, Hayashi, and Bentler 2007, see Appendix A for technical details).
After (λ̂, δ̂) is determined, the appropriateness of the final model provided by θ̂ ≡ θ̂(λ̂, δ̂)
should be evaluated. The model fit can be assessed by the usual fit indices calculated from
θ̂. The significance of the non-zero elements of θ̂ can be also tested by sandwich standard
errors (e.g., Browne 1984; Yuan and Hayashi 2006; Yuan and Lu 2008, see Appendix A).
However, classical statistical inferences are generally incorrect after penalty level selection (or
any model selection process; see Leeb and Pötscher 2006; Pötscher 1991). An exception is
if the procedure can yield an oracle estimator (i.e., an estimator performs as well as if the
true sparsity pattern is known in advance), the associated statistical inferences become valid.
It has been shown that PL with MCP and BIC selector asymptotically results in an oracle
estimator, both theoretically and empirically (Huang et al. 2017). Despite this, the oracle
property might not hold under small sample size scenarios. Users should be cautious about
the hypothesis testing and confidence interval results for the penalized parameters.
The overall procedure of semi-confirmatory SEM via PL is shown in Algorithm 1.
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Algorithm 1: Semi-confirmatory structural equation modeling via penalized likelihood.
Model specification: determine which elements in α, B, and Φ should be free, fixed,
or penalized.
Data preparation: input a data set Y.
Initialization: specify Λ = {λk}Kk=1 with λk < λk+1 and ∆ = {δl}Ll=1 with δl < δl+1.
Estimation:
for k = 1, 2, . . . ,K (or k = K,K − 1, . . . , 1) do

for l = L,L− 1, . . . , 1 do
compute a PL estimate θ̂ ≡ θ̂(λk, δl) by solving Equation 3.

Selection and evaluation: choose (λ̂, δ̂) by minimizing some IC (θ̂) and evaluate the
model made by θ̂ ≡ θ̂(λ̂, δ̂).

3. Optimization algorithm
In lslx, a quasi-Newton method is implemented to solve the problem in Equation 3. The
method is established based on Yuan et al. (2012) who modified the coordinate descent al-
gorithm in glmnet (Friedman et al. 2010) to ensure its convergence for L1-penalized logistic
regression. This section describes how this modified algorithm can be extended to minimize
a PL criterion with MCP for SEM. Roughly speaking, the algorithm consists of outer itera-
tions and inner iterations. The implementation of the quasi-Newton method is summarized
in Algorithm 2.

3.1. Outer iteration

Let θ̂(t) ≡ θ̂(t)(λ, δ) denote the estimate at the tth outer iteration under λ and δ. Suppose a
corresponding quasi-Newton direction d̂ is available. The outer iteration aims to find a step
size ŝ such that the updated estimate θ̂(t+1) = θ̂(t) + ŝ× d̂ satisfies

U(θ̂(t) + ŝ× d̂, λ)− U(θ̂(t), λ) ≤ cArmijo × ŝ×
(
∂D(θ̂(t))
∂θ>

d̂+R(θ̂(t) + d̂, λ)−R(θ̂(t), λ)
)
, (5)

where 0 < cArmijo < 1 is a specified Armijo’s constant. With some given 0 < s < 1, lslx
adopts ŝ as the largest element in {sj}Jj=0 such that Equation 5 is satisfied.

According to the first-order optimality condition, a PL estimate θ̂ should satisfy

∂U(θ̂, λ)
∂θq

≡


∂D(θ̂)
∂θq

+ ∂R(θ̂,λ)
∂θq

= 0 if θ̂q 6= 0 or cθq = 0,

sign(∂D(θ̂)
∂θq

) max
{∣∣∂D(θ̂)

∂θq

∣∣− λ, 0} = 0 if θ̂q = 0 and cθq = 1,

where sign(·) is a function that extracts the sign of a number. Note that U(θ, λ) is not
differentiable in the usual sense if θq = 0 for some cθq = 1. ∂U(θ̂,λ)

∂θq
actually represents the qth

component of the sub-gradient of U(θ, λ) evaluated at θ̂. In lslx, the outer iteration stops if
the following condition is satisfied.

max
q

∣∣∣∣∂U(θ̂, λ)
∂θq

∣∣∣∣ ≤ εout,
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where εout > 0 is a specified tolerance for convergence of the outer loop. Let vech(·) denote
an operator that stacks non-duplicated elements of a symmetric matrix. The sub-gradient
can be obtained by

∂D(θ)
∂θ

= 2
(
∂τ(θ)
∂θ>

)>
W (θ)

(
m− µ(θ)

vech[S + (m− µ(θ))(m− µ(θ))> − Σ(θ)]

)
,

and
∂R(θ, λ)
∂θq

=
{
sign(θq)λ− θq

δ if |θq| ≤ λδ,
0 if λδ < |θq|,

where τ(θ) =
(
µ(θ)
σ(θ)

)
and W (θ) =

(
Σ(θ)−1

1
2D
>
P [Σ(θ)−1 ⊗ Σ(θ)−1]DP

)
with σ(θ) = vech(Σ(θ)) and

DP being the duplication matrix of size PP ×P (P + 1)/2 (see Magnus and Neudecker 1999).
The specific form of the model Jacobian ∂τ(θ)

∂θ> can be found in Bentler and Weeks (1980) and
in Neudecker and Satorra (1991).
The success of the outer iteration relies on a good starting value θ̂(0). In lslx, if θ̂(λk, δl) is
computed after deriving a PL estimate in the neighborhood of (λk, δl), θ̂(0)(λk, δl) will be set
as θ̂(λk, δl+1) or θ̂(λk−1, δl) for a warm start. The warm start approach makes θ̂(λk, δl) readily
available (see also Friedman et al. 2010). If no appropriate PL estimate is available, a default
θ̂(0) is calculated by the method of McDonald and Hartmann (1992). The author’s experience
shows that this method works well if the scales of the response variables are similar, and the
variances of the latent factors are approximately one.

3.2. Inner iteration

Consider the following quadratic approximation for U(θ̂(t) + d, λ)− U(θ̂(t), λ)

Q(t)(d) = g(t)>d+ 1
2d
>H(t)d+R(θ̂(t) + d, λ)−R(θ̂(t), λ), (6)

where g(t) and H(t) denote the gradient and the Hessian matrix (or an approximation thereof)
of D(θ̂(t)), respectively. The inner iteration looks for a quasi-Newton direction d̂ by minimizing
Q(t)(d). Because the quadratic approximation is not differentiable at θ when θq = 0 for some
cθq = 1, the proposed quasi-Newton method minimizes Equation 6 by a coordinate descent
method. Let d̂(r+(q−1)/Q) denote the estimated direction at inner iteration r+(q−1)/Q. The
inner iteration updates d̂(r+(q−1)/Q) by d̂(r+(q−1)/Q) + ẑq × eq with an appropriate step size of
ẑq, where eq is the qth vector in the standard basis.
The step size of ẑq can be obtained by solving the following univariate problem

min
zq

f(zq), (7)

where
f(zq) = Q(t)(d̂(r+(q−1)/Q) + zq × eq)−Q(t)(d̂(r+(q−1)/Q))

= azq + 1
2bz

2
q + ρ(|c+ zq|, λ)− ρ(|c|, λ),

(8)
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Algorithm 2: Quasi-Newton method for solving penalized likelihood with MCP.
Initialization: initialize θ̂(0) ≡ θ̂(0)(λ, δ) with the given λ and δ, and specify εin > 0 and
εout > 0.
Outer iteration:
for t = 0, 1, 2, . . . do

Inner iteration:
set d̂(0) = 0.
for r = 0, 1, 2, . . . do

for q = 1, 2, . . . , Q do
compute ẑq by solving Equation 7 and set d̂(r+q/Q) = d̂(r+(q−1)/Q) + ẑq × eq.

if maxq
∣∣H(t)

qq ẑq
∣∣ ≤ εin then

output d̂ = d̂(r+1).
break

find ŝ satisfying Equation 5 and set θ̂(t+1) = θ̂(t) + ŝ× d̂.
if maxq

∣∣∂U(θ̂(t+1),λ)
∂θq

∣∣ ≤ εout then
output θ̂ ≡ θ̂(λ, δ) = θ̂(t+1).
break

with a = g
(t)
q + (H(t)d̂(r+q/Q))q, b = H

(t)
qq , and c = θ̂

(t)
q + d̂

(r+(q−1)/Q)
q . Under MCP penalty,

the solution of Equation 7 is

ẑq =



−a
b if c/δ−a−λb−1/δ ≥ λδ − c,
c/δ−a−λ
b−1/δ if λδ − c ≥ c/δ−a−λ

b−1/δ ≥ −c,
−c otherwise,
c/δ−a+λ
b−1/δ if − λδ − c ≤ c/δ−a+λ

b−1/δ ≤ −c,
−a
b if c/δ−a+λ

b−1/δ ≤ −λδ − c.

If no penalty is imposed for θq, ẑq is simply −ab . It should be noted that the problem in
Equation 8 is convex if and only if b− 1

δ > 0. For b− 1
δ ≤ 0, the proposed algorithm may fail.

As the value of b is generally unknown in advance, it is better to start with larger values of δ.
Let ẑ1, ẑ2, . . . , ẑQ denote the obtained directions for some inner iteration. In lslx, the inner
looping stops if

max
q

∣∣H(t)
qq ẑq

∣∣ ≤ εin,
where εin > 0 is a specified tolerance for the inner iteration. The implementation of the inner
iteration relies on the choice of H(t). The exact Hessian is generally too expensive to be
calculated. A natural choice for replacement is the expected Hessian (or the expected Fisher
information matrix)

H(t) = 2
(
∂τ(θ̂(t))
∂θ>

)>
W (θ̂(t))∂τ(θ̂(t))

∂θ>
,

which results in a Fisher scoring-type algorithm. A simple alternative approximation is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which yields a BFGS type algorithm.
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Based on the results of the numerical comparison in Section 6, the two choices for H(t) yield
similar performances in terms of computation time.

4. The lslx package
This section describes how to specify a model and conduct semi-confirmatory SEM under lslx.
The main function lslx is a class generator to initialize an ‘lslx’ object. Object ‘lslx’ is
constructed via the R6 system (Chang 2019), adopting encapsulation object-oriented program-
ming style. Despite that commonly used S3 or S4 systems are also capable of constructing an
equivalent object, the author adopts R6 for mainly two reasons. First, R6 methods belong to
objects, which means that it is straightforward to create many small functions to manipulate
objects under R6. Second, the mutability of R6 allows us to develop methods to modify the
initially generated object without returning a new one. It is particularly useful when a user
hopes to modify an initially specified model by freeing, fixing, or penalizing elements in some
block of a coefficient matrix. As we shall see later, ‘lslx’ objects can be flexibly manipulated
through many built-in methods with a consistent naming scheme.
In the simplest case, the use of ‘lslx’ object involves three major steps:

1. Initialize a new ‘lslx’ object by specifying a model and a data set.

r6_lslx <- lslx$new(model, data)

2. Fit the specified model to the data with given fitting options.

r6_lslx$fit(penalty_method, lambda_grid, delta_grid)

3. Summarize the fitting results using the specified selector.

r6_lslx$summarize(selector)

By default, lslx implements MCP as penalty function (penalty_method = "mcp") with Λ and
∆ constructed by the method described in Section 4.4 and Appendix B. The other arguments
are all required to be specified (i.e., no default values). After an ‘lslx’ object is initialized, a
print method can be used (e.g., r6_lslx$print()) to hint on how the object can be further
manipulated.
Please note that the numerical results obtained with package lslx might depend on the R
version and/or linear algebra library used. In particular, this also applies to running the code
shown in the manuscript or when trying to reproduce the results with the replication material
available as supplementary material.

4.1. Model syntax

The model syntax in lslx is highly motivated by lavaan (Rosseel 2012). There the relationships
among observed responses and latent factors are specified via an equation-like syntax. To
demonstrate the model syntax, consider the following example for a regression model with
one dependent variable (y) and four covariates (x1, x2, x3, x4):

R> model_reg <- "y <= x1 + x2
+ y <~ x3 + x4"
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Here, the operator <= indicates that the regression coefficients from the right-hand side (RHS)
variables should be set as freely estimated parameters. On the other hand, <~ makes the
coefficients from the RHS variables to be estimated with penalization. The distinction between
<= and <~ in lslx can help users set the types for each coefficient. The example model estimates
coefficients from x1 and x2 to y freely, and it sets coefficients from x3 and x4 to y as penalized.
In addition, the model implicitly sets the following coefficients to be free: (1) the variances of
x1–x4 and the residual variance of y; (2) the covariances among x1–x4; and (3) the intercepts
of x1–x4 and y.
Through the previous example, we can see that in lslx a model can be formulated by sim-
ply classifying the (parameter) types for the regression coefficients. Associated variances,
covariances, and intercepts will be automatically determined according to the following rules.

1. The variances of exogenous variables and the residuals of endogenous variables will be
set as freely estimated coefficients. The variance coefficients can be classified by the
operators <=> or <~>. For example, the variance of the residual of y can be explicitly
set as free via y <=> y. To penalize the variance, we can use y <~> y. Note that it is
rare to treat variances as penalized.

2. The covariances among all the exogenous variables will be freely estimated. The co-
variances can be also classified through <=> or <~>. For example, the covariance among
x1–x4 can be set as free by x1 + x2 + x3 + x4 <=> x1 + x2 + x3 + x4.

3. The intercepts of all observed responses will be treated as free. The types of intercepts
can be declared via a directed operator with intercept variable 1 on the undirected side.
For example, the freely estimated intercepts can be specified with y + x1 + x2 + x3
+ x4 <= 1. Note that once the intercept variable 1 appears in the specified model, the
intercept for every endogenous response must be declared. Otherwise, it will be set as
zero by default.

lslx always includes a mean structure in the specified model because it helps researchers to
interpret the values of estimates under their original scales. Note that the inclusion of the
default saturated mean structure will not alter the fitting result made by SEM with only
covariance structures.
The specified regression model can be represented in several equivalent ways. For example,
it is possible to use reverse operators:

R> model_reg <- "x1 + x2 => y
+ x3 + x4 ~> y"

In lslx, all directed operators can be reversed. Another way to declare parameter type is using
prefix operators:

R> model_reg <- "y <= x1 + x2 + pen() * x3 + pen() * x4"

or equivalently:

R> model_reg <- "y <~ free() * x1 + free() * x2 + x3 + x4"
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x1 x2 x3 x4 x5 x6 x7 x8 x9

visual textual speed

Figure 1: The path diagram of a semi-confirmatory factor analysis model for the data of
Holzinger and Swineford (1939). Arrows with solid and broken lines represent freely estimated
and penalized parameters, respectively.

Here, pen() and free() are both prefixes. pen() makes the corresponding coefficient penal-
ized and free() forces it to be freely estimated. A starting value can be placed inside the
parenthesis of a prefix. fix() is another important prefix that fixes the coefficient at the
specified value in the parenthesis. Note that prefixes can stand on either side of the operand.
However, any prefix cannot simultaneously appear on both sides of the operand, which may
result in an ambiguous specification.
Now, another example is provided. The example specifies a semi-confirmatory factor model
with three latent factors (visual, textual, and speed) and nine responses (x1–x9) accom-
modating the data of Holzinger and Swineford (1939).

R> model_fa <- "visual :=> x1 + x2 + x3
+ textual :=> x4 + x5 + x6
+ speed :=> x7 + x8 + x9
+ visual :~> x4 + x5 + x6 + x7 + x8 + x9
+ textual :~> x1 + x2 + x3 + x7 + x8 + x9
+ speed :~> x1 + x2 + x3 + x4 + x5 + x6
+ visual <=> fix(1) * visual
+ textual <=> fix(1) * textual
+ speed <=> fix(1) * speed"

In lslx, operators :=> and :~> (or their reversed counterparts <=: and <~:) are used to
define latent factors. Operator :=> sets loadings to be freely estimated and :~> makes them
penalized. The above factor model is depicted by the path diagram in Figure 1. All factor
loadings are estimated. Some of them are freely estimated (solid line arrow) and some of
them are penalized (broken line arrow). The specification says that each response variable
is mainly an indicator of some latent factor (represented by the freely estimated loadings).
However, the possibility of cross-loadings is not excluded (explored through the penalized
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loadings). The relationships among latent factors can also be specified via =>, ~>, <=>, and
<~> (or their possibly reverse versions) according to the syntax introduced earlier. Because
the covariances among exogenous variables will be automatically set as free, they do not have
to be explicitly stated here. Only the variances of latent factors are declared as fixed for the
scale setting. Note that lslx will not automatically fix appropriate loadings or variances to
set the scales of latent factors. Users must do this job by their own for the purpose of clarity.
lslx also accepts basic lavaan operators, including ~, =~, and ~~. For example, the previous
factor model can be equivalently respecified as:

R> model_fa_lavaan <- "visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9
+ pen() * visual =~ x4 + x5 + x6 + x7 + x8 + x9
+ pen() * textual =~ x1 + x2 + x3 + x7 + x8 + x9
+ pen() * speed =~ x1 + x2 + x3 + x4 + x5 + x6
+ visual ~~ 1 * visual
+ textual ~~ 1 * textual
+ speed ~~ 1 * speed"

The model parser automatically replaces lavaan operators ~, =~, and ~~ by <=, :=>, and <=>,
respectively. In addition, a numeric prefix makes the corresponding parameter to be fixed at
the specified value.

4.2. $new(), $fit(), and $summarize() methods

To conduct a semi-confirmatory factor analysis, an ‘lslx’ object can be initialized via the
$new() method:

R> lslx_fa <- lslx$new(model = model_fa,
+ data = lavaan::HolzingerSwineford1939)

An 'lslx' R6 class is initialized via 'data' argument.
Response Variables: x1 x2 x3 x4 x5 x6 x7 x8 x9
Latent Factors: visual textual speed

Here, an ‘lslx’ object called lslx_fa is created with the previously specified model_fa and
the data set HolzingerSwineford1939 in lavaan. The data argument must be supplied with
a data.frame with column names that match the names of the response variables specified in
the model argument. If an ‘lslx’ object is successfully initialized, the names of the response
variables and the latent factors will be displayed by the shell. To suppress the displaying of
feedback, one can use verbose = FALSE. lslx also supports initialization through importing
sample moments. In that case, arguments sample_cov and sample_size must be supplied
(possibly sample_mean).
To fit the specified model to the imported data, the $fit() method can be used:

R> lslx_fa$fit(penalty_method = "mcp", lambda_grid = seq(0.01, 0.60, 0.01),
+ delta_grid = c(1.5, 3.0, Inf))
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CONGRATS: Algorithm converges under EVERY specified penalty level.
Specified Tolerance for Convergence: 0.001
Specified Maximal Number of Iterations: 100

The $fit() method requires users to mainly specify three arguments: penalty_method,
lambda_grid, and delta_grid. The penalty_method argument is used to specify the penalty
function by values of "none", "lasso" (for LASSO), or "mcp" (for MCP). The lambda_grid
and delta_grid arguments are designed to set the penalty and convexity levels, respectively.
The above sample code implements Algorithm 2 to compute PL estimates with MCP under
Λ×∆ = {0.01, 0.02, . . . , 0.60} × {1.5, 3.0,∞}. By default, a message will be printed to show
whether the optimization algorithm converges across all penalty and convexity levels. The
fitting results are stored in lslx_fa and can be later manipulated by other built-in methods
for the ‘lslx’ class.
After deriving the fitting results, the easiest way to probe their content is to implement the
$summarize() method with a selector specified in argument selector:

R> lslx_fa$summarize(selector = "bic", interval = FALSE)

General Information
number of observations 301
number of complete observations 301
number of missing patterns none
number of groups 1
number of responses 9
number of factors 3
number of free coefficients 30
number of penalized coefficients 18

Numerical Conditions
selected lambda 0.140
selected delta 1.500
selected step none
objective value 0.158
objective gradient absolute maximum 0.000
objective Hessian convexity 0.593
number of iterations 4.000
loss value 0.103
number of non-zero coefficients 34.000
degrees of freedom 20.000
robust degrees of freedom 20.640
scaling factor 1.032

Fit Indices
root mean square error of approximation (rmsea) 0.043
comparative fit index (cfi) 0.988
non-normed fit index (nnfi) 0.978
standardized root mean of residual (srmr) 0.030
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Likelihood Ratio Test
statistic df p-value

unadjusted 30.919 20.000 0.056
mean-adjusted 29.961 20.000 0.070

Root Mean Square Error of Approximation Test
estimate lower upper

unadjusted 0.043 0.000 0.075
mean-adjusted 0.041 0.000 0.075

Coefficient Test (Std.Error = "default")
Factor Loading

type estimate std.error z-value p-value
x1<-visual free 0.709 0.095 7.482 0.000
x2<-visual free 0.555 0.082 6.799 0.000
x3<-visual free 0.744 0.070 10.577 0.000
x4<-visual pen 0.000 - - -
x5<-visual pen -0.102 0.073 -1.401 0.081
x6<-visual pen 0.000 - - -
x7<-visual pen -0.255 0.119 -2.151 0.016
x8<-visual pen 0.000 - - -
x9<-visual pen 0.323 0.075 4.287 0.000

x1<-textual pen 0.255 0.081 3.136 0.001
x2<-textual pen 0.000 - - -
x3<-textual pen 0.000 - - -
x4<-textual free 0.987 0.061 16.133 0.000
x5<-textual free 1.143 0.061 18.582 0.000
x6<-textual free 0.913 0.058 15.727 0.000
x7<-textual pen 0.000 - - -
x8<-textual pen 0.000 - - -
x9<-textual pen 0.000 - - -

x1<-speed pen 0.000 - - -
x2<-speed pen 0.000 - - -
x3<-speed pen 0.000 - - -
x4<-speed pen 0.000 - - -
x5<-speed pen 0.000 - - -
x6<-speed pen 0.000 - - -
x7<-speed free 0.825 0.106 7.805 0.000
x8<-speed free 0.731 0.069 10.604 0.000
x9<-speed free 0.499 0.063 7.962 0.000

Covariance
type estimate std.error z-value p-value

textual<->visual free 0.325 0.086 3.765 0.000
speed<->visual free 0.375 0.100 3.731 0.000

speed<->textual free 0.278 0.078 3.572 0.000
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Variance
type estimate std.error z-value p-value

visual<->visual fixed 1.000 - - -
textual<->textual fixed 1.000 - - -

speed<->speed fixed 1.000 - - -
x1<->x1 free 0.671 0.113 5.951 0.000
x2<->x2 free 1.073 0.106 10.165 0.000
x3<->x3 free 0.720 0.090 7.955 0.000
x4<->x4 free 0.377 0.050 7.504 0.000
x5<->x5 free 0.416 0.060 6.875 0.000
x6<->x6 free 0.362 0.046 7.902 0.000
x7<->x7 free 0.595 0.109 5.444 0.000
x8<->x8 free 0.488 0.084 5.780 0.000
x9<->x9 free 0.540 0.064 8.431 0.000

Intercept
type estimate std.error z-value p-value

x1<-1 free 4.936 0.067 73.473 0.000
x2<-1 free 6.088 0.068 89.855 0.000
x3<-1 free 2.250 0.065 34.579 0.000
x4<-1 free 3.061 0.067 45.694 0.000
x5<-1 free 4.341 0.074 58.452 0.000
x6<-1 free 2.186 0.063 34.667 0.000
x7<-1 free 4.186 0.063 66.766 0.000
x8<-1 free 5.527 0.058 94.854 0.000
x9<-1 free 5.374 0.058 92.546 0.000

The result shown is for fitting the model under (λ̂, δ̂) = (0.14, 1.5) selected by BIC. The
confidence intervals of the coefficients were not printed because of interval = FALSE. The
fit indices show that the final model fits the data reasonably well. Despite that 18 penalized
loadings were estimated, only four of them were identified as non-zero, including x5<-visual,
x7<-visual, x9<-visual, and x1<-textual. By default, lslx always implements robust
statistical inferences provided that the raw data is available. This includes the mean-adjusted
LR test (Satorra and Bentler 1994), the mean-adjusted RMSEA (root mean square error of
approximation) intervals (Brosseau-Liard, Savalei, and Li 2012; Li and Bentler 2006), and
the sandwich standard errors for coefficients (e.g., Browne 1984; Yuan and Hayashi 2006).
However, these inference results should be cautiously interpreted because the final model is
determined by some selection process.
An interesting property of PL is that a sufficiently large λ can shrink all the penalized param-
eters to be zero. For example, lslx_fa$summarize(lambda = 0.6, delta = Inf) shows
that all the penalized loadings are exactly zero, which coincides with the confirmatory factor
analysis (CFA) model often used to fit HolzingerSwineford1939 (e.g., the example of cfa()
in lavaan). In fact, this PL fitting result is numerically identical to the CFA made by lavaan
(e.g., the same value of LR statistic). On the other hand, a very small λ can yield a result
similar to an exploratory factor analysis. This is why the PL can be seen as a methodology
bridging the traditional SEM and the exploratory SEM.
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Methods Description
Set-related methods

$free_coefficient() Free the specified coefficient
$penalize_coefficient() Penalize the specified coefficient
$fix_coefficient() Fix the specified coefficient
$free_directed() Free the specified directed relation
$penalize_directed() Penalize the specified directed relation
$fix_directed() Fix the specified directed relation
$free_undirected() Free the specified undirected relation
$penalize_undirected() Penalize the specified undirected relation
$fix_undirected() Fix the specified undirected relation
$free_block() Free coefficients in the specified block
$penalize_block() Penalize coefficients in the specified block
$fix_block() Fix coefficients in the specified block
$free_heterogeneity() Free the heterogeneity of the specified block
$penalize_heterogeneity() Penalize the heterogeneity of the specified block
$fix_heterogeneity() Fix the heterogeneity of the specified block

Plot-related methods
$plot_numerical_condition() Plot numerical conditions over Λ×∆
$plot_information_criterion() Plot information criteria over Λ×∆
$plot_fit_index() Plot fit indices over Λ×∆
$plot_coefficient() Plot coefficients over Λ×∆

Test-related methods
$test_lr() Return likelihood ratio (LR) test result
$test_rmsea() Return RMSEA interval result
$test_coefficient() Return coefficient test result

Table 1: List of set-related, plot-related, and test-related methods in lslx. For details, please
see the help page of lslx.

4.3. Other built-in methods

In lslx, there are several built-in methods to adjust the inner status and manipulate the fitting
results of an ‘lslx’ object. These methods are listed in Tables 1 and 2. From the viewpoint
of data analysis, the set-related methods and plot-related methods are the most relevant.
The set-related methods are designed to alter the initially specified model. To penalize
coefficients by name (with given starting values), we may use $penalize_coefficient(). In
lslx, every coefficient name is constructed by variable names appended by <-/<->, where <-
and <-> describe a directed and an undirected effect, respectively. For example, x1<-visual
is the name for the regression coefficient (or loading) derived from visual to x1. Note that
<=:/<~: are not used for naming coefficients and <- cannot be reversed. However, penalizing
many coefficients by their names may be tedious. Instead, we can use $penalize_block()
to penalize coefficients by type in a given block. A block is formulated by y/f/1 and <-/<->,
where y stands for response variables, f denotes latent factors, and 1 represents the intercept
variable. For example, the block formulated by y <- 1 contains all intercepts of the response
variables. In the illustrated examples in Section 5, we will show how to use set-related methods
to quickly modify the initially specified model.
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Methods Description
Get-related methods

$get_model() Return deep copy of model field
$get_data() Return deep copy of data field
$get_fitting() Return deep copy of fitting field

Extract-related methods
$extract_specification() Return model specification
$extract_saturated_mean() Return saturated sample covariance matrice(s)
$extract_saturated_cov() Return saturated sample mean vector(s)
$extract_saturated_moment_acov() Return asymptotic covariance matrice(s) of sat-

urated moments
$extract_lambda_grid() Return Λ used for fitting
$extract_delta_grid() Return ∆ used for fitting
$extract_penalty_level() Return index name of the optimal penalty level
$extract_numerical_condition() Return numerical conditions
$extract_information_criterion() Return values of information criteria
$extract_fit_index() Return values of fit indices
$extract_coefficient() Return estimates of the coefficients
$extract_implied_cov() Return model-implied covariance matrice(s)
$extract_implied_mean() Return model-implied mean vector(s)
$extract_residual_cov() Return residual matrice(s) of covariance
$extract_residual_mean() Return residual vector(s) of mean
$extract_coefficient_matrix() Return coefficient matrice(s)
$extract_moment_jacobian() Return Jacobian of moment structure
$extract_expected_information() Return expected Fisher information matrix
$extract_observed_information() Return observed Fisher information matrix
$extract_score_acov() Return asymptotic covariance of scores
$extract_coefficient_acov() Return asymptotic covariance of coefficients
$extract_loss_gradient() Return gradient of loss function
$extract_regularizer_gradient() Return sub-gradient of regularizer
$extract_objective_gradient() Return sub-gradient of objective function

Table 2: List of get-related and extract-related methods in lslx. For details, please see the
help page of lslx.

The plot-related methods can be used to plot the fitting results stored in an ‘lslx’ object.
For example, the $plot_numerical_condition() method displays the numerical conditions
for assessing the quality of optimization. It can be called by:

R> lslx_fa$plot_numerical_condition()

Figure 2 displays how the number of iterations, the maximum element of absolute sub-
gradient, and the minimum diagonal element of approximated Hessian change by penalty level
and convexity level. We can see that the algorithm converges within a few iterations under all
specified penalty and convexity levels, and there are no non-convexity problems (indicated by
positive values of all objective Hessian convexity). Note that the non-convexity problem
is detected via an approximated Hessian used in the optimization algorithm, not the exact



18 lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likelihood

delta: 1.5 delta: 3 delta: Inf

gradient
hessian

n iter out

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.00025

0.00050

0.00075

0.55

0.60

0.65

0.70

2.5
5.0
7.5

10.0
12.5

lambda

va
lu

e

Numerical Conditions across Penalty Levels

Figure 2: Maximum element of absolute sub-gradient (top), minimum diagonal element of
approximated Hessian (middle), and number of iterations (bottom) across all the penalty and
convexity levels.
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Figure 3: Solution paths of factor loading estimates across all the penalty and convexity
levels. Freely estimated and penalized loadings are represented by solid and broken lines,
respectively.

one. Another useful plotting method is $plot_coefficient(), which draws solution paths.
The following code plots the solution paths of coefficients in the block of y <- f, i.e., the
factor loadings.

R> lslx_fa$plot_coefficient(block = "y <- f")
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In Figure 3, we can observe how the values of loadings change by penalty level and convexity
level. Under δ = 1.5, MCP shrinks the values of estimates sharply. On the contrary, infinite
δ yields relatively smooth solution paths.

4.4. Practical guidelines

This subsection discusses several practical issues when using lslx, including the check of model
identification, the initialization of Λ and ∆, and the choice of selectors.
The first issue is about model identification. In a semi-confirmatory analysis, the specified
model is sometimes not identified under the usual SEM framework (e.g., model_fa). However,
PL can still estimate it because the penalty term introduces additional constraints on the
penalized parameters. For example, with LASSO the optimization problem in Equation 3
can be equivalently represented by minθ D(θ) such that

∑Q
q=1 cθq |θq| ≤ γ for some γ > 0 (see

Tibshirani 1996). In fact, PL is often implemented as a solution to overcome the P > N
problem (underidentified model) in regression analysis. Despite there is no general rule to
ensure the identifiability before PL fitting, it can be checked empirically. Motivated by Shapiro
and Browne (1983), the local identifiability of the selected model can be checked by examining
whether the smallest singular value of ∂τ(θ̂)

∂ϑ> is numerically larger than zero (see also Huang
et al. 2017), where ϑ̂ is a vector formed by the freely estimated and penalized non-zero
elements of θ̂, the so-called effective elements of θ̂. For example, our BIC selected factor
model can be checked by:

R> moment_jacobian <- lslx_fa$extract_moment_jacobian(selector = "bic",
+ type = "effective")
R> min(svd(moment_jacobian)$d)

[1] 0.211

Because the value is evidently larger than zero, we conclude that the selected model is at
least locally identified. Note that by default $extract_moment_jacobian() returns the whole
model Jacobian matrix. To only extract the Jacobian with respect to the effective parameters,
type = "effective" should be used.
The second issue is how to initialize Λ and ∆. Despite that lslx automatically initializes them
by setting lambda_grid = "default" and delta_grid = "default", the discussion below
can help users to understand how lslx works. In linear regression, Λ is often initialized by (1)
setting λ1 as a small number (e.g., λ1 ≈ log(N)/N in lslx) and λK as a minimal value that
shrinks all the penalized parameters to be zero; (2) constructing K values decreasing from λK
to λ1 on the log scale (e.g., Friedman et al. 2010). However, making all penalized parameters
to be zero is unnecessary in practice. Let t denote a specified upper bound such that λK can
shrink any standardized and unpenalized |θ̃∗q | ≤ t to be zero. Based on the rationale described
in Appendix B, λK can be loosely approximated by

λK ≈
σmax

σmin(1− r2
max) t,

where σmin and σmax are the maximum and minimum standard deviation of both response
variables and latent factors, respectively, and r2

max is the largest coefficient of determination



20 lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likelihood

for endogenous variables. For example, by using t = 0.3, r2
max = 0.6, and σmax = σmin = 1,

we have λK ≈ 0.75. To initialize ∆, it should be known that a small δ may result in a
non-convexity problem and a too large δ suffers from the problem of biased estimation. A
loose approximation for δ1, the smallest element of ∆, is

δ1 ≈
σ2

max(1− r2
min)

σ2
min

,

where r2
min is the smallest coefficient of determination for endogenous variables. The largest

element δL is often set as infinity to obtain a LASSO solution, which is used as a warm
start for calculating θ̂ under a smaller δ (see Mazumder et al. 2011). In practice, too small
values of δ often make problematic fitting results (e.g., non-convergence or non-convexity of
the approximated Hessian matrix). By default, lslx will not use them in $summarize() or
other methods relying on fitting results. To include these problematic results, users should
set include_faulty = TRUE, but it is generally not recommended.
The third issue is the choice of selectors. The information criteria in lslx can be distinguished
into three types: AIC-type (AIC and AIC3), BIC-type (BIC and CAIC), and mixed-type
(HBIC and ABIC). By their relative orders of CN , it is expected that BIC-type is the most
conservative (i.e., it results in the sparsest estimate with the price of lower goodness-of-fit),
followed by mixed-type, and then AIC-type which tends to choose a relatively complex model.
In theory, a BIC-type criterion asymptotically choose a quasi-true model with probability one
(e.g., Huang 2017a). However, under small sample sizes or weak signals, an AIC-type criterion
generally yields better selection results (e.g., Vrieze 2012). The behavior of a mixed-type
criterion is also mixed. It performs close to AIC under small sample sizes and becomes similar
to BIC asymptotically. Despite a mixed-type criterion might not outperform its competitors
in the home field of AIC or BIC (e.g., small sample size or strong signal settings), its overall
performance across different conditions is good (e.g., Lin, Huang, and Weng 2017). If users
do not have strong arguments to use an AIC-type or a BIC-type criterion, the author would
recommend employing a mixed-type one.

5. Advanced functionality
In this section, two advanced functions of lslx are described: the two-stage method with
auxiliary variables for handling missing data and the reparameterized multi-group SEM to
explore population heterogeneity.

5.1. Two-stage method for missing data

When conducting SEM, one is likely to encounter missing values. In lslx, missing values can
be handled by the listwise deletion (LD) method and the two-stage (TS) method (Yuan and
Bentler 2000). LD only uses complete observations for further analysis. If the mechanism
is missing completely at random (MCAR; Rubin 1976), LD can yield a consistent estimator.
However, LD suffers from loss of efficiency because the dropped incomplete cases still carry
information for estimation. On the other hand, TS first minimizes the likelihood based on all
available observations to calculate saturated moments. The obtained moment estimates are
used for subsequent SEM analysis. Under the assumption of missing at random (MAR; Rubin
1976), TS is consistent. In addition, the standard errors of coefficients can be consistently
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estimated (e.g., Yuan and Lu 2008). Compared with LD, TS is generally valid (in terms of
consistency) and more efficient (with respect to mean squared error), thus lslx sets TS as the
default. The current version also supports the inclusion of auxiliary variables to make the
MAR assumption more plausible (Savalei and Bentler 2009).
Specifically, let Yo = {yon}Nn=1 denote an observed random sample with yon being the observed
part of yn. The first stage of TS aims to estimate the saturated mean µ(τ) and covariance
matrix Σ(τ) based on Yo, where τ> = (µ>, σ>) is a saturated moment vector with σ =
vech(Σ). To obtain τ̂ , the TS method maximizes the following likelihood function:

L(τ) = − 1
2N

N∑
n=1

log
∣∣Σn(τ)

∣∣− 1
2N

N∑
n=1

[yon − µn(τ)]>Σn(τ)−1[yon − µn(τ)], (9)

where µn(τ) and Σn(τ) are the saturated mean and covariance structure for yon. Equation 9
can be optimized by using an expectation-maximization (EM) algorithm (Dempster, Laird,
and Rubin 1977). In the second stage of TS, Equation 3 is solved using Algorithm 2 with m
and S replaced by µ(τ̂) and Σ(τ̂), respectively.
One may ask why lslx does not implement the so-called full-information (FI) approach to
handle missing values (Enders and Bandalos 2001). The main reason is that the TS method
is efficient in terms of computation time. The additional cost introduced by TS is only for
calculating τ̂ in the first-stage. In contrast, the FI approach requires an expectation step
before each outer iteration (Jamshidian and Bentler 1999). Additionally, current evidence
shows that the FI approach has no particular advantage over TS, both theoretically (Yuan
and Bentler 2000) and empirically (Savalei and Bentler 2009; Savalei and Falk 2014).
Now, we demonstrate how to use lslx to conduct TS using the data from Holzinger and
Swineford (1939) again. Because the original data set is complete, missing values are created
according to the example of twostage() in package semTools (Jorgensen, Pornprasertmanit,
Schoemann, and Rosseel 2019). Missingness in x5 and x9 depends on the values of x1 and
age, respectively.

R> data_miss <- lavaan::HolzingerSwineford1939
R> data_miss$x5 <- ifelse(
+ test = data_miss$x1 <= quantile(data_miss$x1, 0.3),
+ yes = NA, no = data_miss$x5)
R> data_miss$age <- data_miss$ageyr + data_miss$agemo / 12
R> data_miss$x9 <- ifelse(
+ test = data_miss$age <= quantile(data_miss$age, 0.3),
+ yes = NA, no = data_miss$x9)

An ‘lslx’ object is initialized with a relatively parsimonious CFA model. To include auxiliary
variables, the auxiliary_variable argument should be declared.

R> model_miss <- "x1 + x2 + x3 <=: visual
+ x4 + x5 + x6 <=: textual
+ x7 + x8 + x9 <=: speed
+ visual <=> 1 * visual
+ textual <=> 1 * textual
+ speed <=> 1 * speed"
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R> lslx_miss <- lslx$new(model = model_miss, data = data_miss,
+ auxiliary_variable = c("ageyr", "agemo"), verbose = FALSE)

In this example, "ageyr" and "agemo" are set as auxiliary variables. Since the CFA model
may not fit the data well due to its independent cluster structure for loadings, motivated
by Bayesian SEM (Muthén and Asparouhov 2012), a correlated residuals structure is con-
sidered. In fact, PL can be also seen as a maximum a posteriori (MAP) method un-
der a Bayesian framework (see Meng 2008; Strawderman, Wells, and Schifano 2013). The
$penalize_block() method can be used to penalize coefficients in a specified block by type:

R> lslx_miss$penalize_block(block = "y <-> y", type = "fixed",
+ verbose = FALSE)

This code sets all coefficients with type = "fixed" in block = "y <-> y" as penalized.
Despite that such a model is not identified under the usual SEM framework, PL can still esti-
mate it. The CFA model with correlated residuals is fitted to the data via the $fit_lasso()
method, which is a convenient wrapper for $fit() with penalty_method = "lasso".

R> lslx_miss$fit_lasso(verbose = FALSE)

By default, lslx implements the TS method for handling missing data. It can be explicitly set
by missing_method = "two_stage". If any auxiliary variable is specified when initializing
an ‘lslx’ object, the variable will be included to estimate the saturated moments. Finally,
the robust AIC is utilized to select an optimal penalty level.

R> lslx_miss$summarize(selector = "raic", style = "minimal")

General Information
number of observations 301.000
number of complete observations 138.000
number of missing patterns 4.000
number of groups 1.000
number of responses 9.000
number of factors 3.000
number of free coefficients 30.000
number of penalized coefficients 36.000

Numerical Conditions
selected lambda 0.130
selected delta none
selected step none
objective value 0.168
objective gradient absolute maximum 0.001
objective Hessian convexity 0.741
number of iterations 2.000
loss value 0.051
number of non-zero coefficients 41.000
degrees of freedom 13.000
robust degrees of freedom 16.173
scaling factor 1.244
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From the summary with style = "minimal", we can see that 11 of the 36 penalized co-
efficients are identified as non-zero. To see which residual covariances are non-zero, the
$extract_coefficient_matrix() method can be used.

R> lslx_miss$extract_coefficient_matrix(selector = "raic", block = "y <-> y")

$g
x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 0.4735 0.000 0.0000 0.0485 -0.1116 0.0000 -0.0801 0.0000 0.0000
x2 0.0000 1.150 0.1034 0.0000 0.0000 0.0000 -0.1050 0.0000 0.0000
x3 0.0000 0.103 0.8780 0.0000 -0.0791 0.0000 0.0000 0.0000 0.0000
x4 0.0485 0.000 0.0000 0.3875 0.0000 0.0000 0.0793 0.0000 0.0000
x5 -0.1116 0.000 -0.0791 0.0000 0.4103 0.0000 0.0000 0.0000 0.0079
x6 0.0000 0.000 0.0000 0.0000 0.0000 0.3476 0.0000 0.0125 -0.0170
x7 -0.0801 -0.105 0.0000 0.0793 0.0000 0.0000 0.9302 0.2534 0.0000
x8 0.0000 0.000 0.0000 0.0000 0.0000 0.0125 0.2534 0.7189 0.0000
x9 0.0000 0.000 0.0000 0.0000 0.0079 -0.0170 0.0000 0.0000 0.3348

The values of fit indices show that this final model with many residual covariances fits the
data very well.

R> lslx_miss$extract_fit_index(selector = "raic")

rmsea cfi nnfi srmr
0.0246 0.9972 0.9923 0.0315

In general, the author does not recommend the use of the correlated residuals structure
because the specified model is too exploratory and the resulting model may be difficult to
interpret.

5.2. Multi-group SEM analysis

Multi-group SEM (MGSEM) is often used to examine the heterogeneity of model coefficients
across several populations (Jöreskog 1971; Sörbom 1974). Suppose there are G populations
sharing common moment structures µ(·) and Σ(·) but having possibly different values for their
model parameter θg. Let θgq denote the qth component of θg. Without loss of generality, we
assume that θ1q, θ2q, . . . , θGq represent the same element selected from α, B, or Φ. Hence, a
coefficient θgq is said to be homogeneous across the G populations if θ1q = θ2q = . . . = θGq.
Otherwise, we call θgq heterogeneous.
Given a multi-group random sample Y = {{ygn}

Ng
n=1}Gg=1, ML estimation tries to obtain θ̂1,

θ̂2, . . . , θ̂G by minimizing the following multi-group loss function

D(θ) =
G∑
g=1

wg
[
tr(SgΣ(θg)−1)− log|SgΣ(θg)−1| − P

]

+
G∑
g=1

wg(mg − µ(θg))>Σ(θg)−1(mg − µ(θg)), (10)



24 lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likelihood

where mg = 1
Ng

∑Ng
n=1 ygn, Sg = 1

Ng

∑Ng
n=1(ygn − mg)(ygn − mg)>, and wg = Ng

N with N =∑G
g=1Ng. To test the homogeneity/heterogeneity of parameters across groups, users may

impose equality constraints on coefficients. To evaluate the appropriateness of the constraints,
they can perform formal statistical tests or use goodness-of-fit indices.
The current version of lslx cannot impose equality constraints on the model parameters.
Therefore, it may seem that it is incapable of examining coefficient homogeneity/heterogeneity.
However, by using a reparameterized MGSEM with penalization, lslx can still explore ho-
mogeneity/heterogeneity patterns (see Huang 2018). In lslx, each group parameter θg is
parameterized as

θg = θ + θg,

where θ is called the reference component and θg is called the increment component of group
g. The meaning of θ and θg relies on the choice of the reference group. When there is no
reference group, i.e., θ = 0, θg and θg are equivalent. If group j is set as reference, θj will
be set as zero and θg will represent the difference of θg and θj , i.e., θg = θg − θj . Under this
setting, θgq is homogeneous if and only if θgq = 0 for g = 1, 2, . . . , G (g 6= j). Therefore, we
can examine the homogeneity/heterogeneity of θgq by exploring the sparsity pattern of θ1q,
θ2q, . . . , θGq.
In lslx, MGSEM analysis is implemented by minimizing a PL criterion composed by the
multi-group loss function in Equation 10 and a penalty term as follows

R(θ, λ) =
Q∑
q=1

cθqρ(|θq|, λ) +
G∑
g=1

Q∑
q=1

cθgqρ(|θgq|, λ).

This multi-group optimization problem can also be solved by Algorithm 2. After that, the
PL estimates over Λ × ∆ are derived, and an optimal pair of (λ, δ) can be chosen by min-
imizing some information criterion in Equation 4. In general, the implementation of semi-
confirmatory MGSEM is similar to the single-group case except for the emphasis on the
homogeneity/heterogeneity of the coefficients across groups.
The following example shows how to use lslx to examine strong factorial invariance via MCP.
A possible initialization for this purpose is:

R> model_mgfa <- "1 * x1 + x2 + x3 <=: visual
+ 1 * x4 + x5 + x6 <=: textual
+ 1 * x7 + x8 + x9 <=: speed"
R> lslx_mgfa <- lslx$new(model = model_mgfa,
+ data = lavaan::HolzingerSwineford1939, group_variable = "school",
+ reference_group = "Pasteur", verbose = FALSE)

For simplicity, a commonly used independent cluster structure (i.e., each response is only
influenced by one latent factor) is considered here. The model fixes the loadings of x1, x4,
and x7 at one for scale setting. Argument group_variable specifies which variable should
be used as group label, and reference_group determines the reference group. Note that
since "Pasteur" is set as the reference group, model parameters in "Grant-White" are now
increment components for representing differences. If argument reference_group is missing,
the reference component will be set to zero, which is equivalent to the usual parameterization
of MGSEM. By default, lslx treats all non-trivial model parameters as heterogeneous.
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The syntax for specifying a multi-group model is generally similar to that of the single-group
model, except that a vectorized prefix can be used. An explicit way to specify the multi-group
model is:

R> model_mgfa <- "c(fix(0), fix(1)) * x1 + x2 + x3 <=: visual
+ c(fix(0), fix(1)) * x4 + x5 + x6 <=: textual
+ c(fix(0), fix(1)) * x7 + x8 + x9 <=: speed"

Here, c(fix(0), fix(1)) is a vectorized prefix that sets the corresponding coefficients to
zero and one, respectively. In this example, the first group is "Grant-White" and the sec-
ond is "Pasteur". This order corresponds to the sort() result for the group names. Note
that the coefficients are set to 1 in "Pasteur" since "Pasteur" is the reference group. For
"Grant-White", the increment component should be restricted to 0 to make the correspond-
ing loadings equal to 1 as desired. If c(fix(0), fix(1)) is replaced by fix(1), the lslx
parser will still interpret fix(1) as c(fix(0), fix(1)). Of course, if the reference_group
argument is not specified, fix(1) will be interpreted as c(fix(1), fix(1)), i.e., two corre-
sponding loadings will be set to 1.
So far, the model specification is still not complete. A measurement satisfies the condition
of strong factorial invariance if all loadings and intercepts are homogeneous across the con-
sidered groups (Meredith 1993). By default, lslx freely estimates all increment components
in "Grant-White". To penalize some of them, we can use the $penalize_heterogeneity()
method.

R> lslx_mgfa$penalize_heterogeneity(block = c("y <- f", "y <- 1"),
+ group = "Grant-White", verbose = FALSE)

The code penalizes every coefficient belonging in "Grant-White" to block "y <- f" and "y
<- 1" according to its reference component. Since restrictions for loadings and intercepts are
imposed, the intercepts of latent factors in "Grant-White" can be safely estimated.

R> lslx_mgfa$free_block(block = "f <- 1", group = "Grant-White",
+ verbose = FALSE)

To understand how to impose minimal constraints for identification in multi-group factor
analysis, refer to Millsap (2011). The specified model is now fitted with MCP through the
$fit_mcp() method, a wrapper for $fit() with penalty_method = "mcp".

R> lslx_mgfa$fit_mcp(verbose = FALSE)

Finally, we display the values of loadings and intercepts to evaluate whether they are invariant
under the penalty and convexity level selected by HBIC.

R> loading <- lslx_mgfa$extract_coefficient_matrix(selector = "hbic",
+ block = "y <- f")
R> intercept <- lslx_mgfa$extract_coefficient_matrix(selector = "hbic",
+ block = "y <- 1")
R> loading$"Grant-White" - loading$"Pasteur"
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visual textual speed
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0
x5 0 0 0
x6 0 0 0
x7 0 0 0
x8 0 0 0
x9 0 0 0

R> t(intercept$"Grant-White" - intercept$"Pasteur")

x1 x2 x3 x4 x5 x6 x7 x8 x9
1 0 0 -0.53 0 0 0 -0.44 0 0

The result shows that the loadings are invariant across the two schools. However, the inter-
cepts of x3 and x7 are different. We conclude that the condition of strong factorial invariance
is violated. The measurement only satisfies the condition of weak factorial invariance (Mered-
ith 1993), i.e., only loadings are homogeneous across the two schools.

6. Numerical comparison with lsl and regsem
In this section, a numerical comparison between lslx (version 0.6.1), lsl (version 0.5.6), and
regsem (version 0.9.2) is reported. So far, no studies have strictly evaluated whether existing
packages can reliably find PL estimates for SEM. To this end, the minimum function values
obtained by the three packages are compared. In addition, the number of iterations and
the computation time are also evaluated to understand the performance aspects of existing
algorithms.
A multiple indicators and multiple causes (MIMIC) model (Jöreskog and Goldberger 1975)
with nine indicators (y1–y9), three latent factors (f1–f3), and six causes (x1–x6) is considered.
The population model for generating data is presented in Figure 4. Data are generated from
a multivariate normal distribution with zero mean and the covariance implied by the model.
The numerical comparison is made with different sample sizes (200, 400, 600, and 800) and
model specifications (simple and complex). For the simple case, the measurement model is
assumed to satisfy an independent cluster structure (i.e., y2 <- f3, y5 <- f1, and y8 <- f2
are omitted) with y1, y4, and y7 set as anchors. The regression coefficients from causes (x1–
x6) to factors (f1–f3) are all estimated with penalty. Other parameters are set as free or fixed
according to the sparsity pattern in Figure 4. For the complex case, the model specification
is similar to that of the simple one except that all loadings in the non-independent cluster
part are now estimated with penalization.
The following five implementations are evaluated: the Fisher scoring (lslx-fisher) and
the Broyden-Fletcher-Goldfarb-Shanno (lslx-bfgs) from lslx, the expectation-conditional
maximization (lsl-ecm) from lsl, the so-called default (regsem-default) and the coordinate
descent (regsem-cd) from regsem. The LASSO penalty is implemented with fixed penalty
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y1 y2 y3 y4 y5 y6 y7 y8 y9

x1 x2 x3 x4 x5 x6

f1 f2 f3

Figure 4: The population MIMIC model for generating data includes nine indicators (y1–y9),
three latent factors (f1–f3), and six causes (x1–x6). The loadings in the independent cluster
part are set to 0.7. Other non-zero loadings are specified as 0.2. The covariances of the
residuals of latent factors and the regression coefficients are all set to 0.2. The covariance
among causes is specified as 0.3. The values of the residual variances are so chosen that
indicators, factors, and causes are all standardized.

level λ = 0.1. The maximal number of outer and inner (if needed) iterations is 1000 and 50,
respectively. The tolerance is specified as 10−5, although these packages utilize different rules
for assessing convergence. In each condition, the number of replications is set to 500.
The probabilities of non-convergent samples were first evaluated. Both lslx and lsl yielded
nearly minimal non-convergence probabilities. Across all conditions, the probabilities for
lslx-fisher and lslx-bfgs were 0%–0.4% and 0%–1.2%, respectively. For each condition,
lsl-ecm yielded a perfect convergence rate. On the other hand, regsem produced several
incomplete results. The non-convergence probability of regsem-cd was acceptable between
0.8% and 13.2%. However, the probability for regsem-default was between 43.4% and
95.6%. We decided to drop regsem-default from the rest of the evaluations.
Figure 5 shows the comparison results for each condition based on 500 successful replications
(with respect to the remaining four algorithms). The minimum function values indicated that
lslx and lsl yield similar optimization results. It is interesting to note that the two packages
implement conceptually different algorithms. Thus, their consistency cannot be explained by
the similarity of the underlying algorithms. However, regsem always yielded larger function
values than lslx and lsl.
As for the number of iterations and the computation time, lslx-fisher and lslx-bfgs
performed equally well, lsl-ecm was slower with more iterations, and regsem-cd was the
slowest with the most iterations. Note that the difference in computation time cannot be
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Figure 5: Boxplots of minimum function values, number of iterations, and computation
times in seconds for the four algorithms under different sample sizes (200, 400, 600, and
800) and model specifications (simple and complex). The four algorithms are Fisher scoring,
Broyden-Fletcher-Goldfarb-Shanno (BFGS), expectation-conditional maximization (ECM),
and coordinate descent (CD).

attributed purely to the nature of algorithms, since the computation cores of lsl and regsem
could be speeded up by using compiled code. We observed that lslx-fisher requires fewer
iterations than lslx-bfgs, but spends similar time to achieve convergence. This is likely due
to the difference between the more exact but tedious expected Hessian and the less accurate
but simpler BFGS Hessian.
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7. Conclusions
In this work, an R package lslx is described for semi-confirmatory structural equation modeling
(SEM) via penalized likelihood (PL). The package implements a quasi-Newton method to
optimize the PL criterion with either LASSO or MCP. To ensure the optimality of the obtained
solution, the algorithm checks the first-order condition in each outer iteration. A numerical
comparison between competing packages shows that lslx can reliably and efficiently find PL
estimates.
Package lslx adopts a lavaan-like syntax for model specification. The current version also
offers an S3 interface for using ‘lslx’ objects, including a wrapper function plsem() and
related S3 methods. The author believes that most lavaan users can easily learn to use lslx.
The semi-confirmatory SEM is most appropriate when limited substantive theory is available
for model specification. Although lslx is not the first package for SEM with PL, it is probably
the most sophiscated one in terms of usability, dependability, efficiency, and functionality.
Even though the current version of lslx can fit a wide class of SEM models, there are still
limitations. (1) lslx cannot impose linear or non-linear constraints for model parameters. It
is worth modifying the current algorithm to incorporate parameter constraints. (2) lslx can
only handle an ordinal response by treating it as continuous. However, such an approach
is only valid under limited conditions (e.g., Rhemtulla, Brosseau-Liard, and Savalei 2012).
Implementing a natural PL method for ordinal SEM could enhance the applicability of the
current package. (3) lslx utilizes inference methods assuming that no model selection has been
conducted, which may result in inflated Type I error or confidence interval undercoverage.
Recent advances in post-selection inference allow making valid inferences even after model
selection (e.g., Berk, Brown, Buja, Zhang, and Zhao 2013; Lee, Sun, Sun, and Taylor 2016).
Future versions of lslx should implement these methods to control the proportion of false
positive findings.
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A. Standard errors and robust degrees of freedom
This appendix describes technical details of computing the standard errors and the so-called
robust degrees of freedom in lslx. Let ϑ̂ denote a vector formed by the freely estimated and
penalized non-zero elements of PL estimate θ̂. The expected Fisher information matrix under
θ̂ is

F̂ =
(
∂τ(θ̂)
∂ϑ>

)>
W (θ̂)∂τ(θ̂)

∂ϑ>
.

Similarly, the corresponding observed information is

Ĥ = 1
2
∂2D(θ̂)
∂ϑ∂ϑ>

.

In lslx, F̂ is computed via analytical formulas and Ĥ is obtained by numerical differentiation.
By inverting F̂ or Ĥ, normal-theory standard errors can be obtained from the diagonal
elements of the inverse matrix.
By default, lslx uses a sandwich covariance matrix to construct standard errors. Let τ̂ denote
a consistent estimate of population moment vector τ such that

√
N(τ̂ − τ) → N (0,Π). If τ̂

is calculated by the method described in Section 5.1, Π can be estimated by

Π̂ =
(
∂2L(τ̂)
∂τ∂τ>

)−1( 1
N

N∑
n=1

∂Ln(τ̂)
∂τ

∂Ln(τ̂)
∂τ>

)(
∂2L(τ̂)
∂τ∂τ>

)−1
,

where Ln(τ) = −1
2 log

∣∣Σn(τ)
∣∣− 1

2 [yon−µn(τ)]>Σn(τ)−1[yon−µn(τ)] (e.g., Yuan and Lu 2008).
In lslx, the sandwich covariance matrix is obtained by

V̂ = Ĥ−1∂τ(θ̂)
∂ϑ>

W (θ̂)Π̂W (θ̂)∂τ(θ̂)
∂ϑ
Ĥ−1.

Let v̂ii denote the ith diagonal element of V̂.
√
v̂ii/N can be used as a standard error for ϑ̂i,

the ith element of ϑ̂. Without the presence of penalization and model selection, the use of V̂
for two-stage estimation can be justified (Yuan and Bentler 2000).
The robust degrees of freedom is defined as the asymptotic expectation of LR statistics under
null hypothesis. The expectation can be approximated by

df(θ̂) = tr
[
Π̂
(
W (θ̂)−W (θ̂)∂τ(θ̂)

∂ϑ
F̂−1∂τ(θ̂)

∂ϑ>
W (θ̂)

)]
,

(e.g., Yuan et al. 2007). This robust degrees of freedom (or equivalent) is often used for model
selection with misspecified likelihood (e.g., Konishi and Kitagawa 1996; Stone 1977; Varin and
Vidoni 2005).

B. Bounds for penalty and convexity level
This appendix describes how to obtain approximated values of λK and δ1 for Λ and ∆ ini-
tialization. Let βij denote the (i, j) element of B. According to the ECM algorithm for SEM
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with PL (Huang et al. 2017), the thresholding rule for βij under MCP is

β̂ij =


sign(β̃ij) max{|β̃ij |−ŵβijλ,0}

1−w̃βij /δ
β̂ij ≤ λδ,

β̃ij β̃ij > λδ,
(11)

where β̃ij is the current unpenalized estimate and ŵβij is a working weight for βij . Under

uncorrelated residuals, the working weight can be written as ŵβij = φ̂2
i

c2
j
, where φ̂2

i is the

current estimate for φ2
i , and c2

j is the jth diagonal element of C = E( 1
N

∑N
n=1 ηnη

>
n |Y, θ̂).

Let µi and σi denote the mean and the standard deviation of ηi, the ith element of η. The
standardized β̃ij can be written as β̃∗ij = σj

σi
β̃ij . If we hope to shrink all |β̃∗ij | ≤ t to be zero,

Equation 11 indicates λK should at least satisfy

λK ≥ max
i,j

c2
jσi

φ̂2
iσj

t ≈ max
i,j

σj + µ2
j/σj

σi(1− r2
i )
t, (12)

where r2
i is the coefficient of determination for ηi. The approximation is based on c2

j ≈ σ2
j +µ2

j .
For a system such that all exogenous variables are centered, a loose approximation can be
obtained by λK ≈ σmax

σmin(1−r2
max) t.

By Equation 11, 1− ŵβij/δ must be larger than zero. Therefore, δ1 can be approximated by

δ1 ≥ max
i,j

φ̂2
i

c2
j

≈ max
i,j

σ2
i (1− r2

i )
σ2
j + µ2

j

. (13)

Again, without the consideration of µj , we can loosely use δ1 ≈
σ2

max(1−r2
min)

σ2
min

.

In principle, lslx initializes Λ and ∆ based on the approximations in Equations 12 and 13.
When variable scales are all the same, these approximations become very simple. Hence, stan-
dardization is a good strategy to simplify the initialization problem. Note that the approx-
imations can be further improved if exogenous and endogenous variables are distinguished.
However, how to obtain good estimates for σ2

i and r2
i without actual model fitting is still a

challenging task.
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