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Abstract

Algebraic methods have a long history in statistics. Apart from the ubiquitous appli-
cations of linear algebra, the most visible manifestations of modern algebra in statistics
are found in the young field of algebraic statistics, which brings tools from commutative
algebra and algebraic geometry to bear on statistical problems. Now over two decades old,
algebraic statistics has applications in a wide range of theoretical and applied statistical
domains. Nevertheless, algebraic statistical methods are still not mainstream, mostly due
to a lack of easy off-the-shelf implementations. In this article we debut m2r, an R package
that connects R to Macaulay2 through a persistent back-end socket connection running
locally or on a cloud server. Topics range from basic use of m2r to applications and design
philosophy.
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1. Introduction
Algebra, a branch of mathematics concerned with abstraction, structure, and symmetry, has
a long history of applications in statistics. Pearson’s early work on method of moments esti-
mation in mixture models, for example, ultimately involved systems of polynomial equations
that he painstakingly and remarkably solved by hand (Pearson 1894; Améndola, Faugère, and
Sturmfels 2016). Fisher’s work in design was strongly algebraic and combinatorial, focusing
on topics such as Latin squares (Fisher 1934). Invariance and equivariance continue to form
a major pillar of mathematical statistics through the lens of location-scale families (Pitman
1939; Lehmann and Romano 2005).
Apart from the obvious applications of linear algebra, the most visible manifestations of
modern algebra in statistics are found in the young field of algebraic statistics. Algebraic
statistics is defined broadly as the application of commutative algebra and algebraic geometry
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to statistical problems, generally understood to include applications of other mathematical
fields that have substantial overlap with commutative algebra and algebraic geometry, such as
combinatorics, polyhedral geometry, graph theory, and others (Drton, Sturmfels, and Sullivant
2009; Sturmfels 1996). Now a quarter century old, algebraic statistics has revealed that
many statistical areas are gainfully amenable to algebraic investigation, including discrete
multivariate analysis, discrete and Gaussian graphical models, statistical disclosure limitation,
phylogenetics, Bayesian statistics, and more. Nevertheless, while the field is well-established
and actively growing, advances in algebraic statistical methods are still not mainstream among
applied statisticians, largely due to the lack of off-the-shelf implementations of key algebraic
algorithms in mainstream statistical software. In this article we debut the package m2r
(Kahle, O’Neill, and Sommars 2020), a key piece to the puzzle of applied algebraic statistics
through R (R Core Team 2020), which is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=m2r.

1.1. Macaulay2 and the m2r R package

Macaulay2 (Grayson and Stillman 2006) is a state-of-the-art, open-source computer algebra
system designed to perform computations in commutative algebra and algebraic geometry.
More than twenty years old, the software has a large code base with many community members
actively developing add-on packages. In addition, Macaulay2 links to other major open source
software in the mathematics community, such as Normaliz (Bruns, Ichim, Römer, Sieg, and
Söger 2015; Bruns, Ichim, and Söger 2016; Bruns and Kämpf 2010), 4ti2 (4ti2 Team 2015),
LattE (Baldoni et al. 2015), and PHCpack (Verschelde 1999; Gross, Petrović, and Verschelde
2013), through a variety of interfaces. Natively, Macaulay2 is well-known for its efficiency
with large algebraic computations, among other things.
R is increasingly the programming lingua franca of the statistics community, but it has very
limited native support for symbolic computing. rSymPy (Grothendieck 2019) attempts to
alleviate this problem by connecting R to Python’s (Van Rossum et al. 2011) SymPy library
(Meurer et al. 2017). Similarly, Ryacas (Andersen, Goedman, Grothendieck, Højsgaard,
Pinkus, and Mazur 2020) connects R to YACAS (Pinkus and Winitzki 2002). While these
are useful for most symbolic computations of interest to R users, SymPy and YACAS are both
intended to be general purpose computer algebra systems and so have a relatively limited
feature base for commutative algebra and algebraic geometry when compared to Macaulay2.
Inside R, mpoly (Kahle 2013) provides a basic collection of data structures and methods for
multivariate polynomials. While it performs this purpose well, it provides no real methods
for algebraic computations because it was only designed to lay the foundation for a more
robust computer algebra system. spray (Hankin 2018) has a similar objective and is similarly
limited.
In the absence of algebraic computations suitable for their tasks in R, for years those using
algebraic statistical methods have been forced to go outside of R to manually run key algebraic
computations in software such as Macaulay2 and then pull the results back into R (Drton et al.
2009; Pachter and Sturmfels 2005). This error prone and tedious process is simply one barrier
to entry to using algebraic statistics in R; the problem is compounded by users needing to
install the software, which tends to not be cross-platform available and require command line
skills, and be familiar with those languages. Macaulay2, in particular, is syntactically and
semantically very different from R.
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In this article we present the m2r package, which is intended to help fill this void. m2r
connects R to a persistent local or remote Macaulay2 session and leverages mpoly’s existing
infrastructure to provide wrappers for commonly used algebraic algorithms in a way that nat-
urally fits into the R ecosystem, alleviating the need to learn Macaulay2. It is our hope that
m2r will provide a flexible framework for computations in the algebraic statistics community
and beyond. m2r was created at the American Mathematical Society’s 2016 Mathematics
Research Community gathering on algebraic statistics and is now distributed on the Compre-
hensive R Archive Network (CRAN) and version controlled with Git in the open on GitHub
(https://github.com/coneill-math/m2r).
The outline of the article is as follows. In Section 2 we provide a basic overview of the
relevant algebraic and geometric concepts used in the rest of the article; we also provide
references to learn more. In Section 3 we present a basic demo of m2r to get up and running.
Section 4 follows with two applications of interest to R users: using m2r to exactly solve
systems of nonlinear algebraic equations and applying m2r to better understand conditional
independence models on multiway contingency tables. Next, Sections 5 and 6 provide an
overview of how m2r works internally, first by describing the design philosophy and then by
demonstrating how m2r connects R to Macaulay2, which need not be installed locally on the
user’s machine. We conclude with a brief discussion of future directions in Section 7.

2. Basic theory

In this section we provide a basic introduction to the algebraic and geometric objects described
in the remainder of this work. We aim for understandability over technical precision, and so in
some cases bend the truth a bit. For accessible texts with more precise definitions, we direct
the reader to Gallian (2016) for the basics of modern algebra and Cox, Little, and O’Shea
(1997) for the basics of commutative algebra and algebraic geometry. For a more advanced
treatment we recommend Cox, Little, and O’Shea (2005) and references therein. Sullivant
(2018) provides an authoritative perspective on these as they apply to algebraic statistics.
Broadly speaking, the mathematical discipline of algebra deals with sets of objects with certain
well-defined operations between their elements that result in other elements of the set, e.g.,
the sum of two numbers is a number. At a basic level, modern algebra has focused on three
such objects. In order of increasing structure, these are groups, rings, and fields. A group
is a set along with a single binary operation “+” in which there is an identity and every
element has an inverse. For example, the integers (Z) form a group; 0 is the identity element
(x+ 0 = x for any x ∈ Z) and the inverse of any integer is its negative (x+ (−x) = 0). A ring
is a group with a second operation “×” under which there is an identity but elements need not
have inverses. For example, Z is also a ring; the product of two integers is an integer, and the
multiplicative identity is the number 1 (1× x = x for any x ∈ Z), but 2 has no multiplicative
inverse since 1/2 is not an integer. A field is a ring with multiplicative inverses, i.e., a ring
where division is defined. As such, the integers form a ring but not a field. On the other
hand, the rational numbers Q do form a field, as do the real numbers R and the complex
numbers C. Throughout this paper, all group and ring operations will be commutative, or
order invariant, e.g., 5× 2 = 2× 5.
Among each class of objects, special subsets are distinguished. For example, a subgroup of a
group is a subset of a group that is itself a group, e.g., the even integers. The discipline of
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commutative algebra focuses on commutative rings and distinguished subsets called ideals.
An ideal is a subgroup of a ring that “absorbs” elements of the ring under multiplication.
For example, the even integers I ⊂ Z are an ideal of the ring of integers; I is a group under
addition, and if you multiply an even number by any integer, the result is even and thus in I.
Note that ideals are not necessarily rings, as they usually do not contain the multiplicative
identity 1 (in fact, any ideal containing 1 must contain every element of the ring). Special
supersets are also distinguished. For example a field extension F′ of a field F is a superset of
F that is a field under the same operations as F, e.g., C and R of Q. While in principle R can
represent these objects, it is not well suited to the task and has no symbolic mechanisms for
computing on them.
As mathematical objects, the set of polynomials in one or several variables forms a commu-
tative ring. Let x = (x1, x2, . . . , xn) denote an n-tuple of variables. A monomial is a product
of the form

xα = xα1
1 xα2

2 · · ·x
αn
n , αi ∈ N0 = {0, 1, 2, . . .} . (1)

A polynomial f is a finite linear combination of monomials whose coefficients are drawn from
some ring K, often a field such as Q, R, or C. The set of all polynomials with coefficients in
K is denoted K[x]. For example, f(x, y) = 3x− 2y ∈ Z[x, y]. Obviously, adding, subtracting,
and multiplying polynomials results in another polynomial after simplification.
One way to create an ideal in a polynomial ring is simply to generate one from a collection
of polynomials. If f1, . . . , fm is a collection of m polynomials in K[x], the ideal generated by
f1, . . . , fm is the set

〈f1, . . . , fm〉 = {r1f1 + · · ·+ rmfm : rk ∈ K[x] for k = 1, . . . ,m} ⊆ K[x]. (2)

In particular, this set is the smallest ideal containing f1, . . . , fm. The generating polynomials
f1, . . . , fm are called a basis of the ideal. Obviously, ideals are infinitely large collections of
polynomials. However, they typically are not all polynomials; in the ring Z[x, y], I = 〈x, y〉 is
an ideal, and Z[x, y]\I consists of all polynomials with nonzero constant term. A remarkable
result known as the Hilbert basis theorem states that every ideal has a finite generating set,
i.e., a finite basis. However, bases need not be unique. Gröbner bases are generating sets
with some additional structure and are central objects in computational commutative algebra
and applied algebraic geometry in general. Typically it is difficult to answer questions such
as whether or not two ideals are equal, or if a particular polynomial is contained in an ideal.
If one has a Gröbner basis however, these questions can be answered relatively easily.
There are a number of algorithms known to convert a given collection of polynomials f1, . . . , fm
into a Gröbner basis g1, . . . , gm′ . The first historically and simplest is Buchberger’s algorithm,
and all major computer algebra systems implement a variant of it, including Macaulay2 and
SINGULAR (Buchberger 1970; Grayson and Stillman 2006; Greuel, Pfister, and Schoenemann
2006). Optimizing Gröbner basis computations continues to be an active area of research in
computational algebraic geometry, and the aforementioned software packages are regularly
updated with newer and faster implementations.
Algebraic geometry is the field of mathematics interested in understanding the geometric
structure of zero sets of polynomials, called varieties or algebraic sets. Concretely, the variety
generated by f1, . . . , fm is the set of vectors x ∈ Kn where f1, . . . , fm evaluate to zero:

V (f1, . . . , fm) = {x ∈ Kn : f1(x) = · · · = fm(x) = 0} . (3)
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Sometimes a field extension of K is used instead of K so that, for example, we could consider
the set of solutions in Rn of a polynomial with coefficients in Z. Varieties are geometric
objects. For example, the variety generated by the polynomial x2 + y2 − 1 ∈ Z[x, y] over R is
the unit circle S1; it consists of all pairs (x, y) ∈ R2 such that x2 + y2 = 1.

A system of polynomial equations can be converted into a collection of polynomials by moving
every term to one side, leaving the other side to be just zeros; this is a common technique
in algebraic geometry. The variety of the resulting set of polynomials is the set of common
solutions to the original list of equations. If no solutions exist, the system is said to be
inconsistent; if there are a finite number of solutions, the variety is said to be zero-dimensional;
and if there are an infinite number of solutions, the variety is said to be positive dimensional.

Note that this construction is a nonlinear generalization of linear algebra. Linear algebra
studies polynomials of degree one, where every term has at most one variable and its expo-
nent is one. The varieties are linear varieties: the empty set, a single point, lines, planes,
hyperplanes. By contrast, in general varieties can be significantly more complicated. They
can be curved, come to sharp points, be self-intersecting, or even disconnected. Unions of
varieties are varieties by multiplying their generating sets pairwise, and intersections of vari-
eties are varieties by simply taking all the generators of both. Consequently, given a variety
V it makes sense to talk about its minimal decomposition, the representation of V as a union
V =

⋃
Vi of smaller irreducible varieties Vi that cannot be further decomposed. A variety

V is said to be irreducible if for every decomposition of V = V1 ∪ V2 into the union of two
varieties V1 and V2, either V = V1 or V = V2. Such decompositions are always finite. The
dimension of a variety is the maximum dimension of its irreducible components, which are in
turn defined as the dimension of a tangent hyperplane at a generic point, e.g., the dimension
of the unit circle S1 is 1 since tangent lines are one-dimensional.

There is a rich interplay between polynomial ideals and varieties that forms the core of
algebraic geometry and allows us to align geometric structures and procedures with algebraic
ones in a near one-to-one fashion, enabling us to turn geometric questions into algebraic
ones and vice versa. In this setting, Gröbner bases play a major role. If I is an ideal, the
variety of I, V (I), is the zero set of all the polynomials in I. If I is generated by the
polynomials f1, . . . , fm, then V (I) = V (f1, . . . , fm); in particular, different bases of ideals
generate identical varieties. In algebraic geometry, Gröbner bases are good choices for bases
for myriad reasons. For example, if the variety V (I) is zero-dimensional, a (lexicographic)
Gröbner basis is structured in such a way that the equations can be solved one at a time
and back-substituted into the others, much in the same way that in a linear system with a
unique solution, after Gaussian elimination solutions can be read off and back-substituted
one by one. Many geometric properties of varieties, such as their dimension or an irreducible
decomposition, can also be easily computed using Gröbner bases. We close this section by
again referring the reader to Cox et al. (1997) for an accessible book-length treatment of these
facts and others.

3. Basic usage

This section showcases the basic capabilities of m2r and some of the ways that Macaulay2 can
be used to solve algebraic problems in R.
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3.1. Loading m2r
m2r is loaded like any other R package:

R> library("m2r")

Loading required package: mpoly
Please cite m2r! See citation("m2r") for details.
M2 found in /Applications/Macaulay2-1.10/bin

The first line of output indicates that m2r depends on mpoly, which it uses to store and manip-
ulate multivariate polynomials (Kahle 2013). The last line indicates that M2, the Macaulay2
executable, was found on the user’s machine at the given path, and that the version of
Macaulay2 in that directory will be used for computations. When loaded on a Unix-alike
machine, m2r looks for M2 on the user’s machine by searching through ~/.bash_profile,
or if nonexistent, ~/.bashrc and ~/.profile. m2r stores the first place M2 is found in the
global option m2r$m2_path.1

When m2r is loaded, Macaulay2 is searched for but not initialized. The actual initialization
and subsequent connection to Macaulay2 by m2r takes place when R first calls a Macaulay2
function through m2r. Once initialized, a Macaulay2 session remains behind persistently until
the end of the R session or until it is manually stopped with stop_m2().

3.2. m2r basics

The basic interface to Macaulay2 is provided by the m2() function. m2() accepts a character
string containing Macaulay2 code, sends it to Macaulay2 to be evaluated, and brings the
output back into R. For example, like all computer algebra systems, Macaulay2 supports basic
arithmetic:

R> m2("1 + 1")

Starting M2... done.
[1] "2"

Unlike most m2r functions, m2() does not parse the Macaulay2 output into an R data structure.
This can be seen in the result above being a character and not a numeric, but it is even more
evident when evaluating a floating point number:

R> m2("1.2")

[1] ".12p53e1"

Parsing the output is a delicate task accomplished by the m2_parse() function:

R> m2_parse(m2("1.2"))

[1] 1.2
1Note that m2r will not necessarily use whatever is on the user’s typical PATH variable because when R

makes system() calls, it does not load the user’s personal configuration files. If a different path is desired, the
user can easily change this option with the function set_m2_path().
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We expand on how m2_parse() works as a general Macaulay2 parser in Section 5.
One of the great advantages to m2r’s implementation is that it provides a persistent connection
to a Macaulay2 session running in the background. In early versions of algstat (Kahle, Garcia-
Puente, and Yoshida 2014), Macaulay2 was accessible from R through intermediate script files;
algstat saved user supplied Macaulay2 code to a temporary file, called Macaulay2 in script mode
to evaluate it, saved the output to another temporary file, and parsed the output back into
R. One of the major limitations of this scheme is that every computation and every variable
created on the Macaulay2 side is lost once the call is complete. Unlike algstat, m2r allows a
persistent connection to a Macaulay2 session, which is easy to demonstrate:

R> m2("a = 1")

[1] "1"

R> m2("a")

[1] "1"

When not actively running code, the Macaulay2 session sits listening for commands issued by
R. The details of the connection are described in detail in Section 6.
While the Macaulay2 session is live, it helps to have R-side functions that access it in a natural
way. Just as there are functions such as ls() and exists() in R, m2r provides analogues for
the background Macaulay2 session:

R> m2_ls()

[1] "a"

R> m2_exists(c("a", "b"))

[1] TRUE FALSE

R> m2_getwd()

[1] "/Users/david_kahle"

m2_ls() also accepts the argument all.names = TRUE, which gives a larger listing of the
variables defined in the Macaulay2 session, much like ls(all.names = TRUE). These addi-
tional variables fall into two categories: output variables returned by Macaulay2 and m2r
variables used to manage the connection. In Macaulay2, the output of each executed line of
code is stored as a variable bound to the symbol o followed by the line number executed. For
example, the output of the first executed line is o1. These are accessible through m2r as,
for example, m2o1; however, since m2r’s internal connection itself makes calls to Macaulay2,
the numbering is somewhat unpredictable. This is why they do not show up in m2_ls()
by default. The internal variables that m2r uses to manage the persistent connection to
Macaulay2 are called m2rint* and generally should not be accessed by the user; more on this
in Section 5.1.
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3.3. Commutative algebra and algebraic geometry

Macaulay2 is designed for computations in commutative algebra and algebraic geometry. Con-
sequently, algebraic structures such as polynomial rings and ideals are of primary interest.
While the m2() function suffices at a basic level for these kinds of operations in R, m2r
provides a number of wrapper functions and data structures that facilitate interacting with
Macaulay2 in a way that is significantly more familiar to R users. In the remainder of this
section we showcase these kinds of functions in action. We begin with rings and ideals, the
basic algebraic structures in commutative algebra, and the computation of Gröbner bases.
Polynomial rings can be created with the ring() function:

R> (R <- ring("t", "x", "y", "z", coefring = "QQ"))

M2 Ring: QQ[t,x,y,z], grevlex order

As described in Section 2, polynomial rings are comprised of two basic components: a collec-
tion of variables and a coefficient ring, often a field. In Macaulay2, several special key words
exist that refer to commonly used coefficient rings: the integers Z (ZZ), the rational numbers
Q (QQ), the real numbers R (RR), and the complex numbers C (CC). Polynomial rings and
related algorithms often benefit from total orders on their monomials. These can be supplied
through ring()’s order argument, which by default sets order = "grevlex", the graded
reverse lexicographic order.
Ideals of rings can be specified with the ideal() function as follows:

R> (I <- ideal("t^4 - x", "t^3 - y", "t^2 - z"))

M2 Ideal of ring QQ[t,x,y,z] (grevlex) with generators :
< t^4 - x, t^3 - y, t^2 - z >

Following Macaulay2, they are defined relative to the last ring used that contains all the
variables referenced. If no such ring exists, you get an error. A common mistake along these
lines is to try to reference a variable that cannot be scoped to a previously defined ring. In
a situation where several rings have been used, the use_ring() function is helpful to specify
which specific ring to use. For example, use_ring(R).
Gröbner bases of ideals are computed with gb():

R> gb(I)

z^2 - x
z t - y
-1 z x + y^2
-1 x + t y
-1 z y + x t
-1 z + t^2

To provide a more natural feel, ideal() and gb() are overloaded to accept any of many types
of input, including ‘mpoly’ and ‘mpolyList’ objects. For example, instead of gb() working
on an ideal object, it can work directly on a collection of polynomials:
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R> gb("t^4 - x", "t^3 - y", "t^2 - z")

z^2 - x
z t - y
-1 z x + y^2
-1 x + t y
-1 z y + x t
-1 z + t^2

You may have noticed something strange in this last call: gb(I) only took one argument,
whereas gb("t^4 - x", "t^3 - y", "t^2 - z") took three, but they performed the same
task. This is possible because of nonstandard evaluation in R (Wickham 2015; Lumley 2003).
While nonstandard evaluation is very convenient, it does have drawbacks. In particular, it
tends to be hard to use functions that use nonstandard evaluation inside other functions, so
using gb(), for example, inside a function in a package that depends on m2r can be tricky. To
alleviate this problem, each of ring(), ideal(), and gb() has a standard evaluation version
that tends to be easier to program with and incorporate into packages. Following the old
dplyr/tidyverse (Wickham, François, Henry, and Müller 2019; Wickham 2019b) naming con-
vention, these functions have the same name followed by an underscore: ring_(), ideal_(),
and gb_(). To see the difference between standard and nonstandard evaluation, compare the
previous gb() call, which depends on nonstandard evaluation, to this call to gb_(), which
uses standard evaluation:

R> polys <- c("t^4 - x", "t^3 - y", "t^2 - z")
R> gb_(polys, ring = R)

z^2 - x
z t - y
-1 z x + y^2
-1 x + t y
-1 z y + x t
-1 z + t^2

Though the distinction is not as obvious, gb(I) and gb_(I) both work and result in the
same computation. The latter, however, is more appropriate for use inside packages. In the
future we intend to integrate tidy evaluation into m2r, streamlining nonstandard evaluation
and reducing the need for the standard evaluation functions (Wickham 2019a).
Radicals of ideals, which can be thought of as a method of eliminating root multiplicity, can
be computed with radical(). We note that Macaulay2 has only implemented this feature for
polynomial rings over the rationals Q (QQ) and finite fields Z/p (ZZ/p).

R> QQx <- ring("x", coefring = "QQ")
R> I <- ideal("x^2")
R> radical(I)

M2 Ideal of ring QQ[x] (grevlex) with generator :
< x >
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Ideal saturation is a more complex process than the scope of this work entails, but it is
worth mentioning as it has a variety of applications. Loosely speaking, the saturation of an
ideal I by another ideal J , denoted I : J∞, is an ideal containing I and any additional
polynomials obtained by “dividing out” elements of J . Enlarging an ideal reduces the size
of its corresponding variety; more polynomials means more conditions a point x ∈ Kn in the
variety must satisfy. On the variety side, saturation is intended to remove components of the
variety that are known to be nonzero. In m2r, saturation can be computed with saturate().
Notice in what follows saturation of the ideal 〈(x− 1)x(x+ 1)〉, with variety −1, 0, and 1, by
the ideal 〈x〉 removes the solution x = 0:

R> I <- ideal("(x-1) x (x+1)")
R> J <- ideal("x")
R> saturate(I, J)

M2 Ideal of ring QQ[x] (grevlex) with generator :
< x^2 - 1 >

The closely related concept of an ideal quotient I : J can be computed with quotient().
The primary decomposition of an ideal is the algebraic analogue of the minimal decompo-
sition of a variety into irreducible components. Primary decompositions can be computed
with primary_decomposition(). The result is a list of ideals (class ‘m2_ideal_list’). For
example, the ideal 〈xz, yz〉 corresponds to the variety that is the union of the xy-plane and
the z-axis. That notion can be recaptured with primary decomposition:

R> QQxyz <- ring("x", "y", "z", coefring = "QQ")
R> I <- ideal("x z", "y z")
R> (ideal_list <- primary_decomposition(I))

M2 List of ideals of QQ[x,y,z] (grevlex) :
< z >
< x, y >

The dimensions of the ideals, which correspond to the dimensions of their analogous varieties,
can be computed with dimension():

R> dimension(ideal_list)

M2 List
[[1]]
[1] 2

[[2]]
[1] 1

Several other functions exist that aid in whatever one may want to do with ideals. For
example, sums, products, and equality are all defined as S3 methods of those functions:
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R> I <- ideal("x", "y")
R> J <- ideal("z")
R> I + J

M2 Ideal of ring QQ[x,y,z] (grevlex) with generators :
< x, y, z >

R> I * J

M2 Ideal of ring QQ[x,y,z] (grevlex) with generators :
< x z, z y >

R> I == J

[1] FALSE

These can be combined with previous functions to great effect. For instance, it is simple to
script a function to check whether an ideal is radical:

R> is.radical <- function (ideal) ideal == radical(ideal)
R> is.radical(I)

[1] TRUE

In recent years magrittr’s pipe operator %>% (Bache and Wickham 2014) has become a main-
stream tool in the R community, easing the thought process of programming and clarifying
code. The pipe operator semantically equates the expression x %>% f(y) with the more basic
R expression f(x, y) and the simpler expression x %>% f() with f(x). This tool is also very
beneficial in conjunction with m2r. For example, the following code performs the previous
decomposition: it creates an ideal, decomposes it, and determines the dimension of each
component, all in one simple line of code readable from left to right:

R> library("magrittr")
R> ideal("x z", "y z") %>% primary_decomposition() %>% dimension()

M2 List
[[1]]
[1] 2

[[2]]
[1] 1

3.4. Other examples of Macaulay2 functionality

In addition to implementations of the basic Macaulay2 objects and algorithms of commutative
algebra described above, m2r includes implementations of other algorithms that one might
expect in a computer algebra system. For example, the prime decomposition of an integer
can be computed with m2r’s factor_n():
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R> (x <- 2^5 * 3^4 * 5^3 * 7^2 * 11^1)

[1] 174636000

R> factor_n(x)

$prime
[1] 2 3 5 7 11

$power
[1] 5 4 3 2 1

R> gmp::factorize(x)

Big Integer ('bigz') object of length 15:
[1] 2 2 2 2 2 3 3 3 3 5 5 5 7 7 11

factor_n() is essentially analogous to gmp’s (Granlund and GMP Development Team 2012;
Lucas, Scholz, Böhme, Jasson, and Mächler 2020) factorize(), but it is significantly slower
due to having to be passed to Macaulay2, computed, passed back, and parsed. On the other
hand, conceptually m2r is factorizing the integer as an element of a ring, and can do so more
generally over other rings, too. Consequently, polynomials can be factored. The result is
an ‘mpolyList’ object of irreducible polynomials (the analogue to primes) and a vector of
integers, as a list:

R> QQxy <- ring("x", "y", coefring = "QQ")
R> factor_poly("x^4 - y^4")

$factor
x - y
x + y
x^2 + y^2

$power
[1] 1 1 1

One can imagine using this kind of connection, along with R’s random number generators,
to experimentally obtain Monte Carlo answers to a number of mathematical questions. This
kind of computation has applications in random algebraic geometry and commutative algebra.
A bit more interesting to statisticians may be the implementation of an algorithm to compute
the Smith normal form of a matrix. The Smith normal form of a matrix M here refers to the
decomposition of an integer matrix D = PMQ, where D, P, and Q are integer matrices and
D is diagonal. Both P and Q are unimodular matrices (their determinants are ±1), so they
are invertible. This is similar to a singular value decomposition for integer matrices. The
following code demonstrates these basic properties:
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R> M <- matrix(c(2, 4, 4, -6, 6, 12, 10, -4, -16), nrow = 3,
+ byrow = TRUE)
R> mats <- snf(M)
R> P <- mats$P
R> D <- mats$D
R> Q <- mats$Q
R> P %*% M %*% Q

[,1] [,2] [,3]
[1,] 12 0 0
[2,] 0 6 0
[3,] 0 0 2

R> solve(P) %*% D %*% solve(Q)

[,1] [,2] [,3]
[1,] 2 4 4
[2,] -6 6 12
[3,] 10 -4 -16

R> det(P)

[1] 1

4. Applications
To say linear algebra is used in many applications is a vast understatement – it is the ba-
sic mathematics that drives virtually every real-world application. It provides solutions to
problems that arise both naturally as linear problems as well as linear approximations to
nonlinear problems, e.g., Taylor approximations. Moreover, numerical linear algebra is a very
mature technology. Nonlinear algebra also has many applications, some of which are found in
naturally appearing nonlinear algebraic problems and others as better-than-linear approxima-
tions to non-algebraic nonlinear problems. However, symbolic and numerical computational
solutions are far less developed for nonlinear algebra than for linear algebra.
In this section we illustrate how m2r can be used to address two nonlinear algebraic prob-
lems prototypical of statistical problems amenable to algebraic investigation. Both examples
exclusively use symbolic techniques from commutative algebra/algebraic geometry. We do
not include any examples from the field of numerical algebraic geometry because, while those
methods are both exceedingly powerful and accessible with m2r via its connections to software
such as PHCpack and Bertini (Bates, Hauenstein, Sommese, and Wampler 2013a,b), they (1)
work in fundamentally different ways than the methods described in Section 2 and (2) are
not native to Macaulay2. The following examples are intentionally simple to demonstrate the
usefulness of m2r in addressing nonlinear algebraic problems while not getting bogged down
by a more complex setting.
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Figure 1: The varieties, over R, corresponding to Equations 4, 5, and 6 (respectively), and
their intersection. Solution sets of nonlinear algebraic systems consisting of a finite number
of points can be computed using Gröbner bases by recursively finding the roots of univariate
polynomials.

4.1. Solving nonlinear systems of algebraic equations

In this example we show how Gröbner bases can be used to solve zero-dimensional systems
of polynomial equations. Consider the system

x+ y + z = 0 (4)
x2 + y2 + z2 = 9 (5)

x2 + y2 = z2 (6)

Over R, geometrically the variety V
(
x+ y + z, x2 + y2 + z2 − 9, x2 + y2 − z2), the solution

set of (x, y, z) triples that satisfy Equations 4–6, corresponds to the intersection of the solution
sets of triples that satisfy each of them individually, i.e., their individual varieties. These are
displayed in Figure 1.
m2r can be used to find all the solutions to this system exactly using Gröbner bases:

R> use_ring(QQxyz)
R> I <- ideal("x + y + z", "x^2 + y^2 + z^2 - 9", "x^2 + y^2 - z^2")
R> (grobner_basis <- gb(I))

x + y + z
2 z^2 - 9
y^2 + y z

Notice that this system has one polynomial that only involves z, one that only involves z and
y, and one that involves z, y, and x. This is an example of the kind of nonlinear generalization
of Gaussian elimination referred to in Section 2.
Once Macaulay2 computes a Gröbner basis, it is fairly straightforward to script a basic solver
for nonlinear algebraic systems that recursively solves the univariate problems and plugs the
solutions into the other equations to obtain other univariate problems. The solve_gb()
function below does this; its body is broken into five chunks. Given a Gröbner basis as an
‘mpolyList’, the first chunk extracts and solves the univariate polynomial. In general, when a
problem can be reduced to determining the roots of a univariate polynomial, it is considered
solved (Sturmfels 2002). An implementation of a univariate polynomial root finder, the
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Jenkins-Traub method, is available in base::polyroot(), which mpoly thinly wraps with
solve_unipoly(). The second body chunk is the base case of the recursion which simply
returns the solution when only a univariate polynomial remains. The third removes the solved
univariate polynomial and plugs the solution into the others to create a new simpler system,
which the fourth chunk solves by recursively calling solve_gb(). The last chunk aggregates
the solutions and returns them.

R> extract_unipoly <- function(mpolyList) Filter(is.unipoly, mpolyList)[[1]]
R> which_unipoly <- function(mpolyList) which(sapply(mpolyList, is.unipoly))
R> solve_gb <- function(gb) {
+ poly <- extract_unipoly(gb)
+ elim_var <- vars(poly)
+ solns <- solve_unipoly(poly, real_only = TRUE)
+
+ if (length(gb) == 1) {
+ return(structure(t(t(solns)), .Dimnames = list(NULL, elim_var)))
+ }
+
+ gb <- structure(gb[-which_unipoly(gb)[1], drop = FALSE],
+ class = "mpolyList")
+ new_systems <- lapply(solns, function(soln) plug(gb, elim_var, soln))
+
+ low_solns_list <- lapply(new_systems, solve_gb)
+ lower_var_names <- colnames(low_solns_list[[1]])
+
+ Map(cbind, solns, low_solns_list) %>% do.call("rbind", .) %>%
+ structure(.Dimnames = list(NULL, c(elim_var, lower_var_names)))
+ }

The solver can then be applied to the system grobner_basis returned by gb() to compute
the solutions to Equations 4–6, the points of intersection of their corresponding varieties. We
note that the solver above looks at the variety over R, which is a field extension of Q, the
coefficient ring of the polynomial ring used.

R> (solns <- solve_gb(grobner_basis)) %>%
+ structure(.Dimnames = list(paste("Soln", 1:4, ":"), c("z", "y", "x")))

z y x
Soln 1 : 2.12132 0.00000 -2.12132
Soln 2 : 2.12132 -2.12132 0.00000
Soln 3 : -2.12132 0.00000 2.12132
Soln 4 : -2.12132 2.12132 0.00000

In closed form, the four solutions for (x, y, z) are ± 3√
2(1, 0,−1) and ± 3√

2(0, 1,−1). Note
that 3√

2 ≈ 2.12132. These solutions can be easily checked by evaluating the original list of
polynomials in Equations 4, 5, and 6. Moreover, the solutions printed above are accurate to
14 digits:
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R> f <- as.function(grobner_basis, varorder = c("z", "y", "x"),
+ vector = TRUE)
R> apply(solns, 1, f) %>% apply(2, round, digits = 14) %>%
+ structure(.Dimnames = list(paste("Eqn", 5:7, ":"), paste("Soln", 1:4)))

Soln 1 Soln 2 Soln 3 Soln 4
Eqn 5 : 0 0 0 0
Eqn 6 : 0 0 0 0
Eqn 7 : 0 0 0 0

We note that a simple numerical strategy that uses general-purpose optimization routines to
solve the system by minimizing the sum of the squares of the system only finds one solution
and is only correct to 3 digits:

R> resid <- function(v) {
+ x <- v[1]; y <- v[2]; z <- v[3]
+ (x + y + z)^2 + (x^2 + y^2 + z^2 - 9)^2 + (x^2 + y^2 - z^2)^2
+ }
R> optim(c(x = 0, y = 0, z = 0), resid)$par

x y z
-2.1212603679 0.0002124893 2.1212744693

This problem is typically dramatically worse in real-world scenarios with more polynomials
of higher degrees.
Though simple, in principle this example can be generalized to any system of nonlinear alge-
braic equations. With appropriate saturation, it can be generalized even further to systems
of rational equations, i.e., systems involving ratios of multivariate polynomials. Saturation
is key here because the basic strategy of clearing denominators, i.e., multiplying equations
through by the least common multiple of the denominators to convert them into polynomial
equations, typically introduces solutions where the original system was previously undefined,
which “almost never works in algebraic statistics” (Drton et al. 2009, p. 40). For example, the
system ( yx = 1, y = x2) can be cleared to (y = x, y = x2), which suggests the solutions (0, 0)
and (1, 1); but (0, 0) cannot be a solution since the original system’s first equation ( yx = 1) is
not satisfied at (0, 0). Saturation removes this kind of problem.
New solvers are always of value to the R ecosystem, especially paradigmatically new solvers
such as this Gröbner basis solution. One can imagine applications in disparate areas of
statistics: computing estimators via estimating equations (including method of moments,
maximum likelihood, and others), solving polynomial and rational optimization problems
using Lagrange multipliers, and more. That being said, the Gröbner bases method has very
definite limitations: the best algorithms are known to have worst-case behavior that is doubly-
exponential in the number of variables, and solving systems of polynomial equations is in
general known to be an NP-hard problem.
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4.2. Independence and nonlinear algebra

One of the focal application domains of algebraic tools in statistics is the analysis of mul-
tiway contingency tables (Drton et al. 2009; Aoki, Hara, and Takemura 2012). This is for
several reasons. First, discrete probability distributions, often represented with probability
mass functions in statistics, can be represented as algebraic objects: non-negative vectors
that sum to one. The “sum to one” condition is a polynomial constraint on the vector of
probabilities. Second, the definition of independence is an algebraic condition, as we will
see below. Third, commutative algebra, particularly combinatorial commutative algebra, has
many connections to integer lattices and polyhedral geometry, which is discussed a more at
the end of this section.
A simple example of the algebraic structure of independence is provided by a two-way con-
tingency table with variables X and Y and joint distribution P [X = x, Y = y] =: pxy. If X
and Y are both binary so that the sample space of both is SX = SY = {0, 1}, the situation is
a 2× 2 table, and the probabilities are denoted p00, p01, p10, and p11, which must satisfy

p00 + p01 + p10 + p11 = 1. (7)

If X and Y are independent, the joint distribution factors as a product of the marginals

pxy =
(∑

y′

P
[
X = x, Y = y′

] )(∑
x′

P
[
X = x′, Y = y

] )
=: px+p+y. (8)

Explicitly, independence demands four polynomial constraints of the probabilities:

p00 = (p00 + p01)(p00 + p10) (9)
p01 = (p00 + p01)(p01 + p11) (10)
p10 = (p10 + p11)(p00 + p10) (11)
p11 = (p10 + p11)(p01 + p11). (12)

These conditions, along with the sum condition, are routinely summarized by statisticians in
various ways: the log odds-ratio is zero (log p00/p01

p10/p11
= 0), the odds-ratio is one (p00/p01

p10/p11
= 1), or

the cross-product difference is zero (p00p11 − p01p10 = 0) (Agresti 2002). This last condition
can be used to derive the other two. The distillation of Equations 9–12 to the more simple
cross-product condition p00p11−p01p10 = 0 can be systematically obtained through the process
of computing a Gröbner basis. This can be done with gb():

R> ring("p00", "p01", "p10", "p11", coefring = "QQ")

M2 Ring: QQ[p00,p01,p10,p11], grevlex order

R> indep_ideal <- ideal(
+ "p00 - (p00 + p01) (p00 + p10)", "p01 - (p00 + p01) (p01 + p11)",
+ "p10 - (p10 + p11) (p00 + p10)", "p11 - (p10 + p11) (p01 + p11)",
+ "p00 + p01 + p10 + p11 - 1")
R> gb(indep_ideal)

p00 + p01 + p10 + p11 - 1
p01 p10 + p01 p11 + p10 p11 + p11^2 - p11
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Note that the last equation is the one of interest:

p01p10+p01p11+p10p11+p2
11−p11 = p01p10+(p01+p10+p11−1)p11 = p01p10−p00p11. (13)

In addition to the specification of the model, Macaulay2 can use algebraic techniques to
determine the dimension of the variety corresponding to the ideal:

R> dimension(indep_ideal)

[1] 2

It is well-known that the asymptotic distribution of many test statistics (e.g., Pearson’s χ2, the
likelihood-ratio G2, etc.) depends on the difference between the dimension of the saturated
model and the dimension of the model. In this case, that distribution is χ2

ν , where ν is the
difference. The dimension of the saturated model is 4−1 = 3, where one degree of freedom is
lost to the sum condition. (This can also be checked with dimension(ideal("p00 + p01 +
p10 + p11 - 1")).) Thus, the asymptotic distribution of those test statistics is χ2

3−2 = χ2
1,

which is consistent with the presentation in introductory courses.
While this example discusses independence in the 2×2 case, it generalizes fully to not only r×c
tables but also to the multiway case and conditional independence models, a large class that
subsumes graphical models and hierarchical loglinear models. Partial independence models,
where conditional independence statements do not hold for every level, are also included
in this description, as are conditional independence models with structural zeros. In short,
working directly with the enumerated polynomial conditions implied by independence and
conditional independence statements expands the horizons of discrete multivariate analysis.
This also has ramifications for computing estimators (Kahle 2011).
One of the most well-developed areas of algebraic statistics is that of Markov bases. Impre-
cisely, a Markov basis is a collection of contingency tables called moves that, when added
to a given contingency table, result in another contingency table with the same marginals.
Marginals can be meant in the ordinary sense of row and column sums for two-way tables, or
in a more generalized sense for more complex models on multiway tables. Given a Markov
basis, in principle one can easily construct a Markov chain Monte Carlo (MCMC) algorithm
to sample from any distribution on the set of tables with the same marginals as the given
table, a set called the fiber of the table. This in turn can be used to generalize Fisher’s
exact test, which is used to test for independence in 2× 2 tables, to any discrete exponential
family model on any multiway table, an enormous generalization. A foundational result in
algebraic statistics called the Fundamental Theorem of Markov Bases implies that Markov
bases can be computed as Gröbner bases of a special ideal (Diaconis and Sturmfels 1998).
While latter’s (Kahle, Garcia, and Yoshida 2019) connection to 4ti2 (4ti2 Team 2015) allows
for these kinds of computations, m2r’s gb() gives the user much more flexibility in these kinds
of computations, albeit at significantly reduced performance.

5. Internals and design philosophy
The m2r package was designed with three basic principles in mind: (1) make Macaulay2 as
R-user friendly as possible, (2) be as flexible with Macaulay2 syntax and data structures as
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possible, and (3) minimize computational overhead. We advance these goals with a functional
approach by including new data structures, a robust Macaulay2 parser, lazy parsing, and
reference functions. In this section we describe these in just enough detail to explain how
they work at a basic level. For more information, we direct the reader to the GitHub page.

5.1. m2r data structures

One of the challenges of working with a computer algebra system in R is that R has no
infrastructure to handle algebraic objects. mpoly alleviates this, but only for polynomials.
There is still a world of other algebraic objects, such as those described in Section 2, that
are represented in computer algebra systems but do not have any natural analogue in the R
ecosystem.
In Section 5.2 we describe how m2r converts Macaulay2 data into R objects; however, be-
fore that discussion it helps to have an understanding of what kinds of objects m2r parses
Macaulay2 code into. Most objects parsed from Macaulay2 back into R are S3 objects whose
last class type is ‘m2’ and whose other class types describe the object in decreasing order of
specificity. For example:

R> str(R)

'm2_polynomialring' logi NA
- attr(*, "m2_name")= chr "m2rintring00000001"
- attr(*, "m2_meta")=List of 3
..$ vars :List of 4
.. ..$ : chr "t"
.. ..$ : chr "x"
.. ..$ : chr "y"
.. ..$ : chr "z"
..$ coefring: chr "QQ"
..$ order : chr "grevlex"

Created in Section 3.2, R represents the polynomial ring Q[t, x, y, z]. As algebraic objects,
rings have no natural analogue in R, so m2r needs to provide a data structure to represent
them. R is an S3 object of class c("m2_polynomialring", "m2"). The value of the object
is NA, a logical(1) vector; this prevents R users from naively operating on the ring itself.
m2r typically represents algebraic objects by parsing them into R as NA with two attributes,
a name (m2_name) and a list of metadata (m2_meta). Both have accessor functions:

R> m2_name(R)

[1] "m2rintring00000001"

R> m2_meta(R) %>% str()

List of 3
$ vars :List of 4
..$ : chr "t"
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..$ : chr "x"

..$ : chr "y"

..$ : chr "z"
$ coefring: chr "QQ"
$ order : chr "grevlex"

The "m2_name" attribute is the Macaulay2 variable binding for the object; it is the name of
the object on the Macaulay2 side. The "m2_meta" attribute contains other information about
the object for easy R referencing.
Almost every object returned by m2r functions behaves this way with one major exception:
when the object has a natural analogue in R. For example, both R and Macaulay2 have integer
matrices, so it makes sense that when a Macaulay2 integer matrix is parsed back into R, R
users can manipulate it just like an ordinary R integer matrix. And that is in fact what m2r
parses the object into, but m2r makes sure that the object retains the knowledge that it is
a Macaulay2 object. For example, the integer matrix P created in the Smith normal form
example in Section 3.4 is such an object:

R> P

[,1] [,2] [,3]
[1,] 1 0 1
[2,] 0 1 0
[3,] 0 0 1
M2 Matrix over ZZ[]

R> str(P)

'm2_matrix' int [1:3, 1:3] 1 0 0 0 1 0 1 0 1
- attr(*, "m2_name")= chr ""
- attr(*, "m2_meta")=List of 1
..$ ring: 'm2_polynomialring' logi NA
.. ..- attr(*, "m2_name")= chr "ZZ"
.. ..- attr(*, "m2_meta")=List of 3
.. .. ..$ vars : NULL
.. .. ..$ coefring: chr "ZZ"
.. .. ..$ order : chr "grevlex"

This is what allowed us to compute its determinant directly in Section 3.4 with det(P).

5.2. The Macaulay2 parser

Each call to Macaulay2 via the m2() function produces a string representing a Macaulay2
object. This string, returned from the toExternalString function in Macaulay2, consists of
valid Macaulay2 syntax used to recreate the object it represents, analogous to R’s dput().
Though this string is useful for subsequent Macaulay2 calls because Macaulay2 understands
it, it typically needs to be parsed in order to be useful to the R user. This task is tedious to
do by hand and requires an understanding of Macaulay2 syntax.
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m2_parse() is m2r’s general-purpose parsing function. It takes as input a string of Macaulay2
output (such as one returned from toExternalString) and returns a corresponding object
in R. For example, given a string produced from passing a Macaulay2 matrix to Macaulay2’s
toExternalString, m2_parse() returns a native R matrix as part of the larger c("m2_matrix",
"m2", "matrix") data structure.
The parser is one of the primary features of m2r. It was designed to be as extensible as
possible, so that new features could be added easily and quickly in a modular way. For
example, in order to add support for the Macaulay2 type ‘ideal’, which is returned from
Macaulay2 as a string of the form

ideal map((R)^1,(R)^{{-3},{-3},{-3}},{{a*b*c-d*e*f, a*c*e-b*d*f}})

the user simply implements m2_parse_function.m2_ideal(), a single method for the
m2_parse_function() S3 generic that the parser calls when it encounters an ‘ideal’ object.
This particular function is built in:

R> m2_parse_function.m2_ideal <- function(x) {
+ m2_structure(m2_name = "", m2_class = "m2_ideal",
+ m2_meta = list(rmap = x[[1]]))
+ }

m2_structure() accepts five arguments: x, the value of the returned object that is defaulted
to NA; m2_name, the name of the object; m2_class, the higher precedent class; m2_meta, the
list of metadata; and base_class, for higher order classes (e.g., "matrix"). In general specific
m2_parse_function() methods accept a list of arguments x to the Macaulay2 function
ideal(); in this case this consists of a single one-row matrix object. When the method
is dispatched as part of m2_parse(), the parser has already parsed the map(...) substring
to construct an R matrix whose entries are ‘mpoly’ objects and via x[[1]]. The returned
value of m2_structure() is thus a ‘m2’ object that encapsulates the ‘m2_ideal’ object and
has a list of ‘mpoly’ objects as its metadata for each polynomial generator of the ideal.
The recursive nature of the parser effectively black-boxes most of its inner workings, so that
adding new features does not require a deep understanding of the parser’s internal structure
(e.g., the tokenizer). Indeed, much of the currently supported m2r functionality, including
matrix and ideal objects, uses functions like these built directly into the parser. This high
level of extensibility ensures that adding new features is quick and uniform, while requiring
as little additional code as possible. Its simplicity also encourages contributions from other
developers through the m2r GitHub page.

5.3. Lazy parsing and reference functions

As noted in Section 1, one of the primary benefits of Macaulay2 is its efficiency with large
algebraic computations. For instance, some Gröbner basis computations can take many hours
and produce output consisting of several thousand polynomials or polynomials with several
thousand terms. The Macaulay2 user can specify properties to return or have the output
immediately passed into another function.
In order to avoid the computational overhead of copying and parsing large data structures
into R, only to then convert them back to Macaulay2 for subsequent function calls, nearly
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every m2r function has two versions: a reference version and a value version. Until now,
every m2r function we have seen has been the value version. As a general naming convention,
the reference version of a function is the value version’s name followed by a dot. For example,
gb.() is the reference function corresponding to the value function gb().
Unlike value functions, reference functions return a pointer to a Macaulay2 data structure,
an S3 object of class c("m2_pointer", "m2"). In general, pointers are not very helpful on
the R side; they are difficult to interpret and have somewhat complex printing methods. For
example, the reference version of gb() has the following output:

R> gb.(I)

M2 Pointer Object
ExternalString : map((m2rintring00000003)^1,(m2rintring00000003)^{{-1...

M2 Name : m2rintgb00000006
M2 Class : Matrix (Type)

Obviously, the output does not appear particularly useful; it gives no clues as to what the
Gröbner basis actually is. Pointers are used as R-side handles for Macaulay2-side objects.
Most of the time, the pointer returned from a reference function is passed into m2_parse()
to produce the corresponding R types. (The exception to this is m2() itself, which simply
returns the external string part of the pointer returned by m2.().) In fact, this is precisely
what value versions of functions do; they thinly wrap reference versions with an m2_parse()
call, occasionally with additional parsing. But users can also pass pointers directly into nearly
any m2r function and obtain the same output without requiring a computationally expensive
call to m2_parse(). This simplifies the code passed into Macaulay2 by simply referencing the
Macaulay2-side binding for the object instead of recreating it. For example, a faster way to
perform the Gröbner basis computation in Section 4.1 is:

R> use_ring(QQxyz)
R> (I. <- ideal.("x + y + z", "x^2 + y^2 + z^2 - 9", "x^2 + y^2 - z^2"))

M2 Pointer Object
ExternalString : ideal map((m2rintring00000003)^1,(m2rintring00000003...

M2 Name : m2rintideal00000016
M2 Class : Ideal (Type)

R> gb(I.)

x + y + z
2 z^2 - 9
y^2 + y z

because the ideal object I. is never parsed back into R.
With this design, a novice user can avoid any confusion associated with pointers by simply
omitting the trailing “.” from any functions they use, and their code will work as expected.
However, advanced users have the option to save additional overhead by using the reference



Journal of Statistical Software 23

functions (those ending in “.”) when they intend to immediately pass the output back into
another m2r function.

6. Connecting R to Macaulay2
Ultimately, every m2r function that uses Macaulay2 invokes m2.(). Every time m2.() is
called, it checks for a connection to a live Macaulay2 instance. If none is found, start_m2()
is run to initialize the Macaulay2 session. In this section we describe how m2r makes this
connection between R and Macaulay2. We begin with the basic mechanism of connection,
sockets, and then turn to how these connections support a cloud computing framework that
migrates computations off-site, enabling Macaulay2 through m2r for Windows users, among
other things.

6.1. The socket connection between R and a local Macaulay2 instance

m2r uses sockets as the primary form of communication between concurrent R and Macaulay2
sessions. A socket is a low-level transfer mechanism used for interprocess communication.
Sockets are commonly used to send and receive data over the internet, but they can also be
used to transfer data between processes running on the same machine. Sockets on a given
machine are identified by their port number. To initiate a connection, one endpoint (the
server) must open a port for incoming connections, to which the other endpoint (the client)
can then connect. Communication through a socket is anonymous; a process need not know
the location of the other endpoint when it connects to the socket, sends and receives data
through the socket, or closes its connection.
The socket setup has two key advantages. First and foremost, it enables a single tethered
Macaulay2 session to persist for the duration of the active R session, so any variables or
functions the user defines in Macaulay2 remain available for future use. Second, the resulting
implementation can be easily extended to run the R and Macaulay2 sessions on different
machines; we explore this in the next section.
When start_m2() is called it attempts to initiate a socket connection between R and
Macaulay2 using the sequence of events documented in Figure 2. Once R successfully binds to
the socket opened by Macaulay2, the basic infrastructure is in place for R to send Macaulay2

(a) R begins by launching an M2 instance,
then waits for an available connection on the
specified port.

(b) Once launched, M2 opens a socket on the
specified port and waits for a connection to be
established.

(c) R connects to the socket, and M2 pauses
while it waits to receive data through the
socket.

(d) Upon successfully connecting to the
socket, R returns control to the user until m2()
is called.

Figure 2: The socket connection process.
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(a) R sends a Macaulay2 source string L
through the socket, and then waits for a re-
sponse from M2.

(b) M2 evaluates L, sends its response S back
through the socket, and then resumes listen-
ing.

Figure 3: R and Macaulay2 communicate through the socket by passing messages.

code as character strings to be evaluated; each such code snippet L is simply relayed to
Macaulay2 through the socket. After Macaulay2 evaluates L, it constructs and returns a string
S containing (i) any error codes, (ii) the number of lines of output, and (iii) the output; see
Figure 3 for an illustration.
After Macaulay2 issues S it is relayed through the socket to R, which handles any errors and
returns the output to the user. When the R session terminates (or m2_stop() is called by
the user), the socket connection is closed by R sending an empty string through the socket
signaling end of file (EOF). Upon receiving the EOF signal, Macaulay2 closes the socket
connection and exits quietly. These steps cleanly kill the Macaulay2 process spawned by R so
that no Macaulay2 processes remain orphaned after the R session is terminated.
It is also important to note that the script run by the spawned Macaulay2 process does not
directly contain any user-supplied code. Instead, a Macaulay2 script that establishes the
socket connection with R and conforms to all steps outlined above is run.

6.2. Macaulay2 in the cloud

Cloud computing as a service has come into prominence in recent years through the widespread
availability of high-speed internet connections and the decreasing cost of hardware and its
maintenance at scale, among other things. In a cloud computing model, the users of a
software system do not need to download the software that they are using, instead they
simply interact with it via a web or terminal interface. In scientific computing, users call on
the remote machine to perform calculations, and when the remote computations finish the
results are returned to the user.
The core benefit of a cloud computing model for m2r is that users no longer have to install
Macaulay2 on their local machines. Installing specialized software can be difficult and time
consuming, especially for less computer-savvy users, and this can be an insurmountable barrier
to entry to algebraic statistics and algebraic methods in general. This issue is compounded
for potential users who are unsure if the software is the correct solution for their problem and
so are unwilling to invest the time to get up and running. Installing Macaulay2 on a Windows
machine is an especially arduous task, creating an enormous barrier to entry for potential
Windows users of the package. These are common challenges for specialized mathematical
software, and like others before us we concluded that a cloud version of our software was
a worthwhile venture (Bliss, Sommars, Verschelde, and Yu 2015; Kastner, Hinkelmann, and
Stillman 2015).
Amazon Web Services (AWS, available at https://aws.amazon.com/) is a subsidiary of
Amazon, Inc. that sells cloud computing solutions. AWS’s flagship product is the Amazon
Elastic Compute Cloud (EC2), which provides virtual servers of varying performance specs
that can be launched remotely on demand. To help users get up and running with m2r and
algebraic statistical computing, we have set up a low-performance EC2 instance dedicated to

https://aws.amazon.com/
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(a) The client R session connects to the Python
server running on the EC2 instance using a
static port. The Python server immediately
locates an open and unoccupied port p on the
EC2 instance.

(b) The Python server launches a new Docker
container provisioned with Macaulay2 and
other helpful software. Within this sandboxed
container, Macaulay2 is launched and given p
as the port number on which to expect an in-
coming connection.

(c) The Python server sends p to the R client,
terminates its connection, and begins listening
for connections from the next new R client.

(d) The R client, upon receiving p from the
Python server, connects via port p to the
Macaulay2 instance running in the new Docker
container using the same paradigm used for lo-
cal Macaulay2 instances.

Figure 4: How R connects to a Macaulay2 session on a remote EC2 host.

m2r. We chose to use the introductory tier of this product because it suffices for introducing
R users to Macaulay2 and Amazon offers it at no cost. It also provides a proof-of-concept
model that can be replicated for a user’s own personal cloud. Instructions for setting up such
an instance can be found on m2r’s GitHub page under inst/.
A few noteworthy implementation details for remotely running m2r are in order. Each remote
instance of Macaulay2 is run within a virtual machine managed by Docker (Merkel 2014;
https://www.docker.com/), an open source software package that allows for sandboxing of
applications inside distinct lightweight virtual software containers. Docker containers provide
an additional layer of virtualization that isolates key resources of the host machine. This
safeguards the host machine in the sense that nothing executed in a container can affect the
host machine. Additionally, containers are optimized to be spun up quickly through efficient
usage of host machine resources, significantly decreasing the time necessary to start a new
session and allowing m2r to connect to on-demand instances of Macaulay2 in seconds.
While there are many similarities in how m2r connects R to local and remote Macaulay2
instances, there are some important differences as well. Instead of the typical m2r flow where
an instance of Macaulay2 is launched on the user’s local machine, the server version allows
a user to create on-demand Macaulay2 instances on an active EC2 instance. In addition to
running and managing all active Docker containers, the EC2 instance has a Python server
script that is used to spawn new Docker instances and dispatch ports to new clients. The
connection process for a new R client is diagrammed step-by-step in Figure 4.

https://www.docker.com/
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The first time m2.() is run, m2r will automatically connect to the cloud if no local Macaulay2
installation is detected. Note that this will always be the case on a Windows machine, since
running a local instance of Macaulay2 is not supported. To bypass a local installation and
connect to the cloud, use the cloud parameter to start_m2().

R> stop_m2()
R> start_m2(cloud = TRUE)

Connecting to M2 in the cloud... done.

R> m2("1+1")

[1] "2"

If the user has the Macaulay2 server script running on their own EC2 instance (or any other
cloud service for that matter), the URL can be specified with the hostname argument to
start_m2(). From there, everything will work just as if the user were running a local
Macaulay2 instance.

6.3. m2r’s socket connection in context

There are many ways that R can connect to external software (see Chambers 2016, for exam-
ple). The socket connection strategy used by m2r distinguishes it from the related packages
rSymPy and Ryacas mentioned in Section 1. rSymPy launches a Java virtual machine locally
and therefore requires additional properly configured software on the user’s machine. While
the initialization takes a moment, the rest of the interface is quite fast. Ryacas connects to
YACAS at the C level using Rcpp (Eddelbuettel and François 2011; Eddelbuettel 2013) by
packaging YACAS header files, which also requires the executables be accessible on the user’s
machine. While this type of linking is significantly faster than that of m2r, m2r’s socket
connection setup has some advantages, too: it demands less of the user in terms of installing
software and generally getting up and running; it can easily migrate computations into the
cloud, including onto very high-performance on-demand machines; it is more portable; and
it makes m2r easier to maintain through versioning. These trade-offs seem to be reasonable
for algebraic statisticians, for whom the speed of interconnectivity is less important than the
speed of the computations themselves.

7. Future directions
In this article we have introduced the new m2r R package, demonstrated several ways it can be
used, and explained how it works. There are several directions of future development that we
are excited about, including performance enhancements for the parser, support for features
such as arbitrary precision numbers and arithmetic with gmp, modifications to mpoly for
broader support for multivariate polynomials in R (e.g., matrices of multivariate polynomials),
better error handling, and more. Macaulay2 itself boasts a number of packages for algebraic
statistics that are ripe for implementation in R and of interest to R users and the statistics
community more broadly. We invite collaborators to contact us directly and share their ideas
on the GitHub page.
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