
JSS Journal of Statistical Software
May 2020, Volume 93, Issue 12. doi: 10.18637/jss.v093.i12

idem: An R Package for Inferences in Clinical Trials
with Death and Missingness

Chenguang Wang
Johns Hopkins University

Elizabeth Colantuoni
Johns Hopkins University

Andrew Leroux
Johns Hopkins University

Daniel O. Scharfstein
Johns Hopkins University

Abstract

In randomized controlled trials of seriously ill patients, death is common and often
defined as the primary endpoint. Increasingly, non-mortality outcomes such as functional
outcomes are co-primary or secondary endpoints. Functional outcomes are not defined
for patients who die, referred to as “truncation due to death”, and among survivors,
functional outcomes are often unobserved due to missed clinic visits or loss to follow-up.
It is well known that if the functional outcomes “truncated due to death” or missing are
handled inappropriately, treatment effect estimation can be biased. In this paper, we
describe the package idem that implements a procedure for comparing treatments that is
based on a composite endpoint of mortality and the functional outcome among survivors.
Among survivors, the procedure incorporates a missing data imputation procedure with
a sensitivity analysis strategy. A web-based graphical user interface is provided in the
idem package to facilitate users conducting the proposed analysis in an interactive and
user-friendly manner. We demonstrate idem using data from a recent trial of sedation
interruption among mechanically ventilated patients.

Keywords: clinical trial, truncation due to death, composite endpoint, imputation, missing
data, R, SACE, sensitivity analysis, shiny, Stan.

1. Introduction

In randomized clinical trials (RCTs) that evaluate medical interventions for patients at high
risk of death, functional outcomes scheduled to be measured at pre-specified post-randomi-
zation time points may be pre-empted due to death. Furthermore, patients alive at a pre-
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specified time may fail to be evaluated due to missed visits or withdrawal, yielding missing
data. The distinction between the two types of unobserved functional outcomes is that data
pre-empted due to death are considered to be undefined, whereas missing data exist but were
not collected.
The so-called issue of “truncation due to death” is challenging even if there is no missing data
among survivors. One method proposed for analyzing such data is to create a composite end-
point that combines mortality information among patients who die prior to the pre-specified
time and the functional outcome among survivors (Diehr, Patrick, Spertus, Kiefe, Donell,
and Fihn 2001; Lachin 1999; Chen, Gould, and Nessly 2005). In cases where patients can be
ordered in a scientifically meaningful way, the simplicity of the composite outcome approach
can be a useful way of globally assessing treatment effects which have causal interpretations.
Wang, Scharfstein, Colantuoni, Girard, and Yan (2017) integrated the composite endpoint
definition based on Lachin (1999) with a missing data imputation approach for intermittent
missing data. They proposed a ranking scheme that ranks all the patients who died before
the end of the study according to their time of death (earlier times are worse than later times)
lower than patients who survived past the end of the study and survivors are then ranked
according to their functional outcome. Inference for treatment effects compares the distribu-
tion of ranks across the treatment arms, accounting for the possibility of ties. Their method
considered the complete case missing value constraints (Little 1993) as the benchmark as-
sumption for intermittent missing data imputation and suggested a global sensitivity analysis
framework to further assess the robustness of the findings through exponential tilting.
In this paper, we describe the R (R Core Team 2020) package idem (Wang, Leroux, Colan-
tuoni, and Scharfstein 2020) that implements the proposed method in Wang et al. (2017)
for making inferences in randomized clinical trials with both intermittent missing data and
deaths. Notably, there are several extensions and modifications in idem from the original pa-
per. First, Wang et al. (2017) proposed a Metropolis-Hastings algorithm for imputing missing
data from their target distributions. In contrast, the package idem implements a rejection
sampling approach where the candidate samples are drawn by rstan (Carpenter et al. 2017).
Second, the package idem implements two alternative approaches to estimate and test for
a treatment effect when data are “truncated due to death”, the survivors only analysis and
the survivor average causal effect (SACE) analysis (Chiba and VanderWeele 2011). Lastly,
the package idem implements a web-based graphical user interface (GUI) where users can
conduct the analysis in an interactive and user-friendly manner.
There are several software packages on the Comprehensive R Archive Network (CRAN) for
analyzing death truncated data. The package JM (Rizopoulos 2010) applies shared parameter
models for the joint modeling of longitudinal and survival data and the package JMbayes (Ri-
zopoulos 2016) implements the shared parameter joint modeling approach under the Bayesian
framework. The joint modeling approach implemented in the two packages introduces a
shared set of latent random effects for modeling both the functional outcome and survival.
In this approach, the model for the functional outcome allows trajectories of the functional
outcome after death, which is not scientifically meaningful. The package sensitivityPStrat
(Dupont and Shepherd 2014) applies the causal inference framework that addresses the prob-
lem in terms of counterfactuals and seeks to estimate the “principal stratum” causal effect
(Frangakis and Rubin 2002; Hayden, Pauler, and Schoenfeld 2005; Chiba and VanderWeele
2011), e.g., the SACE. Although this approach is useful for understanding the mechanistic
effect of treatment on clinical outcomes, it requires strong assumptions to identify whether a
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patient is a member of the “principal stratum” at the time of the treatment decision. To the
best of our knowledge, there is no statistical software package that handles both the “trun-
cation due to death” problem and intermittent missing data among survivors for RCTs, let
alone one with a graphical user interface (GUI).
In this paper, we demonstrate idem by using data from the Awakening and Breathing Con-
trolled (ABC) trial (Girard et al. 2008). The ABC trial randomized acute respiratory failure
patients receiving mechanical ventilation 1:1 within each study site to management with
a paired sedation plus ventilator weaning protocol involving daily interruption of sedatives
through spontaneous awakening trials (SATs) and spontaneous breathing trials (SBTs) or se-
dation per usual care (UC) and SBTs (Girard et al. 2008). In a single-site substudy, cognitive,
psychological and physical function was measured at 3- and 12-months post-randomization
among n = 94 and n = 93 patients in the UC+SBT and SAT+SBT arms, respectively.
We analyze a continuous measure of cognitive function where higher scores indicate better
cognition.
The remainder of the paper is organized as follows. In Section 2, we briefly introduce the
method proposed in Wang et al. (2017). We demonstrate the idem package in the R interactive
mode using data from the ABC trial in Section 3. In Section 4, we describe the details of
the idem GUI. In Section 5, we demonstrate the idem GUI using the ABC trial. Section 6 is
devoted to discussion.

2. Method
In this section, we briefly introduce the composite endpoint approach implemented in Wang
et al. (2017), the survivors only analysis, and the SACE analysis.

2.1. Notation

Consider a randomized study with K post-randomization assessment times l1, . . . , lK . Let
Yk (k = 1, . . . ,K) denote the functional outcome scheduled to be measured at time lk. We
use Y k to denote (Y1, Y2, . . . , Yk). Let X denote covariates measured at baseline, which
may or may not include the functional outcome, Y0. Let T define the treatment assignment.
Let L denote the survival time and Ak = I(L > lk), an indicator that the patient survived
past assessment time lk. Let Z = g(Y0, . . . , YK) be the study’s functional endpoint (e.g.,
Z = YK − Y0). Assume that higher values of Z denote better outcomes.
In the absence of missing data, patients i and j are ranked as follows:

• If AK,i = AK,j = 1, then patient i is ranked better than patient j if Zi > Zj and ranked
the same if Zi = Zj .

• If AK,j = 0 and AK,i = 1, then patient i is ranked better than patient j.

• If AK,i = AK,j = 0, then patient i is ranked better than patient j if Li > Lj and ranked
the same if Li = Lj .

More formally, let U be a function of (AK ,W ) whereW = L if AK = 0 andW = Z if AK = 1
with the ordering following the above ranking rules. Wang et al. (2017) argued that U is a
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composite endpoint in the sense that it is univariate and contains information on survival and
functional status.
When Ak = 1, define Rk to be the indicator that Yk is observed. For patients alive at lK
(i.e., AK = 1), let S = (R1, . . . , RK) denote the missing data pattern; further, let Y (s)

obs =
{Yk : Rk = 1, k ≥ 1,S = s} and Y (s)

mis = {Yk : Rk = 0, k ≥ 1,S = s} denote the observed and
missing post-randomization functional outcomes. Note that Z is only observed when S = 1,
where 1 is a K-dimensional vector of 1’s, if g(·) is a non-constant function of all Yk’s.

2.2. Missing data imputation

To impute the missing functional outcomes, Y (s)
mis, for patients alive at lK , the following class

of untestable assumptions are posited:

f(Y (s)
mis|AK = 1,Y (s)

obs, Y0,X, T,S = s)

∝ exp(∆TZ)f(Y (s)
mis|AK = 1,Y (s)

obs, Y0,X, T,S = 1) (1)

for all s 6= 1, where ∆T is a treatment-specific sensitivity parameter.
In general, the class of assumptions (1) state that for subjects alive at lK , who are observed
with functional measure Y (s)

obs and baseline factors Y0 andX, the distribution of their missing
functional measures Y (s)

mis, when ∆T > 0 (< 0), are more heavily weighted toward higher
(lower) values of Y (s)

mis than those whose functional measures are fully observed and share the
same functional measures as Y (s)

obs and baseline factors Y0 and X. Note that the benchmark
assumption in the class (i.e., ∆T = 0) is the complete case missing value (CCMV) restrictions
(Little 1993).
To avoid non-sensical imputations that generate out-of-bound functional outcomes, Wang
et al. (2017) suggested the following data transformation of Yk (k = 1, . . . ,K):

φ(yk) = log
(
yk −BL

BU − yk

)
,

where (BL, BU ) denote the lower and upper bound of the functional outcome. Let Y †k = φ(Yk)
and Y †k = (Y †1 , . . . , Y

†
k ). Note that there is a one-to-one mapping between the conditional

distributions h(Y †K |AK = 1, Y0,X, T,S = 1) and f(Y K |AK = 1, Y0,X, T,S = 1).
We first factorize h(Y †K |AK = 1, Y0,X, T,S = 1) as follows

h(Y †K |AK = 1, Y0,X, T,S = 1) =
K∏

k=1
h(Y †k |AK = 1,Y †k−1, Y0,X, T,S = 1) (2)

and posit a model for each component of the product. Specifically, we consider models of the
form:

h(Y †k |AK = 1,Y †k−1, Y0,X, T = t,S = 1) = hk,t(Y †k − µk,t(Y
†
k−1, Y0,X;αk,t)),

where µk,t(Y
†
k−1, Y0,X;αk,t) is a specified conditional mean function of Y †k−1, Y0, X and

αk,t. αk,t is an unknown parameter vector and hk,t is an unspecified time and treatment-
specific mean zero density function.
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Let α̂k,t denote the least squares estimator of αk,t. The density function hk,t can be estimated
by kernel density estimation based on the residuals or estimated with parametric assumptions
(e.g., normality) if the sample size is small. Let ĥk,t denote the kernel density estimator of
hk,t. We then estimate f(Y K |AK = 1, Y0,X, T,S = 1) by

f̂(Y K |AK = 1, Y0,X, T,S = 1) =
K∏

k=1
ĥk,t(Y †k − µk,t(Y

†
k−1, Y0,X; α̂k,t))

∣∣∣∣dφ(Yk)
dYk

∣∣∣∣ .
For conducting sensitivity analysis to evaluate the robustness of the findings, Wang et al.
(2017) suggest to choose the range of ∆T such that the induced shift in the functional outcome,
relative to the benchmark imputation, represents a change that is clinically important. We
refer readers to Wang et al. (2017) for the detailed discussion about the interpretation and
the choices of ∆T .

2.3. Treatment effect quantification: Composite endpoint approach

Let i and j be random individuals randomized to treatment T = 0 and T = 1, respectively.
Wang et al. (2017) proposed to quantify the treatment effect, denoted θ, as

θ = P(Ui < Uj)− P(Ui > Uj). (3)

Values of θ > 0 and θ < 0 favor T = 1 and T = 0, respectively. Note that θ = 0 under the
null hypothesis of no treatment effect.
In the absence of missing data, θ can be estimated by

θ̂ = 1
n0n1

∑
i:Ti=0

∑
j:Tj=1

{I(Ui < Uj)− I(Ui > Uj)}

where n0 and n1 are the sample size of treatment arm T = 0 and T = 1, respectively.
In addition to estimating θ, Wang et al. (2017) suggested reporting quantiles (e.g., median) of
the treatment-specific distribution of the composite endpoint U to further help characterize
the treatment effect.

2.4. Treatment effect quantification: Alternative approaches

In the absence of missing data, several alternative approaches to quantify the effect of an
intervention on the functional endpoint in the presence of mortality have also been proposed
and utilized in the statistical and clinical literature.
The survivors only approach defines the treatment effect of the intervention on the functional
endpoint as

θsurv = E(Z|T = 1, AK = 1)− E(Z|T = 0, AK = 1),
i.e., the difference in the mean functional endpoint comparing survivors receiving the interven-
tion to survivors receiving the control. If survival is independent of the treatment assignment,
then this treatment effect definition has a causal interpretation. However, in cases where the
intervention affects mortality then this treatment effect definition does not define a causal
effect and interpreting the estimated treatment effect can be misleading.
To remedy the potential bias in the survivors only approach, one may compare the functional
endpoint within a special subset of patients, referred to as the principle stratum. This special
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subset of patients would survive to the end of the follow-up regardless of which intervention
they receive. To define the survivor average causal effect (SACE), we define what would
happen to patients (in terms of survival and functional endpoint) under both intervention
and control. Let AK(t) be the indicator that the patient survives to time lK under treatment
T = t, and if AK(t) = 1, define Z(t) as the potential functional endpoint observed (otherwise,
Z(t) is not defined). Among patients who survive to time lK regardless of which treatment
they receive (i.e., AK(0) = AK(1) = 1), the SACE is defined as

θSACE = E[Z(1)|AK(0) = 1, AK(1) = 1]− E[Z(0)|AK(1) = 1, AK(0) = 1].

Since the survival status and functional endpoint are only observed for the treatment that was
received, additional assumptions are required to estimate SACE or obtain bounds. Under the
monotonicity assumption AK(1) ≥ AK(0), that is, if a patient would survive to time lK under
control, then the patient would survive to time lK under intervention, Chiba and VanderWeele
(2011) showed that

θSACE = θsurv −∆SACE ,

where ∆SACE is the difference in the mean functional endpoint for surviving intervention arm
patients and the mean functional endpoint if surviving control group patients had, contrary
to fact, received the intervention. That is,

∆SACE = E[Z|T = 1, AK = 1]− E[Z(1)|AK(0) = 1]. (4)

Possible values for ∆SACE should be elicited from expert opinions. In practice, an additional
assumption is often made that the surviving control group patients are healthier than the
surviving intervention group patients. Consequently, ∆SACE is assumed to be non-positive if
the healthier patients are expected to obtain a better functional outcome.

2.5. Inference

For individual i alive at lK with missing functional outcomes, M copies of the missing func-
tional outcomes can be drawn from the density that is proportional to exp(∆TZ)f̂(Y (s)

mis|AK =
1,Y (s)

obs = Y obs,i, Y0 = Y0,i,X = Xi, T = Ti,S = 1) using Markov chain Monte Carlo
(MCMC) sampling techniques to create M complete datasets.
Wang et al. (2017) suggested the Metropolis Hastings algorithm for the MCMC sampling.
To improve the Markov chain convergence, idem implements a rejection sampling approach
with ξf̂(Y (s)

mis|AK = 1,Y (s)
obs = Y obs,i, Y0 = Y0,i,X = Xi, T = Ti,S = 1) being the proposal

distribution, where ξ is a constant that is large enough such that exp(∆TZ) < ξ for all Z.
Such a constant exists in the settings we consider where the functional outcome is bounded by
its biological boundaries. Rejection sampling candidates are then drawn from f̂(Y (s)

mis|AK =
1,Y (s)

obs = Y obs,i, Y0 = Y0,i,X = Xi, T = Ti,S = 1) in idem via rstan (Carpenter et al. 2017)
by adaptive Hamiltonian Monte Carlo.
For each complete dataset m, we estimate θ by θ̂m. The overall estimator of θ is then θ̃ =
1

M

∑M
m=1 θ̂m. Confidence intervals (CIs) can be constructed by applying the non-parametric

bootstrap procedure.
Similar computations are applied to generate overall estimates of and CIs for θsurv and θSACE .
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Figure 1: Overall scheme of the idem package.

3. The idem package

3.1. Installation and overall scheme

The idem package is available from CRAN at https://CRAN.R-project.org/package=idem.
To install and load idem, type the following in R:

R> install.packages("idem")
R> library("idem")

The major steps of conducting an analysis using idem include data preparation, imputation
model fitting, missing data imputation, and treatment effect estimation and hypothesis test-
ing. Intermediate results are organized and passed between steps as idem-specific classes.
Figure 1 presents the overall scheme and the major functions in idem.
Note that the results obtained might differ with platform and linear algebra library used.
Hence, detailed information on the R session which produced the presented results is contained
in the supplementary material.

https://CRAN.R-project.org/package=idem
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3.2. Data preparation

Data format
The idem package requires the dataset to be formatted as follows: Each row represents
a subject and includes the treatment assignment, baseline covariates, baseline outcome (if
applicable), post-randomization functional outcomes and survival time. It is assumed that
there is no censoring of the survival time prior to time lK . For patients who were censored
after time lK , their survival time can be entered as any arbitrary number that is longer than
lK .
The idem package provides the dataset abc from the ABC trial as an example dataset with
a single baseline covariate, Age. Note that baseline cognition was not measured in the ABC
trial.

R> head(abc)

AGE TRT SURV Y1 Y2
1 59.6 1 999 NA NA
2 66.9 0 999 49 52
3 59.7 1 1 NA NA
4 81.4 0 72 NA NA
5 66.5 1 999 51 45
6 40.3 0 65 NA NA

Create analysis data object
As the first step, the function imData combines the original dataset and analysis specification
parameters to create an object of class ‘IDEMDATA’ for the idem analysis. The parameters
include variable names in the dataset, functional outcome specification, functional endpoint
specification, duration of the study, etc. Details can be found in the help document of imData.
When there are mis-specifications in the parameters, errors and inconsistency messages will
be given by imData. Otherwise, the return value is of class ‘IDEMDATA’ and contains the
original dataset and the specification parameters.

R> imData(abc, trt = "TRT", outcome = c("Y1", "Y2"), y0 = NULL,
+ endfml = "Y2", bounds = c(10, 20), duration = 365)

Model specification is invalid. Please check the following:
No survival time specified
Upper bound is smaller than some observed outcomes

Error: Please check the error messages above.

R> im.abc <- imData(abc, trt = "TRT", surv = "SURV",
+ outcome = c("Y1", "Y2"), unitTime = "days",
+ trt.label = c("UC+SBT", "SAT+SBT"), cov = "AGE", endfml = "Y2",
+ duration = 365, bounds = c(0, 100))
R> im.abc
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Figure 2: Spaghetti plot of the functional outcome among survivors in the ABC trial. The
purple dots represent patients with missing functional outcomes. The red line represents the
mean of the observed functional outcomes as a function of time.

There are 187 observations of 5 variables in the data.
Detailed specifications are as follows:

Treatment: TRT
Survival time: SURV
Study duration: 365
Outcomes (ordered chronically): Y1 Y2
Endpoint (in R formula): Y2
Treatment labels: UC+SBT SAT+SBT
Covariates: AGE
Biological boundary of the outcomes: 0 100

See summary information for missingness frequencies.

Data visualization
Class ‘IDEMDATA’ resulting from imData has S3 methods summary and plot for data visual-
ization. By default, summary produces a table of missingness patterns:

R> summary(im.abc)

Y1 Y2 UC.SBT SAT.SBT
Deaths on study 58 (62%) 38 (41%)
S=1 Observed Observed 18 (19%) 32 (34%)
S=2 Observed Missing 8 (9%) 8 (9%)
S=3 Missing Observed 1 (1%) 0 (0%)
S=4 Missing Missing 9 (10%) 15 (16%)
Total 94 93
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Figure 3: Missing data pattern heatmap for survivors in the ABC trial ordered by missingness
patterns along the y-axis. The blue and gray cells represent observed and missing functional
outcomes, respectively.

Spaghetti plots of the functional outcomes for survivors (Figure 2), missing data pattern
heatmaps (Figure 3) and Kaplan-Meier survival curves (Figure 4) can be generated by the
S3 plot method using options "survivor", "missing" and "KM", respectively. Note that the
heatmap plot presents an overview of the amount of missingness as well as the missingness
patterns of the functional outcome data. For generating heatmaps, subjects are ordered
along the y-axis either based on the amount of missing data (order.by = "amount") or their
missingness patterns (order.by = "pattern") in order to provide a more straightforward
overview.

R> plot(im.abc, opt = "survivor")
R> plot(im.abc, opt = "missing", cols = c("blue", "gray"),
+ order.by = "pattern")
R> plot(im.abc, opt = "KM")

In addition, through the S3 summary method, the ‘IDEMDATA’ class returns the row indices that
correspond to the subjects who were alive at the end of the study but had missing functional
outcomes, i.e., the subjects that need missing data imputation.

R> summary(im.abc, opt = "missid")

[1] 1 15 25 27 47 50 57 61 63 67 70 73 79 80 83 86
[17] 87 88 89 95 106 112 122 127 132 133 142 155 158 161 162 167
[33] 169 171 172 174 178 180 183 185 187
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Figure 4: Kaplan-Meier survival curves for patients in the ABC trial. The p value from the
log-rank test is displayed.

3.3. Missing data imputation

Fit imputation models

For the missing data imputation, the function imFitModel needs to be called first to fit the
imputation model(s) (2) among survivors with S = 1, i.e., the patients who were alive at the
end of the study without missing functional outcomes. The return value of the imFitModel
function has class ‘IDEMFIT’ and contains lm results for all the imputation models.

R> rst.fit <- imFitModel(im.abc)
R> rst.fit

-- Treatment UC+SBT
---- Y1 ~ AGE

Call:
lm(formula = as.formula(cur.f), data = cur.data)

Residuals:
Min 1Q Median 3Q Max

-0.8331 -0.1176 -0.0108 0.2271 0.4815

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.25505 0.41548 -0.61 0.55
AGE -0.00223 0.00647 -0.34 0.74
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Residual standard error: 0.327 on 16 degrees of freedom
Multiple R-squared: 0.00734, Adjusted R-squared: -0.0547
F-statistic: 0.118 on 1 and 16 DF, p-value: 0.735
...
-- Treatment SAT+SBT
...
---- Y2 ~ Y1+AGE

Call:
lm(formula = as.formula(cur.f), data = cur.data)

Residuals:
Min 1Q Median 3Q Max

-0.3478 -0.1068 -0.0196 0.1517 0.2737
...

The S3 plot of the ‘IDEMFIT’ class generates the goodness of fit diagnostic plots (Figure 5).
Since the normality assumption of the distribution of the residuals does not seem to hold,
imputation of the missing data using kernel density estimation of the residuals should be
considered (see Section 2.2 for more details).

R> plot(rst.fit, mfrow = c(2, 4))

MCMC convergence checking

Before conducting the imputation for the entire dataset, it is recommended that the MCMC
sampling convergence be checked. The idem package provides the function imImpSingle that
implements the MCMC sampling under the benchmark assumption (i.e., with ∆T = 0) for
an individual subject. The convergence of the MCMC chains can then be checked by a trace
plot of the results (Figure 6). If the mixing of the Markov chains are not satisfactory, users
should refer to the rstan documents for options (e.g., adapt_delta) that can improve the
convergence.

R> rst.mixing <- imImpSingle(abc[1, ], rst.fit, chains = 4,
+ normal = FALSE, iter = 1000, warmup = 500)
R> rst.mixing

This checks the mixing of the MCMC sampling for the following subject:
AGE TRT SURV Y1 Y2

1 59.6 1 999 NA NA

Call plot function to generate the trace plot of the MCMC samples.

R> plot(rst.mixing)
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Figure 5: Goodness of fit diagnostic plots.
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Figure 6: Trace plot of the imputed missing functional outcomes of an individual subject.
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Conduct imputation
The function imImpAll imputes missing outcomes for all survivors with missing functional
outcomes to generate complete datasets. The following code shows how to use imImpAll
to get M = 5 (n.imp = 5) imputed complete datasets for sensitivity parameters ∆T =
−0.2,−0.15, . . . , 0.2; in this example, the residuals are not assumed to follow a Normal distri-
bution (normal = FALSE). Please note that the choices of ∆T are application-specific. Once
again, we refer readers to Wang et al. (2017) for further instructions about choosing the
sensitivity parameters.

R> rst.imp <- imImpAll(rst.fit, deltas = seq(-0.2, 0.2, 0.05),
+ n.imp = 5, normal = FALSE, chains = 4, iter = 1000, warmup = 500)
R> rst.imp

A total of 5 complete datasets were imputed. Normality assumption
was NOT made for the imputation model residual distribution.

The sensitivity parameters considered were
[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The last 5 records in the complete dataset
are given below as an example:

ID DELTA IMP AGE TRT SURV Y1 Y2 ORIGY1 ORIGY2 ENDP
1943 187 0.2 1 66.1 1 999 26 28.9 26 NA 28.9
1944 187 0.2 2 66.1 1 999 26 37.4 26 NA 37.4
1945 187 0.2 3 66.1 1 999 26 40.0 26 NA 40.0
1946 187 0.2 4 66.1 1 999 26 18.9 26 NA 18.9
1947 187 0.2 5 66.1 1 999 26 32.8 26 NA 32.8

The returned value from function imImpAll has class ‘IDEMIMP’. The original functional out-
comes are kept in the results with prefix ORIG. The column ENDP corresponds to the functional
endpoint calculated by the formula specified in endfml in function imData.
The S3 plot method of class ‘IDEMIMP’ provides options to generate treatment-specific den-
sities of the imputed functional outcomes (opt = "imputed"). Users may choose to plot the
density curves for the imputed functional endpoint (endp = TRUE) or functional outcomes
(endp = FALSE). Figure 7 presents the treatment-specific densities of the imputed Y2 (the
functional endpoint) for the ABC trial.

R> plot(rst.imp, opt = "imputed", deltas = c(-0.2, 0, 0.2),
+ xlim = c(0, 100), ylim = c(0, 0.06), endp = TRUE)

The other option provided in the plot method of the ‘IDEMIMP’ class is "composite". For a
single sensitivity parameter that is specified by the parameter delta, the "composite" option
generates the treatment-specific cumulative distribution function of the composite endpoint,
where the values of the composite endpoint are labeled according to the survival time and
functional endpoint among survivors (Figure 8).

R> plot(rst.imp, opt = "composite", delta = 0)
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Figure 7: Treatment-specific densities of the imputed Y2 for different choices of the sensitivity
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3.4. Treatment effect estimation and hypothesis testing

Composite endpoint approach

Given a class ‘IDEMIMP’ object that contains complete datasets with imputed outcomes, idem
uses function imInfer to estimate the treatment effect and quantiles of interest (specified by
effect.quantiles) of the composite endpoint distribution. The S3 method print allows
users to specify the values of sensitivity parameters ∆0 (delta0) and ∆1 (delta1), and
present the corresponding treatment effect estimates. The sensitivity parameters are with
column names Delta0 and Delta1 in the treatment effect summary and Delta in the quantiles
summary. Note that the results of quantiles of the composite endpoint may be a survival time
or a value of the functional outcome, which are reported in columns QuantY and QuantSurv,
respectively.

R> rst.est <- imInfer(rst.imp, n.boot = 0,
+ effect.quantiles = c(0.25, 0.5, 0.75))
R> print(rst.est, delta0 = c(-0.2, 0, 0.2), delta1 = c(-0.2, 0, 0.2))

The sensitivity parameters considered were
[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Treatment effect (theta) under different
sensitivity parameters are:

Delta0 Delta1 Theta
1 -0.2 -0.2 -0.1703
5 0.0 -0.2 -0.1219
9 0.2 -0.2 -0.0854
37 -0.2 0.0 -0.2473
41 0.0 0.0 -0.1907
45 0.2 0.0 -0.1395
73 -0.2 0.2 -0.2988
77 0.0 0.2 -0.2567
81 0.2 0.2 -0.2099

Treatment effect (quantiles) under different
sensitivity parameters are:

Delta TRT Q QuantY QuantSurv
3 -0.2 0 0.25 NA 14
8 -0.2 0 0.50 NA 72
13 -0.2 0 0.75 33.0 NA
18 -0.2 1 0.25 NA 61
23 -0.2 1 0.50 16.1 NA
28 -0.2 1 0.75 39.0 NA
123 0.0 0 0.25 NA 14
128 0.0 0 0.50 NA 72
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133 0.0 0 0.75 38.0 NA
138 0.0 1 0.25 NA 61
143 0.0 1 0.50 30.0 NA
148 0.0 1 0.75 43.0 NA
243 0.2 0 0.25 NA 14
248 0.2 0 0.50 NA 72
253 0.2 0 0.75 40.2 NA
258 0.2 1 0.25 NA 61
263 0.2 1 0.50 34.0 NA
268 0.2 1 0.75 47.5 NA

Please conduct bootstrap analysis for hypothesis testing.

When choosing the number of bootstrap samples (n.boot) to be bigger than 0, the function
imInfer performs non-parametric boostrap to conduct hypothesis testing for the treatment
effect including evaluating the uncertainties of the estimated quantiles from the composite
endpoint distribution. For bootstrap analysis, the function imInfer supports parallel com-
putation on Unix platforms by specifying ncore > 1. For the other imputation parameters
(e.g., normality assumption, number of MCMC chains, etc.), the function imInfer takes the
same settings contained in the ‘IDEMIMP’ class object.
For different sensitivity parameters ∆0 (Delta0) and ∆1 (Delta1), the estimated treatment
effect (Theta), the standard deviation of the bootstraps for the estimated θ (SD), two-sided
p values for testing the null hypothesis of θ = 0 (PValue), quantiles of the composite endpoint
(QuantY, QuantSurv), and the CIs for θ and the quantiles (Q2.5, Q97.5) are obtained by
summarizing results from the bootstrap analysis. The columns Q2.5_Surv and Q97.5_Surv
of the quantiles are indicators for Q2.5 and Q97.5, respectively, of being a survival time.
Note that levels of the CIs may be specified using the quant.ci parameter of the imInfer
function.

R> rst.final <- imInfer(rst.imp, n.boot = 100, n.cores = 5,
+ quant.ci = c(0.025, 0.975))
R> print(rst.final, delta0 = c(-0.2, 0, 0.2), delta1 = c(-0.2, 0, 0.2))

The sensitivity parameters considered were
[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Treatment effect (theta) under different
sensitivity parameters are:

Delta0 Delta1 Theta SD Q2.5 Q97.5 PValue
1 -0.2 -0.2 -0.1703 0.0880 -0.343 0.00216 0.052934
5 0.0 -0.2 -0.1219 0.0871 -0.293 0.04888 0.161809
9 0.2 -0.2 -0.0854 0.0874 -0.257 0.08583 0.328233
37 -0.2 0.0 -0.2473 0.0898 -0.423 -0.07125 0.005903
41 0.0 0.0 -0.1907 0.0890 -0.365 -0.01633 0.032074
45 0.2 0.0 -0.1395 0.0882 -0.312 0.03341 0.113833
73 -0.2 0.2 -0.2988 0.0862 -0.468 -0.12976 0.000531
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77 0.0 0.2 -0.2567 0.0861 -0.425 -0.08801 0.002859
81 0.2 0.2 -0.2099 0.0854 -0.377 -0.04253 0.013972

Treatment effect (quantiles) under different
sensitivity parameters are:

Delta TRT Q QuantY QuantSurv Q2.5 Q97.5 Q2.5_Surv Q97.5_Surv
3 -0.2 0 0.5 NA 72 36.0 365.0 1 1
8 -0.2 1 0.5 16.1 NA 17.9 29.0 0 0
43 0.0 0 0.5 NA 72 36.0 365.0 1 1
48 0.0 1 0.5 30.0 NA 37.0 37.7 0 0
83 0.2 0 0.5 NA 72 36.0 365.0 1 1
88 0.2 1 0.5 34.0 NA 39.0 41.0 0 0

The hypothesis testing and confidence intervals are
based on 100 bootstrap samples.

The results suggest that the SAT+SBT group is favored over the UC+SBT group under all
sensitivity analysis scenarios we considered (i.e., θ < 0). Under the benchmark assumptions
∆1 = ∆0 = 0, we have θ = −0.18 with 95% CI (−0.34,−0.02), which excludes 0. For
sensitivity analysis, the 95% CIs of θ do not include 0 for scenarios when ∆1 = 0 or 0.2 except
when ∆0 = 0.2. When ∆1 = −0.2, the 95% CIs of θ includes 0 except when ∆0 = −0.2.
Under the benchmark assumptions, we estimate that 50% of the subjects in the UC+SBT
group will survive past 72 days (95% CI: survive past 36 to 365 days). In the SAT+SBT
group, we estimate that 50% of subjects will survive to 12 months with cognitive scores of 30
or greater.
Note that these results are for the demonstration of imInfer only. In order to achieve rigorous
results, a much larger number of bootstrap samples (e.g., 2000) are required. The detailed
analysis of the ABC trial can be found in Wang et al. (2017).
A contour plot of two-sided p values for the null hypothesis of θ = 0 as a function of the
multiple imputation sensitivity parameters, ∆T , can be generated by the S3 plot method of
the imInfer function result. Alternatively, the contour plot of the estimated treatment effect
θ̂ can be generated by specifying the option to be effect. Figure 9 presents these two types
of plots.

R> plot(rst.final, nlevels = 30, con.v = 0.05, main = "P-Value")
R> plot(rst.final, opt = "effect", nlevels = 30, con.v = c(-0.1, -0.2),
+ main = expression(theta))

Survivors only approach
The default summary of the ‘IDEMINFER’ class, returned by the imInfer function, generates
the survivors only analysis results. As a cautious note, the printout emphasizes that the
survivors only analysis is only valid when the treatment has no effect on survival.

R> rst.survonly <- summary(rst.final, opt = "survivor")
R> rst.survonly
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Figure 9: The contour plots of the two-sided p values obtained by testing the null hypothesis
of θ = 0 and the estimated treatment effect θ̂ as functions of treatment-specific sensitivity
analysis parameters.

The imputation sensitivity parameters considered were
[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The estimated survivors only treatment effects are

Delta0 Delta1 Effect LB UB PValue
1 -0.20 -0.20 -6.733 -16.1230 2.656 1.60e-01
2 -0.20 -0.15 -4.887 -14.1115 4.338 2.99e-01
3 -0.20 -0.10 0.249 -8.9129 9.411 9.58e-01
4 -0.20 -0.05 4.488 -3.8440 12.821 2.91e-01
5 -0.20 0.00 9.701 2.0345 17.368 1.31e-02
...
80 0.20 0.15 4.099 -4.3321 12.531 3.41e-01
81 0.20 0.20 6.090 -2.4954 14.675 1.64e-01

PLEASE BE CAUTIOUS that survivors only analysis is only valid
when the treatment has no impact on survival.

Similar as for the composite endpoint approach, contour plots of p values and the estimated
treatment effect on the functional outcomes for survivors only analysis can be generated by
the plot function of the summary results (Figure 10).

R> plot(rst.survonly, nlevels = 30, con.v = 0.05,
+ main = "Survivors Only: P-Value")
R> plot(rst.survonly, opt = "effect", nlevels = 30, con.v = c(-15, 0, 15),
+ main = expression(theta[surv]))
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Figure 10: Survivors only analysis results.

SACE approach

The summary function of the ‘IDEMINFER’ class will generate the SACE analysis results when
the option (opt) is specified as SACE. The sensitivity parameters ∆SACE (4) are passed to
the summary function by its argument sace.delta. The default values of sace.delta are
provided based on the standard deviation of the bootstraps for the estimated treatment effect
on the functional outcomes for survivors.

R> rst.sace <- summary(rst.final, opt = "SACE",
+ sace.deltas = seq(-2, 0, by = 0.5))
R> rst.sace

The imputation sensitivity parameters considered were
[1] -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

The SACE sensitivity parameters considered were
[1] 0.0 -0.5 -1.0 -1.5 -2.0

The estimated SACE are

Delta0 Delta1 Effect SACE_Delta LB UB PValue
1 -0.20 -0.20 -6.7334 0.0 -16.1230 2.6562 1.60e-01
2 -0.20 -0.15 -4.8869 0.0 -14.1115 4.3377 2.99e-01
3 -0.20 -0.10 0.2489 0.0 -8.9129 9.4106 9.58e-01
4 -0.20 -0.05 4.4884 0.0 -3.8440 12.8208 2.91e-01
5 -0.20 0.00 9.7011 0.0 2.0345 17.3677 1.31e-02
...
404 0.20 0.15 6.0994 -2.0 -2.3321 14.5309 1.56e-01
405 0.20 0.20 8.0896 -2.0 -0.4954 16.6747 6.48e-02
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Figure 11: SACE analysis results. The left panel is the contour plot of the p values (obtained
by testing the null hypothesis of θSACE = 0) as a function of ∆0 and ∆1 for ∆SACE = −1.
The right panel presents θ̂SACE with its 95% CIs as a function of ∆SACE for ∆0 = ∆1 = 0.

The idem package provides two different types of plots for visualizing the SACE analysis
results. With by.sace = FALSE, the plot function generates the contour plots of p values
and θSACE for given ∆SACE . With by.sace = TRUE, the plot function of the summary results
displays the estimates of and CIs for θSACE for given imputation sensitivity parameters ∆0
and ∆1. Figure 11 presents the different types of plots.

R> plot(rst.sace, by.sace = FALSE, sace.delta = -1,
+ main = "SACE: P-Value")
R> plot(rst.sace, by.sace = TRUE, delta0 = 0, delta1 = 0,
+ main = expression(theta[SACE]))

4. The idem GUI
The idem GUI is web-based and developed in R using the shiny (Chang, Cheng, Allaire, Xie,
and McPherson 2020) web application framework. The GUI can be accessed within R using
the function imShiny, which calls the runApp function in the R package shiny.

R> imShiny()

The idem GUI provides a series of tab panels which, from left to right, sequentially walk
the user through the analysis. The panels are About, Upload Data, Model Specification,
Data Exploration, Model Fitting, Configuration, Imputation and Report. The details
of each tab panel are given as follows.

About panel:
The About panel serves as an introduction page for the software. The sections on this panel
present the background information for idem and the purpose of the software. It also explains
the basic steps to use the software.
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Upload Data panel:
The Upload Data panel provides an interface for users to upload the data to be analyzed.
The sections and items within each section on this panel include:

• Upload Data

Choose File Clicking the Browse... button will load local data files in csv
or plain text format.

Separator Field separating character.

Quote Quoting character.

NA String String for NA values.

Other There are two additional options: The Header checkbox indicates
if the first line of the file are the names of the columns, the Show
Data checkbox indicates whether to present the uploaded data in
the Review Data section on this panel.

• Try An Example
Clicking the Try it button will load the example abc dataset.

• Review Data
Presents the uploaded dataset in a table view.

Model Specification panel:
The Model Specification panel is designed to specify the idem-parameters. This panel is
only available after a dataset has been successfully uploaded. Items on this panel include:

Define Variables Columns Treatment, Time to death, Outcome, Baseline outcome,
Baseline covariates correspond to the idem-parameters trt, surv,
outcome, y0 and cov, respectively. The user selects the appropriate
variables from the uploaded dataset that define Treatment, Time to
death, Outcome, Baseline outcome, and Baseline covariates.

Functional
Endpoint

Specify enfml in idem-parameters. This is an R expression indicating
the user-specified final functional outcome of interest.

Study Duration Specify duration, lK , in idem-parameters. This is the length of the
study.

Boundary Specify bounds in idem-parameters. These create a numeric vector
of lower and upper bounds for the functional outcomes

Unit Time A drop-down list that specifies unitTime in idem-parameters. This
is the unit of time measurement for survival.
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Ranking Rules Reserved for advanced users.

Labels of
Treatment

Specify labels of treatment arms to be used in figures and tables. This
is only available after the model specification has been validated.

After the parameters are specified, click the Validate Model button which calls the idem
function imChkPars to check if there are any errors or inconsistencies in the specifications.

Data Exploration panel:
The Data Exploration panel provides summary tables and figures for the users to visual-
ize the uploaded dataset including the missing data patterns survival status and functional
outcomes among survivors. The items on this panel include:

Missing Table Missingness frequency table generated by imMisTable in idem.

Missing Heatmap Missingness heatmap plot generated by imPlotMisPattern in idem.

Survival Kaplan-Meier survival curve generated by imPlotSurv in idem.

Survivors Spaghetti plot of the observed functional outcomes for survivors gen-
erated by imPlotCompleters in idem.

Model Fitting panel:
The Model Fitting panel provides R output and diagnostic plots for each component in the
factorized joint distribution of the functional outcomes among survivors with no missing data
(Equation 2). The diagnostic plots include the Residuals vs. Fitted plot and the Normal
Q-Q plot.

Configuration panel:
The Configuration panel sets the parameters for the multiple imputation and MCMC sam-
pling. The sections and items within each section on this panel include:

• General Imputation Settings

Imputed Datasets Number of complete datasets to be generated.

Bootstrap Samples Number of boostrap samples for bootstrap analysis.

Cores Number of cores for parallel bootstap analysis .

Random Seed Random seed for multiple imputation.

• MCMC Parameters

Iterations Stan parameter specifying how many iterations including burn-in
for posterior sampling.

Number of burn-in Stan parameter specifying how many burn-in for posterior sam-
pling.
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Number of thinning Stan parameter specifying the period for saving posterior samples.

Number of Chains Stan parameter specifying the number of MCMC chains for sam-
pling.

Acceptance Rate Stan parameters that affect the MCMC convergence.

Initial Step-size Stan parameters that affect the MCMC convergence.

• Sensitivity Parameters And Additional Quantile Output

Percentiles Percentiles of the composite endpoint to be analyzed and reported.

Sensitivity
Parameters

Choices of sensitivity parameters ∆T .

• Check Convergence
Clicking the Check Convergence button will randomly select a subject with at least
one missing functional outcome, draw samples of the missing functional outcome(s) by
MCMC sampling and present the trace plots of the Markov chains. The trace plots serve
as a diagnostic tool for evaluating the mixing of the Markov chains in the imputation.

Imputation panel:
The Imputation panel conducts the imputation and bootstap analysis, presents the results
and provides a link to download the imputed data. The sections and items within each section
on this panel include:

• Benchmark Assumption Imputation
After clicking the Benchmark Assumption Imputation button, a progress bar will show
up during the imputation. Once the imputation is finished, the following results are
presented in this section:

Imputed Data Contains three panels. The Imputed Dataset panel provides a
table view of the complete dataset. The Imputed Outcome and
the Imputed Endpoint panel provide the density plots of the im-
puted functional outcomes and the functional endpoint, respec-
tively, that are generated by the idem function imPlotImputed.

Analysis Results Presents the tables of the estimated θ and quantiles of the compos-
ite endpoint for all values of the sensitivity analysis parameters. It
also presents the cumulative distribution function of the compos-
ite endpoint under the benchmark assumption that is generated
by the imPlotComposite function in idem.

Download Select the Download button to download the complete datasets
as a delimited text file.

• Hypothesis Testing by Bootstrap
Clicking the button Hypothesis Testing by Bootstrap will conduct the bootstrap
analysis.
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Analysis results The composite endpoint based analysis results are presented in
three panels. The Ranks panel presents the table of θ̂’s, the cor-
responding standard deviation of the bootstraps and p values for
all sensitivity analysis scenarios. The Quantiles panel presents
the table of requested quantiles and the corresponding lower and
upper bounds for all sensitivity analysis scenarios. The Contour
Plot panel presents the contour plot of the p values obtained by
testing the null hypothesis of θ = 0 as a function of the treatment-
specific sensitivity analysis. The plot is generated by the idem
function imPlotContour.

Survivor only
analysis results

The survivor only analysis results are presented in Treatment
Effect panel and Contour Plot panel that are similar to the
composite endpoint based analysis results.

SACE analysis
results

The SACE analysis results are also presented in Treatment Effect
panel and Contour Plot panel.

Report panel:
The Report panel provides a Download button for downloading the analysis results as a
report. The available document formats for the report include PDF, HTML and Word.

5. Demonstration of idem GUI
In this section, we demonstrate the idem GUI using the ABC trial data. The imputation
incorporates patient age (AGE) as the baseline covariate. There is no Y0 and we set BL = 0
and BU = 100. The variable TRT is 0 and 1 for the UC+SBT and the SAT+SBT arm,
respectively. We specify the following models for µk,t(Y

†
k−1, X;αk,t):

µ1,t(X,α1,t) = α1,t,1 + α1,t,2AGE

µ2,t(Y
†
1, X;α2,t) = α2,t,1 + α2,t,2AGE + α2,t,3Y

†
1 .

The entire analysis can be performed using the following steps:
Step 1. Upload the ABC data file to idem from the Upload Data panel (Figure 12). One can
also load the data from idem by clicking the Try it button.
Step 2. Specify the idem-parameters on the Model Specification panel (Figure 13). Set
the TRT column to be the Treatment, SURV column to be Time to Death, Y1 and Y2 columns
to be Outcome and AGE column to be Baseline covariates. Specify the functional endpoint
Z as Y2 and study duration to be 365 days. Set the boundaries of the cognition score (i.e.,
functional outcomes) to be (0, 100).
Click the Validate Model button to validate the model specification settings. If the result
is Model specification is valid, specify the treatment labels to be UC+SBT and SAT+SBT, which
will be used in figures and tables, and proceed to the next step (Figure 14).
Step 3. In the Data Exploration panel, review the missing data pattern table (Figure 15),
the missing data pattern heatmap, the Kaplan-Meier survival curves (Figure 16) and the
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Figure 12: Upload data.

Figure 13: Model specification.
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Figure 14: Model specification.

Figure 15: Data exploration: Missigness frequency table.
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Figure 16: Data exploration: Survival curves.

Figure 17: Model fitting: Raw R output.
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Figure 18: Model fitting: Model fitting diagnostic plots.

spaghetti plot of the functional outcome among survivors. The results show that there is a
difference between Kaplan-Meier survival functions for the two treatment arms (p value =
0.006).
Step 4. The model fitting results are presented on the Model Fitting panel (Figures 17–18).
The residuals vs. fitted plot and the normal Q-Q plot of the model fitting results indicate
that the normality assumption for the residuals may not hold.
Step 5. Move to the Configuration panel to specify imputation and bootstrap analysis
parameters. Because of the concern about the normality assumption based on the model
fitting results, specify the Normality assumption to be No. Specify the number of imputed
datasets to be 5 and the number of bootstrap samples for the bootstrap analysis to be 100.
Specify the sensitivity parameters to be −0.2, 0, 0.2. Choose 5 cores for bootstap parallel
analysis (Figure 19). Note that the number of cores available may be different depending on
the available cores for the R process.
This panel provides a Check Convergence button to randomly select an individual with
missing functional outcomes, conduct the imputation under the benchmark assumption for
the individual and present the traceplot of the MCMC samples (Figure 20). If there appears
to be an issue with the convergence, the user should consider running a longer Markov chain
and adjusting the target Metropolis acceptance rate or initial step-size. In our example, it
can be seen that the MCMC chains are mixed well.
Step 6. On the Imputation panel, click the Benchmark Assumption Imputation button
to conduct the imputation and the Hypothesis Testing by Bootstrap button to conduct
the bootstrap analysis and draw inference. Selected results for the example are presented on
Figures 21 and 22. See Section 3.4 for the explanation of the results.
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Figure 19: Configuration: Parameter specification.

Figure 20: Configuration: Convergence.
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Figure 21: Imputation results.

Figure 22: Hypothesis analysis results.
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Figure 23: Report panel.

Figure 24: Content page of a downloaded report.

Step 7. After conducting the analysis, choose to download a report as a PDF, HTML, or
Word document from the Report panel (Figure 23). The report contains sections for Data
Summary, Analysis Summary, Missingness Summary, Imputation Results and Bootstrap
Results. Figure 24 shows the content page of report for the example. Note that generating
the PDF version of the report requires a TEX/LATEX installation.
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6. Conclusion
Missing data and data “truncated due to death” occur frequently in randomized clinical trials.
Wang et al. (2017) proposed an approach that was based on the composite of mortality and
the functional outcomes among survivors that accounts for both intermittent missing data
and data “truncated due to death”. Their proposal applied the complete case missing value
constraints for missing data imputation and suggested a global sensitivity analysis framework
to further assess the robustness of the findings.
In this paper, we introduce the R package idem that implements the proposed method in
Wang et al. (2017). The idem package provides functions for users to visualize the missing
data patterns, the observed functional outcomes among survivors and the survival curves
for all randomized patients. The imputation functions in idem implement the imputation
using the adaptive Hamiltonian Monte Carlo algorithm provided by rstan. The idem package
also provides functions for conducting bootstrap analysis and drawing inference. In addition,
the idem package also provides functions to evaluate the survivors only treatment effect and
survivor average causal effect on the functional outcomes based on the same missing data
imputation strategy proposed by Wang et al. (2017).
A unique feature of idem is that it provides a shiny-based graphical user interface for users
to apply functions in idem in an interactive and user-friendly manner. With the GUI feature,
idem can be used by not only statisticians but also analysts that are not familiar with the R
environment.
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