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Abstract

Cognitive diagnosis models (CDMs) have attracted increasing attention in educational
measurement because of their potential to provide diagnostic feedback about students’
strengths and weaknesses. This article introduces the feature-rich R package GDINA for
conducting a variety of CDM analyses. Built upon a general model framework, a number
of CDMs can be calibrated using the GDINA package. Functions are also available for
evaluating model-data fit, detecting differential item functioning, validating the item and
attribute association, and examining classification accuracy. A grapical user interface
is also provided for researchers who are less familar with R. This paper contains both
technical details about model estimation and illustrations about how to use the package
for data analysis. The GDINA package is also used to replicate published results, showing
that it could provide comparable model parameter estimation.
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1. Introduction

Cognitively diagnostic assessments (CDA; de la Torre and Minchen 2014; Nichols, Chipman,
and Brennan 1995) have gained increasing popularity in the past decades in the field of
educational measurement. Traditional standardized educational assessments usually base
on unidimensional item response theory (IRT; e.g., de Ayala 2013), which assumes that a
single latent trait (or overall ability) is measured. Consequently, students are located on
a continuum based on their performance in assessments using appropriate IRT models. In
contrast, CDAs usually depend on cognitive diagnosis models (CDMs) with an intention to
provide diagnostic information about students’ strengths and weaknesses. To obtain such
information, the assessments are typically designed to measure a set of finer-grained skills,
which are usually referred to as attributes, and treated as binary latent variables with outcome
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1 for mastery and 0 for nonmastery. The major goal of CDM analyses is to infer students’
attribute profiles from their item responses.
A wide array of CDMs (e.g., Rupp, Templin, and Henson 2010) have been developed, and most
of them, if not all, consist of two major components. One component is an item and attribute
association matrix, or Q-matrix (Tatsuoka 1983), which specifies whether an attribute is
needed to perform an item correctly. The Q-matrix is usually developed by domain experts,
and assumed to be correct in the following CDM analyses. The second component is referred
to as the condensation rule (Maris 1999), which defines how attributes are “condensed” to
yield manifest item responses. Some CDMs are formulated to accommodate some specific
condensation rule. For example, the deterministic inputs, noisy “and” gate (DINA; Haertel
1989) model employs a conjunctive rule, and assigns the highest probability of answering
correctly to individuals that possess all of the required attributes. The deterministic inputs,
noisy “or” gate (DINO; Templin and Henson 2006) model, however, adopts a disjunctive
rule, and assigns the highest probability of answering correctly to individuals mastering at
least one of the required attributes. In addition, the additive CDM (A-CDM; de la Torre
2011) assumes that each required attribute contributes to the success probability uniquely
and independently. Apart from these specific CDMs, general or saturated CDMs subsuming
many widely-used specific CDMs have also been developed, including the generalized DINA
(G-DINA; de la Torre 2011) model, the general diagnostic model (GDM; von Davier 2008)
and the log-linear CDM (LCDM; Henson, Templin, and Willse 2009).
The present work introduces the R (R Core Team 2020) package GDINA (Ma and de la
Torre 2020b) for conducting a variety of CDM analyses based on the G-DINA model (de la
Torre 2011) and its extensions. The package is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=GDINA. Currently, there exist
a few packages for the R programming environment which implement CDM analyses, including
the ACTCD (Chiu and Ma 2018), CDM (George, Robitzsch, Kiefer, Gross, and Ünlü 2016),
dina (Culpepper 2015), and NPCD (Zheng and Chiu 2019) packages. The dina package
estimates the DINA model using the Gibbs sampler, and the ACTCD and NPCD packages
are designed for nonparametric CDM analyses. The CDM package is capable of estimating
the GDM, the structured CDMs (Formann 1992), the regularized latent class model (Chen,
Li, Liu, and Ying 2017), as well as the G-DINA model. In addition to these R packages, some
general purpose commercial software programs, such as Mplus (Muthén and Muthén 2017)
and Latent GOLD (Vermunt and Magidson 2016), are also capable of fitting the G-DINA
model by imposing some specific constraints. However, since they are not designed for CDM
analyses, they usually lack some important functionalities (e.g., Q-matrix validation), and
tend to be slow.
The GDINA package is primarily developed for conducting CDM analyses using the G-DINA
model (de la Torre 2011) and its extensions (e.g., Chen and de la Torre 2013; Ma and de
la Torre 2016; Ma, Terzi, Lee, and de la Torre 2017; Ma 2019b), hence the name. It has
several distinguishing features compared with existing R packages for cognitive diagnosis at
the time of writing. In particular, the GDINA package provides a set of unique tools for
model diagnostics under the G-DINA model framework. For example, the GDINA package is
the only program that allows for empirically validating the Q-matrix under a general model
framework using a variety of approaches (de la Torre and Chiu 2016; de la Torre and Ma
2016; Ma and de la Torre 2020a; Najera, Sorrel, and Abad 2019) and selecting models at
item level using the Wald test, likelihood ratio test or Lagrange multiplier test. The GDINA
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package also allows users to assess global model-data fit using theM2 statistic for dichotomous
response (Hansen, Cai, Monroe, and Li 2016; Liu, Tian, and Xin 2016) and the Mord statistic
for ordinal response (Ma 2020). In addition, the GDINA package allows users to calibrate
the generalized multiple-strategy models for dichotomous response (Ma and Guo 2019) and
diagnostic tree model for polytomous response (Ma 2019b) when multiple strategies exist.
Furthermore, the GDINA package provides a routine to validate the Q-matrix, choose the
most appropriate CDMs for each item, and calibrate the selected CDMs at one fell swoop.
Last, the GDINA package is the only R package that offers a graphical user interface for
various CDM analyses.

The paper is organized as follows. In Section 2 we review the G-DINA model framework, in-
cluding various parameterizations of item response functions and joint attribute distribution.
In Section 3, we present the details of the EM algorithm for structural parameter estimation.
We introduce the features of the GDINA package in Section 4 and analyze a real dataset for
illustrative purpose in Section 5. In Section 6, we compare the GDINA package and com-
mercial software programs in terms of parameter estimation and speed based on two sets of
real data. We conclude with a discussion on possible future developments in Section 7.

2. The G-DINA model framework

Suppose a test with J items measures K binary attributes. The association between items
and attributes is specified in a J × K Q-matrix (Tatsuoka 1983), with element qjk = 1
indicating item j measures attribute k and qjk = 0 indicating item j does not measure
attribute k. Also, K binary attributes produce 2K attribute profiles, each labeling a unique
latent class. The attribute profile for latent class c is denoted as αc = [αc1, . . . , αcK ]>, where
αck = 1 if attribute k is mastered and αck = 0 if not. Superscript > is used to denote
transposition. Let a = [a1, . . . ,ai, . . . ,aN ]> be a vector of attribute profiles of N individuals
in a sample, where ai ∈ {α1, . . . ,αc, . . . ,α2K} is aK-dimensional random vector representing
the attribute pattern of individual i. Let Yij be a response variable of individual i to item j,
following a Bernoulli distribution with an observed realization yij . Also, denote Yi = {Yij}
as item response vector of individual i and Y = [Y1, . . . ,YN ]> the item response matrix
from N individuals. To formulate a CDM, we need to define the item response function for
the relation between item response and attribute profiles, and the model for joint attribute
distribution, which gives the population proportion of each latent class.

2.1. Item response function

When not all attributes are required for item j, the G-DINA model (de la Torre 2011) collapses
2K latent classes into 2K

∗
j latent groups, where K∗j =

∑K
k=1 qjk. The collapsed latent classes

have the same success probability to item j. To simplify the notation, the first K∗j attributes
are assumed to be required for item j, and α∗lj is the reduced attribute vector consisting of
the columns of the required attributes, where l = 1, . . . , 2K

∗
j . The probability of individual i

with attribute profile αc answering item j correctly is denoted by P(Yij = 1|αc) = Pj(αc).
Note that if latent class c is collapsed into latent group l, we have Pj(αc) = P(α∗lj), where for
the latter, the subscript j is dropped to avoid the redundancy. The item response function
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(IRF) of the G-DINA model is given by

g

[
P(α∗lj)

]
= δj0 +

K∗j∑
k=1

δjkαlk +
K∗j∑

k′=k+1

K∗j−1∑
k=1

δjkk′αlkαlk′ + · · ·+ δj12···K∗j

K∗j∏
k=1

αlk, (1)

where g
[
·] stands for identity, log or logit link functions. Additionally, δj0 is the intercept

for item j, δjk is the main effect due to αk, δjkk′ is the interaction effect due to αk and αk′ ,
δj12···K∗j is the interaction effect due to α1, . . ., αK∗j . By setting appropriate constraints, as
shown in de la Torre (2011), several widely used CDMs can be obtained. Specifically, to
obtain the DINA model, all terms in the identity link G-DINA model, except δ0 and δ12...K∗j ,
are constrained to zero, that is,

P(α∗lj) = δj0 + δj12···K∗j

K∗j∏
k=1

αlk.

For the DINO model, the IRF is given by

P(α∗lj) = δj0 + δjkαlk,

where δjk = −δjk′k′′ = · · · = (−1)K
∗
j +1δj12···K∗j , for k = 1, . . . ,K∗j , k

′ = 1, . . . ,K∗j − 1,
and k

′′
> k

′
, . . . ,K∗j . This results in two parameters for the DINO model as well as the

DINA model for each item, regardless of the number of attributes required. In addition,
by setting all interactions at zero in the G-DINA model, the A-CDM, linear logistic model
(LLM; Maris 1999), and reduced reparameterized unified model (R-RUM; Hartz 2002) can be
obtained. Specifically, the A-CDM is the constrained identity-link G-DINA model without
the interaction terms. It can be written by

P(α∗lj) = δj0 +
K∗j∑
k=1

δjkαlk.

The LLM is the logit link G-DINA model without any interaction terms, and can be formu-
lated as

logit[P(α∗lj)] = δj0 +
K∗j∑
k=1

δjkαlk.

The R-RUM is the log-link G-DINA model without any interaction terms, and can be given
by

log[P(α∗lj)] = δj0 +
K∗j∑
k=1

δjkαlk.

These three models assume that mastering attribute αlk raises the probability of success on
item j, but the increases may be different due to the different scales they employ. As additive
models, mastery of each attribute does not affect other attributes. Additionally, they all have
the same number of parameters for item j (i.e., K∗j + 1).

2.2. Joint attribute distribution
Maris (1999) discussed a variety of approaches to parameterizing the joint attribute distri-
bution. In this paper, the probability mass function of attribute profile αc is denoted by
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πc = h(λ), where λ is a vector of unknown structural parameters. One of the simplest
approaches is the independent model, which assumes that all attributes are independent sta-
tistically and can be written by

πc =
K∏
k=1

P(αk = 1)αck [1− P(αk = 1)]1−αck .

The independent model involves K parameters, λ = [P(α1 = 1), . . . ,P(αK = 1)]>, where
P(αk = 1) is the probability of mastering attribute k. Another model with simple param-
eterization is the saturated model, which involves 2K parameters, λ = [π1, . . . , π2K ]>, with
the constraint of

∑2K

c=1 πc = 1. Note that πc is sometimes referred to as mixing proportion
parameter, indicating the proportion of individuals in latent class c. The saturated model is
considered the most general parameterization of the joint attribute distribution, but tends
to involve too many parameters when K is large. In addition, Xu and von Davier (2008)
proposed to use a loglinear model to smooth the joint attribute distribution, which can be
written as

log[n(αc)] = λ0 +
K∑
k=1

λkαk +
K−1∑
k=1

K∑
k′=k+1

λkk′αkαk′ ,

where n(αc) = Nπc is the number of individuals with attribute profile αc. The above loglin-
ear structural model considers main effects and first-order interactions. It has 1+K(K+1)/2
parameters, namely, λ = [λ0, λ1, . . . , λK−1,K ]>. It is very flexible in that it can be simplified
by removing all interactions between attributes, or extended by including higher-order at-
tribute interactions, but its parameters do not have straightforward interpretation. Another
method for parameterizing the joint attribute distribution is the higher-order model (de la
Torre and Douglas 2004), which assumes that the mastery of each attribute is influenced by
a higher-order latent trait and that their relation is defined using IRT models, such as the
two parameter logistic (2PL; see de Ayala 2013) model:

Pk(θ) = P(αk = 1|θ) = exp(λ0k + λ1kθ)
1 + exp(λ0k + λ1kθ)

,

where θ represents the unidimensional general ability and λ = [λ01, . . . , λ0K , λ11, . . . , λ1K ]>
is a vector of higher-order structural parameters. Note that setting λ1k = λ1 ∀k yields the
one parameter logistic (1PL; see de Ayala 2013) model, and setting λ1k = 1 ∀k produces the
Rasch model (Rasch 1960). Under the assumption of local independence,

P(αc|θ) =
K∏
k=1

Pk(θ)αck
[
1− Pk(θ)

]1−αck

and the probability mass function can be obtained by integrating out θ, which can be ap-
proximated by Gauss-Hermite quadrature:

πc =
∫

P(αc|θ)f(θ)dθ ≈
S∑
s=1

P(αc|θ̃s)W (θ̃s),

where θ̃s and W (θ̃s) are the quadrature nodes and weights, respectively. The accuracy of the
approximation can be improved by increasing the number of quadrature nodes S.
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Note that the higher-order model defined in de la Torre and Douglas (2004) is more general
by allowing the higher-order latent trait to be multidimensional, but only the unidimensional
θ is considered in this paper, as well as in the GDINA package. There is no existing software
program that can accommodate higher-order CDMs with multidimensional higher-order latent
traits so far. This is one of the features that we consider incorporating into the GDINA
package later.

3. Model estimation
Let γ = [δ>,λ>]> denote a vector of structural parameters involved in a CDM, including
item parameters δ and joint attribute distribution parameters λ. In addition, for individual i,
attribute profile ai, as well as higher-order ability θi when a higher-order model is employed for
joint attribute distribution, need to be estimated, which are typically referred to as incidental
parameters. The G-DINA model was estimated by maximizing the marginalized likelihood
(de la Torre 2011), which, as shown in Bock and Aitkin (1981), can be implemented using
the expectation-maximization algorithm (EM; Dempster, Laird, and Rubin 1977). The EM
algorithm is a general procedure for finding MLEs when missing data exist. In the current
context, for individual i, item responses yi can be regarded as “incomplete” data, person
parameter ai as missing data, and xi = [y>i ,a>i ]> as the “complete” data. When a higher-
order model is used, the complete-data for individual i is xi = [y>i ,a>i , θi]> since both ai and
θi are missing data.
The goal of the EM algorithm is to find the maxima of the incomplete-data likelihood indi-
rectly by maximizing the complete-data log likelihood iteratively. More specifically, the EM
algorithm consists of two steps: the expectation (E) step and the maximization (M) step. In
the E-step, we need to calculate the so-called Q function (Dempster et al. 1977), which is the
expected log likelihood of the complete-data conditional on the observed data and current
parameter estimates, and takes the following form:

Q(γ;γ ′) = EX|y,γ′
[
logL(γ;X)

]
,

where γ ′ denotes the parameter estimates from the previous step. In the M-step, the Q
function is maximized. The E- and M-steps repeat until certain convergence criteria have
been met.
It can be shown that, when individuals are independent and the joint attribute distribution
is not modeled using the higher-order model,

Q(γ;γ ′) =
2K∑
c=1

nc log
[
πc
]

+
J∑
j=1

2K∑
c=1

[
rjc log

[
Pj(αc)

]
+ (nc − rjc) log

[
1− Pj(αc)

]]
,

where nc is the expected number of individuals in latent class c and rjc is the expected number
of individuals in latent class c who answer item j correctly. They can be calculated by

nc =
N∑
i=1

P(αc|yi,γ ′) and

rjc =
N∑
i=1

yijP(αc|yi,γ ′),
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where P(αc|yi,γ ′) is the posterior probability of individual i being assigned to latent class c,
and can be calculated using the Bayes rule:

P(αc|yi,γ ′) = P(yi|αc,γ ′)πc∑
c P(yi|αc,γ ′)πc

.

Here,

P(yi|αc,γ ′) =
J∏
j=1

[
P(Yij = 1|αc,γ ′)

]yij
[
1− P(Yij = 1|αc,γ ′)

]1−yij .

When individuals are independent and the joint attribute distribution is parameterized using
a higher-order model,

Q(γ;γ ′) =
J∑
j=1

2K∑
c=1

[
rjc log

[
Pj(αc)

]
+ (nc − rjc) log

[
1− Pj(αc)

]]
+

K∑
k=1

S∑
s=1

[
rks log

[
Pk(θ̃s)

]
+ (ns − rks) log

[
1− Pk(θ̃s)

]]
+

S∑
s=1

ns log
[
W (θ̃s)

]
,

where ns is the expected number of individuals having ability θ̃s, which can be calculated by

ns =
N∑
i=1

2K∑
c=1

P(αc, θ̃s|yi) =
2K∑
c=1

nc
P(αc|θ̃s)W (θ̃s)∑
s P(αc|θ̃s)W (θ̃s)

,

and rks is the expected number of individuals with ability θ̃s mastering attribute k, and can
be calculated by

rks =
N∑
i=1

2K∑
c=1

αckP(αc, θ̃s|yi) =
2K∑
c=1

nc
αckP(αc|θ̃s)W (θ̃s)∑
s P(αc|θ̃s)W (θ̃s)

.

In the E-step, nc and rjc, as well as ns and rks when a higher-order model is employed, are
calculated based on γ ′, and then, in the M-step, Q(γ;γ ′) is maximized with respect to model
parameters γ.

4. Implementation in the GDINA package
The main function of the R package GDINA is GDINA(), which allows the calibration of a
variety of CDMs within the G-DINA model framework. In the GDINA package, the G-DINA
model is specified similar to the generalized linear model using design matrix and link function
(de la Torre 2011). In particular, let δj = [δj0, . . . , δj12...K∗j ]> be a vector of parameters of
item j and Pj = {P(α∗lj)} be a vector of item success probabilities. The G-DINA model is
written as

g[Pj ] = Mjδj ,

where Mj is the design matrix (de la Torre 2011) and g[·] the link function. Let us assume
item j requires 2 attributes, for the G-DINA model,

MG-DINA
j =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 .
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Note that the aforementioned DINA, DINO, A-CDM, LLM and R-RUM models can also be
written in this form by specifying appropriate design matrices. For example, the Mj for the
DINA and DINO models can be written by

MDINA
j =


1 0
1 0
1 0
1 1

 and MDINO
j =


1 0
1 1
1 1
1 1

 ,
respectively. Furthermore, it is possible to define the design matrix and link function to
obtain new models. For example, as pointed out by de la Torre (2011), the multiple-strategy
DINA model (de la Torre and Douglas 2008) can be obtained by defining the design matrix
appropriately. The Bug-DINO model (Kuo, Chen, Yang, and Mok 2016) treats attributes as
misconceptions and assumes that individuals are not expected to answer an item correctly if
they possess any of the misconceptions measured by the item. A similar model, referred to
as Bug-DINA model, can be defined by assuming that individuals are expected to answer an
item correctly if they do not possess all of the misconceptions measured by the item. Both
can be viewed as special cases of the G-DINA model with design matrices:

MBug-DINA
j =


1 1
1 1
1 1
1 0

 and MBug-DINO
j =


1 1
1 0
1 0
1 0

 .
From the design matrices, it is straightforward to note that the Bug-DINA and Bug-DINO
models are just reparameterized DINA and DINO models. In the GDINA package, one can
define their own models by specifying the design matrix and link function for each item.
Model parameters are estimated using the EM algorithm. The E-step and many other com-
putationally intensive functions are written in C++ through the Rcpp (Eddelbuettel and
François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014) R packages to speed
up the execution. In the M-step, for a few models, closed-form solutions exist; whereas for
other models, some optimization routines are needed to maximize the Q function. Possible
solvers include optim from the stats package (R Core Team 2020), slsqp fromthe nloptr
package (Johnson 2010), auglag from the alabama package (Varadhan 2015), or solnp from
the Rsolnp package (Ghalanos and Theussl 2015). By default, the solvers are automatically
chosen according to the model to be calibrated, and if one optimization routine fails, another
one may be employed. Users can specify the solver in the GDINA() function if they have any
preference.
Several methods are available to further analyze the object returned from the GDINA() func-
tion. For example, print() and summary() can be used to display some summary information
of model estimation, and AIC() and BIC() can be used to calculate the Akaike (1974) in-
formation criterion and the Schwarz (1978) information criterion, respectively. In addition,
coef() can be used to extract structural parameters while personparm() can be used to
estimate person parameters.
In addition to model estimation, several statistical procedures are available in the GDINA
package. First, the Q-matrix can be empirically validated using the Qval() function, which
implements de la Torre and Chiu’s (2016) ς2 approach, the ς2 approach based on empirical



Journal of Statistical Software 9

cutoffs (Najera et al. 2019), and the stepwise method based on the Wald test (Ma and de la
Torre 2020a). A mesa plot (de la Torre and Ma 2016; Ma 2019a) can be created using the
plot() function, which is a line graph based on the proportion of variance accounted for by
each candidate q-vector (de la Torre and Chiu 2016) to provide a way of visually pinpointing
the best q-vector(s) for each item. Second, the modelcomp() function can be used to evaluate
whether, for an item which requires at least two attributes, the G-DINA model can be replaced
by a reduced model without a significant loss of model-data fit using the Wald test (de la
Torre 2011; de la Torre and Lee 2013; Ma, Iaconangelo, and de la Torre 2016; Ma and de
la Torre 2018), score test (Sorrel, Abad, Olea, de la Torre, and Barrada 2017a), likelihood
ratio (LR) test or two-step approximated LR test (Ma and de la Torre 2018; Sorrel, de la
Torre, Abad, and Olea 2017b). Further, the modelfit() function evaluates model-data fit by
calculating the M2 statistic, Mord statistic, RMSEA2 and SRMSR (Maydeu-Olivares and Joe
2014; Hansen et al. 2016; Liu et al. 2016; Ma 2020), and the itemfit() function calculates
the log odds ratio and transformed correlations proposed by Chen, de la Torre, and Zhang
(2013), which provide more details about the absolute fit for item pairs, and may be used to
identify the sources of misfit. To compare nested models at the test level, an LR test can be
conducted using anova(). Additionally, dif() detects differential item functioning using the
Wald test (Hou, de la Torre, and Nandakumar 2014) or LR test (Ma et al. 2017).

5. Illustrations
The data for this illustration were collected from a learning experiment at the University
of Tuebingen in Germany in 2010, and previously used by Philipp, Strobl, de la Torre, and
Zeileis (2018). Twelve items in elementary probability theory were presented to participants
and four attributes were involved: (α1) calculate the probability of the complement of an
event, (α2) calculate the probability of two independent events, (α3) calculate the classic
probability of an event, and (α4) calculate the probability of the union of two disjoint events.
Responses of 504 participants from the first part of the experiment were used. The data and
Q-matrix are available from the R package pks (Heller and Wickelmaier 2013). Specifically,
after installing the pks package, the data can be loaded by

R> data("probability", package = "pks")
R> pb <- probability[, sprintf("b1%.2i", 1:12)]

Note that the data contain some missing values, which are coded as NA. The Q-matrix is

R> Q <- read.table(header = TRUE, text = "
+ cp id pb un
+ 0 0 1 0
+ 1 0 0 0
+ 0 0 0 1
+ 0 1 0 0
+ 1 0 1 0
+ 1 0 1 0
+ 0 0 1 1
+ 0 0 1 1
+ 0 1 1 0
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+ 1 1 0 0
+ 1 1 1 0
+ 0 1 1 1")

We first fit the G-DINA model to the data by specifying data and Q-matrix as below. A
challenge for the EM algorithm is that the solutions could be local maxima. We set nstarts
= 200 in argument control to request the function to evaluate the observed log likelihood
based on 200 sets of randomly generated initial values. The best set of initial values is used
for the following model calibration.

R> library("GDINA")
R> GDINA_est <- GDINA(dat = pb, Q = Q, control = list(nstarts = 200))

As shown below, some information about the data, model and estimation can be printed.
The estimation converges quickly.

R> GDINA_est

Call:
GDINA(dat = pb, Q = Q, control = list(nstarts = 200))

GDINA version 2.8.0 (2020-05-23)
===============================================
Data
-----------------------------------------------
# of individuals groups items

504 1 12
===============================================
Model
-----------------------------------------------
Fitted model(s) = GDINA
Attribute structure = saturated
Attribute level = Dichotomous
===============================================
Estimation
-----------------------------------------------
Number of iterations = 161

For the final iteration:
Max abs change in item success prob. = 0.0001
Max abs change in mixing proportions = 0.0000
Change in -2 log-likelihood = 0.0000
Converged? = TRUE

Time used = 0.3979 secs

summary() can be used to print additional summary information about relative model-data fit,
number of parameters and attribute prevalence. For attribute prevalence, columns labeled
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"Level0" and "Level1" give the proportions of individuals who do not master and who
master each attribute.

R> summary(GDINA_est)

Test Fit Statistics

Loglik = -2424.84

AIC = 4975.69 | penalty [2 * p] = 126.00
BIC = 5241.71 | penalty [log(n) * p] = 392.02
CAIC = 5304.71 | penalty [(log(n) + 1) * p] = 455.02
SABIC = 5041.74 | penalty [log((n + 2)/24) * p] = 192.05

No. of parameters (p) = 63
No. of estimated item parameters = 48
No. of fixed item parameters = 0
No. of distribution parameters = 15

Attribute Prevalence

Level0 Level1
A1 0.1191 0.8809
A2 0.2894 0.7106
A3 0.1732 0.8268
A4 0.1199 0.8801

coef() can be used to extract various types of item parameters. The first argument of coef()
is the object returned from GDINA(). By default, coef() returns a list consisting of P(α∗lj)
for each item.

R> coef(GDINA_est)

$`Item 1`
P(0) P(1)

0.2245 0.9344

$`Item 2`
P(0) P(1)

0.2751 0.9741

$`Item 3`
P(0) P(1)

0.0971 0.9607

$`Item 4`
P(0) P(1)
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0.1253 0.9625

$`Item 5`
P(00) P(10) P(01) P(11)

0.0993 0.6218 0.9999 0.8457

$`Item 6`
P(00) P(10) P(01) P(11)

0.1374 0.5730 0.8986 0.9571

$`Item 7`
P(00) P(10) P(01) P(11)

0.2632 0.6390 0.6701 0.9406

$`Item 8`
P(00) P(10) P(01) P(11)

0.3490 0.8735 0.9999 0.9476

$`Item 9`
P(00) P(10) P(01) P(11)

0.0847 0.5165 0.6607 0.7728

$`Item 10`
P(00) P(10) P(01) P(11)

0.0710 0.0351 0.9999 0.8068

$`Item 11`
P(000) P(100) P(010) P(001) P(110) P(101) P(011) P(111)
0.0766 0.0001 0.9999 0.0636 0.5102 0.0165 0.0007 0.7044

$`Item 12`
P(000) P(100) P(010) P(001) P(110) P(101) P(011) P(111)
0.0418 0.0001 0.0001 0.0001 0.2928 0.0001 0.0521 0.8206

coef() takes an argument what, where users can specify the type of item parameters. For ex-
ample, by specifying what = "delta", δ parameters in Equation 1 can be extracted (outputs
are omitted).

R> coef(GDINA_est, what = "delta")

By specifying what = "lambda", parameters involved in the joint attribute distribution can
be extracted. By default, the saturated model is used and therefore, the mixing proportion
parameters are printed:

R> coef(GDINA_est, what = "lambda")

p(0000) p(1000) p(0100) p(0010) p(0001) p(1100) p(1010) p(1001)
0.0818 0.0129 0.0040 0.0176 0.0097 0.0000 0.0000 0.0494
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p(0110) p(0101) p(0011) p(1110) p(1101) p(1011) p(0111) p(1111)
0.0000 0.0012 0.0000 0.0036 0.0143 0.1180 0.0049 0.6827

Individuals’ attribute patterns can be estimated using maximum likelihood estimation (MLE),
expected a posteriori (EAP) or maximum a posteriori (MAP) as methods. To obtain attribute
estimates, use the function personparm() and specify the object returned from GDINA() as the
input. Similar to coef(), personparm() also has an argument called what, where users can
specify the method for person attribute estimation. By default, the EAP method is employed.
When using MLE or MAP, personparm() will print an additional column consisting of TRUE
or FALSE indicating whether the likelihood or posterior have multiple modes or not. If there
are multiple modes, the estimate returned is randomly selected. The following code shows the
MAP estimates of the first 6 individuals and it can be found that the posterior distributions
for all of these 6 individuals are unimodal.

R> map <- personparm(GDINA_est, what = "MAP")
R> map[1:6, ]

A1 A2 A3 A4 multimodes
1 1 1 1 1 FALSE
2 1 1 1 1 FALSE
3 1 0 1 1 FALSE
4 1 1 1 1 FALSE
5 1 0 1 1 FALSE
6 1 1 1 1 FALSE

To fit other CDMs, we can modify argument model of the GDINA() function. It can be a
character vector for each item or a scalar which will be used for all items. For example, to fit
the DINA model, we set model = "DINA". We can also modify att.dist to specify the model
for the joint attribute distribution. The code below estimates a higher-order DINA model
using the Rasch model. Note that the argument higher.order allows further specifications
of the higher-order model.

R> HoDINA_est <- GDINA(dat = pb, Q = Q, model = "DINA",
+ control = list(nstarts = 200), att.dist = "higher.order",
+ higher.order = list(model = "Rasch"))

We can still use summary() to print summary information, coef() to print model parameters
involved in item response function and joint attribute distribution, and personparm() to es-
timate person parmeters (including higher-order ability). For example, to print the structural
parameters of the joint attribute distribution,

R> coef(HoDINA_est, what = "lambda")

slope intercept
A1 1 3.1993
A2 1 1.1419
A3 1 2.5979
A4 1 2.6201
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We can use anova() to compare two models:

R> anova(HoDINA_est, GDINA_est)

Information Criteria and Likelihood Ratio Test

#par logLik Deviance AIC BIC CAIC SABIC chisq df
HoDINA_est 28 -2579.39 5158.79 5214.79 5333.02 5361.02 5244.15 309.1 35
GDINA_est 63 -2424.84 4849.69 4975.69 5241.71 5304.71 5041.74

p-value
HoDINA_est <0.001
GDINA_est

In addition, we can explore whether the G-DINA model can be constrained to some reduced
models for each item. To achieve this goal, modelcomp() can be used with the object returned
from GDINA() as the input:

R> mc <- modelcomp(GDINA.obj = GDINA_est)

By default, modelcomp() performs the Wald test for each item that requires two or more
attributes. The following code prints the primary results of model comparsions. The column
labeled "models" gives the suggested CDM for each item based on the “simpler model +
largest p value rule” (Ma et al. 2016). Specifically, if the DINA or DINO model was one of
the retained models, then the DINA or DINO model with the larger p value was selected
as the best model; but if both DINA and DINO were rejected, the reduced model with the
largest p value was selected as the best model for this item. Note that when the p values
of several reduced models were greater than the nominal level, the DINA and DINO models
were preferred over the A-CDM, LLM, and R-RUM models because of their simplicity. The
suggested models for the first four items are the G-DINA model because they are all single-
attribute items.

R> mc

Item-level model selection:

test statistic: Wald
Decision rule: simpler model + largest p value rule at 0.05 alpha level.
Adjusted p values were based on holm correction.

models pvalues adj.pvalues
Item 1 GDINA
Item 2 GDINA
Item 3 GDINA
Item 4 GDINA
Item 5 DINO 0.148 1
Item 6 LLM 0.4296 1
Item 7 LLM 0.6948 1
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Item 8 DINO 0.7135 1
Item 9 DINO 0.2646 1
Item 10 DINA 0.68 1
Item 11 DINA 0.6206 1
Item 12 DINA 0.9999 1

Users can specify method = "LM" or method = "LR" in modelcomp() for score and LR tests.
Note that the null hypothesis is that the reduced model can fit the data as well as the G-
DINA model, and hence, a non-significant result implies that the reduced model may be used
instead of the G-DINA model. Note that modelcomp() is only suitable for nested models:
the saturated G-DINA model and the models it subsumes. To compare non-nested models,
users can use AIC() and BIC() functions.
Another important function in the GDINA package is Qval() for Q-matrix validation. Based
on the object returned from GDINA(), the following code examines whether any element in
the Q-matrix is potentially misspecified using the stepwise Wald test (Ma and de la Torre
2020a).

R> Qv <- Qval(GDINA.obj = GDINA_est, method = "wald")
R> Qv

Q-matrix validation based on Stepwise Wald test

Suggested Q-matrix:

A1 A2 A3 A4
1 0 0 1 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0
5 1 0 1 0
6 1 0 1 0
7 0 0 1 1
8 0 0 1 1
9 0 0* 1 0
10 0* 1 0 0
11 0* 1 0* 0
12 0 1 0* 0*
Note: * denotes a modified element.

It can be observed that based on the data, a few modifications are suggested to the q-vectors
of items 9, 10, 11 and 12. To better understand the results, we can draw mesa plots for these
items. For example, the code below draws a mesa plot for item 12 (see Figure 1):

R> plot(Qv, item = 12)

The mesa plot in Figure 1, by default, has the best q-vectors given the number of attributes
required on the x-axis. 0 is not a valid q-vector but presented for reference. de la Torre and
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Figure 1: Mesa plot for item 12.

Ma (2016) noted that the q-vector on the edge of the mesa is potentially the best. In the
figure, the one with red dot is the original q-vector. The plot shows that attribute 2 itself
(i.e., qj = [0100]>) can explain most variation in the success probabilities, and that attributes
3 and 4 do not contribute much. This implies that attributes 3 and 4 may not be necessary
to correctly answer this item. Note that the Q-matrix validation procedures in the GDINA
package are based on the data at hand, and whether the suggested modifications should be
incorporated should be subject to the judgement of domain experts.

6. Program comparisons
In this section, we use the R package GDINA to replicate published results based on two sets
of real data analyzed using commercial software programs. The first replication is based on
536 students’ responses to 20 fraction subtraction items, which has been previously analyzed
by many researchers (e.g., de la Torre and Douglas 2004). flexMIRT (Cai 2017) has been
used to fit the 1PL higher-order DINA model to the data, and the corresponding syntax and
outputs can be found in its manual (Houts and Cai 2016, p. 156–159). The data and Q-matrix
can be loaded by:

R> data("frac20", package = "GDINA")
R> frac_data <- frac20$dat
R> frac_Q <- frac20$Q

Using the GDINA R package, the 1PL higher-order DINA model can be estimated using the
code below:

R> est <- GDINA(dat = frac_data, Q = frac_Q, model = "DINA",
+ att.dist = "higher.order", higher.order = list(model = "1PL",
+ InterceptRange = c(-5, 5), nquad = 49),
+ control = list(conv.crit = 1e-6))



Journal of Statistical Software 17

Item flexMIRT GDINA
P(α∗lj = 0) P(α∗lj = 1) P(α∗lj = 0) P(α∗lj = 1)

1 0.04 0.90 0.04 0.90
2 0.03 0.96 0.03 0.96
3 0.00 0.88 0.00 0.88
4 0.22 0.89 0.22 0.89
5 0.30 0.82 0.30 0.82
6 0.01 0.96 0.01 0.96
7 0.03 0.80 0.03 0.80
8 0.45 0.81 0.45 0.81
9 0.18 0.75 0.18 0.75
10 0.03 0.79 0.03 0.79
11 0.07 0.93 0.06 0.93
12 0.13 0.96 0.13 0.96
13 0.02 0.67 0.02 0.67
14 0.05 0.94 0.05 0.94
15 0.03 0.90 0.03 0.90
16 0.10 0.88 0.10 0.88
17 0.04 0.86 0.04 0.86
18 0.12 0.85 0.12 0.85
19 0.02 0.76 0.02 0.76
20 0.01 0.84 0.01 0.84

Table 1: Item parameter estimates from flexMIRT and GDINA.

Attribute flexMIRT GDINA
Slope Intercept Slope Intercept

A1 3.82 −0.08 3.82 −0.08
A2 3.82 3.75 3.82 3.75
A3 3.82 2.34 3.82 2.34
A4 3.82 1.08 3.82 1.08
A5 3.82 −0.11 3.82 −0.11
A6 3.82 4.27 3.82 4.27
A7 3.82 3.99 3.82 3.99
A8 3.82 3.08 3.82 3.08

Table 2: Higher-order structural parameter estimates from flexMIRT and GDINA.

Note that we specify the 1PL model as the higher-order model by setting model = "1PL" in
argument higher.order. We also set the range of intercept parameters at [−5, 5] and the
number of quadrature nodes at 49. In addition, we use a more stringent convergence criterion,
that is, 1e-6, instead of the default 1e-4. The following code can be used to extract item
and higher-order structural parameters:

R> gs <- coef(est, what = "gs")
R> ho <- coef(est, what = "lambda")

The results are given in Tables 1 and 2. The item parameter estimates of flexMIRT in Table 1
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Item Templin and Hoffman (2013) GDINA
δj0 δj1 δj0 δj1
δj0 δj1 δj2 δj12 δj0 δj1 δj2 δj12

1 0.835 0.000 0.600 1.222 0.835 0.000 0.600 1.222
2 1.037 1.247 1.037 1.247
3 −0.340 0.748 0.346 0.535 −0.340 0.748 0.346 0.535
4 −0.139 1.691 −0.139 1.691
5 1.082 2.015 1.082 2.015
6 0.865 1.692 0.865 1.692
7 −0.106 2.855 0.952 −0.952 −0.106 2.855 0.952 −0.952
8 1.482 1.922 1.482 1.922
9 0.119 1.195 0.119 1.195
10 0.055 2.050 0.055 2.050
11 −0.039 0.818 0.961 0.777 −0.039 0.818 0.961 0.777
12 −1.769 0.000 1.290 1.515 −1.768 0.000 1.290 1.515
13 0.660 1.630 0.660 1.630
14 0.176 1.368 0.176 1.368
15 0.996 2.114 0.996 2.114
16 −0.104 2.341 0.892 −0.864 −0.104 2.344 0.892 −0.867
17 1.354 0.767 0.596 0.076 1.354 0.767 0.596 0.075
18 0.926 1.389 0.926 1.389
19 −0.195 1.848 −0.195 1.848
20 −1.389 0.243 0.908 1.410 −1.389 0.243 0.908 1.410
21 0.164 1.053 1.130 0.042 0.164 1.053 1.130 0.042
22 −0.872 2.245 −0.872 2.245
23 0.664 2.071 0.664 2.071
24 −0.673 1.522 −0.673 1.522
25 0.092 1.136 0.092 1.136
26 0.164 1.119 0.164 1.119
27 −0.887 1.713 −0.886 1.713
28 0.568 1.745 0.568 1.745

Table 3: Item parameter estimates from Mplus and GDINA.

were obtained from its manual (Houts and Cai 2016, p. 159), where numbers were reported to
only two decimal places. All item parameter estimates in Table 1 from flexMIRT and GDINA
are virtually identical. The higher-order structural parameters of flexMIRT in Table 2 were
obtained by re-running the flexMIRT code in its manual (see Example 7-7; Houts and Cai
2016, p. 156). The outputs are provided as supplementary material. It can be observed that
the GDINA package and flexMIRT also yielded virtually identical estimates of higher-order
structural parameter. It is worth noting that the GDINA package completed its calibration
in 4.11 seconds, whereas on the same laptop, the flexMIRT calculation took 23.27 seconds.
The second replication is based on the Examination for the Certificate of Proficiency in
English (ECPE) data set, which consists of 2922 students’ responses to 28 items. The data
and Q-matrix can be loaded by:

R> data("ecpe", package = "GDINA")
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R> ecpe_data <- ecpe$dat
R> ecpe_Q <- ecpe$Q

Templin and Hoffman (2013) fit the loglinear CDM (LCDM; Henson et al. 2009) to the
data using Mplus (Muthén and Muthén 2017). Templin and Hoffman (2013) also imposed
monotonic constraints to the success probabilities so that mastering of additional attributes
will not lead to a lower probability of success. More formally, the monotonic constraint implies
that P(α∗lj) ≤ P(α∗l′j) if α∗lj ≺ α∗l′j . Since the LCDM is equivalent to the logit link G-DINA
model, it can be estimated using the code below by specifying model = "logitGDINA":

R> ecpe_est <- GDINA(dat = ecpe_data, Q = ecpe_Q, model = "logitGDINA",
+ mono.constraint = TRUE, control = list(conv.crit = 1e-6))

In the code above, mono.constraint = TRUE ensures that the monotonic constraints are met
during the calibration. Table 3 gives the δ parameter estimates from the GDINA package and
Templin and Hoffman (2013) using Mplus. It can be found that the estimates are virtually
identical with only a few differences at the third decimal places. We also provided Mplus code
as supplemental material, which yielded identical parameter estimates as those in Table 3 from
Templin and Hoffman (2013), with only a few exceptions at the third decimal places for items
16 and 23. Note that the GDINA package completed its calibration in 21.42 seconds, whereas
Mplus took 32 minutes and 4 seconds.

7. Summary and discussion
This paper introduces the R package GDINA for conducting a variety of CDM analyses
under the G-DINA model framework. There are several features that are potentially useful
but were not demonstrated in this paper. First, the G-DINA model has been extended to
accommodate polytomous attributes (Chen and de la Torre 2013), polytomous responses (Ma
and de la Torre 2016) and multiple-group analysis (Ma et al. 2017). These models can also be
estimated using the GDINA() function. Second, the package can also calibrate various models
for multiple strategies, including the multiple strategy DINA model (Huo and de la Torre
2014), generalized multiple strategy CDMs (Ma and Guo 2019), and diagnostic tree models
(Ma 2019b). Other models and approaches for cognitive diagnosis that can be handled by
the package include the multiple-choice DINA model (de la Torre 2009) and iterative latent
class analysis (Jiang 2019). Besides, autoGDINA() is a wrapper function to simplify the
CDM analyses by conducting the Q-matrix validation, item-level model selection and model
calibration sequentially in a one run. In addition, to simulate item responses based on various
CDMs under the G-DINA model framework, simGDINA() can be employed. Last but not least,
to make the package more accessible to users who are less familar with R, a graphical user
interface (GUI), which is developed using shiny (Chang, Cheng, Allaire, Xie, and McPherson
2020) and shinydashboard (Chang and Borges Ribeiro 2018), can be started for various CDM
analyses by calling startGDINA(). The GUI session will be launched in the user’s default
browser. Figure 2 shows the start-up page of the interface, where users could browse and
import the item response matrix and Q-matrix in various formats. Figure 3 shows the second
tab, where users could choose a CDM from a dropdown list for model calibration or specify
different CDMs for different items. Users can also choose the options for validating Q-matrix
and performing item-level model selection using the Wald test. After clicking the “CLICK
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Figure 2: Start-up page of the GDINA GUI.

Figure 3: Model specification page of the GDINA GUI.

TO ESTIMATE!” button, a few other tabs will become visible to give various outputs. More
details on the use of the GUI for CDM analyses can be found in Ma and de la Torre (2019)
and de la Torre and Akbay (2019).
Because of the various functionality, the GDINA package could provide a set of useful tools
for researchers and practitioners who are interested in CDMs. The package is being developed
actively, and the features that may be incorporated into the package in the future include (1)



Journal of Statistical Software 21

accommodating complex sampling design, (2) providing other methods for estimating stan-
dard errors in the EM algorithm, (3) providing procedures for detecting model identifiability
and (4) accommodating a large dataset and Q-matrix.

Computational details
The results in this paper were obtained using R 4.0.0 with the GDINA 2.8.0 package. R
itself and all packages used are available from CRAN at https://CRAN.R-project.org/.
All analyses were conducted on a laptop with Intel i7-7600U CPU, 8GB RAM and Windows
10 OS.
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