
JSS Journal of Statistical Software
June 2020, Volume 94, Code Snippet 1. doi: 10.18637/jss.v094.c01

Using GNU Make to Manage the Workflow of Data
Analysis Projects

Peter Baker
University of Queensland

Abstract

Data analysis projects invariably involve a series of steps such as reading, cleaning,
summarizing and plotting data, statistical analysis and reporting. To facilitate repro-
ducible research, rather than employing a relatively ad-hoc point-and-click cut-and-paste
approach, we typically break down these tasks into manageable chunks by employing sep-
arate files of statistical, programming or text processing syntax for each step including the
final report. Real world data analysis often requires an iterative process because many
of these steps may need to be repeated any number of times. Manually repeating these
steps is problematic in that some necessary steps may be left out or some reported results
may not be for the most recent data set or syntax.

GNU Make may be used to automate the mundane task of regenerating output given
dependencies between syntax and data files. In addition to facilitating the management
of and documenting the workflow of a complex data analysis project, such automation
can help minimize errors and make the project more reproducible. It is relatively simple
to construct Makefiles for small data analysis projects. As projects increase in size,
difficulties arise because GNU Make does not have inbuilt rules for statistical and related
software. Without such rules, Makefiles can become unwieldy and error-prone.

This article addresses these issues by providing GNU Make pattern rules for R, Sweave,
rmarkdown, SAS, Stata, Perl and Python to streamline management of data analysis and
reporting projects. Rules are used by adding a single line to project Makefiles. Additional
flexibility is incorporated for modifying standard program options. An overall strategy is
outlined for Makefile construction and illustrated via simple and complex examples.

Keywords: GNU Make, Make, reproducible research, R, rmarkdown, Sweave, Stata, SAS.

1. Introduction
Scientists, statisticians and data scientists often work on several data analysis projects si-
multaneously. Each project will involve a number of steps such as a planning phase, reading
and cleaning data, preliminary summaries and plots, statistical analyses and reporting find-

https://doi.org/10.18637/jss.v094.c01

2 GNU Make for Managing Data Analysis Workflow

ings. Throughout this process, the data analyst will also need to regularly document their
work and back up data files, program files, reports and correspondence. These steps may be
repeated any number of times before the project is completed. Sometimes these steps are
carried out in a relatively ad-hoc manner and may even include a point-and-click cut-and-
paste approach to programming and reporting. Instead, to facilitate reproducible research,
we advocate breaking down these tasks into manageable chunks by employing separate files
of statistical, programming or text processing syntax for each step including the final report.
While efficiently managing these steps is very important for statistical consultants and indeed
anyone involved in quantitative research, very few formal resources are available and so most
of us learn by trial and error. Exceptions are Long (2009) who outlines the workflow of data
analysis using Stata (StataCorp 2019) and Dasu and Johnson (2003) who provide extensive
advice on exploratory data mining and improving data quality. Dasu and Johnson also quote
the figure well known to statisticians that about 80% of effort in data analysis projects is
often spent getting the data cleaned and in suitable shape for analysis. Indeed, there is a
growing interest in more efficient methods for so called data wrangling and tidying steps in
the data analysis process (Wickham 2014; Boehmke 2016).
Many of the steps in a data analysis project are sequential. For instance, data cleaning
may highlight data that need to be revised and then all other downstream steps like data
tidying, summarizing, statistical analysis and reporting will need to be repeated. Changes
in statistical modeling may update the reporting of the study but will not require rereading,
cleaning and summarizing data. For a simple project, it might be quite straightforward to
redo the appropriate steps. However, even with good documentation, for larger or more
complicated projects it becomes easier to make mistakes and harder to reproduce results.
GNU Make is a build automation utility widely used for large programming projects. It
helps keep track of interdependencies and aids efficiency in only recompiling altered modules.
Here we employ it for rerunning the appropriate steps to regenerate output for data analysis
projects. In particular, it is well suited to R (R Core Team 2020) since all steps and reports
in a project can be specified in a mixture of R syntax and either Sweave (Leisch 2002) or
rmarkdown (Allaire et al. 2020) files for reports or presentations. Indeed, GNU Make rules
can even be employed to carry out post analysis tasks like backing up data to a server or
sending reports to collaborators although it could be argued that a version control system
like git may be better suited to such tasks.
With an elementary knowledge of Make, it is straightforward to specify dependencies between
files and hence rerun only a minimal number of steps in the process. While, every step can
be specified explicitly, it is much more efficient to use (and reuse) pattern rules as outlined
in Section 4. The pattern rules developed here, which are available at https://github.
com/petebaker/r-makefile-definitions, simplify Makefiles by providing general rules
to generate output given an input file.
While other mechanisms and systems are available for automating builds, GNU Make is widely
used and can be considered to be the de-facto standard despite possessing some apparent lim-
itations and shortcomings. Like other practitioners (see Graham-Cumming 2015), having
tried alternative Make systems, we have always found ourselves returning to GNU Make be-
cause it works for our data analysis, consulting and research projects. It is relatively simple
to use and has enough functionality for the majority of such data analysis projects. While
various Make tools adopt or borrow features from other versions of Make we employ specific

https://github.com/petebaker/r-makefile-definitions
https://github.com/petebaker/r-makefile-definitions

Journal of Statistical Software – Code Snippets 3

GNU Make features not generally available in other versions of Make like the VPATH variable,
reading variables from and communicated through the environment, modified automatic vari-
ables including the $ˆ construct containing a list of all prerequisites of the current target
and phony targets with .PHONY among others. Indeed, while there a range of viewpoints,
many argue that in their experience, employing alternative more complicated build platforms
may over-complicate the process and induce errors and so prefer standard GNU Make (Hacker
News 2013; Bostock 2013).
It is straightforward to learn how to write and use Makefiles simply by modifying existing
examples from the web. There are a number of good blogs or online tutorials providing a nice
overview of Makefile construction and use including Gillespie (2011), Olson (2017), Jack-
man and Bryan (2014), Broman (2018), Jones (2018) and Hyndman (2018). Indeed, recent
R-centric build tools like drake, maker, and MakefileR look promising but a good work-
ing knowledge of GNU Make will undoubtedly prove useful if employing these approaches;
see Landau (2018), Gatto, Breckels, Gibb, and Smith (2014) and Müller (2016), respec-
tively. We demonstrate that it is straightforward to employ GNU Make via simple and more
complex examples which are also available on GitHub at https://github.com/petebaker/
r-makefile-definitions. Alternatively, the R package gnumaker (Baker 2020) available at
https://github.com/petebaker/gnumaker to create and graph simple Makefiles using the
rules outlined here is under development.
This article is organized as follows. Section 2 provides a quick start to using the GNU Make
rules provided here. Section 3 outlines basic Make usage and a strategy for writing Makefiles.
An overview of pattern rules specifically defined for R, rmarkdown and other statistical soft-
ware is given in Section 4. Section 5 provides several extensions and tips. Recursive and
non-recursive Make are outlined for more complex projects containing several subdirectories
in Section 6 while Sections 7 and 8 discuss this approach. Finally, Appendices A, B, C and
D outline how to set up RStudio (RStudio Team 2015) and ESS (Emacs speaks statistics;
Rossini, Heiberger, Sparapani, Mächler, and Hornik 2004) to use Make easily; a complete
Makefile for Section 3.2; details of the Make rules provided and Make installation, respec-
tively.

2. Getting started with GNU Make
In general, GNU Make will be installed on Unix/Linux systems but Windows and macOS users
may need to install it. Depending on their setup, some Windows 10 users may find they can
use GNU Make natively from a Bash shell. Otherwise, to obtain GNU Make, Windows users
can install the Rtools from https://CRAN.R-project.org while macOS users can install
XCode available at https://developer.apple.com/support/xcode/ from the Apple App
Store. However, since the versions may be ancient in computing terms, newer versions may
be preferred. See Appendix D for details.

2.1. A simple example

My advice is to start simply. For example, create or copy a statistical syntax file for R, Stata,
SAS, Perl, Python or PSPP and download the file r-rules.mk from https://github.com/
petebaker/r-makefile-definitions. Next, in the same directory or folder, create a text
file called Makefile with the single line, namely an include statement as follows:

https://github.com/petebaker/r-makefile-definitions
https://github.com/petebaker/r-makefile-definitions
https://github.com/petebaker/gnumaker
https://CRAN.R-project.org
https://developer.apple.com/support/xcode/
https://github.com/petebaker/r-makefile-definitions
https://github.com/petebaker/r-makefile-definitions

4 GNU Make for Managing Data Analysis Workflow

include r-rules.mk

Including a file simply means that the contents are processed as if they were inserted in the
Makefile at that point. The file r-rules.mk contains numerous rules for producing output
files including from R, Stata, SAS, rmarkdown and Sweave syntax files. Here we mainly
describe R and related software but the principle is the same.
For instance, if you are reading in some data using R with a syntax file named read.R then
typing

$ make read.Rout

(without the command prompt $) in a terminal window would run R in batch mode to process
read.R to read the data and produce a text output file read.Rout. If read.R is newer than
read.Rout or read.Rout is not present, then read.R is run to produce read.Rout and the
following would be output to the terminal or integrated development environment (IDE)
window to indicate that R is being run.

R CMD BATCH --vanilla read.R

However, if read.Rout has already been produced and is newer than read.R, R would not be
run and instead we would see the message

make: 'read.Rout' is up to date.

Typing make read.docx would instead run the rmarkdown function render to produce a
word document. These output files are known as targets, and are only updated if the de-
pendency files have changed or the target file is not present. The following output will be
seen.

Rscript --vanilla -e
"library(\"rmarkdown\");render(\"read.R\", \"word_document\")"

processing file: read.spin.Rmd
|...................... | 33%
ordinary text without R code
|... | 67%

label: unnamed-chunk-1
|...| 100%
ordinary text without R code

output file: read.knit.md

/usr/bin/pandoc +RTS -K512m -RTS read.utf8.md --to docx --from
markdown+autolink_bare_uris+ascii_identifiers+tex_math_single_backslash
--output read.docx --highlight-style tango
Output created: read.docx

Here the target file read.Rout implicitly has the dependency file read.R, as does the target
read.docx. However, if we were using read.R to read a text file containing data for an

Journal of Statistical Software – Code Snippets 5

analysis then the Makefile should also be set up to describe relationships between the targets
(outputs) and all dependencies (inputs) in the data analysis process. For instance, if read.R
is employed to read in data from simple.csv then the .csv file is also an input and the
relationships should be included in the Makefile.
Help is included in the file r-rules.mk. Type make help for further details including rules
for non-R software once this file is included in the Makefile.
Make can also be run with a number of options to either check what will happen or debug
the process when things do not work as expected. Details may be found in Section 4.4.

3. Makefile basics
Typically, Makefiles are set up using a programmer’s editor or IDE. While any text editor will
suffice, many R users would use either RStudio (RStudio Team 2015), ESS (Emacs speaks
statistics; Rossini et al. 2004) or Nvim-R (de Aquino 2016), all of which provide syntax
highlighting for GNU Make files and the ability to assign running make to a keyboard short
cut or menu. Users of other statistical software may typically use the editor provided or
ESS. Details of setting up Make in RStudio and ESS are provided in Appendix A. Tips for
streamlining Makefiles are provided in Section 4.4.

3.1. Specifying targets and dependencies
Typically, data analysis projects can involve multiple data sets, data cleaning, several analyses
and reports. Makefiles can easily be constructed to take into account more complicated
dependencies between targets and dependency files. In general, a rule to produce a target
file given a number of prerequisites prereq_1, prereq_2 and prereq_3 is specified as follows.

target: prereq_1 prereq_2 prereq_3 ...
−〉|first command to make target
−〉|second command and so on

Firstly, note that the −〉| symbol represents a single TAB character at the start of the line.
Commands that we could normally type at the prompt such as running R in batch mode are
specified after the TAB character. If we wish to do so then we can include several lines of
commands.
Secondly, if there is already a predefined rule to make the target given the first dependency
file then we only need to specify the first line since the commands are defined elsewhere. See
Section 4.3 for details of rules defined in r-rules.mk for languages like R and rmarkdown
and how to set program options.

Important note. As noted above, the lines containing commands must start with a <tab>
character shown here as −〉|. If you copy and paste a Makefile from a web site then usually
tabs are converted to spaces and give an error message!

3.2. Simple example (continued)
Consider the single line Makefile containing include r-rules.mk for the simple example
outlined in Section 2.1. We may have several syntax and rmarkdown files in the current

6 GNU Make for Managing Data Analysis Workflow

directory including read.R and report.Rmd. The rules contained in r-rules.mk allow us to
automatically create target files such as read.pdf and report.docx using make target at
the terminal command prompt. However, this does not take into account prior steps in the
process nor any additional dependency files. Updating data files may also facilitate rerunning
various steps in the process. Such dependencies need to be declared explicitly.
The syntax in file read.R may read and tidy data from a text file simple.csv and subse-
quently produce report.pdf from report.Rmd. If either simple.csv or read.R changed then
we would like all output to be regenerated and only the report to be remade if report.Rmd is
updated. To achieve this, we can construct the minimal Makefile to read simple.csv and
produce report.pdf from an R syntax and rmarkdown file as follows:

report.pdf: report.Rmd read.Rout
read.Rout: read.R simple.csv
include r-rules.mk

Note that dependencies are specified on to the right of the colon (:). In general, we read
the Makefile from the bottom up since the last definition is the one employed. Hence, we
can regard the rules as being included first although, strictly speaking, they are included in
sequence. Next the file read.R is run in batch mode to output read.Rout and we could
also store the data and any plot or analysis objects in the R binary data file simple.RData.
Finally, the report report.pdf is produced by loading simple.RData and printing these
objects appropriately along with the text of our report.
To produce the relevant target files, we simply type make at the terminal or press the appro-
priate button in our IDE. By default, Make builds the first target which is report.pdf. If
none of the intermediate target files are present then Make produces them by running R or
rmarkdown as necessary. Otherwise, any target file that is not ‘up to date’ is updated.
While the Makefile above is perfectly adequate, it is poorly documented and would normally
be extended to include comments and extra functionality. As with any programming, it is
always a good idea to include a suitable number of comments and format the syntax to make
the file easier to read. Similar to R and Bash, any text following a hash # until the end of the
line is a comment.
Additionally, we may wish to add other steps to the process. For instance, rather than
including all analysis steps in file read.R, we could modularize the code by developing a
separate syntax file linmod.R for statistical analysis. Linear model and plot objects could be
stored in linmod.RData for report production. We could also produce two separate reports for
different audiences report1.pdf and report2.docx from R Markdown files. Finally, we would
normally just place r-rules.mk in a standard directory like ∼/lib or ${HOME}/Library so
that we just use a single version of the Make pattern rules for any data analysis project we are
working on. A revised Makefile is shown in Appendix B. A simple dependency graph may be
produced from any Makefile using the makefile2graph program (Lindenbaum 2014). The
resulting graph for the Makefile in Appendix B is shown in Figure 1.
The definitions in the revised Makefile are now outlined in detail.
Firstly, we could use the R syntax file read.R to read the data from a single data file
simple.csv, perform data validation and cleaning; and also store the cleaned data in bi-
nary format. As discussed above, we also include the GNU Make pattern rules and so the last
lines of the Makefile are:

Journal of Statistical Software – Code Snippets 7

Figure 1: Dependency graph for a simple Makefile shown in Appendix B. This is for a simple
data analysis project where data stored in simple.csv are read in using read.R, analyzed with
linmod.R and reports produced from rmarkdown files report1.Rmd and report2.Rmd. The
.PHONY target all is used to specify the final output files report1.pdf and report2.docx.
Files in green ellipses are input files. Output or intermediate files in red ellipses are generated
from dependency files by following the arrows.

read.Rout: read.R simple.csv
include ~/lib/r-rules.mk

Next, the syntax file linmod.R is run to summarize data, fit linear models and produce various
plots. Note that in R, output from statistical analysis and plots can be stored in a binary file
linmod.RData for further use. While this is somewhat hidden from view, in that several files
can be produced by running R once, these objects can be used in further R and rmarkdown
files. This is especially useful if analyses are computationally intensive and time consuming
so they will not be rerun just to produce a report or two. See Section 5.6 for a method of
explicitly defining multiple target files from the same dependency file(s).
The target file linmod.Rout depends on the syntax file linmod.R and the previous step of
reading in the data which had target file read.Rout. The appropriate Makefile line is:

linmod.Rout: linmod.R read.Rout

Next, we define the dependencies for the two target report files with:

report1.pdf: report1.Rmd linmod.Rout
report2.docx: report2.Rmd linmod.Rout

Note that, in general, we often wish to produce several targets using a command make all
or simply make given that all is the first, and hence the default, target.
What happens if there is actually a file called all? This could be problematic and so GNU
Make provides phony targets which are not a file but are always made. At the top of the

8 GNU Make for Managing Data Analysis Workflow

Makefile, we specify a phony target all with .PHONY: all. The phony target has depen-
dencies report1.pdf and report2.docx, either of which will be remade if they are not up to
date.

.PHONY: all
all: report1.pdf report2.docx

For this project, if the data, R syntax or report files are changed then we can either type
make in a terminal or press the build button in an IDE or programmer’s editor to rerun the
minimal number of steps to update all output. Setting up the build button for RStudio and
Emacs is outlined in Appendix A.
Finally, note that we would normally put simple.csv, read.R, linmod.R, report1.Rmd,
report2.Rmd and Makefile under version control like git (Loeliger and McCullough 2012)
since other files can be recreated using Make. A minimal set of demonstration files for this sim-
ple example are available in the directory simple_demo at https://github.com/petebaker/
r-makefile-definitions. While simply typing make will produce output files like those
shown in Figure 1, it is recommended that data and syntax files are altered to explore what
happens when employing GNU Make to regenerate downstream outputs.
Naturally, an approach this complicated may not be warranted if the project is very simple
but most real world data analysis projects are rarely so trivial. When at the computer,
we may spend the majority of our time interactively analyzing data and writing reports in
an IDE. However, even for relatively simple projects, considerable efficiency is gained by
declaring dependencies in Makefile(s) and automating rebuilding at an early stage of a data
analysis project. See Section 6 for a more complex project involving multiple subdirectories
and several Makefiles.

3.3. Variables and search paths
In addition to using predefined pattern rules, another way to simplify Makefiles and make
them more portable is to use variables. A variable simply holds a text string and then
substitutes the text when requested by Make. Variables may prove useful in the following
situations.
Firstly, while we do not need to keep all data analysis project files in a directory and its
subdirectories it helps to do so. Indeed, projects in RStudio and Emacs projectile are often
set up with all files and subdirectories contained in a single directory which is the project
directory. However, Makefiles are quite flexible and so we can specify directory names
directly or as variables for later use if, for instance, data files or commonly used homegrown
R functions are stored elsewhere. Also, we may wish to access system wide files such as those
containing citations for bibliographies.
Suppose we keep several homegrown functions for cleaning data and producing specific for-
matted plots or tables in a file myFunctions.R that are not yet put into a package. We may
just store the latest and greatest copy in a directory like ~/lib or using the HOME variable in-
stead of ~ to specify our home directory. This means we do not have several different versions
floating around and we can also access the most recent version easily. If we retain the same
directory structure for data analysis projects then exactly the same definitions, and hence
the same Makefile, could even be used when we have different home directories on different
computers.

https://github.com/petebaker/r-makefile-definitions
https://github.com/petebaker/r-makefile-definitions

Journal of Statistical Software – Code Snippets 9

In our Makefile, we can define the variable MY_LIBRARY using

MY_LIBRARY = ~/lib

We could use the variable {MY_LIBRARY} for referring to the directory in the Makefile or
it could take a different value on a different machine or OS. For instance, to define a rule
to clean data using the R syntax in clean.R and functions in ~/lib/myFunctions.R we can
employ the following declaration

clean.Rout: clean.R ${MY_LIBRARY}/myFunctions.R

whereas on Windows, we may set the variable with MY_LIBRARY = C:/Library. See Sec-
tion 5.1 for methods to conditionally set variables.
Other common uses of variables are to set program options, specify (multiple) filenames,
accessing environmental variables from the operating system and as so called automatic vari-
ables. These and other extensions are further discussed in Section 4.4.
However, if our main aim is just to allow Make to search for dependency files then Make
provides the variables VPATH and vpath. Both variables define a list of directories to search
if a dependency file is not found. Directory names can be separated by whitespace or colons
(:). However, on Windows semi-colons (;) are the preferred separators since the colon is used
after drive letters (e.g., C:). VPATH provides directories to search for any missing dependency
file whereas vpath is to find files with particular extensions using a % as a wildcard.
For example, if we had R functions for cleaning data in two files, we can set a variable for the
function filenames and search for R syntax files not found in the current directory in ~/lib
using the vpath directive as follows:

R_FUNCTIONS = myCleanFuncs_01.R cleanDataFuncs_02.R
vpath %.R ~/lib

Similarly, we can also set up variables for data files with various filename extensions in a
common directory ~/Documents/Project3/Data using

DATA_FILES = simple1.csv simple2.dta simple3.sav simple4.RData
VPATH = ~/Documents/Project3/Data

Finally, we can define a rule to clean the data with appropriate R syntax and data files as
follows:

clean.Rout: clean.R ${R_FUNCTIONS} read.Rout
read.Rout: read.R ${DATA_FILES}

which searches the appropriate directories for dependency files when GNU Make to update
targets.
Note that if our customized functions are in myCleanFuncs_01.R and cleanDataFuncs_02.R
in directory ~/lib and data files are in the directory ~/Documents/Project3/Data these
directories will need to also be defined in the R syntax files. These directory names can be
either hardwired in syntax or extracted from the relevant environmental variables as outlined
in Section 5.4.
If we were using LATEX for typesetting reports then we could use the environmental variable
BIBINPUTS to look for changed bibliography files which are used automatically.

10 GNU Make for Managing Data Analysis Workflow

Important note. If a file is likely to be found in multiple directories in the VPATH or vpath
list then it is better to hardwire the location to avoid updating targets based on the wrong
dependency file.

4. Using pattern rules for R and related software
As outlined in Section 3.1, we can define the commands to update a particular target file given
the appropriate dependency files. While we could define the exact commands to be carried
out for every individual target, this would be very inefficient. Instead GNU Make provides a
way to define pattern rules. Such rules mean that we can use wildcards to define general rules
to carry out a series of commands and also provide program and/or compilation options where
necessary. For instance, GNU Make provides rules to make an object file with name ending in
.o from a C program file with name ending in .c. We provide pattern rules for R and related
programs. The files r-rules.mk and r-rules-functions.mk can be installed system wide
by copying them to a suitable system directory like /usr/include or /usr/local/include
to allow GNU Make to include them without specifying the directory.
As an example of the process involved in defining a pattern rule, we outline in Section 4.1 how
to explicitly define a Make rule by hardwiring filenames to create a .Rout output file from
a .R syntax file. Next, the generic pattern rule in r-rules.mk to generate a .Rout output
file from any .R file is outlined in Section 4.2. Section 4.3 provides a summary of pattern
rules available in r-rules.mk for data analysis and reporting mainly using R, rmarkdown
and Sweave and also rules for SAS, Stata, PSPP, LATEX Beamer, Perl and Python. Finally,
some further hints to simplify Makefile use are briefly described in Section 4.4.

4.1. Making targets explicitly
Without pre-specified pattern rules, we must specify individual commands to produce target
files. These rules define the target and dependency files on the first line and are followed by
specifying the commands we would actually type at the command prompt. For instance, to
produce read.Rout from read.R we could define a rule with all filenames hardwired with the
following two commands.

read.Rout: read.R simple.csv
−〉|R CMD BATCH --vanilla read.R

As noted previously, the −〉| symbol represents a single TAB character at the start of the line.
Commands that we would type at the prompt are specified after the TAB character −〉| . Several
lines of commands, each with a TAB character −〉| at the beginning may be provided.
However, a Makefile of explicit rules will quickly become very verbose and require a lot of
maintenance. To circumvent this, pattern rules are provided for standard languages like C
and C++ and are easily written for other languages.

4.2. Pattern rules for making targets in general
Rather than needing to define these commands every time, GNU Make provides a mechanism
for user defined pattern rules which only need to be defined once. A simple pattern rule can
be written to generalize the two line rule in Section 4.1.

Journal of Statistical Software – Code Snippets 11

An initial pattern rule to produce a .Rout output file from .R syntax file uses the % as
a wildcard and automatic variable $< which substitutes the value of the first prerequisite
dependency file. Wildcarding and automatic variables mean we do not have to explicitly
specify individual filenames but can reuse the rule.

%.Rout: %.R
−〉|R CMD BATCH --vanilla $<

This definition means that the basename of the target .Rout and .R syntax files are the same
and the rule always works even if specific files are not defined in the Makefile. This takes
care of the filenames but the program and options are still hardwired. For example, if we
wished to use a development version of R or different program options then we really do not
want to rewrite the rule each time.
Instead, as is common when using GNU Make, we can specify the programs and options with
variables as outlined in Section 3.3. We instead define variables R, R_FLAGS and R_OPTS in
r-rules.mk with

R = R
R_FLAGS = CMD BATCH
R_OPTS = --vanilla

and the pattern rule as

%.Rout: %.R
−〉|${R} ${R_FLAGS} ${R_OPTS} $<

and so by changing these variables, we can change program versions and options.
For instance, if we use the variable R to define the R program then it can be reset with
definitions like R = /usr/bin/R, R = /usr/bin/Rscript or R = /usr/local/bin/R-devel.
Assuming the file r-rules.mk is in ~/lib (recommended) and we wish to override the stan-
dard R program with a development version ~/bin/R-devel then we have several alternatives.
Firstly, we can include ~/lib/r-rules.mk in our Makefile and redefine the variable R with

read.Rout: read.R simple.csv

include ~/lib/r-rules.mk
R = ~/bin/R-devel

Since GNU Make reads the Makefile sequentially then the last value of variable R is used and
so is defined after including r-rules.mk.
Secondly, we can define the variable at the top of the Makefile, or anywhere else, with

R := ~/bin/R-devel

where the := assignment operator means that R is a simple text variable which is expanded
immediately and does not change even if redefined with R = /some-path/R.

12 GNU Make for Managing Data Analysis Workflow

Thirdly, we can make very sure that the correct variable value is used throughout the
Makefile by using the override command. This can either be done by using the -e op-
tion, in the case of existing environmental variables, when invoking Make or including a line
in the Makefile, such as,

override R=~/bin/R-devel

Finally, in a terminal, we can define the variable R when invoking Make at the command line
with

$ R=~/bin/R-devel make

noting that this sets the variable then invokes GNU Make with the variable R overriding any
definitions in the Makefile.

4.3. Rules defined in r-rules.mk

Table 1 provides an overview of GNU Make pattern rules available in r-rules.mk. Further
details, such as the commands run, defaults and variables for changing programs and options,
may be found in Appendix C.
For instance, in Table 1 we see that from an R syntax dependency file with suffix .R or .r, we
can produce either a standard output text file with .Rout suffix or notebook style documents
using rmarkdown with suffixes of either .html, .docx or (if LATEX is installed) .pdf. Specific
defaults and variables to alter these are shown in Table 3 in Appendix C.
From Table 3, .Rout text files are produced using the R CMD BATCH --vanilla command, as
outlined in Section 3.2. However, the command can be changed by redefining the variables R,
R_FLAGS and R_OPTS which are by default set to R, ’CMD BATCH’ and --vanilla, respectively.
As outlined previously, we could set the variable R to be a development version of R or change
the --vanilla option by changing R_OPTS.
We may wish to alter defaults generally by using variables in the Makefile. By default, the
variables for HTML output are set up as

RSCRIPT = Rscript
RSCRIPT_OPTS = --vanilla
RMARKDOWN_HTML_OPTS = "html_document"
RMARKDOWN_HTML_EXTRAS =

with pattern rule (which is actually defined on one line starting with a TAB)

%.html: %.Rmd
${RSCRIPT} ${RSCRIPT_OPTS} -e "library(\"rmarkdown\");
render('$@:.html=.Rmd', $RMARKDOWN_HTML_OPTS $RMARKDOWN_HTML_EXTRAS)"

Substituting in the variables for report.Rmd would run

Rscript --vanilla -e "library(\"rmarkdown\");
render('report.Rmd', \"html_document\")"

Journal of Statistical Software – Code Snippets 13

Target Dependency Purpose
R batch
.Rout .R R batch mode

R Notebooks
.html .R or .r Compile HTML Notebook
.docx Compile Word document
.pdf Compile PDF document

R Markdown documents
.html .Rmd or .rmd HTML
.docx Word document
.rtf Rich text format document
.odt Libre Office document
.pdf PDF document

R Markdown presentations
_ioslides.html .Rmd or .rmd IO Slides presentation
_slidy.html Slidify presentation
_beamer.pdf Beamer PDF presentation
_tufte.pdf Tufte style PDF presentation

R Sweave documents
.pdf .Rnw or .rnw PDF1

.tex LATEX file

R syntax from R Markdown/Sweave
-syntax.R .Rmd or .rmd Extract R syntax
-syntax.R .Rnw or .rnw

R Sweave Beamer
_Present.pdf .Rnw or .rnw Beamer presentation2

_Article.pdf .Rnw or .rnw Beamer article
_Notes.pdf .Rnw or .rnw Beamer notes
_Handout.Rnw .Rnw or .rnw intermediate .Rnw file
_Handout.pdf _Handout.Rnw handout 1 slide per page
-2up.pdf _Handout.pdf handout 2 slides per page
-3up.pdf _Handout.pdf handout 3 slides per page
-4up.pdf _Handout.pdf handout 4 slides per page
-6up.pdf _Handout.pdf handout 6 slides per page

1By default knitr format is assumed. Set SWEAVE_ENGINE=Sweave if .Rnw files are in Sweave
format.
Section 5.2 provides an alternate approach when .Rnw files are a mixture of both formats.
2Beamer handouts with varying numbers of slides can be produced directly from a .Rnw R
Sweave file but it may be more efficient to produce the intermediate _Handout.pdf file which
is then used to produce multiple slides per page handouts using the program pdfjam (Linux
and macOS).

Table 1: An overview of pattern rules available in r-rules.mk to produce text, HTML, Word
or PDF output files from .R syntax, .Rmd rmarkdown or .Rnw R Sweave files. For example,
target FILE_ioslides.html can be produced by defining FILE.Rmd in a Makefile or by
typing make FILE_ioslides.html at the command prompt.

14 GNU Make for Managing Data Analysis Workflow

We may wish to set options generally rather than for every file separately. For instance, for
pdf output on Linux some plots are missing unless fig_crop is set to FALSE.
We can alter output styles Make pattern rule definitions from r-rules.mk for processing
rmarkdown files by using variables like RMARKDOWN_HTML_OPTS and RMARKDOWN_PDF_OPTS.
By default, these variables are set to "html_document" and "pdf_document", respectively.
Hence, any specifications set in the YAML header of each individual rmarkdown file will be
employed. If instead, these variables were set to html_document() or pdf_document() then
specific rmarkdown options may be set by specifying them in the definition but the YAML
header settings will be ignored. For instance, if we wish to always produce

RMARKDOWN_PDF_OPTS = pdf_document(fig_crop=FALSE)

and of course other options like figure captions, figure height and width may also be set.
Note that by defining the pdf_document in this way that all options not defined are set to
their default parameters since the YAML PDF document header information is ignored. The
pattern rule is similar.

%.pdf: %.Rmd
${RSCRIPT} ${RSCRIPT_OPTS} -e \
"library(\"rmarkdown\");
render('$@:.pdf=.Rmd', ${RMARKDOWN_PDF_OPTS} ${RMARKDOWN_PDF_EXTRAS})"

and a similar rule is employed to produce documents for .R syntax files.

%.pdf: %.R
${RSCRIPT} ${RSCRIPT_OPTS} -e \
"library(\"rmarkdown\");
render('$@:.pdf=.R', ${RMARKDOWN_PDF_OPTS} ${RMARKDOWN_PDF_EXTRAS})"

Further details of variables that we can modify are shown in Table 3. Using rmarkdown, the
rules for R syntax files and are the same as for .Rmd rmarkdown files. When a target is made
from a .Rmd rmarkdown file, two lines are passed to Rscript by using the -e option, namely
the library("rmarkdown") statement and the render() statement with appropriate options
set by GNU Make. This sets the options for all target files.
Note that the Rscript command is actually all on one line and just broken here for con-
venience. To aid legibility in GNU Make, long lines can be continued using the backslash
character (\) as is commonly used in a Bash script and so the pattern definitions presented
above will also work as long as the string enclosed in double quotes is specified on one line.
These options could instead be set in the YAML header of an .Rmd rmarkdown file as shown
in Listing 1. When specified as a YAML header in a file, these options override those specified
in the render() command defined in r-rules.mk. In a .R R syntax file, the YAML header
can be specified as roxygen2 (Wickham, Danenberg, Csárdi, and Eugster 2020) comments
where the header lines start with a #' or ##'.
Producing Beamer presentations, slides, handouts, notes and articles from the same R Sweave
(.Rnw) file is straightforward using the rules outlined in Table 1. However, there are caveats.
Firstly, while standard LATEX and Beamer are used to produce slides, Beamer articles and
notes from a single Beamer Sweave (.Rnw) file, pdfjam is employed to produce multiple slides

Journal of Statistical Software – Code Snippets 15

title: "Summary statistics for 'simple.csv'"
author: Peter Baker
date: "Wed Oct 26 17:17:52 2016"
output:
html_document:

toc: true
theme: united

pdf_document:
toc: true
highlight: zenburn

Listing 1: YAML header at the top of rmarkdown file specifying output options. Options
specified in the rmarkdown file will override Makefile variables like RMARKDOWN_HTML_OPTS
and RMARKDOWN_PDF_OPTS. In R syntax files the YAML header can be specified using roxygen2.

Target Dependency Purpose
SAS batch
.lst .sas or .SAS SAS batch mode

STAT batch
.log .do or .DO Stata batch mode

PSPP batch
.list .sps or .SPS PSPP (rather than SPSS) batch mode
.pdf PDF document
.odt Libre Office document

Perl1
.txt .pl or .PL Perl script in batch mode

Python1

.txt .py or .PY Python script in batch mode
1Perl and Python do not have default output extension so the default is arbitrarily txt. Use the
variables PL_OUT_EXT or PL_OUT_EXT, respectively to change the file extension, for example to change
the Perl output extension run Make with PL_OUT_EXT=out make myFile.out

Table 2: Pattern rules available in r-rules.mk to produce output from running SAS, Stata,
PSPP, Perl and Python in batch mode. Note that a particular version can be set using the
Makefile variables SAS, STATA, PSPP, PYTHON, PERL. Also, because Perl and Python do not
have default output filename extensions these default to txt and can be set with variables
PL_OUT_EXT and PY_OUT_EXT. For example, target FILE.txt can be produced from FILE.py
by typing make FILE.txt at the command prompt.

16 GNU Make for Managing Data Analysis Workflow

per page. The pdfjam program is developed on Linux and is available as part of standard
texlive distributions and so readily available via the usual Linux package managers. It is also
available for macOS as part of the standard MacTeX texlive package. However, installation
for Windows may be problematic although some success is reported via cygwin. Please note
also that header files like preamblePresent.Rnw, preambleSlides.Rnw and so on are supplied
at https://github.com/petebaker/r-makefile-definitions and should be modified for
personal preferences. These contain the appropriate documentclass statement used and so
setup is required as outlined using

make help-beamer

Make rules for Beamer in r-rules.mk are currently under development and may change if
more generic tools like the beamerswitch LATEX package (Ball 2017) become available. Since
beamerswitch and the rules defined here both use latexmk (Collins 2018) then conflicts may
occur and so the safer option of not employing beamerswitch has been adopted. If this
changes, it is envisaged that the relevant Make rules are unlikely to change much but the
setup and pattern rules behind the scenes may be simplified.
Table 2 provides an overview of GNU Make pattern rules available in r-rules.mk for several
other languages that may be used in data analysis projects. Note that default behavior may
be changed by setting specific options variables SAS_CFG, SAS_OPTS, STATA_OPTS, PSPP_OPTS,
PL_OPTS and PY_OPTS. Due to computing constraints of not having all programs available on
all platforms, these rules are not as well tested as the R related rules.

4.4. Streamlining the make process

Firstly, rather than running make and inadvertently overwriting files it can be prudent to just
print out what would happen with make -n. This allows us to adjust the variables, targets
and dependencies to ensure the appropriate commands are run.
In particular,

• make -n will print the commands which would be executed but not actually run them,

• make -j [n] will run n jobs (commands) simultaneously to speed up execution,

• make -p prints the data base of rules and variables and then executes the commands,

• make -d prints debugging information,

• make -v or --version prints the version of Make, and

• make -k means keep going even if there are errors, which is useful for setting up rules
in programmer’s editors and IDE.

A brief summary of available options for the version you are currently running are available
from the manual (man make) page. Much more detailed information can be obtained via the
info documentation (info make).
Secondly, we can simplify Makefiles by using variables, whether these are user defined or
so-called automatic variables. User defined variables can be set at the top of a Makefile and
adjusted to the situation. The variable is replaced with the text throughout the Makefile.

https://github.com/petebaker/r-makefile-definitions

Journal of Statistical Software – Code Snippets 17

Variables are ideal for filenames or parts of filenames that may be used in several places
because you only need to change one occurrence, namely the variable definition. For instance,
we can use a variable to specify several filenames at once (such as DATAFILES below) or to
specify a particular target like REPORT below which could subsequently be updated if an
alternative is required. Each month the variables can be redefined to produce a new report.
At the top of the Makefile, we could use the two variables to define data files and the
rmarkdown file Report_january_2017.Rmd.

DATAFILES = dec_2016.csv nov_2016.dta jan_2017.sav sample_20170101.RData
REPORT = Report_january_2017.pdf

The rest of the Makefile would not need to be changed although of course the rmarkdown
file for the report may need to be altered.

${REPORT}: ${@:.pdf,.Rmd} analysis.Rout
analysis.Rout: analysis.R read.Rout
read.Rout: read.R ${DATAFILES}

Note the use of $@:.Rmd,.pdf to change the first prerequiste to be Report_january_2017.Rmd
from the target Report_january_2017.pdf. The target variable ending in .pdf is $@ and the
construct :.pdf,.Rmd substitutes the suffix .Rmd for the .pdf suffix in the target file.
When writing Makefiles, useful automatic variables are:

• $@ target filename,

• $< filename of the first prerequisite,

• $? the names of all prerequisites newer than the target separated by spaces, and

• $* the filenames of all prerequisites separated by spaces but with duplicates removed.

See Mecklenburg (2004) or Graham-Cumming (2015) for further details.
Finally, it may prove useful to define the file extension obtained from running R syntax
files. This is easily achieved by setting a variable for the output type as follows. Consider,
Appendix B which provides a Makefile for a simple project outlined in Section 3.2. Rather
than having text .Rout files as output throughout, we can make a default file extension (say
Rout, pdf, docx, odt or html) by defining a variable such as R_OUT_EXT at the top of the
Makefile and change all the appropriate file extensions.
The output file type variable can be set using something like

set R output by (un)commenting appropriate lines
R_OUT_EXT=Rout
R_OUT_EXT=pdf
R_OUT_EXT=html
R_OUT_EXT=docx

The appropriate lines in the Makefile in Appendix B for the simple example in Section 3.2
would become

18 GNU Make for Managing Data Analysis Workflow

linmod.${R_OUT_EXT}: linmod.R read.${R_OUT_EXT}
read.${R_OUT_EXT}: read.R simple.csv

Naturally, using variables is a matter of personal preference in that there is a danger of
over-complicating the Makefile if we overuse them. The Makefile may be very flexible
but it could become difficult to follow because we have to constantly refer back to variable
definitions. On the other hand, for a complex project with many steps, if we were producing
monthly reports where just the name of the report markdown file and the data filenames
changed then the same Makefile could be employed merely by changing the two variables at
the top of the Makefile.

5. Extensions, limitations and work-arounds
GNU Make has the reputation of being problematic in some situations but has been slowly
updated and extended. These limitations are often due to the fact that all make commands
are executed by the shell. Hence, there may be inherent problems with spaces in filenames,
underscores (_) in variable names, difficulties with quoting single (’) or double apostrophes
(") in strings, substitution of strings containing dollars ($) which may also be used to access
variables and finally the use of the star (*) which may be a wildcard in the shell. Hence, care
should be taken with these symbols.
Also, GNU Make has the reputation for not handling recursive makes well although this has
been built in since version 4.0 (see Graham-Cumming 2015, p. 153). Details of both recur-
sive make and alternatively non-recursive make for multi-directory projects are provided in
Sections 6.2 and 6.3.
Casual users of Make may also form the impression that it may not be very flexible but
this is not the case. While it can be generally seen as primarily a simple text processing
language, GNU Make can be extended using functions. Many built-in functions are provided
and user-defined functions are relatively easy to write and reuse. Details of several extensions
are provided here but many others are available. Graham-Cumming (2015) has extended
the built in GNU Make functions to provide the GNU Make Standard Library (GMSL) at
https://gmsl.sourceforge.io/. These extensions expand GNU Make functions to include
logical operators, character manipulation, associative arrays, integer arithmetic and much
more.
Section 5 outlines useful functions and extensions to help improve Make workflow. Conditional
programming is outlined in Section 5.1, redefining variables for different targets using the
same rule in Section 5.2, reusing Makefiles in Section 5.3, using Makefile variables in R
in Section 5.4 and using wildcards in Make itself are provided in Section 5.5. Writing rules
for multiple targets is outlined in Section 5.6 and is followed by tips on spaces in filenames
and avoiding tabs in single line definitions in Sections 5.7 and 5.8, respectively. Finally, since
there are certain situations where there is no easy way to let Make know if targets need to be
updated, forcing all targets to be remade is discussed in Section 5.9.

5.1. GNU Make ifeq and other functions

Sometimes we may need to customize settings for different computers or different situations.
For instance, if we work on different OS’es and we have our project under version control

https://gmsl.sourceforge.io/

Journal of Statistical Software – Code Snippets 19

then we may need to use one Makefile for all machines. We can do this using the GNU Make
ifeq command. For example, the following excerpt sets the vpath variable to find LATEX
bibliography files and also set the preferred Make program on Windows, macOS or Linux.
This can be particularly important on Windows where filenames and separators can be quite
different to macOS and Linux.
Windows users may wish to use something like

ifeq ($(OS),Windows_NT)
OS_detected := Windows

else
OS_detected := $(shell uname -s)

endif

and then use the following to detect Windows and set variables accordingly.

ifeq ($(OS_detected),Windows)
vpath %.bib C:/Users/peterwork2/texmf/bibtex/bib/myfiles
MAKE=C:/Rtools/bin/make

endif

Mac users might want to use the macOS definitions of path to search for BibTEX files and
GNU Make as follows

ifeq ($(OS_detected),Darwin)
vpath %.bib /Users/peterwork/Library/texmf/bibtex/bib/myfiles
MAKE=gmake

endif

Finally, to check for Linux and run Linux commands use

ifeq ($(OS_detected),Linux)
vpath %.bib /home/peter/texmf/bibtex/bib/myfiles
MAKE=make

endif

Another common use of ifeq is to use different rules in certain situations. For instance, as
outlined in Table 1, .Rnw files containing LATEX syntax with R and other language chunks
may either be in Sweave or knitr (Xie 2020, 2015) format. The GNU Make rules provided
in r-rules.mk assume by default that a .Rnw file is in rmarkdown format. However, if the
variable SWEAVE_ENGINE = Sweave then Sweave is used instead. This is achieved by first
defining rules for R Markdown. Next rules are redefined if SWEAVE_ENGINE is set to Sweave.
In particular, to produce PDF from a .Rnw these rules are specified using:

define R Markdown commands to produce PDF from .Rnw
%.pdf: %.Rnw
RSCRIPT = Rscript
RSCRIPT_OPTS = --vanilla
RMARKDOWN_PDF_OPTS = ()

20 GNU Make for Managing Data Analysis Workflow

$RSCRIPT $RSCRIPT_OPTS -e "library(\"knitr\");knit2pdf('${@:.pdf=.Rnw}')"
define Sweave commands to produce PDF from .Rnw
RSWEAVE = ${R} CMD Sweave
RSWEAVE_FLAGS=
if Sweave then redefine the pattern rule
ifeq ($(SWEAVE_ENGINE), Sweave)
produce pdf from .Rnw etc
%.pdf: %.Rnw

${RSWEAVE} -pdf $< ${RSWEAVE_FLAGS}
endif

An alternative approach for .Rnw files, which allows a mixture of Sweave and knitr formats
is outlined in Section 5.2.
GNU Make has many other useful functions that are well documented in the Make docu-
mentation and Mecklenburg (2004) and Graham-Cumming (2015). These include subst for
substituting text strings, wildcard for finding file and directories based on wildcarding, call
for calling functions and shell for passing commands to the OS.

5.2. Target and pattern specific variables

Generally, due to the way Makefiles are processed, GNU Make variables just have one value
when running make. Firstly, the Makefile is processed to assign and expand variables and
build a dependency graph. In the second phase, the dependency graph is analyzed and tra-
versed so that scripts and commands are executed in the desired order. In this second phase,
all variables are fixed since such processing was carried out in the first phase (Mecklenburg
2004).
However, we may wish to redefine a variable for a single rule or pattern. For instance, consider
an example where we wish to pass different parameters to a rmarkdown file in order to obtain
different reports or targets using the same Markdown file.
Consider the pattern rule to produce a PDF file from a rmarkdown file. rmarkdown op-
tions may be set with the variables RMARKDOWN_PDF_OPTS (default: "pdf_document") and
RMARKDOWN_PDF_EXTRAS

%.pdf: %.Rmd
${RSCRIPT} ${RSCRIPT_OPTS} -e \
"library(\"rmarkdown\");render(\"${@:.pdf=.Rmd}\",
${RMARKDOWN_PDF_OPTS} ${RMARKDOWN_PDF_EXTRAS})"

By default, RMARKDOWN_PDF_EXTRAS is blank. Normally we might set this variable globally
by means of simply defining it as usual with something like:

RMARKDOWN_PDF_EXTRAS = ", clean = FALSE"

However, in a Makefile we can also use target specific variables so that this variable is defined
separately for different targets special1.pdf and special2.pdf as follows:

RMARKDOWN_PDF_EXTRAS = ", clean = FALSE"
special1.pdf: \

Journal of Statistical Software – Code Snippets 21

RMARKDOWN_PDF_EXTRAS += ", params = list(v1 = \"a\", v2 = \"b\")"
special1.pdf: special.Rmd
special2.pdf: \

RMARKDOWN_PDF_EXTRAS += ", params = list(v1 = \"C2\", v2 = \"D2\")"
special2.pdf: special.Rmd

Note that initially RMARKDOWN_PDF_EXTRAS sets the clean option to FALSE. The += assignment
operator is then used to add extra text to the RMARKDOWN_PDF_EXTRAS variable on a target
specific basis and this is set separately for each target in addition to specifying the same
dependency file on a separate line. In this way, different parameters are set for each target
report but the same rmarkdown file is employed.

5.3. Reusing Makefiles

In general, we can use old Makefiles and edit these to change targets and dependencies.
Alternatively, we may use a nearly identical Makefile for similar projects and simply change
a few variables. As an example of reusing Makefiles, we use the following Makefile for
course notes that change each year. Course notes are in a Sweave format .Rnw files processed
by knitr with appropriate data and BibTEX files. These files are simply LATEX files containing
R code chunks which, when processed, insert both the R syntax and R output to produce a
PDF file.

TOPIC = Survival02
DATA = whas500.RData
BIBFILES = survival.bib
vpath %.bib ~/texmf/bibtex/bib/myfiles/

Next, the phony all target along with course notes are defined with

.PHONY: all
all: ${TOPIC}.pdf
${TOPIC}.pdf: ${@:.pdf=.Rnw} ${TOPIC}-functions.Rnw ${DATA} ${BIBFILES}

noting that these definitions are common to all topics and do not need to be altered. Finally,
r-rules.mk is included.
The .Rnw input files were originally written to be processed using Sweave. However, given
that knitr extends some capabilities of Sweave, especially for graphics, these were recently
converted via the package knitr::Sweave2knitr and a few simple changes to make them
knitr-compatible. Make uses the R package knitr to produce both student notes in PDF
format and an R syntax file. Also, the R syntax file ${TOPIC}-syntax.R was produced from
the .Rnw file when processed by using Stangle whereas now purl is employed. For each topic
in the course, we place all relevant files in a directory and use a similar Makefile with the
appropriate value of the TOPIC, DATA and BIBFILES variables.
Note that the file survival.bib is available in the user’s standard directory for BibTEX files
and so the directory to search is specified with vpath as outlined in Section 3.3. Also, in the
.Rnw file we can use purl directly to produce the syntax file Survival02-syntax.R noting
that we can set documentation = 0 to remove chunk labels with the following chunk.

22 GNU Make for Managing Data Analysis Workflow

<<include = FALSE, purl = FALSE>>=
system("Rscript -vanilla -e \"knitr::purl('Survival02.Rnw',

'Survival02-syntax.R', documentation = 0)\"")
@

5.4. Setting and using Make variables in R
When automating regular reports or routine analyses it is straightforward to set environmen-
tal variables in either a Bash script or directly in a Makefile. For instance, the following
definitions can be used to set month and year in the Makefile.

YEAR = 2010
MONTH = january
DATA = myData_${YEAR}-${MONTH}.csv
REPORT = myReport_${YEAR}-${MONTH}.pdf

and the target file is produced with

${REPORT}.pdf: ${@:.pdf=.Rmd} ${DATA}

To read this in R or an rmarkdown file, it is straightforward to use the variable values defined
in the Makefile using the R function Sys.getenv. Strings obtained can then be used to set
titles, filenames and so on.
To set the title for report use

R> year <- Sys.getenv("YEAR")
R> month <- Sys.getenv("MONTH")
R> myTitle <- paste0("Regular report for ", stringr::str_to_title(month),
+ ", ", year)

and we can read in the data with

R> dataCsv <- Sys.getenv("DATA")
R> myDat <- read.csv(dataCsv)

Also, note that we can use a similar approach for the example in Section 5.3. Instead of
hardwiring filenames in the .Rnw file for each topic, we can simply use Sys.getenv. In each
.Rnw file, we then source a common syntax file setup.R for all topics in the course to load
packages, set options and produce the appropriate R syntax files. When sourcing the file we
would use knitr chunk options include = FALSE, purl = FALSE to suppress including the
source command in the notes and the R syntax file, respectively.
In the file setup.R we set up filenames with

R> TOPIC <- Sys.getenv("TOPIC")
R> RNW_FILE <- paste0(TOPIC, ".Rnw")
R> SYNTAX_FILE <- paste0(TOPIC, "-syntax.R")

and the knitr environment with

Journal of Statistical Software – Code Snippets 23

R> library("extrafont")
R> library("knitr")
R> knit_theme$set("peaksea")
R> opts_chunk$set(fig.path = "tmp/tmp", split = FALSE, highlight = TRUE,
+ warning = FALSE, tidy = FALSE, background = "grey95",
+ fig.width = 5, fig.height = 5, comment = "\#:")

To write the R syntax file and call purl directly and set documentation = 0 to remove chunk
labels then we use

R> system(paste0("Rscript --vanilla -e \"knitr::purl('", RNW_FILE, "', '",
+ SYNTAX_FILE, "', documentation = 0)\""))

Finally, we wish to write the first few lines of syntax file to include filename and date-time
with

R> LINES <- c(paste("## File:", SYNTAX_FILE), paste("## Date:",
+ DATETIME <- date()), "##", readLines(SYNTAX_FILE))
R> writeLines(LINES, SYNTAX_FILE)

5.5. GNU Make wildcard function

Wildcards can be used when defining pattern rules by using a percent (%) as shown in
Section 4.2. However, these should not be used for defining non-pattern rules but instead the
$(wildcard) function is preferred. GNU Make’s globbing function is $(wildcard). It can be
useful in getting lists of files and is pretty similar to Unix wildcards but with some important
limitations. For instance, the following would return a list of all csv data files in a directory.

CSV_FILES = $(wildcard *.csv)

While the $(wildcard) function contains standard globbing patterns like * which matches 0
or more characters, ? matches a single character and $[...]$ matches characters or ranges
of characters as we might expect, it will prove problematic if filenames contain spaces since
these will look like separate filenames separated by a space. While GNU Make can be made
to handle spaces in filenames, this may require considerable effort.

5.6. Multiple targets

A fundamental law of GNU Make physics is that each rule builds one and only one
file (called a target). (Graham-Cumming 2015)

Graham-Cumming refers to these Make rules as atomic rules. Put simply, R often creates
more than one output file and this usually creates no need for writing separate Make rules.
However, sometimes we need to build this into our Makefiles so that it is clear that more
than one target is updated and that GNU Make behaves appropriately. We do not want to
run R separately for each target but just run R once.

24 GNU Make for Managing Data Analysis Workflow

Often we produce multiple outputs from a single .R file. For instance, we could produce several
graphics files for collaborators. While we may write a separate R syntax file to produce each
graphic this may prove to be highly inefficient.

A first try

Consider the following (incorrect) attempt at producing three graphics files from the same R
syntax file plots.R.

.PHONY: all
all: plots.Rout plots0.png plots1.pdf plots2.jpg

plots.Rout plots0.png plots1.pdf plots2.jpg: plots.R simple.RData
−〉|${R} ${R_FLAGS} ${R_OPTS} $<

At first glance, it might look like Make has four targets and so R only needs to be run once.
What actually happens is that Make expands the rule to be four separate rules.

plots.Rout: plots.R simple.RData
plots0.png: plots.R simple.RData
plots1.pdf: plots.R simple.RData
plots2.jpg: plots.R simple.RData

So make -n will indicate that all four rules and should run R as follows:

$ make -n

R CMD BATCH --vanilla plots.R
R CMD BATCH --vanilla plots.R
R CMD BATCH --vanilla plots.R
R CMD BATCH --vanilla plots.R

In reality, this may still work as desired but only if the syntax is very simple and all four
targets are essentially produced at the same time. After running the first rule, all targets are
up to date and so subsequent rules are not run. The result is not that predicted by make -n
but instead:

$ make

R CMD BATCH --vanilla plots.R

However, even for this simple case, there still may be problems if we use the -j option to run
several jobs in parallel since Make may be tricked into running all four rules at once which is
clearly not what we want because R will be run four times simultaneously rather than once.

$ make -j4

Journal of Statistical Software – Code Snippets 25

R CMD BATCH --vanilla plots.R
R CMD BATCH --vanilla plots.R
R CMD BATCH --vanilla plots.R
R CMD BATCH --vanilla plots.R

Other problems can also occur but these are not outlined here. An alternative is to use so
called static pattern rules but these may suffer the same problems and, in addition, this limits
the target files to having fairly similar names because of the use of wildcards when setting up
the rules.

A better way: Using a sentinel file and the atomic function

In essence, the solution is to use the phony target all defined previously but to also include
r-rules-functions.r before defining the following rule to make the multiple targets

$(call atomic,plots.Rout plots0.png plots1.pdf plots2.jpg,\
plots.R simple.RData)
−〉|${R} ${R_FLAGS} ${R_OPTS} $<

which, in turn, calls the function sentinel, both of which are in r-rules-functions.r
defined. While users of these functions do not need to know how or why this works, this
process is now outlined in some detail.
Graham-Cumming (2015) provides a solution to producing multiple targets by defining a
sentinel or indicator file .sentinel with

plots.Rout plots0.png plots1.pdf plots2.jpg: .sentinel
−〉|@:

and the rule for a sentinel file

.sentinel: plots.R simple.RData
−〉|${R} ${R_FLAGS} ${R_OPTS} $<
−〉|touch .sentinel

This uses the unusual Make @: command which actually does nothing. Due to this rule
construction, the rule indicates whether any one of the target files is older than the indicator
file .sentinel. If it is, then Make rebuilds the file .sentinel and so regenerates all four
target files. It does so by running R and then touching the file .sentinel which sets the
creation time of the file to the current time or creates an empty file if it does not already
exist.
However, there is a catch. If we delete one of the target files and forget to delete the .sentinel
file then Make will not rerun R. A more general solution is outlined in Graham-Cumming
and shown here for a particular example plots.R. Note that since the sentinel file is made
of target filenames, several calls to atomic can be made in a Makefile to define different
multiple targets by calling the atomic functions with different arguments.
The definitions for sp, sentinel and atomic are provided in r-rules-functions.mk on
https://github.com/petebaker/r-makefile-definitions. The rules provided are:

https://github.com/petebaker/r-makefile-definitions

26 GNU Make for Managing Data Analysis Workflow

sp :=
sp +=
sentinel = .sentinel.$(subst $(sp),_,$(subst /,_,$1))
atomic = $(eval $1: $(call sentinel,$1) ; @:)$(call sentinel,$1): \

$2 ; touch $$@ $(foreach t,$1,$(if $(wildcard $t), ,$(shell rm -f\
$(call sentinel,$1))))

The atomic function calls the sentinel function which creates a sentinel or indicator file-
name by appending the target filenames to .sentinel. and inserts an underscore between
the filenames. Functions in Make are defined quite simply and use arguments separated by
commas. Similar to Unix shell scripts, arguments are labeled as $1, $2, $3, . . . Here the
only argument to the sentinel function is $1 whereas atomic has two functions $1 and $2.
The subst function is used here to replace spaces with underscores (_). The foreach and
wildcard functions are used to test for the presence of each target file and if one is not present
then deletes the sentinel file using the rm command. It does not write any rules but simply
deletes the sentinel file if necessary.
Finally, note that r-rules-functions.mk directive must be included before calling the
atomic function since it must be defined prior to use. Hence, if these functions are used
then r-rules-functions.mk is included near the top of the Makefile while, as usual, the
file r-rules.mk is included near the bottom.
To use the rule it is now evident that it is simply a matter of calling the atomic function, as
stated at the start of this section.

$(call atomic,plots.Rout plots0.png plots1.pdf plots2.jpg,\
plots.R simple.RData)
−〉|${R} ${R_FLAGS} ${R_OPTS} $<

The atomic function has two arguments $1 and $2, which are the target filenames separated
by spaces and the dependencies files also separated by spaces, respectively. The sentinel
function creates the name of the sentinel file, namely

.sentinel.plots.Rout_plots0.png_plots1.pdf_plots2.jpg

In essence the atomic function creates a Makefile as before but automatically generates the
following rules:

plots.Rout plots0.png plots1.pdf plots2.jpg:\
.sentinel.plots.Rout_plots0.png_plots1.pdf_plots2.jpg ; @:

.sentinel.plots.Rout_plots0.png_plots1.pdf_plots2.jpg: \
plots.R simple.RData

−〉|${R} ${R_FLAGS} ${R_OPTS} $<
−〉|touch plots.Rout plots0.png plots1.pdf plots2.jpg

The line following the call to the atomic function contains the R BATCH call and the $<
automatic variable to specify the first dependency as specified in the Makefile. The final
line is produced with ; touch $$@ which substitutes the target variable $@ after the touch
command to set the times of the target files.

Journal of Statistical Software – Code Snippets 27

read.Rout: read.R simple.csv ; R CMD BATCH --vanilla read.R

Listing 2: Makefile line to produce read.Rout from read.R by defining an explicit rule
where filenames, programs and options are hardwired. Since there is only one command it
may be clearer to use a semicolon than a separate line starting with a TAB character.

Make initially creates a sentinel file if the target files are either not present or older than the
sentinel file and R is run to reproduce all targets. Otherwise the sentinel file is newer and so
nothing is made as shown below.

$ make

touch .sentinel.plots.Rout_plots0.png_plots1.pdf_plots2.jpg
R CMD BATCH --vanilla plots.R

$ make

make: Nothing to be done for 'all'.

In Linux shells, such as Bash, the sentinel file is hidden because its name starts with a dot (.)
but once made it is not deleted by Make and is used to keep track of multiple target files.
A complete example with Makefile and plots.R is available in the multiple_targets sub-
directory at https://github.com/petebaker/r-makefile-definitions.

5.7. Spaces in filenames

Unless you absolutely must use spaces in filenames then it is definitely best to avoid them.
While you can use quotes like in "silly file name.doc", it is generally safer to use a
backslash to quote spaces as in silly\ file\ name.doc. This works in general and may
work with the wildcard function but it can still be problematic for some automatic variables
and especially with filenames longer than the standard 8.3 in Windows (Graham-Cumming
2015).

5.8. Avoiding a tab for single line pattern rule definitions

Lastly, if we are writing rules with only one command to execute then we can remove the
need for typing a TAB character −〉| by using a semicolon (;). If we have more than one line
then only the first line can be specified using a semicolon. Using a semicolon in GNU Make is
the same as using a semicolon to start a new line in the Bash shell or a new command in R
except that it removes the need to insert a TAB character −〉|. Of course, this is unnecessary if
we are only relying on pre-existing pattern rules but useful if writing a specific rule or writing
our own pattern rules.

5.9. Forcing Make to rerun everything

https://github.com/petebaker/r-makefile-definitions

28 GNU Make for Managing Data Analysis Workflow

Currently, there is no easy way to let Make know if targets need to be updated when statistical
software, system libraries or particular packages have been updated. This can be very complex
since many R packages have dependencies (other packages) which in turn have dependencies.
Indeed, even if we could determine all possible package dependencies using a R package like
miniCRAN (de Vries 2019) then changes to system libraries or complex data set ups may still
make it virtually impossible to determine which targets in a Makefile are up to date.
In contrast, dependencies may be automatically generated for large C or C++ projects using
tools like makedepend or Automake. Essentially, these tools parse the .c, .cpp, .c++ and other
source files to obtain a list of header files to use as dependencies in the Makefile. However,
in R for instance, this is not easy for two main reasons.
Firstly, while we can hardwire and test versions of R or packages easily using say testthat
(Wickham 2011) when R is run, we would also have to test that all installed package de-
pendency versions and their dependencies and so on had also not changed. It is relatively
straightforward to produce warnings and stop program execution. It is also straightforward to
obtain version numbers of R and packages and so possible to store these using standard com-
mands like utils::sessionInfo. An alternative is to employ packrat (Ushey, McPherson,
Cheng, Atkins, and Allaire 2018) to ensure packages are at particular versions.
Secondly, obtaining changes in names of all dependency files is much more difficult. For
instance, in R, filenames for included files containing R syntax or reading in data can be
constructed in all sorts of ways. These include reading them from text files or operating
system calls, using concatenation of sequences of numbers or characters to construct filenames
or user written functions. For all practical purposes, we would need to run all relevant parts
of the .R source files and reconstruct any filenames mentioned to include as dependencies in
our Makefiles. It is quite clear that this process could easily miss some dependencies no
matter how cleverly it was programmed.
Instead, a much simpler and more robust solution is to force Make to rerun everything by
removing target and intermediate files. We can achieve this by simply running

make clean

to remove all targets and most intermediate files then run

make

to rerun everything.

6. Complex projects
As data analysis projects become more complex, to manage our workflow, we often place
various aspects of the project in subdirectories. For instance, we may place various steps
like reading and merging data; cleaning data; analyzing and plotting data; and reports in
subdirectories. The bottom directory contains a master Makefile and each subdirectory
contains a Makefile for each step. Ideally, in addition to making the whole project from the
root directory, we would like to be able to change to any subdirectory and run make just for
that particular step of the process.

Journal of Statistical Software – Code Snippets 29

complex_demo/myRproject
admin
analysis

Makefile
data

codebook
derived
original

doc
admin
original
references

lib
readCleanData

Makefile
reports

Makefile
Makefile

Listing 3: Typical directory structure for data analysis project using R. Original and derived
data files are stored in data, R syntax files for reading, cleaning and merging data are stored
in readCleanData, R syntax files for analyzing data are found in analysis and rmarkdown
and R Sweave files are in reports.

This can be problematic if the Makefile in a particular subdirectory is self-contained, in that
Make will not know about other steps in the process and so Make will need to be run in the
parent or root directory of the project.
When Make is run from the root directory which then calls Make in each subdirectory, this is
said to be a recursive make. While appealingly simple, there can be problems (Miller 1998).
For instance, this may be inefficient because all changes will need be remade, not just the
relevant dependencies of the current target file. Other problems can arise if parallel Make is
employed.
Instead, it may be better to use a non-recursive make strategy. This strategy is implemented
by using include statements and running make in the root directory rather than allowing Make
to run separate Make subprocesses. Graham-Cumming (2015) provides a more comprehensive
method of a non-recursive make to allow Make to be run within subdirectories and so work
more like a recursive make but without the inherent problems.
A standard data analysis project directory structure is outlined in Section 6.1, recursive make
is outlined Section 6.2 and a non-recursive alternative is explored in Section 6.3. Any functions
to implement these approaches are provided in r-rules-functions.mk which is included at
the top of the Makefile to ensure that functions are defined prior to use.

6.1. Multiple directories

Complex data analysis projects often have multiple subdirectories, for instance one for stor-

30 GNU Make for Managing Data Analysis Workflow

ing original, codebook and derived data (data), reading data (readCleanData) and others
for statistical analysis (analysis) and reporting (reports). Each directory would have a
Makefile which is self contained but may also refer to other files in relevant directories. A
typical set up (with Makefiles) is shown in Listing 3.
Our aim is to be able to work in the bottom level directory or a particular subdirectory and
employ make wherever we are working.
In essence, when employing a recursive make strategy, the top-level Makefile runs the
Makefiles in subdirectories as .PHONY targets. This means that in each directory, the
Makefile points to dependencies in other (sub)directories. However, this can create problems
as noted above.
An alternative is to use makepp (Pfeiffer and Holt 2013). makepp implements much of GNU
Make in Perl but there are minor differences. Apart from appearing to greatly improving
recursive make for simple rules it sometimes requires minor rewriting of Makefiles. Often,
this may be as simple as replacing any ∼’s with ${HOME}. However, in terms of the rules
presented here in r-rules.mk and r-rules-functions.mk, a major difference is the way
that makepp handles strings which means that many of the rules written here would need to
be modified to be parsed by Perl rather than Make and so two versions would be needed.
Rather than writing two sets of rules, only GNU Make is employed and is briefly outlined for
recursive make in Section 6.2.
The alternative non-recursive make strategy is outlined in Section 6.3. It is equally as effec-
tive as the recursive make strategy and has the same familiar make-anywhere functionality.
However, it does not suffer possible parallel compilation or other potential Make problems
while, initially at least, it may appear to be slightly more complicated.

6.2. Recursive Make

An overall Makefile in the base directory is employed which can be used to (re)run all data
cleaning, statistical analysis and reporting. While working on one particular aspect of the
work, such as reporting, we would work in the appropriate subdirectory which also has a
Makefile pertaining to just that part of the workflow.
When running complex builds we can run make with the -j or jobs option to specify the
number of jobs. This gives the maximum number of jobs (sub-makes) that Make will run in
parallel. However, problems can arise when sequential make is required but a particular step
is too slow. This is particularly apparent when working with multiple directories.
The traditional way to allow parallel make and a number of subdirectories is to use the
following construct

SUBDIRS := readCleanData analysis reports

.PHONY: all
all:

−〉|for d in ${SUBDIRS}; \
−〉|do \
−〉| ${MAKE} -directory=$$d; \
−〉|done

Journal of Statistical Software – Code Snippets 31

However, if a sub-make fails then Make will look like it succeeded.
One solution is to replace the for loop with a single rule as in the following data analysis
project consisting of separate directories for reading, merging and cleaning data using the
directories as targets where the SUBDIRS is defined as before but the target are specified with.

.PHONY: all ${SUBDIRS}
all: ${SUBDIRS}

${SUBDIRS}:
−〉|${MAKE} --directory=$@

The directories do not actually get built and so can be considered as a phony target. Therefore,
each directory can run while the others are running, and parallelism is maximized. It is even
possible to have dependencies between directories causing some sub-makes to run before
others. Directory dependencies can be handy when it is important that one sub-make runs
before another such as reading in data before analyzing it and analyzing it before reporting
on it.
Often, we have found this approach to be perfectly adequate in that Makefiles are easy
to write and easy to use. However, if the project becomes quite complicated then a non-
recursive strategy will be safer. An example set of Makefiles for recursive make, along with
appropriate R and rmarkdown files is available in the directory complex-demo/recursive/
at https://github.com/petebaker/r-makefile-definitions.

6.3. Non-recursive Make

As outlined in Sections 6.1 and 6.2, once a project becomes quite complex and involves mul-
tiple working directories, each with its own Makefile, then it is tempting for the master
Makefile to contain simple calls to make using the Makefile in each subdirectory. Con-
ceptually, this seems straightforward but in practice there are potential pitfalls as outlined
in Miller (1998) and elsewhere in this article. To avoid such problems, these projects can
also be managed without employing recursive make to call self-contained Makefiles which in
turn call other self-contained Makefiles. Instead, we employ include statements to insert
secondary definitions carefully constructed to work whichever Makefile includes them.
In essence, we usually create Makefiles that mostly refer to files in the current directory and
therefore are easy to write. The extra complication in non-recursive make is making sure that
the relevant files are appropriately referenced no matter whether we are working in the base
directory or subdirectories. Instead of completely defining the dependency and target files in
each Makefile, we can define most of the setup about target and dependency files in common
files (here root.mk which is in the root or base directory and a separate module.mk in each
working subdirectory).
In the data analysis projects described here, we only employ one level of subdirectories where
we do the actual work or cleaning data, analyzing data and reporting (see Listing 3). Exten-
sion of the method developed here to extra levels of subdirectories is straightforward. Meck-
lenburg (2004) and Graham-Cumming (2015) provide more complex examples and Graham-
Cumming provides functions to find the base or root directory and also find and write rules
to include header files, some of which is more complex than is needed here.

https://github.com/petebaker/r-makefile-definitions

32 GNU Make for Managing Data Analysis Workflow

All Makefiles, root.mk and the module.mk files are available as part of the working ex-
ample provided at https://github.com/petebaker/r-makefile-definitions in directory
complex-demo/nonrecursive/.
Relevant target and dependency files are set up by including root.mk as well as a separate
module.mk in the Makefile in the base directory and in each working subdirectory. Note that
some simple functions are used by including r-rules-functions.mk at the top of Makefile
and standard r-rules.mk at the bottom.
Note that we could hardwire in the root or base directory of the project into each Makefile.
However, to make this as easy and error free as possible it is best to avoid this approach
and instead use the functions _find and _walk (Graham-Cumming 2015) to automatically
find and set the root directory in a variable for later use. It does this by searching for the
file root.mk contained in the base directory. This also has the advantage of making the
whole project portable when transferring it to another computer because, with virtually no
overhead, the root directory is automatically found and defined each time make is run.

Non-recursive Make: Makefiles

Each Makefile firstly includes r-rules-functions.mk to firstly define the _find and _walk
functions then sets _ROOT with the following two lines

include ~/lib/r-rules-functions.mk
_ROOT := $(patsubst %/root.mk,%,$(call _find,$(CURDIR),root.mk))

Next, all target and dependency files are defined relative to the root directory. This is achieved
by setting the variable RELATIVE. In the base Makefile we use

RELATIV = ./

whereas in all subdirectory Makefiles we use

RELATIV = ../

Once the root directory is found and _ROOT and RELATIVE variables defined we can then
include the contents of root.mk in any Makefile with

include $(_ROOT)/root.mk

which is independent of which Makefile is invoked and hence which (sub)directory we are
currently working in.
We now describe the details of root.mk.

Non-recursive Make: root.mk

Firstly, the following variables are set both to define the subdirectories and also the targets
to be made. The subdirectories are set with

READ_SUB=readMergeData
ANALYSIS_SUB=analysis
REPORTS_SUB=reports

https://github.com/petebaker/r-makefile-definitions

Journal of Statistical Software – Code Snippets 33

Secondly, the relative paths of directories are fully defined. This is where the work is done.
These paths are defined using the RELATIVE variable for directories where syntax for reading,
analysis and reports are stored as

READ=${RELATIV}${READ_SUB}
ANALYSIS=${RELATIV}${ANALYSIS_SUB}
REPORTS=${RELATIV}${REPORTS_SUB}

Thirdly, the relevant data directories are set up with

DATA=${RELATIV}data
DATA_ORIG=${DATA}/original
DATA_DERIV=${DATA}/derived

which sets up the overall data directory, subdirectory containing original data and subdirec-
tory for saving any derived data, respectively.
Finally, in root.mk we also set the default output extensions for running R and rmarkdown
syntax with

R_OUT_EXT = pdf
RMD_OUT_EXT = pdf

as described in Section 4.4.

Non-recursive Make: Root Makefile

Now that the root directory and subdirectories are fully defined by including root.mk, the
main Makefile then processes each subdirectory in turn. Firstly, the subdirectories are
defined with

SUBDIRS=$(READ_SUB) $(ANALYSIS_SUB) $(REPORTS_SUB)

Next the phony target all: is defined with

.PHONY: all
all: all_$(READ_SUB) all_$(ANALYSIS_SUB) all_$(REPORTS_SUB)

Note that each target is defined in the appropriate module.mk. For instance, all_analysis is
defined in analysis/module.mk. All dependencies are defined in the module.mk files including
various files in other directories.
Next, all module.mk files are included with

include $(addsuffix /module.mk,$(SUBDIRS))

Finally, the root directory Makefile contains other rules such as for removing intermediate
files and inclusion of the r-rules.mk.

Non-recursive Make: module.mk

34 GNU Make for Managing Data Analysis Workflow

Each subdirectory has a module.mk. Since these are called from either the root directory
or the current directory then appropriate variables are set in root.mk. Therefore, variables
pointing to the root directory and relative paths are set elsewhere.
Firstly, the phony target all is set which is then employed by either the Makefile in the
current directory or the base directory. For instance in the analysis subdirectory, where the
definition of all_analysis is all on one line as

.PHONY: all_analysis
all_analysis: ${ANALYSIS}/summary_simple_csv.${R_OUT_EXT} \

${ANALYSIS}/analyse_simple_csv.${R_OUT_EXT}

The two output or target files also have their relative path specified with the {ANALYSIS}
variable. Similarly, for the previous steps, which require reading and cleaning the data in
../readMergeData, the variable READ is set. For example, to summarize data given that it is
the latest cleaned version of the data, or rerun to clean it if it is not then the rule is defined
all on one line as

${ANALYSIS}/summary_simple_csv.${R_OUT_EXT}: \
${ANALYSIS}/${@:.${R_OUT_EXT}=.R} \
${READ}/clean_simple_csv.${R_OUT_EXT}

Non-recursive Make: Analysis Makefile

The first few lines are exactly the same as in the base directory Makefile in that they set
the _ROOT and RELATIV variables and then include the file root.mk in the root directory.
Firstly, a simple phony target all is set up with

.PHONY: all
all: all_analysis

noting that all_analysis is the first and phony target defined in module.mk.
The next two lines simply include the commands in module.mk and the equivalent file in the
../readMergeData which then defines any dependency files.

include module.mk
include ../readMergeData/module.mk

These commands are then followed by including r-rules.mk and cleaning rules etc.
Note that all files are defined relative to the root or base directory and so include the current
subdirectory name as well. Therefore, a command like make summary_simple_csv.pdf will
not work because the target is actually defined as ../analysis/summary_simple_csv.pdf.
For ease of exposition, assume that that R_OUT_EXT is set to Rout then running this make
command gives the output.

$ make -n ../analysis/analyse_simple_csv.Rout

R CMD BATCH --vanilla ../readMergeData/read_simple_csv.R
R CMD BATCH --vanilla ../readMergeData/clean_simple_csv.R
R CMD BATCH --vanilla ../analysis/analyse_simple_csv.R

Journal of Statistical Software – Code Snippets 35

It is clear that the appropriate dependencies are made if required. For further details and defi-
nitions in other subdirectories, please see the rules defined in the complex_demo/nonrecursive
example.

6.4. Projects requiring different rules for different targets

As a final example of a complex project, we may be working on projects where a one-size-fits-
all approach will not work for all target files. For instance, we may have a mixture of .Rnw
files in both Sweave and knitr formats from different collaborators.
While we could construct a Makefile to call make separately for different .Rnw target files
using SWEAVE_ENGINE set to either Sweave or blank, better approaches are available. Fol-
lowing Mecklenburg (2004), we could employ a combination of target specific variables (see
Section 5.2) and user defined hooking functions. In essence, for this approach, we can cre-
ate user defined functions and specify which function to use with each .Rnw file. Relevant
functions and rules are:

define build-sweave
$(call build-sweave-hook,$@)

endef

and now define function hooks RSWEAVEPDF and RKNITRPDF for Sweave and knitr formats,
respectively

define RSWEAVEPDF
${RSWEAVE} --pdf $< ${RSWEAVE_FLAGS}

endef
define RKNITRPDF

${RSCRIPT} ${RSCRIPT_OPTS} -e "library(\"knitr\");knit2pdf('$<')"
endef

where variables RSCRIPT, RSCRIPT_OPTS, RSWEAVE and RSWEAVE_FLAGS are defined in Sec-
tions 4.3 and 5.1.
Using target specific variables and hooking functions the targets are defined as

RSWEAVE_RNW target(s) for .pdf from .Rnw using Sweave
$(RSWEAVE_PDF): build-sweave-hook = $(RSWEAVEPDF) $1
$(RSWEAVE_PDF):

$(call build-sweave,$^)

RKNITR_PDF target(s) for .pdf from .Rnw using knitr
$(RKNITR_PDF): build-sweave-hook = $(RKNITRPDF) $1
$(RKNITR_PDF):

$(call build-sweave,$^)

Finally, we define the PDF target files as dependencies to either RSWEAVE_PDF or RKNITR_PDF
and also define the dependency files to the PDF target files as usual. These rules are provided
in r-rules.mk and help can be obtained with

make help-both-sweave-knitr

36 GNU Make for Managing Data Analysis Workflow

6.5. Rolling your own rules
Naturally, there will always be situations where pattern rules are not available. Using the
examples above and modifying existing rules should provide a guide for producing new pattern
rules for such situations. Other situations may not require writing pattern rules but may
employ phony targets to aid automation of your workflow.
For example, if you use GNU Make to manage the production of web pages and reports from
start to finish then you make also wish to include an extra step in a Makefile to transfer the
final HTML pages and/or PDF files to a server. While there are various ways to do this, one
popular method is to employ rsync. A .PHONY target could be used in the knowledge that it
will always be made. However, rsync will only transfer files that have changed. For instance,

MYFILES = homepage.html report.pdf
RSYNC = rsync
RSYNC_FLAGS = -auvtr

.PHONY: rsync_all
rsync_all:

${RSYNC} ${RSYNC_FLAGS} ${MYFILES} myserver.com:.

would transfer the appropriate files to the server.

7. Discussion
When employing R and related software, reproducible research is often thought of in terms
of a single rmarkdown or Sweave file or a syntax file where all the required steps may be
reproduced given the data. In complex data analysis projects, the workflow can be much
more complicated. There may be many steps in the process, each dependent on syntax and
data files and also previous steps. In these situations, modularizing the process by employing
separate syntax files for each step and a build system like GNU Make combined with a version
control system like git will prove to be invaluable.
In this article, we have introduced new GNU Make pattern rules to enhance the workflow of
data analysis projects when using statistical software like R, PSPP, Stata and SAS. Pattern
rules are also provided to produce reports and articles in various formats via pandoc from
rmarkdown files and via knitr or Sweave for R Sweave files. Common formats like Microsoft
PowerPoint, IO Slides, Slidy, Beamer and Tufte presentations may be produced via the Make
rules provided for rmarkdown files and finally for producing Beamer presentations, articles
and handouts from R Sweave files. GNU Make rules are also provided and described for
other commonly used data manipulation languages like Perl and Python which are sometimes
employed as an integral part of the data analysis workflow. Other packages and languages
may be added as outlined in the article.
With very little knowledge of GNU Make, data analysts can use these rules with minimal
effort. Implementation is straightforward, in that the file r-rules.mk may be downloaded
from GitHub and included in a Makefile by incorporating an include statement. Simple
Makefiles may be constructed by specifying relationships between targets and their depen-
dencies. Alternatively, Makefiles can be constructed using the MakefileR R package (Müller
2016).

Journal of Statistical Software – Code Snippets 37

Typically, as commonly used by GNU Make practitioners, customized Make rules to provide
help are provided for customized rules. After including r-rule.mk, help may be obtained by
issuing the command make help in a terminal.
However, if extra flexibility is required, then program parameters and options may be changed
by setting associated variables for any rule provided or even creating new rules. Pattern rules
provided here and associated variables are outlined in Table 3. New rules will be added to
r-rules.mk as the need arises. As an example, rules are provided for simple data backup
via rsync. One advantage of using Make rules for rsync instead of using rsync directly is
that destinations may be hardwired into the Makefile so that we adopt a “set and forget”
approach for each project. Other rules may also be employed to clean intermediate files but
these rules are not outlined here.
It is our experience that employing the GNU Make pattern rules provided here, in conjunction
with a modern version control system like git, considerably increases a data analyst’s efficiency
and aids reproducible research. For instance, it is not uncommon to return to a data analysis
project after several months or even years have elapsed. In this situation, GNU Make can be
employed not only to regenerate output automatically given changes in the data or syntax
but also provide an audit trail of the exact steps that were used to produce a final report
or journal article. Commonly used methods, such as point and click followed by cut and
paste, often suffer from an inability to reproduce the results and have no audit trail. While
it does not circumvent the need for good documentation, employing version control and the
Make system described here goes a long way towards fixing the inherent limitations of such
an ad-hoc approach.
Indeed, to provide clarity of all the steps undertaken in a particular data analysis project, the
final version of a report or article should be able to be reproduced by providing a minimal
set of the final data, syntax and Makefiles as long as the same versions of the software are
employed. Differing versions of the software can also be problematic but there are efforts
being made to overcome this issue, especially with respect to R packages since some of these
may undergo significant changes in a short time (see Ushey et al. 2018).
A large data analysis project may employ a team of researchers or data analysts working in
conjunction with subject matter researchers and data managers. Following on from the ideas
of Long (2009), they may also publish intermediate data sets and reports to freeze these at a
certain point in time ensure all team members are working on the same cleaned data set or
referring to the same report. An alternative is to employ a central git repository and in this
case GNU Make will also prove useful. While the repository could be set up to only contain
the minimal file set required to regenerate output, it can prove advantageous to also put
some reports under version control. Team members can then check out a particular version
if required. Using version control also ensures that older versions are available whether they
are published or not.
While it is preferable to have collaborators or reviewers check out a minimal file set from a
git repository, there may also be the need to email it. Usually when distributing code in such
a way, it is common to specify a cleanall rule or similar to remove any intermediate files
and allow a minimal set of files to be sent.
Given the vast array of software employed for data analysis and reporting, it is clear that
new rules will be required for complex data analysis projects. For instance, we may need
to produce different formats for vignettes in R packages using alternate vignette engines for

38 GNU Make for Managing Data Analysis Workflow

formats like HTML or reStructured Text files. Once an appropriate command can be run
from the command line to produce an example target file given example dependency files then
it is a straightforward to write a GNU Make pattern rule as outlined above.

There are however still some limitations, even when compared to other programming lan-
guages. For instance, when C/C++ projects become very large then manually specifying
dependency files may become error prone. Hence, when using Make for C or C++, we may
use tools like makedepend, Automake or Make depend to automatically generate dependency
lines for Make. While this topic is too advanced to discuss here in any detail, it is sufficient
to note that such an approach would be difficult to emulate when using a statistical analysis
package like R. This is because in C, dependencies like header (.h) files are hardwired into
the C files, which are subsequently parsed to obtain header filenames, whereas in R and other
statistical packages, data filenames are often constructed by manipulating strings and so the
usual way of generating dependency lines in Makefiles is unavailable. Hence, it seems more
practical to hardwire the filenames, employ R syntax to generate the names or to employ
wildcards despite the possibilities of errors.

Other build or automation approaches to GNU Make are available but are not as widely
used. Alternatives may work equally as well but it is common for programmers to re-
vert to Make if the alternative proves problematic (Mecklenburg 2004; Graham-Cumming
2015). Indeed, some well known alternatives such as SCons (http://scons.org/) require
programming another language like Python or are very much Make like build systems. These
include makepp (Pfeiffer and Holt 2013), CMake (Hoffman and Martin 2003) and Remake
(http://bashdb.sourceforge.net/remake/). Superficially, while these systems often have
strong advocates and in time one of these or another alternative may supersede GNU Make,
these methods would appear to be as complicated as standard GNU Make if not more so.
Another drawback of the Make-like systems, e.g., makepp and Remake, is that they are often
coded in Perl or Python and so possess slight differences which can cause incompatibilities
with standard Makefiles. For a reasonably comprehensive discussion of alternatives see
https://bitbucket.org/scons/scons/wiki/SconsVsOtherBuildTools.

8. Conclusion

In conclusion, pattern rules for GNU Make are provided for several statistical software packages
and related computational tools to aid in the workflow of data analysis projects. These rules
can aid the management, efficiency and repeatability of such projects, especially when used in
conjunction with a version control system like git. The examples described here for a simple
analysis and a more complex multi-directory project using either recursive or non-recursive
make are also provided. Other examples are available for multiple targets and producing
Beamer presentations and handouts using either knitr or Sweave. These examples will allow
readers to experiment with rerunning Make while altering syntax, data and Makefiles in order
to gain familiarity with the approach and so tailor it to their own data analysis projects.

The most recent versions of GNU Make pattern rules and all files to reproduce the examples
described here are available at https://github.com/petebaker/r-makefile-definitions.

http://scons.org/
http://bashdb.sourceforge.net/remake/
https://bitbucket.org/scons/scons/wiki/SconsVsOtherBuildTools
https://github.com/petebaker/r-makefile-definitions

Journal of Statistical Software – Code Snippets 39

Acknowledgments
We would like to thank Bob Forrester, formerly of CSIRO, who alerted us to using Make
and version control for managing data analysis projects in the mid 1990s. We would also
like to thank participants at recent R Users Conferences for stimulating discussions about
using Make for data analysis workflow and, in particular, participants at my R data analysis
workflow tutorial (see also http://user2015.math.aau.dk/tutorials#baker) in 2015 and
Noam Ross in 2016 for posing the question about multiple targets as discussed in Section 5.6.
Finally, we would like to thank an anonymous referee for providing many detailed and useful
suggestions to improve this article.

References

Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J,
Chang W (2020). rmarkdown: Dynamic Documents for R. R package version 2.1, URL
https://CRAN.R-project.org/package=rmarkdown.

Baker P (2020). gnumaker: GNU Makefile Creation and Plotting for Data Analysis Projects.
R package version 0.0.0.9007, URL https://github.com/petebaker/gnumaker.

Ball A (2017). beamerswitch: Convenient Mode Selection in Beamer Documents. Version
1.2. URL https://www.ctan.org/pkg/beamerswitch.

Boehmke B (2016). Data Wrangling with R. Springer-Verlag, Switzerland.

Bostock M (2013). “Why Use Make.” Accessed: 2018-10-30, URL https://bost.ocks.org/
mike/make/.

Broman K (2018). “Minimal Make.” URL http://kbroman.org/minimal_make/.

Collins J (2018). “latexmk Version 4.61.” CTAN Package latexmk. Accessed: 2019-01-02,
URL http://www.personal.psu.edu/jcc8/latexmk/.

Dasu T, Johnson T (2003). Exploratory Data Mining and Data Cleaning. John Wiley & Sons,
New Jersey.

de Aquino JA (2016). Nvim-R Improves Vim’s Support to Edit R Code. Accessed: 2018-10-30,
URL https://github.com/jalvesaq/Nvim-R.

de Vries A (2019). miniCRAN: Create a Mini Version of CRAN Containing Only Se-
lected Packages. R package version 0.2.12, URL https://CRAN.R-project.org/package=
miniCRAN.

Gatto L, Breckels L, Gibb S, Smith T (2014). “Makefile for R Packages.” Accessed: 2018-
10-30, URL https://github.com/ComputationalProteomicsUnit/maker.

Gillespie C (2011). “Makefiles and Sweave.” Accessed: 2018-10-30, URL https://
csgillespie.wordpress.com/2011/05/12/makefiles-and-sweave/.

Graham-Cumming J (2015). The GNU Make Book. No Starch Press, San Francisco.

http://user2015.math.aau.dk/tutorials#baker
https://CRAN.R-project.org/package=rmarkdown
https://github.com/petebaker/gnumaker
https://www.ctan.org/pkg/beamerswitch
https://bost.ocks.org/mike/make/
https://bost.ocks.org/mike/make/
http://kbroman.org/minimal_make/
http://www.personal.psu.edu/jcc8/latexmk/
https://github.com/jalvesaq/Nvim-R
https://CRAN.R-project.org/package=miniCRAN
https://CRAN.R-project.org/package=miniCRAN
https://github.com/ComputationalProteomicsUnit/maker
https://csgillespie.wordpress.com/2011/05/12/makefiles-and-sweave/
https://csgillespie.wordpress.com/2011/05/12/makefiles-and-sweave/

40 GNU Make for Managing Data Analysis Workflow

Hacker News (2013). “Why Use Make.” Accessed: 2018-10-30, URL https://news.
ycombinator.com/item?id=5275313.

Hoffman W, Martin K (2003). “The CMake Build Manager.” Accessed: 2017-05-31, URL
http://www.drdobbs.com/cpp/the-cmake-build-manager/184405251.

Howell M, De Meo M, Janke A, Cheng X, McQuaid M, Fontaine B, Koonce B, Afanasjew M,
Tiller D, Smith T, Dunn A, Nagel J, Vandenberg A (2009). “Homebrew.” URL https:
//github.com/Homebrew.

Hyndman RJ (2018). “Makefiles for R/LATEX Projects.” Accessed: 2018-10-30, URL https:
//robjhyndman.com/hyndsight/makefiles/.

Jackman S, Bryan J (2014). “Automating Data Analysis Pipelines.” Accessed: 2018-10-30,
URL http://stat545.com/automation00_index.html.

Jones Z (2018). “GNU Make for Reproducible Data Analysis.” Accessed: 2018-10-30, URL
http://zmjones.com/make.

Landau WM (2018). “The drake R Package: A Pipeline Toolkit for Reproducibility and
High-Performance Computing.” Journal of Open Source Software, 3(21). doi:10.21105/
joss.00550.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Härdle, B Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational Statistics,
pp. 575–580. Physica Verlag, Heidelberg.

Lindenbaum P (2014). “makefile2graph: Creates a Graph of Dependencies from GNU Make;
Output Is a Graphiz-Dot File or a Gexf-XML File.” Accessed: 2016-04-03, URL https:
//github.com/lindenb/makefile2graph.

Loeliger J, McCullough M (2012). Version Control with git: Powerful Tools and Techniques
for Collaborative Software Development. 2nd edition. O’Reilly Media, Sebastopol.

Long JS (2009). The Workflow of Data Analysis Using Stata. StataCorp LP, Texas.

Mecklenburg R (2004). Managing Projects with GNU Make. 3rd edition. O’Reilly Me, Se-
bastopol.

Miller P (1998). “Recursive Make Considered Harmful.” AUUGN Journal of AUUG Inc,
19(1), 14–25.

Müller K (2016). MakefileR: Create Makefiles Using R. R package version 1.0, URL https:
//CRAN.R-project.org/package=MakefileR.

Olson J (2017). “Time for Makefiles to Make a Come-
back.” Accessed: 2018-10-30, URL https://medium.com/@jolson88/
its-time-for-makefiles-to-make-a-comeback-36cbc358bb0a.

Pfeiffer D, Holt G (2013). “Makepp Home Page.” Last updated: 2013-10-13, Accessed: 2017-
02-17, URL http://makepp.sourceforge.net/.

https://news.ycombinator.com/item?id=5275313
https://news.ycombinator.com/item?id=5275313
http://www.drdobbs.com/cpp/the-cmake-build-manager/184405251
https://github.com/Homebrew
https://github.com/Homebrew
https://robjhyndman.com/hyndsight/makefiles/
https://robjhyndman.com/hyndsight/makefiles/
http://stat545.com/automation00_index.html
http://zmjones.com/make
https://doi.org/10.21105/joss.00550
https://doi.org/10.21105/joss.00550
https://github.com/lindenb/makefile2graph
https://github.com/lindenb/makefile2graph
https://CRAN.R-project.org/package=MakefileR
https://CRAN.R-project.org/package=MakefileR
https://medium.com/@jolson88/its-time-for-makefiles-to-make-a-comeback-36cbc358bb0a
https://medium.com/@jolson88/its-time-for-makefiles-to-make-a-comeback-36cbc358bb0a
http://makepp.sourceforge.net/

Journal of Statistical Software – Code Snippets 41

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rossini AJ, Heiberger RM, Sparapani RA, Mächler M, Hornik K (2004). “Emacs Speaks
Statistics: A Multiplatform, Multipackage Development Environment for Statistical Anal-
ysis.” Journal of Computational and Graphical Statistics, 13(1), 247–261. doi:10.1198/
1061860042985.

RStudio Team (2015). RStudio: Integrated Development Environment for R. RStudio, Inc.,
Boston. URL http://www.rstudio.com/.

StataCorp (2019). Stata Statistical Software: Release 16. StataCorp LLC, College Station.
URL http://www.stata.com/.

Ushey K, McPherson J, Cheng J, Atkins A, Allaire JJ (2018). packrat: A Dependency
Management System for Projects and Their R Package Dependencies. R package version
0.5.0, URL https://CRAN.R-project.org/package=packrat.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3(1), 5–10. doi:
10.32614/rj-2011-002.

Wickham H (2014). “Tidy Data.” Journal of Statistical Software, 59(10), 1–23. doi:10.
18637/jss.v059.i10.

Wickham H, Danenberg P, Csárdi G, Eugster M (2020). roxygen2: In-Line Documentation
for R. R package version 7.1.0, URL https://CRAN.R-project.org/package=roxygen2.

Xie Y (2015). Dynamic Documents with R and knitr. 2nd edition. Chapman & Hall/CRC,
Boca Raton.

Xie Y (2020). knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.28, URL https://CRAN.R-project.org/package=knitr.

https://www.R-project.org/
https://doi.org/10.1198/1061860042985
https://doi.org/10.1198/1061860042985
http://www.rstudio.com/
http://www.stata.com/
https://CRAN.R-project.org/package=packrat
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=knitr

42 GNU Make for Managing Data Analysis Workflow

A. Using GNU Make with IDEs and editors
RStudio (RStudio Team 2015), ESS (Emacs speaks statistics; Rossini et al. 2004) and Vim
(de Aquino 2016) are commonly used development environments for R.
We briefly outline how to set up GNU Make in the first two IDEs.

A.1. GNU Make with RStudio

RStudio (RStudio Team 2015) is probably the most commonly used development for R pro-
grammers and is always under rapid development for new features. As at version 1.0.153, the
build tools can be set up as follows:

1. Either create a new project or begin in an existing project.

2. Use the Build > Configure Build Tools menu and then choose ‘Makefile’ from the
list of ‘Project Build Tools’ options as shown in Figure 2.

You may then use the ‘Build’ menus or shortcuts like Ctrl-Shift-B to build all. Other menu
options like ‘Clean’ or ‘Clean and Rebuild’ may also be available depending on your setup.

A.2. GNU Make with Emacs ESS

Emacs speaks statistics (ESS; Rossini et al. 2004) is another commonly used R development
environment. By default, make -k is available via the compile command. This can be accessed
via M-x compile. However, we prefer to bind this to a function key by including the following
lines in my init.el file.

;; press f12 to compile using default 'make -k'
(setq compilation-read-command nil)
(global-set-key [f12] 'compile)

Depending on the actual project, we also find this key binding useful if we wish to compile
from another frame (Emacs window).

;; probably most useful is to make it Ctrl-f12 as we use f12 to compile
(global-set-key (kbd "C-<f12>") 'other-frame)

B. Makefile for simple example
A complete Makefile for the simple example in Section 3.2 is provided here for a simple data
analysis project where file simple.csv is read in using read.R, analyzed with linmod.R and
reports produced with report1.Rmd and report2.Rmd. To trace the dependencies, it is best
to read the Makefile from the bottom up.

File: Makefile
Purpose: Simple Example

Journal of Statistical Software – Code Snippets 43

Figure 2: RStudio build configuration.

.PHONY: all
all: report1.pdf report2.docx

reports 1 & 2 depend on results of 'linmod.Rout' & '.Rmd' file(s)
report1.pdf: report1.Rmd linmod.Rout
report2.docx: report2.Rmd linmod.Rout

data analysis: dependent on 'linmod.R' and 'read.Rout'
linmod.Rout: linmod.R read.Rout

read in data: depends on 'read.R' and 'simple.csv'
read.Rout: read.R simple.csv

include R pattern rule definitions from file in $HOME/lib
include ~/lib/r-rules.mk

For a dependency graph of the relationships between files see Figure 1.

C. R and related pattern rules in detail
Table 3 provides details of pattern rules to produce text, PDF, Word or HTML output from
R files. Currently, rules for several other output formats are provided and new rules will be
added when additional output types are added to rmarkdown. Variables such as R, R_FLAGS,
RSCRIPT and RSCRIPT_OPTS may be redefined to override default definitions. Note that when
producing PDF files, on some systems, LATEX defaults may automatically crop figures to be
blank and so we may wish to change the fig_crop option to be FALSE. This can be done by
redefining RMARKDOWN_PDF_OPTS as outlined in Section 4.3 or Listing 4.
You can include r-rules.mk with an include statement. Since you will predominantly be

44 GNU Make for Managing Data Analysis Workflow
Target

D
ependency

Purpose
C
om

m
ands,variables

&
notes

R
batch

.Rout
.R

or
.r

R
batch

m
ode

R
CMD

BATCH
--vanilla

file.R
(resulting

com
m
and)

${R}
${R_FLAGS}

${R_OPTS}
file.R,(actualcom

m
and)

w
here

R
=
R

R_FLAGS
=
CMD

BATCH
R_OPTS

=
--vanilla

R
N

otebooks
and

docum
ents

.html
.R,.r,

H
T
M
L
docum

ent
Rscript

–vanilla
-e

"library(’rmarkdown’);
render(’FILE’,

’html_document’)"
.Rmd

or
from

R
syntax

w
here

’FILE’
is
’file.Rmd’,

’file.rmd’,
’file.R’

or
’file.r’

.rmd
or

R
M
arkdow

n
w
hich

can
be

altered
using

variables:
file

${RSCRIPT}
${RSCRIPT_OPTS}

-e
"library(’rmarkdown’);

\
render(’FILE’,

${RMARKDOWN_HTML_OPTS}
${RMARKDOWN_HTML_EXTRAS})"

RSCRIPT
=
Rscript

RSCRIPT_OPTS
=
--vanilla

RMARKDOWN_HTML_OPTS
=
"html_document"

and
RMARKDOWN_HTML_EXTRAS

is
blank

.docx
.R,.r,

W
ord

docum
ent

Rscript
–vanilla

-e
"library(’rmarkdown’);

render(’FILE’,
’word_document’)"

.Rmd
or

from
R
syntax

w
hich

can
be

altered
using

variables:
.rmd

or
R
M
arkdow

n
${RSCRIPT}

${RSCRIPT_OPTS}
-e

"library(’rmarkdown’);
\

file
render(’FILE’,

${RMARKDOWN_DOCX_OPTS}
${RMARKDOWN_DOCX_EXTRAS})"

w
here

’FILE’,
RSCRIPT

and
RSCRIPT_OPTS

as
above

and
RMARKDOWN_DOCX_OPTS

=
"word_document"

and
RMARKDOWN_DOCX_EXTRAS

is
blank

.pdf
.R,.r,

PD
F
docum

ent
Rscript

–vanilla
-e

"library(’rmarkdown’);
render(’FILE’,

’pdf_document’)"
.Rmd

or
from

R
syntax

w
hich

can
be

altered
using

variables:
.rmd

or
R
M
arkdow

n
${RSCRIPT}

${RSCRIPT_OPTS}
-e

"library(’rmarkdown’);
\

file
render(’FILE’,

${RMARKDOWN_PDF_OPTS}
${RMARKDOWN_PDF_EXTRAS})"

w
here

’FILE’,
RSCRIPT

and
RSCRIPT_OPTS

as
above

and
RMARKDOWN_PDF_OPTS

=
"pdf_document"

and
RMARKDOWN_PDF_EXTRAS

is
blank

Table
3:

Pattern
rulesto

produce
.Rout

outputfrom
an

.R
syntax

file
and

H
T
M
L,W

ord
orPD

F
outputfilesfrom

eithera
.R

syntax
file

(file.R)or
.Rmd

R
M
arkdow

n
file

(file.Rmd)provided
in

r-rules.mk.
Sim

ilarrulesare
available

forLibre
O
ffi
ce

and
R
ich

Text
Form

at
docum

ents
and

also
IO

Slides,Slidy,Beam
er,Tufte

and
M
icrosoft

PowerPoint
presentation

files.
N
ote

that
variables

m
ay

be
set

by
defining

them
after

including
the

file
r-rules.mk

in
the

Makefile.
R
un

make
help-rmarkdown

for
details.

Journal of Statistical Software – Code Snippets 45

include ~/lib/r-rules.mk
R = R-development
R_OPTS = --no-environ --vanilla
RMARKDOWN_PDF_OPTS = pdf_document(fig_crop=FALSE)

Listing 4: Including the r-rules.mk file stored in directory /lib with an include statement
in a Makefile. Note that variables like R, R_OPTS and RMARKDOWN_PDF_OPTS are redefined
after the include statement rather than before.

using the same rules for different projects, it makes sense to keep the file in a directory you
can access easily. Often this may be the directory lib or Library in your home directory or
in a system wide directory such as /usr/local/include. The last directory is automatically
searched by GNU Make and so the directory will not need to be specified in the include
statement.
You can modify rules by redefining them, or more likely, variables after the include statement.

D. Installing GNU Make
To verify that GNU Make is installed, in a terminal window, type

make --version

If make is installed and in your PATH, a message will be returned like:

GNU Make 4.2.1
Built for x86_64-redhat-linux-gnu
Copyright (C) 1988-2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Linux users should already have a relatively recent version of Make installed as part of a
standard set up.
Note that even on the most recent version of other operating systems, Make may be quite
old. For instance, on the most recent version of macOS, Make is over 12 years old and make
supplied with old versions of Rtools for Windows may be even older. While this is somewhat
prehistoric for computer software, it should usually have little effect although some of the
more modern Make constructs supplied here may not work. Hence, you may wish to upgrade
to more recent versions. Both Rtools and XCode will also install other compilers and tools
which may also prove useful for program development. Versions older than 4.0 may not work
appropriately with recursive Make nor some of the rules provided. If your current version
limits your approach then you may need to install a more up to date of GNU Make.
macOS users should install XCode from the App Store but this will install an old version
of GNU Make. For a newer version you may wish to install GNU Make using the Homebrew

46 GNU Make for Managing Data Analysis Workflow

package manager (Howell et al. 2009). If you do this then you will run the newer version with
gmake because make runs the older version from XCode. Note that some very old versions of
GNU Make (earlier than 3.82) installed may not work for some of the rules implemented here.
Recent versions will match the pattern that matches most specifically whereas very old ones
may not.
Windows users who do not already have GNU Make may find it much easier just to install the
Rtools available for Windows from a Comprehensive R Archive Network (CRAN; https://
CRAN.R-project.org) mirror. However, relatively recent versions of the Rtools may contain
fairly old versions of GNU Make. For instance, in recent versions of the Rtools, GNU Make
may be a decade old or in some cases much older but it will probably work just fine in most
circumstances. Fortunately, the current Rtools (version 3.5) provides the very up to date
GNU Make 4.2.1. Windows users who are developing software or who wish to use Unix tools
may already have installed a version of Make with gnuwin32, MSYS, MSYS2 or cygwin. The
latter two have up to date versions of Make whereas the first two have quite old versions.
Finally, Windows 10 users may also install recent versions of Bash and GNU Make by enabling
developer mode and installing the Windows Subsystem for Linux.

Affiliation:
Peter Baker
School of Public Health
University of Queensland
Herston 4006 Australia
E-mail: p.baker1@uq.edu.au
URL: http://petebaker.id.au/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
June 2020, Volume 94, Code Snippet 1 Submitted: 2017-08-10
doi:10.18637/jss.v094.c01 Accepted: 2019-04-15

https://CRAN.R-project.org
https://CRAN.R-project.org
mailto:p.baker1@uq.edu.au
http://petebaker.id.au/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v094.c01

	Introduction
	Getting started with GNU Make
	A simple example

	Makefile basics
	Specifying targets and dependencies
	Simple example (continued)
	Variables and search paths

	Using pattern rules for R and related software
	Making targets explicitly
	Pattern rules for making targets in general
	Rules defined in r-rules.mk
	Streamlining the make process

	Extensions, limitations and work-arounds
	GNU Make ifeq and other functions
	Target and pattern specific variables
	Reusing Makefiles
	Setting and using Make variables in R
	GNU Make wildcard function
	Multiple targets
	A first try
	A better way: Using a sentinel file and the atomic function

	Spaces in filenames
	Avoiding a tab for single line pattern rule definitions
	Forcing Make to rerun everything

	Complex projects
	Multiple directories
	Recursive Make
	Non-recursive Make
	Non-recursive Make: Makefiles
	Non-recursive Make: root.mk
	Non-recursive Make: Root Makefile
	Non-recursive Make: module.mk
	Non-recursive Make: analysis Makefile

	Projects requiring different rules for different targets
	Rolling your own rules

	Discussion
	Conclusion
	Using GNU Make with IDEs and editors
	GNU Make with RStudio
	GNU Make with Emacs ESS

	Makefile for simple example
	R and related pattern rules in detail
	Installing GNU Make

