
JSS Journal of Statistical Software
June 2020, Volume 94, Issue 2. doi: 10.18637/jss.v094.i02

R Package OBsMD for Follow-Up Designs in an
Objective Bayesian Framework

Laura Deldossi
Universitá Cattolica del Sacro Cuore

Marta Nai Ruscone
Universitá degli Studi di Genova

Abstract

Fractional factorial experiments often produce ambiguous results due to confounding
among the factors; as a consequence more than one model is consistent with the data.
Thus, the practical problem is how to choose additional runs in order to discriminate
among the rival models and to identify the active factors. The R package OBsMD solves
this problem by implementing the objective Bayesian methodology proposed by Consonni
and Deldossi (2016). The main feature of this approach is that the follow-up designs are
obtained through the use of just two functions, OBsProb() and OMD() without requiring
any prior specifications, being fully automatic. Thus OBsMD provides a simple tool for
conducting a design of experiments to solve real world problems.

Keywords: Bayesian design of experiments, screening experiments, Bayesian model selection,
model discrimination.

1. Introduction
Fractional factorial designs (often referred to as screening experiments) are generally used
during the early stage of an investigation when there is limited scientific knowledge. Un-
fortunately, such designs often do not lead to unequivocal conclusions regarding the model
structure and the combination of factors that influence the response variable. From a Bayesian
perspective, this means that the posterior distributions will be flat on both model and factor
spaces. In these circumstances, a follow-up design is needed, as the aim is to choose extra
runs in order to resolve this ambiguity.
The strategy proposed by Consonni and Deldossi (2016) and implemented in the OBsMD
package (Nai Ruscone and Deldossi 2020) for R (R Core Team 2020), is explained in Section 2
and illustrated via a tutorial in Section 5.
This proposal represents the objective Bayesian version of the criterion proposed by Meyer,
Steinberg, and Box (1996), implemented in the R package BsMD (Barrios 2020) based on the

https://doi.org/10.18637/jss.v094.i02

2 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

Fortran 90 bundle mdopt written by Meyer (1996). The OBsMD’s core is written in a Fortran
90 bundle obtained by modifying in a suitable way, because of the adoption of the objective
priors, the package mdopt of Meyer (1996). The program was converted to subroutines to
be run from the R package. The package is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/packages=OBsMD. The adoption of an
objective Bayesian approach (Berger and Pericchi 2001), where the priors are derived by de-
fault methods based on the statistical model, implies that no prior specifications are required
to be provided by the users so that the approach is fully automatic.
The paper is organized as follows. After a brief recall of classical strategies for augmenting
an experimental design, Section 2 presents the objective Bayesian approach implemented in
the R package OBsMD through the use of an example. A discussion of the choice of some
relevant arguments for the functions OBsProb() and OMD() is reported in Section 3. Section 4
schematically introduces the functions OBsProb() and OMD() and their arguments. Finally a
tutorial using the MetalCutting dataset included in OBsMD is reported in Section 5.

2. Follow-up design in an objective Bayesian framework
Several different techniques and strategies exist for augmenting an experimental design:
foldover (Montgomery and Runger 1996), semifolding (Mee and Peralta 2000), the D-optimal
design approach to augmentation (Goos and Jones 2011), a Bayesian strategy in the context
of model discrimination (Meyer et al. 1996 and later Consonni and Deldossi 2016). The pack-
age OBsMD implements the last of these proposals. To introduce the reader to the approach,
Section 2.1 briefly explains – through the use of an example – when the researcher needs
to augment a design and how he/she can choose the additional runs. The main results of
Consonni and Deldossi (2016) are recalled in Section 2.2 together with the main output of
the package OBsMD applied to the previous example. Finally Section 2.3 illustrates how the
original mdopt program written by Meyer (1996) has been modified because of the adoption
of the objective priors.

2.1. Aim of the package

Screening experiments are employed in the initial stage of investigation to identify the sig-
nificant factors, i.e., those which affect the response variable from a list of many potential
ones. We refer to this kind of factors as active factors; see Box, Hunter, and Hunter (1978)
or Montgomery (2006) for references on this topic.
Consider for instance a response variable which is potentially influenced by k categorical
factors. To discover which factors are active, the experimenter usually considers the designs
2k, i.e., designs where all the k factors can take on only two values (low = −1, high =
+1). A run specifies the level of each factor at which the experiment is conducted. Ideally,
one would want to experiment with all possible 2k runs (i.e., all the combination of the
levels of the k factors). However, as the number k of the factors increases, the amount of
experimental effort requested may be too high for an initial experiment. For example, a
complete replicate of the 26 design requires 64 runs. In this design only 6 of the 63 degrees
of freedom correspond to main effects, and only 15 to two factor interactions. The remaining
42 degrees of freedom are associated with interactions higher than 2. If the experimenter
can reasonably assume that certain high-order interactions are negligible, information on

https://CRAN.R-project.org/packages=OBsMD

Journal of Statistical Software 3

Factors Low (−1) High (+1)
A – Tool speed (rpm) 2700 3200
B – Workpiece speed (mm/min) 203 330
C – Depth of cut(mm) 0.5 1.0
D – Coolant Off On
E – Direction of cut Conventional Climbing
F – Number of cut 1 2

Table 1: The factors and their levels in the MetalCutting dataset.

main effects and low-order interactions may be obtained by running only a “fraction” of the
complete factorial experiment.
These are the so-called fractional factorial experiments 2k−q, corresponding to one half fraction
when q = 1, one quarter fraction when q = 2, . . . and so on. Refer, e.g., to the package FrF2
(Grömping 2014, 2020) to create and analyze fractional factorial 2-level designs.
The reduction of runs (from 2k to 2k−q) introduces aliasing structures in the estimation
process with the result that main effects are confounded with some interaction terms; the
interested reader is referred to Box et al. (1978) and Montgomery (2006). As a consequence,
this kind of design works well and gives clear results as long as the interactions among factors,
especially those of high order, can be considered negligible. When this is not the case, the
aliasing structure underlying these designs can lead to ambiguous conclusions regarding which
combinations of factors are really active. Thus it is necessary to augment the design with nf

extra runs. This kind of experiment is called a “follow-up design”.
Consider for instance the dataset MetalCutting included in the OBsMD package. This
dataset was used in Mønness, Linsley, and Garzon (2007) and re-examined in Edwards, Weese,
and Palmer (2014) with the aim to compare methods to design follow-up experiments. It is
introduced here just for illustrative purposes and it is analyzed in Section 5 with the aim to
identify the oracle model and active factors.
It is a six-factor (A,B,C,D,E, F) full factorial experiment designed to determine effects hav-
ing an impact on metal surface finish in a cutting operation. Table 1 displays the k = 6 factors
involved in the experiment and their levels. The full factorial design is composed of 26 = 64
runs obtained by combining in all possible ways the levels of the 6 factors. It is reported
in Table 2 together with the value of the block1 variable and that of the response variable
(Ytransformed) obtained by a reciprocal transformation of the original y; see Mønness et al.
(2007). Each row of the MetalCutting dataset represents a run which defines, apart from the
block, the level of each factor at which the experiment is conducted. For instance, run = 1
with (−1,−1,−1,−1, 1,−1) defines the experiment done when the fifth factor (E) is fixed at
high level, while all the other factors (A,B,C,D, F) are set at low level. Often the cost per
run and time constraints limit the number of combinations that can be included in the exper-
iment, thus the researcher usually performs only a fraction of the full factorial experiment;
as a consequence, he/she will know the value of the response variable only relative to this
fraction of runs. Consider for instance the fractional factorial design 26−2

IV with generators
1Observe that in Table 2 the variable block is a constant (it presents only a level equal to −1). This happens

because Table 2 refers to the full data experiment performed on a batch. When it is impossible to perform all
the runs of the experiment under homogeneous conditions, we can take into account this circumstance setting
the block variable at a different level (for instance equal to +1).

4 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R
run

block
A

B
C

D
E

F
Ytransformed

run
block

A
B

C
D

E
F

Ytransformed
1

−
1

−
1
−

1
−

1
−

1
1
−

1
0.959693

33
−

1
1
−

1
−

1
−

1
1
−

1
1.064963

2
−

1
−

1
−

1
−

1
−

1
1

1
0.937207

34
−

1
1
−

1
−

1
−

1
1

1
0.744602

3
−

1
−

1
−

1
−

1
−

1
−

1
−

1
0.623830

35
−

1
1
−

1
−

1
−

1
−

1
−

1
0.537634

4
−

1
−

1
−

1
−

1
−

1
−

1
1

0.150376
36

−
1

1
−

1
−

1
−

1
−

1
1

0.069252
5

−
1

−
1
−

1
−

1
1

1
−

1
1.016260

37
−

1
1
−

1
−

1
1

1
−

1
0.986193

6
−

1
−

1
−

1
−

1
1

1
1

0.886525
38

−
1

1
−

1
−

1
1

1
1

1.022495
7

−
1

−
1
−

1
−

1
1
−

1
−

1
1.145475

39
−

1
1
−

1
−

1
1
−

1
−

1
1.157407

8
−

1
−

1
−

1
−

1
1
−

1
1

1.095290
40

−
1

1
−

1
−

1
1
−

1
1

1.222494
9

−
1

−
1
−

1
1
−

1
1
−

1
1.019368

41
−

1
1
−

1
1
−

1
1
−

1
1.012146

10
−

1
−

1
−

1
1
−

1
1

1
1.054852

42
−

1
1
−

1
1
−

1
1

1
0.852515

11
−

1
−

1
−

1
1
−

1
−

1
−

1
0.327654

43
−

1
1
−

1
1
−

1
−

1
−

1
0.307220

12
−

1
−

1
−

1
1
−

1
−

1
1

0.071225
44

−
1

1
−

1
1
−

1
−

1
1

0.046970
13

−
1

−
1
−

1
1

1
1
−

1
1.021450

45
−

1
1
−

1
1

1
1
−

1
0.925069

14
−

1
−

1
−

1
1

1
1

1
1.054852

46
−

1
1
−

1
1

1
1

1
0.975610

15
−

1
−

1
−

1
1

1
−

1
−

1
0.948767

47
−

1
1
−

1
1

1
−

1
−

1
0.987167

16
−

1
−

1
−

1
1

1
−

1
1

1.029866
48

−
1

1
−

1
1

1
−

1
1

1.283697
17

−
1

−
1

1
−

1
−

1
1
−

1
0.961538

49
−

1
1

1
−

1
−

1
1
−

1
1.001001

18
−

1
−

1
1
−

1
−

1
1

1
0.857633

50
−

1
1

1
−

1
−

1
1

1
0.841043

19
−

1
−

1
1
−

1
−

1
−

1
−

1
0.702741

51
−

1
1

1
−

1
−

1
−

1
−

1
0.736377

20
−

1
−

1
1
−

1
−

1
−

1
1

0.173913
52

−
1

1
1
−

1
−

1
−

1
1

0.069156
21

−
1

−
1

1
−

1
1

1
−

1
0.957854

53
−

1
1

1
−

1
1

1
−

1
1.027749

22
−

1
−

1
1
−

1
1

1
1

0.814996
54

−
1

1
1
−

1
1

1
1

0.904159
23

−
1

−
1

1
−

1
1
−

1
−

1
0.898473

55
−

1
1

1
−

1
1
−

1
−

1
1.172333

24
−

1
−

1
1
−

1
1
−

1
1

1.044932
56

−
1

1
1
−

1
1
−

1
1

0.976563
25

−
1

−
1

1
1
−

1
1
−

1
0.807103

57
−

1
1

1
1
−

1
1
−

1
0.961538

26
−

1
−

1
1

1
−

1
1

1
0.962464

58
−

1
1

1
1
−

1
1

1
0.931099

27
−

1
−

1
1

1
−

1
−

1
−

1
0.246063

59
−

1
1

1
1
−

1
−

1
−

1
0.349406

28
−

1
−

1
1

1
−

1
−

1
1

0.039124
60

−
1

1
1

1
−

1
−

1
1

0.042373
29

−
1

−
1

1
1

1
1
−

1
1.150748

61
−

1
1

1
1

1
1
−

1
1.039501

30
−

1
−

1
1

1
1

1
1

0.970874
62

−
1

1
1

1
1

1
1

1.050420
31

−
1

−
1

1
1

1
−

1
−

1
1.102536

63
−

1
1

1
1

1
−

1
−

1
1.206273

32
−

1
−

1
1

1
1
−

1
1

1.148106
64

−
1

1
1

1
1
−

1
1

1.091703

Table
2:

MetalCutting
dataset

(w
here

run
is

the
row

num
ber

in
the

dataset).

Journal of Statistical Software 5

run A B C D E F Ytransformed
62 1 1 1 1 1 1 1.05042017
28 −1 1 1 −1 −1 1 0.03912363
51 1 1 −1 −1 −1 −1 0.73637703
16 −1 −1 1 1 −1 1 1.02986612
64 1 1 1 1 −1 1 1.09170306
21 −1 1 −1 1 1 −1 0.95785441
26 −1 1 1 −1 1 1 0.96246391
42 1 −1 1 −1 1 1 0.85251492
44 1 −1 1 −1 −1 1 0.04697041
23 −1 1 −1 1 −1 −1 0.89847260
39 1 −1 −1 1 −1 −1 1.15740741
1 −1 −1 −1 −1 1 −1 0.95969290

14 −1 −1 1 1 1 1 1.05485232
49 1 1 −1 −1 1 −1 1.00100100
37 1 −1 −1 1 1 −1 0.98619329
3 −1 −1 −1 −1 −1 −1 0.62383032

Table 3: Runs and response variable Ytransformed corresponding to the 26−2
IV fractional

factorial design with generators E = ABC and F = ABD.

E = ABC and F = ABD, where only n = 16, over the 64 runs, are performed; see Edwards
et al. (2014).
These 16 runs are identified according to a rule defined by the generator functions2. Thus,
the experiment corresponding to the runs 62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
49, 37, 3 of Table 2 are performed in order to observe the response variable (see Table 3).
This design has resolution IV, this means that the main factors are aliased with three-factors
interactions. Thus, if we suspect that three-factors interactions are not negligible, i.e., their
effect is not null, the results can lead to ambiguous conclusions regarding which of the main
factors is really active, since in the estimate of E and F is included also, the effect of the
interaction ABC and ABD, respectively. Accordingly the augmentation of the design may
help in providing clear responses.
Several different techniques and strategies exist for augmenting an experimental design; their
selection depends essentially on the results of the initial experiment and the availability of
resources.
Foldover is a classic approach for design augmentation; see Montgomery and Runger (1996).
It consists of a follow-up design with a number of runs equal to that of the initial experiment
(nf = n), where one or more factors have opposite levels compared with those of the initial
experiment.
Semifolding (Mee and Peralta 2000) is a strategy where only half of the foldover runs are
performed (nf = n/2). It is usually obtained by selecting from the foldover design the runs
related to a desirable level of a prominent factor revealed in the initial experiment.

2In this case the generators are E = ABC and F = ABD, thus the fractional factorial design corresponds
to the runs for which the level of factor E and F are equal to the level of the three-factors interaction ABC
and ABD in the design matrix; see Chapter 8 in Montgomery (2006) respectively.

6 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

The D-optimal design approach to augmentation (Goos and Jones 2011) is driven by the best
model identified in the screening experiment. Conditionally to this model, the additional
nf > 0 follow-up runs are chosen to minimize the generalized variance of the parameter
estimates. One criticism of this approach regards the follow-up runs which are chosen solely
on the basis of improving estimation for the single model identified as the best one in the
initial experiment.
To overcome this approach Meyer et al. (1996) and later Consonni and Deldossi (2016) propose
a Bayesian strategy in the context of model discrimination based on predictive densities for
competing models. The idea is the following: since, due to confounded and/or limited data,
there are generally multiple models (see Section 2.2) that provide similar or identical response
predictions, follow-up runs have to be selected to allow maximum discrimination among all
these plausible models. Within the Bayesian construct this means searching for runs able
to produce strong diversification of posterior model probabilities. This result is obtained
maximizing a model discrimination criterion. To compute the posterior probability of each
model, one requires a prior on the model space, as well as a prior on the space of parameters,
conditionally on each single model. The above proposals (Meyer et al. 1996; Consonni and
Deldossi 2016) differ in the choice of these priors. The R package OBsMD implements the
objective Bayesian methodology introduced by Consonni and Deldossi (2016) for this aim.
The main feature of this approach is that it does not require prior specifications, being fully
automatic.

2.2. Basic formulation, objective priors, main outputs

In the context of experimental designs, it is customary to assume that the response is normally
distributed with expectation having a linear regression structure. Specifically, consider k
categorical factors, and n experimental runs extracted from a full factorial experiment.
Let Mi be a model which specifies a set of fi active factors (0 ≤ fi ≤ k). Following Consonni
and Deldossi (2016) we assume the effect forcing assumption (Chipman and Hamada 1996)
according to which an interaction AB is active, and hence included in the model, if and
only if both its corresponding main effects are active. As a consequence each model Mi will
contain a certain number of main factors and all their interactions up to a certain fixed order,
typically not higher than three. The assumption of effect forcing was adopted by Consonni
and Deldossi (2016) to simplify the illustration of their theory, and also for comparison with
the work of Meyer et al. (1996). The package could be extended by relaxing this assumption,
therefore considers a more flexible approach. For instance two common ways of specifying
heredity relationships are strong heredity, where an interaction can be active with probability
p ≤ 1 if both its corresponding main effects are active (under the effect forcing assumption
p = 1), and weak heredity, where all interactions have at least one parent main effect in the
model; see Chipman and Hamada (1996). Another possibility is to assume that interactions
may be present in a model only with a certain probability as advocated in Bingham and
Chipman (2007). In this way the user is able to incorporate prior opinions on structural
aspects of effects; see also Wolters and Bingham (2011).
Notice that the total number of distinct models Mi will be equal to 2k, including the null
model M0 (no factor is active), and the full model (all factors and interactions are active).
For instance, consider the case of k = 3 active factors {A,B,C}. Then the 23 = 8 distinct
models are those reported in Table 4: the null model, three models each with only one main

Journal of Statistical Software 7

Active factors Model Mi fi

1 none 1 0
2 A 1 +A 1
3 B 1 +B 1
4 C 1 + C 1
5 A, B 1 +A+B +A ∗B 2
6 A, C 1 +A+ C +A ∗ C 2
7 B, C 1 +B + C +B ∗ C 2
8 A, B, C 1 +A+B + C +A ∗B +A ∗ C +B ∗ C +A ∗B ∗ C 3

Table 4: List of the total number of possible distinct models under the effect forcing assump-
tion with k = 3 and interactions up to the third order.

effect, three models each with two main effects and the related two-factor interactions, the
full model that contains, besides the three main effects, also all the two-factor interactions
AB, AC, BC, as well as the three-factor interaction ABC, if interactions up to third order
have been chosen. Thus a model is fully defined only fixing its main possibly active factors.
We will assume that under model Mi

y|β0, βi, σ,Mi ∼ Nn(X0β0 +Xiβi, σ
2In), (1)

where X0 represents an n× t0 design matrix containing all columns which are common to all
models (typically the intercept and possibly the block factors), while Xi represents an n× t1
matrix whose columns are related to each specific effect under modelMi, i.e., the main factors
and their interactions up to the desired order.
With reference to the prior on the model space, it is customary to assume that each factor is
included in any particular model with some probability π independently of the other factors.
If Mi contains fi specific active factors, fi ∈ {0, 1, . . . , k}, then

P(Mi|π) = πfi(1− π)k−fi . (2)

In the full objective Bayesian perspective of Consonni and Deldossi (2016), π should be
regarded as an uncertain quantity with its own distribution that they assume equal to π ∼
Beta(a, b). Then integrating (2) with respect to this prior yields

P(Mi) =
∫ 1

0
πfi(1− π)k−fip(π)dπ = B(a+ fi, b+ k − fi)/B(a, b), (3)

where B(·, ·) is the usual beta function.
This kind of prior has been studied by Scott and Berger (2010), who show that it enjoys the
attractive property of “multiplicity adjustment”, i.e., it provides control – unlike prior (2) –
over the addition of spurious covariates, when performing variable selection in a linear model.
Usually the values (a = 1, b = 1), corresponding to the uniform distribution, are adopted. The
alternative choice (a = 1, b = k + 1) has been advocated to achieve a stronger sparse model
effect. Moreover, the main difference with such a prior is that the choice (a = 1, b = k + 1)
gives more weight to more parsimonious models, relative to (a = 1, b = 1).
At this point, conditionally to a specific model Mi, a prior distribution on the parametric
space is needed. In the following the intercept β0 and the error variance σ2 are regarded

8 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

as “common” parameters across models, while βi is the model-specific vector of regression
parameters.
Consonni and Deldossi (2016) adopt a robust prior that does not require the user to specify any
tuning parameters and that satisfies all the desiderata a prior should have from an objective
model selection perspective; see Bayarri, Berger, Forte, and García-Donato (2012). According
to their approach, a non-informative prior proportional to 1 over σ is given to the common
parameters β0 and σ, whereas the prior of the specific parameters βi of the model is a mixture
of normal distributions with weight given by a new (proper) distribution prior. The analytic
expression of this hierarchical g-prior for model selection is

pR(β0, βi, σMi) = p(β0, σ)pR(βi β0, σMi) = σ−1 ×
∫ ∞

0
Nti(βi 0, gΣi)pR(gMi)dg, (4)

where p(β0, σ) is the prior on the common parameters shared by all models, Σi = σ2(V >i Vi)−1,
Vi = (In −X0(X>0 X0)−1X>0)Xi and

pR(gMi) = 1
2

[1 + n

ti + t0

]1/2
(g + 1)−3/21(1+n

ti+t0
−1,∞)(g),

with 1A(t) = 1 if t ∈ A and 0 otherwise; refer to Consonni and Deldossi (2016) for further
details.
Combining the prior on the model space with the parameters’ prior, it is possible to obtain
the posterior distribution of each model in closed form

P(Mi|y) = BFi0(y)Pi0
1 +∑

j 6=0BFj0(y)Pj0
, (5)

where Pj0 is the prior odds of modelMj relative toM0 implied by (3), and BFj0(y) is defined
as

BFi0(y) =
[
n+ 1
ti + t0

]−ti/2
×

Qi0(y)−(n−t0)/2

ti + 1 2F1

[
ti + 1

2 ; n− t02 ; ti + 3
2 ; (1−Qi0(y)−1)(ti + t0)

n+ 1

]
, (6)

where 2F1 is the standard hypergeometric function (see Abramowitz and Stegun 1965, p. 555)
and Qi0(y) = SSE i(y)/SSE0(y) is the ratio of the sum of squared errors of models Mi and
M0. Summing the probabilities P(Mi|y), i = 1, . . . , 2k over all models that include a specific
factor, it is possible to obtain the posterior probability that it is active. For instance the
posterior probability that factor j is active, Pj(y), is given by

Pj(y) =
∑

{Mi: factor j is active}
P(Mi|y). (7)

Function OBsProb() of the R package OBsMD computes the posterior probabilities of models
and factors based on objective priors implementing formula (5) and (7), respectively. Two
further outputs of OBsProb() are:

Journal of Statistical Software 9

(a) The value of the normalized Shannon entropy index (hereafter named “Shannon index”)(
−

s∑
i=1

P(Mi|y) · ln(P(Mi|y))
)
/ ln(s),

where s is the total number of distinct models3. The Shannon index will assume values
close to zero when there is low model uncertainty, i.e., there is one model with high
posterior probability (thus, in the model discrimination framework, low values of the
Shannon index are better).

(b) The value of the coefficient of variation (hereafter named “CV”) that is the ratio of the
standard deviation to the mean of the posterior probability of the factors (see (7)). The
CV among posterior probabilities of factors is high when we have a clear evidence in favor
of some factors (thus, high values of CV are better).

Just to give an idea of how OBsProb() works, consider for instance to have performed the
26−2

IV fractional factorial design of Table 3 and thus to know the values of the response variable
only for these 16 combinations of factor levels.

R> library("OBsMD")
R> data("MetalCutting", package = "OBsMD")
R> X <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 2:7]
R> y <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 8]

The code reported in the following will produce the posterior probabilities for each of the 26

distinct models (nTop = 64) and the posterior probabilities for the factors {A,B,C,D,E, F}
(namely 1, 2, 3, 4, 5, 6 in the last column of the model probabilities output), under the
assumption of considering models with interactions up to the second order (mInt = 2) and
Beta(abeta = 1, bbeta = k + 1 = 7) as prior on the model space.

R> es3.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 7, blk = 0,
+ mFac = 6, mInt = 2, nTop = 64)

By changing the mInt input to 3, interactions up to the third order will be included. We refer
the reader to Section 4 for an extensive illustration of the arguments of OBsProb(). Using
the print method one can inspect the OBsProb() output. By suitably setting the argument
nTop, which is the number of the top ranked models to print, you will get a glimpse of the
output.

R> print(es3.OBsProb, nTop = 64)

Design Matrix:
A B C D E F

62 1 1 1 1 1 1
28 -1 1 1 -1 -1 1

3If a model Mi has P(Mi|y) = 0, then the corresponding product P(Mi|y) · ln(P(Mi|y)) is set to 0.

10 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

51 1 1 -1 -1 -1 -1
16 -1 -1 1 1 -1 1
64 1 1 1 1 -1 1
21 -1 1 -1 1 1 -1
26 -1 1 1 -1 1 1
42 1 -1 1 -1 1 1
44 1 -1 1 -1 -1 1
23 -1 1 -1 1 -1 -1
39 1 -1 -1 1 -1 -1
1 -1 -1 -1 -1 1 -1
14 -1 -1 1 1 1 1
49 1 1 -1 -1 1 -1
37 1 -1 -1 1 1 -1
3 -1 -1 -1 -1 -1 -1

Response vector:
1.05 0.039 0.736 1.03 1.092 0.958 0.962 0.853 0.047 0.898 1.157 0.96 1.055
1.001 0.986 0.624

Calculations:
nRun nFac nBlk mFac mInt totMod

16 6 0 6 2 64

Factor probabilities:
Factor Prob

none 0.144
1 A 0.014
2 B 0.011
3 C 0.345
4 D 0.835
5 E 0.801
6 F 0.345

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.329 0.013 3 4,5,6
M2 0.329 0.013 3 3,4,5
M3 0.144 0.114 0 none
M4 0.117 0.039 2 4,5
M5 0.034 0.082 1 4
M6 0.008 0.101 1 5
M7 0.003 0.014 4 1,3,4,5
M8 0.003 0.014 4 1,4,5,6
M9 0.003 0.074 2 4,6
M10 0.003 0.074 2 3,4
M11 0.003 0.116 1 3
M12 0.003 0.116 1 6

Journal of Statistical Software 11

M13 0.002 0.049 3 1,4,5
M14 0.002 0.050 3 2,4,5
M15 0.002 0.122 1 1
M16 0.002 0.019 4 2,3,4,5
M17 0.002 0.019 4 2,4,5,6
M18 0.002 0.122 1 2
M19 0.001 0.063 4 3,4,5,6
M20 0.001 0.081 3 3,4,6
M21 0.001 0.094 2 1,4
M22 0.001 0.094 2 2,4
M23 0.001 0.116 2 3,6
M24 0.000 0.102 2 5,6
M25 0.000 0.102 2 3,5
M26 0.000 0.050 4 1,2,4,5
M27 0.000 0.115 2 1,5
M28 0.000 0.102 3 3,5,6
M29 0.000 0.117 2 2,5
M30 0.000 0.087 4 1,3,4,6
M31 0.000 0.096 3 1,3,4
M32 0.000 0.096 3 1,4,6
M33 0.000 0.088 4 2,3,4,6
M34 0.000 0.097 3 2,4,6
M35 0.000 0.097 3 2,3,4
M36 0.000 0.128 2 1,2
M37 0.000 0.105 3 1,2,4
M38 0.000 0.133 2 1,3
M39 0.000 0.133 2 1,6
M40 0.000 0.135 2 2,3
M41 0.000 0.135 2 2,6
M42 0.000 0.124 3 1,3,6
M43 0.000 0.125 3 2,3,6
M44 0.000 0.107 4 1,2,4,6
M45 0.000 0.107 4 1,2,3,4
M46 0.000 0.109 4 1,3,5,6
M47 0.000 0.110 4 2,3,5,6
M48 0.000 0.132 3 1,3,5
M49 0.000 0.132 3 1,5,6
M50 0.000 0.135 3 1,2,5
M51 0.000 0.135 3 2,3,5
M52 0.000 0.135 3 2,5,6
M53 0.000 0.158 3 1,2,6
M54 0.000 0.158 3 1,2,3
M55 0.000 0.202 4 1,2,3,5
M56 0.000 0.202 4 1,2,5,6
M57 0.000 0.134 4 1,2,3,6
M58 0.000 0.000 5 1,3,4,5,6
M59 0.000 0.000 5 2,3,4,5,6

12 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Posterior probabilities of factors for screening the 26−2
IV design with generators

E = ABC and F = ABD (prior Beta(1, 7)).

M60 0.000 0.000 5 1,2,4,5,6
M61 0.000 0.000 5 1,2,3,5,6
M62 0.000 0.000 5 1,2,3,4,5
M63 0.000 0.000 5 1,2,3,4,6
M64 0.000 0.000 6 1,2,3,4,5,6

Shannon index:
[1] 0.401

CV:
[1] 0.844

R> plot(es3.OBsProb, main = "mxint = 2")

The OBsProb() output shows the posterior probabilities that factors are active (“Factor prob-
abilities”, (7)), the posterior distribution of the models (“Model probabilities”, (5)), the nor-
malized Shannon entropy index of the model posterior probabilities (“Shannon index”) and
the coefficient of variation of the posterior probabilities of the factors (“CV”).
With regard to the previous example we can observe that none of the models has a posterior
probability greater than 0.5. In particular the same mass of probability (0.329) is centered on
two models, the first containing as active factors D, E, F (namely 4, 5, 6 in the output) and
the second the factors C, D, E (3, 4, 5 in the output). The Shannon index is equal to 0.401.
Looking at the factor probabilities reported in Figure 1 we could conclude that factors D and
E are active (their posterior probabilities are greater than 0.8), but we have less evidence in
favor of C and F since their posterior probabilities are around 0.35. The CV index is 0.844.
Thus, augmenting the design is recommended.

Journal of Statistical Software 13

To choose the nf follow-up runs which best discriminate between competing models, we look
for those runs corresponding to the maximum value of the following model discrimination
criterion (MD):

MD =
∑
i 6=j

P(Mi|y)P(Mj |y)KL(m(·|y,Mi),m(·|y,Mj)), (8)

where m(·|y,Mi) is the (posterior) predictive density for the vector of follow-up observations,
and

KL(f, g) =
∫
f(x) log f(x)

g(x)dx (9)

is the Kullback-Leibler (KL) divergence of the density f from g. Notice that MD is a weighted
average of the KL-divergences between all pairs of predictive distributions for the follow-up
observation introduced by Meyer et al. (1996). The closed form expression for the objective
MD (OMD), obtained by Consonni and Deldossi (2016) adopting a standard reference prior
pN (β0, βi, σMi) ∝ 1/σ for prediction purposes is:

OMD =
∑
i 6=j

P(Mi|y)P(Mj |y)1
2

{
tr(V ∗−1

j V ∗i) + n− ti − t0
SSE i

(ŷ∗i − ŷ∗j)>V ∗−1
j (ŷ∗i − ŷ∗j)− n∗

}
,

(10)
where P(Mi|y) is defined in (5), SSE i is the usual residual sum of squares under model Mi,
ŷ∗i = Z∗i γ̂i, V ∗i = In∗ + Z∗i (Z>i Zi)−1Z∗

>
i , having set Z∗i = [X0

...X∗i], where X∗i is the design
matrix for the additional runs.
Function OMD() of the R package OBsMD computes the nf extra-runs according to this
approach.
Going on with the example of Table 3, we want to select the optimal nf = 4 follow-up
experimental runs using function OMD() with the aim to discriminate among the nMod = 57
estimable models. The list of the possible follow-up runs in decreasing order according to
the value of the function (10) can be obtained using the following code. Again, we refer to
Section 4 for an extensive illustration of the function’s arguments.

R> Xcand <- MetalCutting[, 2:7]
R> Mbest <- as.matrix(combinations(64, 4, 1:64, repeats = TRUE))
R> es3.pp_omd <- OMD(OBsProb = es3.OBsProb, nFac = 6, nBlk = 0, nMod = 57,
+ nFoll = 4, Xcand = Xcand, mIter = 0, nStart = nrow(Mbest),
+ startDes = Mbest, top = 10)
R> summary(es3.pp_omd)

Base:
nRuns nFac nBlk maxInt nMod

16 6 0 2 57

OMD:
nCand nRuns maxIter nStart

64 4 0 766480

14 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

Top 10 runs:
OMD r1 r2 r3 r4

1 11.530 12 36 52 59
2 11.530 4 43 52 60
3 11.530 28 36 43 52
4 11.529 20 36 43 60
5 11.529 4 36 43 60
6 11.529 12 36 43 52
7 11.528 4 28 43 52
8 11.528 4 12 52 59
9 11.527 12 20 36 59
10 11.527 28 36 36 43

Looking at the output we can see that the first nf = 4 runs corresponding to the highest value
of OMD are (12 36 52 59). After the augmentation of the design, function OBsMD() may be
called again, and the posterior probabilities of the models and of the factors recomputed.

R> X <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 1:7]
R> y <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 8]
R> TOP_DES <- cbind(blk = rep(1, 4), MetalCutting[es3.pp_omd$TOPDES[1,],
+ c(-1, -8)])
R> y_TOP_DES <- MetalCutting[es3.pp_omd$TOPDES[1,], 8]
R> X <- rbind(X, TOP_DES)
R> y <- c(y, y_TOP_DES)
R> es3.aug.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 7, blk = 1,
+ mFac = 6, mInt = 2, nTop = 64)
R> print(es3.aug.OBsProb, nTop = 10)

[...]

Calculations:
nRun nFac nBlk mFac mInt totMod

20 6 1 6 2 64

Factor probabilities:
Factor Prob

none 0.034
1 A 0.008
2 B 0.007
3 C 0.055
4 D 0.960
5 E 0.947
6 F 0.861

Model probabilities:

Journal of Statistical Software 15

Prob Sigma2 NumFac Factors
M1 0.800 0.012 3 4,5,6
M2 0.078 0.035 2 4,5
M3 0.048 0.012 4 3,4,5,6
M4 0.034 0.098 0 none
M5 0.013 0.071 1 4
M6 0.005 0.014 4 1,4,5,6
M7 0.004 0.033 3 3,4,5
M8 0.004 0.015 4 2,4,5,6
M9 0.003 0.086 1 5
M10 0.002 0.060 2 4,6

Shannon index:
[1] 0.206

CV:
[1] 0.954

Looking at factor probabilities, also displayed in Figure 2 (on the left side), we can observe
more clearly which factors appear as active (D, E and F) and which not (C). Furthermore,
there is only one model with posterior probability greater than 0.5 and it is just that containing
factorsD, E and F (4, 5, 6 in the output). Observe that now the Shannon index is lower (0.207
against 0.401) and the CV is greater (0.954 against 0.844), reflecting a reduced heterogeneity
among competing models and an increased concentration of probabilities on really active
factors, respectively.
The same whole procedure replicated for mInt = 3 (OBsProb() plus OMD() with the aug-
mentation of runs 4 11 52 59; see the code in the supplementary material) generates the
posterior probability of factors shown in Figure 2 (on the right side). We can observe that the
results do not change and they are consistent to those reported in Figure 5 of Edwards et al.
(2014) who adopted different augmentation approaches for the same dataset. In conclusion
this package allows, within the objective Bayesian approach, to reach two different goals.
First, it produces the posterior probability of models and factors using the data observed
on an initial experiment; then, it provides the identification of the optimal follow-up runs in
order to discriminate among competing models.

2.3. Changes in the Fortran code

Our Fortran code is the result of an extensive modification of the original mdopt program
written by Meyer (1996). In order to adopt the objective priors we had to substantially modify
both the expressions of the posterior probability of the models and the model discrimination
criterion.

Moreover, in the objective Bayesian approach, the model matrix [X0
...Xi] is assumed to be of

full column rank, so that the number of linearly independent terms in the regression structure
cannot exceed n. Then only estimable (non aliased) interactions can be introduced in the
models besides the main effects, conditionally on the constraints that n > t0 + ti. This
constraint is not present in the original code.

16 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

none A B C D E F

mxint=3

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Posterior probabilities of factors for the 26−2
IV design after the addition of the extra

runs: (on the left side) (12−36−52−59) associated to the highest OMD value (prior Beta(1, 7)
and mInt = 2); (on the right side) (4 − 11 − 52 − 59) associated to the highest OMD value
(prior Beta(1, 7) and mInt = 3).

Thus only the original general structure of the program is maintained, i.e., the computation
of the OLS estimates of βi and the corresponding residual sum of squares SSE i under each
model Mi and the exchange algorithm.
As far as the prior assumptions are concerned, we need only to fix the parameter a and b of the
Beta distribution on the model space (see (3)). On the contrary, the approach of Meyer et al.
(1996) requires the user to assign a value to π in expression (2) (with the recommended choice
being π = 0.25 to induce factor sparsity in model selection). Furthermore, with reference to
the parametric space, they assign a weakly independent N(0, γ2σ2) prior to the components
of the model-specific vector of regression parameters βi, γ being a scale parameter that needs
to be fixed.
As a consequence, their expressions of the model posterior probability (see Formula (A.1)
in Meyer et al. 1996) are different from our expressions (5) and (6), as well as their model
discrimination criterion (see Formula (A.9) in Meyer et al. 1996) is different from (10) since
we adopt a reference prior for prediction purposes. Thus with our proposal the well-known
problem of sensitivity to the tuning parameters (π and γ) is overcome.

3. How the package works
In this section the main arguments of the functions OBsProb() and OMD() are introduced
together with a discussion of the theoretical implication of their setting.
Assume that an experimenter has to identify which, among k factors each at two levels, are
active on the basis of n < 2k runs. Due to the effect forcing assumption he/she knows that
there are 2k distinct models able to capture the dependence between the response variables
and the potential active factors.
To obtain the posterior probability of the competing models through the function OBsProb(),
the experimenter needs to fix:

• The parameters a and b of the Beta distribution for the prior on the model space.

Journal of Statistical Software 17

The standard assumption is a = 1 and b = 1; this choice (equivalent to uniform distri-
bution) implies that (3) will be equal to:

P(Mi) = 1
k + 1

(
k

fi

)−1

. (11)

If we think of the competing models as grouped in k + 1 boxes, each defined according
to the number of the active factors (from 0 to k), Equation 11 means that a box is
selected uniformly at random from the (k + 1) boxes available; next, given the chosen
box, a model is selected uniformly at random from those in that box (Scott and Berger
2010). In other words this prior gives the same probability to all the boxes as well as to
all the models in each box. Recently, an alternative choice (a = 1, b = k + 1) has been
advocated to achieve a stronger sparse modeling effect. This option gives more weight
to more parsimonious models; see the discussion in Consonni and Deldossi (2016).

• The maximum order of interaction among factors to be considered in the model (typi-
cally 2 or 3).
It has to be set according to considerations related to the number k of factors and the
dimension n of the screening design. In fact, as we have just mentioned, in the objective
Bayesian approach, the model matrix [X0

...Xi] is assumed to be of full column rank, so
that the number (t0 + ti) of linearly independent terms in the regression structure
cannot exceed n. This condition, along with the effect forcing assumption, implies that
sometimes it is not possible to compute the posterior probability for all the 2k different
models. The number of models for which this is possible also depends on the maximum
order of interactions since it influences the value of ti. For instance if k = 5 and the
initial screening experiment consist of a fractional design 25−2, depending on whether
the maximum order of interactions is set at 2 or 3, we can estimate 26 or 16 distinct
models, respectively. In fact the ten models with three active factors are not estimable
if the maximum order of interactions is set equal to 3 because n = t0 + t1 = 8.
In this context also the presence of a block factor – incrementing the value of t0 – could
represent a restriction in the exploration of potential different models whenever the
dimension of the initial experiment n is low.

Analyzing the output of OBsProb(), the researcher can observe:

1. None of the factors stands out either as clearly active or clearly inactive. Extra runs
are needed in order to resolve this ambiguity. In this case it is possible to apply the
function OMD() in order to identify, through the OMD criterion (10), the optimal nf

runs that allow maximum discrimination among the competing models and factors.

2. There are some factors with zero posterior probabilities (inert factors). In this case the
user can decide to drop the inert factors and collapse the initial fractional design on
the remaining active factors, so obtaining a replicated fractional factorial design defined
only on those factors identified as active. At this point OBsProb() has to be called
again in order to obtain the posterior probability of models and factors related to the
experiment based only on the active factors. If the result does not resolve ambiguity,
then the OMD() function can be applied (see the example reported in Consonni and

18 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

Deldossi 2016). Dropping inactive factors can reduce or eliminate the need of extra
runs. This strategy has not been applied in this paper to preserve comparison with
follow-up designs in Mønness et al. (2007).

3. There are some factors with posterior probability greater than 0.5. In this case the user
can decide to stop the procedure or to continue until all factors have been determined
to be either inactive or active.

To obtain the optimal follow-up design, some results obtained as output of OBsProb() are
required. By default they are passed as input to the function OMD(), together with the matrix
Xcand containing the list of the 2k possible combinations of the levels of the k factors to be
considered as potentially active after the previous step. Furthermore the following relevant
arguments have to be fixed:

• the dimension nf of the follow-up design, i.e., the number of additional runs;

• the number of competing models among which the experimenter wants to discriminate.
Generally the investigator chooses models with the highest posterior probabilities by
examining the output of the function OBsProb() where they are ranked in decreasing
order.

Moreover the researcher can decide to identify the optimal follow-up design corresponding to
the highest OMD value using either the exhaustive search strategy or the exchange algorithm.

• Adopting the exhaustive search over all the possible follow-up designs of nf runs chosen
from the 2k candidates, the experimenter has to give as input to the function OMD()
the matrix Mbest containing all the combinations (with replication) of nf runs chosen
from Xcand. Xcand is a matrix of dimension p × nf obtained using the R function
combinations().

• Adopting the exchange algorithm (proposed in Meyer et al. 1996) it is possible to avoid
the intensive calculation due to the previous choice. According to this option, a design is
generated at random from the set of candidate points and the corresponding OMD value
(10) is computed. Then this initial design is improved by adding that run which most
increases the value of OMD and removing that which results in the smallest reduction
in the criterion. This add/remove procedure is continued until the algorithm converges.
In the OMD() function the exchange algorithm is set as default option. For general
problems there will be a large number of possible follow-up designs and the adoption of
the exhaustive search would be excessively time-consuming.

OMD() produces the optimal follow-up designs and the corresponding OMD values, ranked in
decreasing order. After having collected the value of the response variable corresponding to
the follow-up design, the function OBsProb() can be re-applied in order to obtain the new
posterior probabilities of models and factors.
Our procedure should appeal to practitioners because the number nf of additional runs can
be freely chosen. Furthermore it is fully automatic not requiring prior specifications unlike
the Meyer et al. (1996) approach whose sensitivity to the tuning parameters (π and γ) may
represent a problematic issue.

Journal of Statistical Software 19

4. Package description
In this section a detailed list of all the arguments of the functions OBsProb() and OMD() is
provided.
Function OBsProb() produces posterior probabilities of models and factors based on the
objective priors defined in Section 2.2; its arguments are listed in Table 5. The function
returns an ‘OBsProb’ class object. Function OMD() produces follow-up designs, i.e., the extra
runs which maximize the model discrimination criterion (10) represented by weighted average
of Kullback-Leibler divergences between all pairs of models; its arguments are listed in Table 6.
The function returns an ‘OMD’ class object. In order to compute OMD() we require some output
from OBsProb(). As we have previously observed, in using OMD() the researcher can decide to
adopt the exhaustive search strategy or the exchange algorithm. For the exchange algorithm

Arguments Description
X Design matrix, containing in the first columns block factors if present.
y Response vector.
abeta First parameter of the Beta prior distribution on the model space.
bbeta Second parameter of the Beta prior distribution on the model space.
blk Number of blocking factors (≥ 0), accommodated in the first columns of

matrix X (ncol(X) − blk = k = number of factors).
mFac Maximum number of factors considered in the models.
mInt Maximum order of interactions (≤ 3) among factors included in the models.
nTop Number of models (≤ 100) for which the posterior probability could be com-

puted.

Table 5: Arguments of the function OBsProb().

Arguments Description
OBsProb Return object of function OBsProb().
nFac Number of factors in the initial experiment.
nBlk Number of blocking factors in the initial experiment.
nMod Number of competing models considered to compute OMD.
nFoll Number of additional runs nf in the follow-up experiment.
Xcand Matrix [N ×(nBlk + nFac)] of candidate runs for the follow-up design where

N generally represents the full 2nFac design.
mIter Maximum number of iterations (≥ 0) in the exchange algorithm. When

mIter = 0, the exchange algorithm is not used.
nStart Number of different designs of dimension nFoll to be evaluated by the

OMD criterion. When the exchange algorithm is used, nStart represents
the number of random starts to initialize the algorithm; otherwise nStart =
nrow(startDes).

startDes Input matrix [nStart × nFoll] containing different nStart designs to be
evaluated by the OMD criterion. If the exchange algorithm is used startDes
= NULL.

top Number of highest OMD follow-up designs recorded. By default set to 20.

Table 6: Arguments of the function OMD().

20 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

the following setting is required:

• mIter > 0;

• nStart = number of random starts to initiate the algorithm (default value is 25);

• startDes = NULL.

On the other hand, to explore all possible follow-up runs the matrix Mbest is previously
needed. It is obtained using the Rfunction combinations() added to the OBsMD package.
Furthermore this setting is required:

• mIter = 0;

• nStart = nrow(Mbest);

• startDes = Mbest.

5. Tutorial using the MetalCutting dataset
This tutorial uses the dataset MetalCutting included in the OBsMD package. See Section 2.1
for its description. It corresponds to a full factorial design 26 that a researcher rarely has
at his/her disposal, due to the cost per run and time limit constraints. In the following we
consider and analyze this dataset only with the aim to have a benchmark to compare the
performance of our approach with that of the other methods to specify follow-up designs (see
Edwards et al. 2014).
The data reported in Table 2 is loaded with

R> library("OBsMD")
R> data("MetalCutting", package = "OBsMD")

The ID column indicates the row number of the MetalCutting dataset in Table 2 and it
specifies the run number. The first column of the MetalCutting dataset corresponds to
the block variable. It is generally used when it is impossible to perform all the runs under
homogeneous conditions, for instance on the same day or using a single batch of raw material.
In Table 2 all the levels of the block variable are set equal to “−1”, thus meaning that all
the runs are performed under the same conditions. It follows that we do not consider it to
analyze the full design, so we put blk = 0 as input of the OBsProb() function and we define
X as the columns from 2 to 7 of the MetalCutting dataset.

R> X <- MetalCutting[, 2:7]
R> y <- MetalCutting[, 8]
R> es2.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 1, blk = 0,
+ mFac = 6, mInt = 2, nTop = 64)

The function OBsProb() computes the posterior probabilities of all the distinct models using
data from the full design according to the objective Bayesian framework.

Journal of Statistical Software 21

This example exhibits most of the output of the OBsProb() function. The function calls a
Fortran subroutine. Most of the output is included in OBsProb’s output list. This is a list of
class ‘OBsProb’ with print, plot and summary methods. The design factors are accommo-
dated in the matrix X while y includes the value of the response variable. As reported in
Table 5, in the call of the function OBsProb() the experimenter can fix:

• The parameters abeta and bbeta of the Beta prior distribution on model space. These
parameters are set by default equal to 1 (equivalent to the uniform distribution).

• The number blk of block in the experiment; this parameter is set by default equal to 0.

• The maximum number mFac of factors that the model has to contain (in our example
mFac = 6, i.e., we are interested in models with possibly all the 6 factors (A,B,C,D,E,
F)).

• The maximum order of interactions mInt among factors to be considered in the model
(in this case its two-factor interactions (2FIs), but it is also possible to fix mInt = 3 in
case of interest in 3FIs).

• The number nTop of models for which the posterior probability is reported in the output.
This number cannot be greater than the value of totMod, shown in the output, which
represents the number of models for which the posterior probability has been computed.
Observe that totMod is less or equal to 2nFac, where nFac represents the number of
factors involved in the experiment (in our example totMod = 2nFac = 64).

The print method returns the results of OBsProb():

R> print(es2.OBsProb, nTop = 3)

[...]

Calculations:
nRun nFac nBlk mFac mInt totMod

64 6 0 6 2 64

Factor probabilities:
Factor Prob

none 0.000
1 A 0.001
2 B 0.000
3 C 0.779
4 D 1.000
5 E 1.000
6 F 1.000

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.779 0.011 4 3,4,5,6

22 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Posterior probabilities of factors using the full design of Table 2.

M2 0.220 0.014 3 4,5,6
M3 0.000 0.011 5 1,3,4,5,6

Shannon index:
[1] 0.129

CV:
[1] 0.717

From the posterior probabilities of factors we can observe that factors C, D, E, F are active
while A and B are inert since PA = PB = 0, while PC = 0.77 and PD = PE = PF = 1. These
posterior probabilities can be exhibited as in Figure 3 using the code

R> plot(es2.OBsProb, main = "mxint = 2")

where es2.OBsProb is the output of the function OBsProb(). Observe that only two models
have a non-null posterior probabilities; specifically model M1 has the highest posterior prob-
abilities (0.779). It contains the active factors, in the output enumerated from 3 (C) to 6
(F).
Herein we assume that model M1 is the “oracle” model and that the posterior probabilities
of the factors’ importance is the one reported in Figure 3 since they are obtained from a
full factorial design. As a matter of fact, such a full experiment is very rarely conducted
in practice due to the high number of trials involved and the consequently required amount
of time and resources. Thus the researchers usually perform a fractional factorial design,
reducing the number of runs. This kind of design often produces ambiguous results and
thus extra runs are required to identify active factors. The collection of such additional runs
defines a follow-up experiment. The question then becomes: how to efficiently choose such
extra runs.

Journal of Statistical Software 23

run A B C D E F Ytransformed
2 −1 −1 −1 −1 1 1 0.93720712
25 −1 1 1 −1 1 −1 0.80710250
37 1 −1 −1 1 1 −1 0.98619329
62 1 1 1 1 1 1 1.05042017
15 −1 −1 1 1 −1 −1 0.94876660
24 −1 1 −1 1 −1 1 1.04493208
44 1 −1 1 −1 −1 1 0.04697041
51 1 1 −1 −1 −1 −1 0.73637703

Table 7: Runs, design matrix X and response variable Ytransformed corresponding to the
26−3

III fractional factorial design with generators D = ABC, E = BC, F = AC.

In order to illustrate the OBsMD package, we consider as initial experiment the same used
for comparing different methods for design follow-up in Edwards et al. (2014). This will allow
us to compare the results obtained adopting the objective Bayesian framework with the other
approaches analyzed (foldover, semifoldover, D-optimal designs, MD-criterion of Meyer et al.
1996).

5.1. First 26−3
III fractional factorial design

We begin by considering a 26−3
III fractional factorial design according to the generators D =

ABC, E = BC, F = AC. Given the generators, the experimenter knows the aliasing structure
of the plan and its resolution equal to III, meaning that the main factors are aliased with
two-factor interactions. The runs (ID) of Table 2 corresponding to this fractional factorial
design are (2, 25, 37, 62, 15, 24, 44, 51). The design matrix X and the related response variable
are shown in Table 7.
The code

R> X <- MetalCutting[c(2, 25, 37, 62, 15, 24, 44, 51), 2:7]
R> y <- MetalCutting[c(2, 25, 37, 62, 15, 24, 44, 51), 8]

loads the data as documented in Table 7. A preliminary analysis based on the objective
Bayesian approach is conducted using function OBsProb() with the command

R> es7.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 1, blk = 0,
+ mFac = 6, mInt = 2, nTop = 64)

We set mFac = 6, mInt = 2 and abeta = bbeta = 1, thus requiring to consider all the models
with a number of factors starting from zero (the null model) to mFac = 6, including all the
possible two-factor interactions (mInt = 2) and to adopt the uniform distribution (abeta =
bbeta = 1) as prior on the model space. Using the print method reported below we require
to print only the top 10 (nTop = 10) highest non-null model posterior probabilities.

R> print(es7.OBsProb, nTop = 10)

Design Matrix:
A B C D E F

24 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

2 -1 -1 -1 -1 1 1
25 -1 1 1 -1 1 -1
37 1 -1 -1 1 1 -1
62 1 1 1 1 1 1
15 -1 -1 1 1 -1 -1
24 -1 1 -1 1 -1 1
44 1 -1 1 -1 -1 1
51 1 1 -1 -1 -1 -1

Response vector:
0.937 0.807 0.986 1.05 0.949 1.045 0.047 0.736

Calculations:
nRun nFac nBlk mFac mInt totMod

8 6 0 6 2 64

Factor probabilities:
Factor Prob

none 0.429
1 A 0.209
2 B 0.163
3 C 0.160
4 D 0.276
5 E 0.227
6 F 0.143

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.429 0.109 0 none
M2 0.068 0.081 1 4
M3 0.029 0.107 1 5
M4 0.027 0.110 1 1
M5 0.025 0.113 1 3
M6 0.024 0.020 3 1,2,5
M7 0.024 0.020 3 3,4,5
M8 0.023 0.063 2 1,4
M9 0.023 0.063 2 1,5
M10 0.023 0.063 2 4,5

Shannon index:
[1] 0.64

CV:
[1] 0.236

R> plot(es7.OBsProb, main = "mxint = 2")

Journal of Statistical Software 25

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: Posterior probabilities of factors for first 26−3
III design with generators D = ABC,

E = BC, F = AC (prior Beta(1, 1)) (on the left side); posterior probabilities of factors after
the addition of the extra runs (28− 40− 44− 44) (prior Beta(1, 1)) (on the right side).

This fractional factorial design does not lead to a clear conclusion about which factors are
truly active. In fact, looking at Figure 4 (on the left side), the factors with the largest effect
are D and E, even if P(D) = 0.276 and P(E) = 0.227. Likewise, it indicates substantial
ambiguity as none of the other factors clearly stands out as active. Actually there is no model
whose posterior probability is really emerging from the others, apart from the null model.
The value of the Shannon index is 0.64, thus confirming that the entropy is high, i.e., the
posterior probabilities of the models are homogeneous and they do not allow predictability.
As a consequence follow-up experimentation is warranted, namely it is necessary to augment
the design with extra runs. Follow-up runs are selected using function OMD() in the package
OBsMD in R. The function OMD() calls a Fortran subroutine. The output of the OMD() function
is a list of class ‘OMD’ with associated print and summary methods.
After having fixed the number of runs of the follow-up design, we compute the function OMD()
for all the possible combinations with replacement of nf runs from the full 26 design. For
instance, if nf = 4, the number of all the possible different additional runs is 766480. An
automatic routine allows us to make a list of all the possible combination of nf follow-up runs
to allocate in the matrix Mbest:

R> Mbest <- as.matrix(combinations(64, 4, 1:64, repeats = TRUE))

To implement the procedure we first need to insert the matrix Xcand which contains the runs
of the original 26 design. When the argument blk in the OBsProb() function is not set equal
to 0, in the first columns Xcand will include the blocking factors.

R> Xcand <- MetalCutting[, 2:7]

As reported in Table 6, in the call of the function OMD() there are several arguments that
have to be fixed coherently with those of OBsProb() such as: OBsProb, nFac, nBlk and Xcand.
On the contrary the arguments mIter, nStart and startDes are to be set according to the
choice of whether or not to use the exchange algorithm (see Section 4).
Furthermore the researcher has to fix the number of additional runs nf to use as input

26 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

(argument nFoll) of OMD() and the number nMod of competing models according to which
the discrimination criterion OMD has to be computed.
In this example nFoll = 4 and nMod = 42, since 42 are the number of models whose posterior
probabilities are non-null according to the output of OBsProb()4. Obviously we could choose
to discriminate only among the models in the list with a posterior probability greater than a
certain value. For instance we could consider relevant to discriminate only among the models
with posterior probability greater or equal to 0.025 (nMod = 5).
We fix mIter = 0, nStart = nrow(Mbest), startDes = Mbest and we compute the function
OMD() for all the possible 766480 follow-up runs (exhaustive search). The design with the
largest OMD will be preferred.

R> es7.pp_omd <- OMD(OBsProb = es7.OBsProb, nFac = 6, nBlk = 0, nMod = 42,
+ nFoll = 4, Xcand = Xcand, mIter = 0, nStart = nrow(Mbest),
+ startDes = Mbest, top = 8)

The summary method gives an overview of the result obtained with OMD():

R> summary(es7.pp_omd)

Base:
nRuns nFac nBlk maxInt nMod

8 6 0 2 42

OMD:
nCand nRuns maxIter nStart

64 4 0 766480

Top 8 runs:
OMD r1 r2 r3 r4

1 2.567 28 40 44 44
2 2.563 28 40 43 44
3 2.551 28 43 44 48
4 2.543 28 44 44 48
5 2.540 12 40 43 44
6 2.526 12 40 44 44
7 2.519 12 43 44 48
8 2.498 40 43 44 44

The runs (28 40 44 44) associated with the highest OMD value are added to the experiment.
As a consequence an updating of the vector y and the matrix X is needed. To take into
account the different time of the experimentation, a block factor (blk = 1) can be inserted
in the first column of X. Observe that the level of the block factor is equal to −1 for the
initial experiment and +1 for the follow-up one. The function OBsProb() is called again to
recompute the posterior probabilities of the models.

4You can see these results with print(es7.OBsProb, nTop = 42)

Journal of Statistical Software 27

R> X <- MetalCutting[c(2, 25, 37, 62, 15, 24, 44, 51), 1:7]
R> y <- MetalCutting[c(2, 25, 37, 62, 15, 24, 44, 51), 8]
R> TOP_DES <- cbind(blk = rep(1, 4), MetalCutting[es7.pp_omd$TOPDES[1,],
+ c(-1, -8)])
R> y_TOP_DES <- MetalCutting[es7.pp_omd$TOPDES[1,], 8]
R> X <- rbind(X, TOP_DES)
R> y <- c(y, y_TOP_DES)
R> es7.aug.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 1, blk = 1,
+ mFac = 6, mInt = 2, nTop = 64)
R> print(es7.aug.OBsProb, nTop = 10)

Design Matrix:
blk A B C D E F

2 -1 -1 -1 -1 -1 1 1
25 -1 -1 1 1 -1 1 -1
37 -1 1 -1 -1 1 1 -1
62 -1 1 1 1 1 1 1
15 -1 -1 -1 1 1 -1 -1
24 -1 -1 1 -1 1 -1 1
44 -1 1 -1 1 -1 -1 1
51 -1 1 1 -1 -1 -1 -1
28 1 -1 1 1 -1 -1 1
40 1 1 -1 -1 1 -1 1
44 1 1 -1 1 -1 -1 1
44 1 1 -1 1 -1 -1 1

Response vector:
0.937 0.807 0.986 1.05 0.949 1.045 0.047 0.736 0.039 1.222 0.047 0.047

Calculations:
nRun nFac nBlk mFac mInt totMod

12 6 1 6 2 64

Factor probabilities:
Factor Prob

none 0.141
1 A 0.087
2 B 0.067
3 C 0.458
4 D 0.737
5 E 0.448
6 F 0.131

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.271 0.007 3 3,4,5
M2 0.153 0.093 1 4

28 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

M3 0.141 0.181 0 none
M4 0.080 0.056 2 4,5
M5 0.049 0.066 2 3,4
M6 0.035 0.132 1 3
M7 0.029 0.034 3 3,4,6
M8 0.027 0.081 2 4,6
M9 0.026 0.036 3 4,5,6
M10 0.025 0.051 3 1,4,5

Shannon index:
[1] 0.619

CV:
[1] 0.766

The posterior probabilities of factors are exhibited in Figure 4 on the right side. We can
observe how the augmentation of the design allows the identification of D as an active factor
(P(D) = 0.737), C and E as potentially active factors (P(C) and P(E) are around 0.45),
while there is little evidence for factor F . A new augmented design might be performed.
However, the result obtained applying the approach proposed in Consonni and Deldossi (2016)
is comparable with the other methods with nf = 4 in Edwards et al. (2014, see Figure 2
herein).
We can also observe that variability among the factors increases in the augmented design
(CV = coefficient of variation is now 0.766 against 0.236), while the heterogeneity among the
model posterior probabilities decreases (Shannon index is 0.619 against 0.64).
To adopt the exchange algorithm, some arguments of the function OMD() (in this example
es7.pp_omd) have to be changed. In particular:

• mIter has to be set greater then 0 since it represents the maximum number of iterations
of the exchange algorithm;

• nStart represents the number of random starts of the exchange algorithm (and not the
number of rows of the matrix Mbest);

• startDes has to be set equal to NULL (and not to Mbest).

For instance in the sequel we fix mIter = 20 and nStart = 25. Using the code:

R> X <- MetalCutting[c(2, 25, 37, 62, 15, 24, 44, 51), 2:7]
R> y <- MetalCutting[c(2, 25, 37, 62, 15, 24, 44, 51), 8]
R> es7.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 1, blk = 0,
+ mFac = 6, mInt = 2, nTop = 64)
R> Mbest <- as.matrix(combinations(64, 4, 1:64, repeats = TRUE))
R> Xcand <- MetalCutting[, 2:7]
R> es7.pp_omd_ex <- OMD(OBsProb = es7.OBsProb, nFac = 6, nBlk = 0,
+ nMod = 42, nFoll = 4, Xcand = Xcand, mIter = 20, nStart = 25,
+ startDes = NULL, top = 8)
R> summary(es7.pp_omd_ex)

Journal of Statistical Software 29

run A B C D E F Ytransformed
62 1 1 1 1 1 1 1.05042017
15 −1 −1 1 1 −1 −1 0.94876660
6 −1 −1 −1 1 1 1 0.88652482
17 −1 1 −1 −1 1 −1 0.96153846
41 1 −1 1 −1 1 −1 1.01214575
28 −1 1 1 −1 −1 1 0.03912363
36 1 −1 −1 −1 −1 1 0.06925208
55 1 1 −1 1 −1 −1 1.17233294

Table 8: Runs, design matrix X and response variable Ytransformed corresponding to the
26−3

III fractional factorial design with generators D = AB, E = AC, F = BC.

we obtain the following results:

Base:
nRuns nFac nBlk maxInt nMod

8 6 0 2 42

OMD:
nCand nRuns maxIter nStart

64 4 20 25

Top 8 runs:
OMD r1 r2 r3 r4

1 2.567 28 40 44 44
2 2.563 28 40 43 44
3 2.551 28 43 44 48
4 2.543 28 44 44 48
5 2.540 12 40 43 44
6 2.519 12 43 44 48
7 2.498 40 43 44 44
8 2.487 40 43 44 60

Observe that the exchange algorithm identifies the same top 8 runs as the exhaustive search
strategy.

5.2. Second 26−3
III fractional factorial design

As a second example now consider the plan 26−3
III with generators D = AB, E = AC, F = BC.

The following code loads the data as displayed in Table 8.

R> X <- MetalCutting[c(62, 15, 6, 17, 41, 28, 36, 55), 2:7]
R> y <- MetalCutting[c(62, 15, 6, 17, 41, 28, 36, 55), 8]

A preliminary analysis is conducted using the following code:

30 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

R> es8.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 1, blk = 0,
+ mFac = 6, mInt = 2, nTop = 64)
R> print(es8.OBsProb, nTop = 10)

[...]

Calculations:
nRun nFac nBlk mFac mInt totMod

8 6 0 6 2 64

Factor probabilities:
Factor Prob

none 0.073
1 A 0.056
2 B 0.055
3 C 0.046
4 D 0.646
5 E 0.633
6 F 0.638

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.206 0.010 2 5,6
M2 0.206 0.010 2 4,6
M3 0.206 0.010 2 4,5
M4 0.155 0.010 3 4,5,6
M5 0.073 0.201 0 none
M6 0.014 0.000 3 1,4,6
M7 0.014 0.000 3 2,4,5
M8 0.012 0.147 1 6
M9 0.011 0.001 3 1,2,3
M10 0.011 0.001 3 3,5,6

Shannon index:
[1] 0.533

CV:
[1] 0.848

R> plot(es8.OBsProb, main = "mxint = 2")

Figure 5 on the left side indicates that factors D,E, F are active. Then, with the exception
of factor C the posterior probabilities obtained with OBsProb() seem to highlight the true
active factors (see Figure 3 representing the oracle of the effects importance). Note that this
resolution III screening design shows a really different result compared to the previous one.
The reason is that we are considering a highly fractional factorial design; as a consequence
the choice of generators may influence the analysis of the screening design. Because D = EF ,

Journal of Statistical Software 31

E = DF , and F = DE, some caution is needed before considering factors others than D,
E, and F as inert and dropping them off. In order to understand the potential effective
relevance of the other factors a follow-up experimental design might be run. Fixed equal to 4
the dimension nf of the follow-up design (nFoll = 4), the function OMD() is computed for all
the possible designs of nFoll runs chosen from the 26 candidates of the full design (Xcand).

R> Xcand <- MetalCutting[, 2:7]
R> Mbest <- as.matrix(combinations(64, 4, 1:64, repeats = TRUE))
R> es8.pp_omd <- OMD(OBsProb = es8.OBsProb, nFac = 6, nBlk = 0, nMod = 8,
+ nFoll = 4, Xcand = Xcand, mIter = 0, nStart = nrow(Mbest),
+ startDes = Mbest, top = 8)

In this case we decide to fix nMod = 8. This means that the function OMD() is computed with
the aim of discriminating among the eight models with the highest posterior probabilities
after the initial experiment.

R> summary(es8.pp_omd)

Base:
nRuns nFac nBlk maxInt nMod

8 6 0 2 8

OMD:
nCand nRuns maxIter nStart

64 4 0 766480

Top 8 runs:
OMD r1 r2 r3 r4

1 88.748 10 51 59 64
2 88.748 10 51 56 59
3 88.748 2 51 59 64
4 88.748 10 51 51 64
5 88.748 10 56 59 59
6 88.748 10 59 59 64
7 88.748 10 51 51 56
8 88.748 2 59 59 64

The first design with largest OMD appears to be (10 − 51 − 59 − 64) with OMD = 88.748.
After the addition of the extra runs associated with the highest OMD() value, function OBsMD
is called again.

R> X <- MetalCutting[c(62, 15, 6, 17, 41, 28, 36, 55), 1:7]
R> y <- MetalCutting[c(62, 15, 6, 17, 41, 28, 36, 55), 8]
R> TOP_DES <- cbind(blk = rep(1, 4), MetalCutting[es8.pp_omd$TOPDES[1,],
+ c(-1, -8)])
R> y_TOP_DES <- MetalCutting[es8.pp_omd$TOPDES[1,], 8]
R> X <- rbind(X, TOP_DES)

32 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: Posterior probabilities of factors for the second 26−3
III design with generatorsD = AB,

E = AC, F = BC (prior Beta(1, 1)) (on the left side); posterior probabilities of factors after
the addition of the extra runs (10− 51− 59− 64) (prior Beta(1, 1)) (on the right side).

R> y <- c(y, y_TOP_DES)
R> es8.aug.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 1, blk = 1,
+ mFac = 6, mInt = 2, nTop = 64)
R> print(es8.aug.OBsProb, nTop = 10)

[...]

Calculations:
nRun nFac nBlk mFac mInt totMod

12 6 1 6 2 64

Factor probabilities:
Factor Prob

none 0.173
1 A 0.058
2 B 0.063
3 C 0.076
4 D 0.738
5 E 0.706
6 F 0.167

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.453 0.032 2 4,5
M2 0.173 0.176 0 none
M3 0.132 0.023 3 4,5,6
M4 0.040 0.131 1 4
M5 0.037 0.032 3 3,4,5
M6 0.023 0.148 1 5
M7 0.023 0.044 3 1,4,5

Journal of Statistical Software 33

M8 0.020 0.049 3 2,4,5
M9 0.009 0.187 1 6
M10 0.007 0.091 3 1,2,3

Shannon index:
[1] 0.476

CV:
[1] 0.996

R> plot(es8.aug.OBsProb, main = "mxint = 2")

The update posterior probability of factors is displayed in Figure 5 on the right side. The
result is comparable with that reported in Edwards et al. (2014).

5.3. 26−2
IV fractional factorial design one-run-at-a-time

In this section we consider the same fractional experimental design 26−2
IV analyzed in Sec-

tion 2.2 (abeta = 1, bbeta = 7 and mInt = 2) but assuming that the follow-up experimen-
tation is performed in one-run-at-a-time fashion.
After having computed the posterior probability of factors (see Figure 1) using the same code
used in Section 2.2

R> X <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 2:7]
R> y <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 8]
R> es3.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 7, blk = 0,
+ mFac = 6, mInt = 2, nTop = 64)

function OMD() is run for nf = 1, after having coherently set the matrix Mbest.

R> Xcand <- MetalCutting[, 2:7]
R> Mbest <- as.matrix(combinations(64, 1, 1:64, repeats = TRUE))
R> es3_1.pp_omd <- OMD(OBsProb = es3.OBsProb, nFac = 6, nBlk = 0,
+ nMod = 57, nFoll = 1, Xcand = Xcand, mIter = 0, nStart = nrow(Mbest),
+ startDes = Mbest, top = 10)

Observe that only Mbest and the argument nFoll (= 1) assume a different value with respect
to the function OMD() used in Section 2.2 to obtain es3.pp_omd.
After having added the run corresponding to the highest OMD value (run = 36) to the initial
design, OBsProb() is applied and the posterior probabilities of the factors updated:

R> X <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 1:7]
R> y <- MetalCutting[c(62, 28, 51, 16, 64, 21, 26, 42, 44, 23, 39, 1, 14,
+ 49, 37, 3), 8]

34 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

none A B C D E F

mxint=2

factors

po
st

er
io

r
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Posterior probabilities of factors for screening 26−2
IV design with generators E =

ABC, F = ABD, (prior Beta(1, 7)) after the addition of the extra run 36 (on the left side)
and (36− 55) (on the right side).

R> TOP_DES <- c(blk = c(1), MetalCutting[es3_1.pp_omd$TOPDES[1,],
+ c(-1, -8)])
R> y_TOP_DES <- MetalCutting[es3_1.pp_omd$TOPDES[1,], 8]
R> X <- rbind(X, TOP_DES)
R> y <- c(y, y_TOP_DES)
R> es3_1_1.aug.OBsProb <- OBsProb(X = X, y = y, abeta = 1, bbeta = 7,
+ blk = 1, mFac = 6, mInt = 2, nTop = 64)
R> print(es3_1_1.aug.OBsProb, nTop = 64)

After fixing nMod = 10, the second run (run = 55) is computed running the code:

R> es3_2_1.aug.pp_omd <- OMD(OBsProb = es3_1_1.aug.OBsProb, nFac = 6,
+ nBlk = 1, nMod = 10, nFoll = 1, Xcand = Xcand, mIter = 0,
+ nStart = nrow(Mbest), startDes = Mbest, top = 10)
R> summary(es3_2_1.aug.pp_omd)

With this second additional run we can conclude that D, E and F are active factors (see
Figure 6 on the right side5). Observe that after just two runs, we obtain the same results
reported in Figure 2 on the left side with nf = 4.
Clearly the choice between running the follow-up design as a block or sequentially will depend
on cost, feasibility, resources, and timeliness.

6. Conclusions
In this paper, the background and a tutorial are presented for the OBsMD package for the R
environment. OBsMD implements the objective Bayesian methodology proposed in Consonni
and Deldossi (2016) for identifying optimal follow-up runs to resolve model ambiguity. Unlike

5The code is available in the supplementary material.

Journal of Statistical Software 35

other implementations, packages, or strategies, OBsMD should appeal to practitioners be-
cause of its flexibility and the use of the objective Bayesian approach which does not require
specification of the prior parameters.
When applied to real data, it produces follow-up runs which discriminate among compet-
ing models better than the current methodology. Because the tutorial uses the dataset
MetalCutting described in Mønness et al. (2007), the readers can compare the results ob-
tained with our approach (and package) with those proposed in Edwards et al. (2014).
Through the applications of this dataset, we have shown the performance and the usefulness
of the OBsMD package. We believe that the availability of such a method will be appreciated
by other R users as well.
Three examples have been discussed, along with some theoretical and practical issues. Flex-
ibility is achieved by providing the user with many options. For example with regard to the
prior of the model space, we adopted the values (a = 1, b = 1), corresponding to the uni-
form distribution. The alternative choice (a = 1, b = k + 1) has been advocated to achieve a
stronger sparse model effect. Moreover the main difference with such a prior is that the choice
(a = 1, b = k + 1) gives more weight to more parsimonious models, relative to (a = 1, b = 1),
however, optimal follow-up runs are broadly similar in the two cases. The opportunity to
add one-run-at-a-time represents a further key point, since, as in Section 5.3, we can discover
which factors are active factors simply by augmenting the design with 1 or 2 runs.
The model discrimination criterion used in this package is based on the Kullback-Leibler
divergence. Possible future extensions of this package may regard the use of alternative
distances, like the Hellinger one (see Bingham and Chipman 2007) or the relaxation of the
effect forcing assumption, which may sometimes represent a limitation.
We believe the OBsMD package may represent a useful tool since it does not require prior
specifications, being fully automatic and not requiring prior specification unlike the Meyer
et al. (1996) approach, implemented in the R package BsMD, whose sensitivity to the tuning
parameters (π and γ) may represent a problematic issue.

References

Abramowitz M, Stegun IA (1965). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied
Mathematics Series. U.S Government Printing Office, Washington, D.C.

Barrios E (2020). BsMD: Bayes Screening and Model Discrimination. R package ver-
sion 2020.4.30, URL https://CRAN.R-project.org/package=BsMD.

Bayarri MJ, Berger JO, Forte A, García-Donato G (2012). “Criteria for Bayesian Model
Choice with Application to Variable Selection.” The Annals of Statistics, 40(3), 1550–
1577. doi:10.1214/12-aos1013.

Berger JO, Pericchi LR (2001). “Objective Bayesian Methods for Model Selection: Introduc-
tion and Comparison.” In Model Selection, volume 38 of IMS Lecture Notes, pp. 135–207.
Institute of Mathematical Statistics.

Bingham DR, Chipman HA (2007). “Incorporating Prior Information in Optimal Design for
Model Selection.” Techonometrics, 49(2), 155–163. doi:10.1198/004017007000000038.

https://CRAN.R-project.org/package=BsMD
https://doi.org/10.1214/12-aos1013
https://doi.org/10.1198/004017007000000038

36 OBsMD: Follow-Up Designs in an Objective Bayesian Framework in R

Box GEP, Hunter WG, Hunter JS (1978). Statistics for Experimenters. An Introduction to
Design, Data Analysis, and Model Building. John Wiley & Sons.

Chipman H, Hamada MS (1996). “Discussion: Factor-Based or Effect-Based Modeling? Im-
plications for Design.” Technometrics, 38(4), 317–320. doi:10.1080/00401706.1996.
10484540.

Consonni G, Deldossi L (2016). “Objective Bayesian Model Discrimination in Follow-Up
Design.” Test, 25(3), 397–412. doi:10.1007/s11749-015-0461-3.

Edwards DJ, Weese ML, Palmer GA (2014). “Comparing Methods for Design Follow-Up: Re-
visiting a Metal-Cutting Case Study.” Applied Stochastic Models in Business and Industry,
30(4), 464–478. doi:10.1002/asmb.1988.

Goos P, Jones BA (2011). Optimal Design of Experiments: A Case Study Approach. John
Wiley & Sons. doi:10.1002/9781119974017.

Grömping U (2014). “R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level
Designs.” Journal of Statistical Software, 56(1), 1–56. doi:10.18637/jss.v056.i01.

Grömping U (2020). FrF2: Fractional Factorial Designs with 2-Level Factors. R package
version 2.2-2, URL https://CRAN.R-project.org/package=FrF2.

Mee RW, Peralta M (2000). “Semifolding 2k−p Designs.” Techometrics, 42(2), 122–134.
doi:10.2307/1271444.

Meyer D (1996). mdopt: Fortran Programs to Generate MD-Optimal Screening and Follow-
up Designs, and Analysis of Data. Statlib, Fortran package version 90, URL http://lib.
stat.cmu.edu/.

Meyer RD, Steinberg DM, Box GEP (1996). “Follow-Up Designs to Resolve Confounding in
Fractional Factorials.” Technometrics, 38(4), 303–313. doi:10.2307/1271297.

Mønness E, Linsley MJ, Garzon IE (2007). “Comparing Different Fractions of a Factorial
Design: A Metal-Cutting Case Study.” Applied Stochastic Models in Business and Industry,
23(2), 117–128. doi:10.1002/asmb.641.

Montgomery DC (2006). Design and Analysis of Experiments. John Wiley & Sons.

Montgomery DC, Runger GC (1996). “Foldovers of 2k−p Resolution IV Experimental Designs.”
Journal of Quality Technology, 28(4), 446–450. doi:10.1080/00224065.1996.11979702.

Nai Ruscone M, Deldossi L (2020). OBsMD: Objective Bayesian Model Discrimination in
Follow-Up Designs. R package version 6.1, URL https://CRAN.R-project.org/package=
OBsMD.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Scott JG, Berger JO (2010). “Bayes and Empirical-Bayes Multiplicity Adjustment in the
Variable-Selection Problem.” The Annals of Statistics, 38(5), 2587–2619. doi:10.1214/
10-aos792.

https://doi.org/10.1080/00401706.1996.10484540
https://doi.org/10.1080/00401706.1996.10484540
https://doi.org/10.1007/s11749-015-0461-3
https://doi.org/10.1002/asmb.1988
https://doi.org/10.1002/9781119974017
https://doi.org/10.18637/jss.v056.i01
https://CRAN.R-project.org/package=FrF2
https://doi.org/10.2307/1271444
http://lib.stat.cmu.edu/
http://lib.stat.cmu.edu/
https://doi.org/10.2307/1271297
https://doi.org/10.1002/asmb.641
https://doi.org/10.1080/00224065.1996.11979702
https://CRAN.R-project.org/package=OBsMD
https://CRAN.R-project.org/package=OBsMD
https://www.R-project.org/
https://doi.org/10.1214/10-aos792
https://doi.org/10.1214/10-aos792

Journal of Statistical Software 37

Wolters MA, Bingham DR (2011). “Simulated Annealing Model Search for Subset Selection in
Screening Experiments.” Technometrics, 53(3), 225–237. doi:10.1198/tech.2011.08157.

Affiliation:
Laura Deldossi
Departimento di Scienze Statistiche
Facultá di Economia
Universitá Cattolica del Sacro Cuore di Milano
20123 Milan, Italy
E-mail: laura.deldossi@unicatt.it

Marta Nai Ruscone
Dipartimento di Matematica – DIMA
Universitá degli Studi di Genova
Via Dodecaneso, 35
16146 Genova (GE), Italy
E-mail: marta.nairuscone@unige.it

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2020, Volume 94, Issue 2 Submitted: 2017-04-20
doi:10.18637/jss.v094.i02 Accepted: 2019-05-12

https://doi.org/10.1198/tech.2011.08157
mailto:laura.deldossi@unicatt.it
mailto:marta.nairuscone@unige.it
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v094.i02

	Introduction
	Follow-up design in an objective Bayesian framework
	Aim of the package
	Basic formulation, objective priors, main outputs
	Changes in the Fortran code

	How the package works
	Package description
	Tutorial using the MetalCutting dataset
	First 2III6-3 fractional factorial design
	Second 2III6-3 fractional factorial design
	 2IV6-2 fractional factorial design one-run-at-a-time

	Conclusions

