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Abstract

The BayesNetBP package has been developed for probabilistic reasoning and visual-
ization in Bayesian networks with nodes that are purely discrete, continuous or mixed
(discrete and continuous). Probabilistic reasoning enables a user to absorb information
into a Bayesian network and make queries about how the probabilities within the network
change in light of new information. The package was developed in the R programming
language and is freely available from the Comprehensive R Archive Network. A shiny app
with Cytoscape widgets provides an interactive interface for evidence absorption, queries,
and visualizations.
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1. Introduction

Probabilistic graphical models (PGMs) provide a general framework for representing rela-
tionships between a set of random variables (Koller and Friedman 2009). In a PGM, nodes
in the graph (aka network) represent random variables, and the edges between them encode
information about the dependencies (directed) and associations (undirected) between them.
Information gained from PGMs may provide novel insights into complex relationships. In
broad terms, there are two layers of information that can be gained from PGMs: (1) through
the structure of the network, and (2) by performing probabilistic reasoning (e.g., by comput-
ing marginal, conditional or joint distributions) given a known or estimated network. This
work focuses on the latter, on a subclass of directed PGMs known as Bayesian networks (BNs;
Pearl 2014; Koller and Friedman 2009).

https://doi.org/10.18637/jss.v094.i03
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In a BN, the directed edges of the network encode the conditional independencies between
variables. Thus, the structure of the network conveys important information about the direct
and indirect dependencies between variables. The BN paradigm also enables probabilis-
tic queries within the network (Koller and Friedman 2009). Example queries include the
probability of variables being assigned particular values, conditional probabilities of latent
variables given values of observable values, or the probability of an outcome variable after
causal evidence is taken into account. The process of performing probabilistic queries within
a network is broadly known as probabilistic reasoning. Queries are performed by propagating
new evidence (information) through the network using a method known as belief propagation.
Probabilistic reasoning has been utilized in many application areas that benefit from reason-
ing as a means to better inform decision making (Koller and Friedman 2009), e.g., predicting
traffic flow (Castillo, Menéndez, and Sánchez-Cambronero 2008; Sun, Zhang, and Yu 2006),
clinical decision support (Kahn Jr, Roberts, Shaffer, and Haddawy 1997; Pradhan, Provan,
Middleton, and Henrion 1994; Sesen, Nicholson, Banares-Alcantara, Kadir, and Brady 2013)
and the prediction of gene network perturbations (Moharil, May, Gaile, and Blair 2016).

Probabilistic reasoning with belief propagation is performed post hoc to structural and pa-
rameter learning tasks. Our emphasis is on this post-hoc analysis and visualizations in BNs.
In fact, methods for structural and parameter learning are separate, and developed indepen-
dently, from the inference algorithms used for probabilistic reasoning. For this reason, the
R (R Core Team 2020) package BayesNetBP (Yu 2020), available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=BayesNetBP, inte-
grates with the many existing packages and algorithms for structural and parameter learning
(Højsgaard, Edwards, and Lauritzen 2012), and we showcase different examples in our applica-
tions. Belief propagation algorithms require different modifications depending on the type of
nodes in the network, e.g., discrete, continuous and a mixture thereof. Package BayesNetBP
provides the flexibility to accommodate these common BN representations.

The BayesNetBP package has the following major advantages. (1) To the authors’ knowledge,
BayesNetBP is the first open source package to facilitate exact probabilistic reasoning in the
three most common types of BNs (discrete multinomial, continuous Gaussian and conditional
Gaussian Bayesian networks (CG-BNs)). (2) BayesNetBP is the first R package that enables
exact probabilistic reasoning in CG-BNs without commercial dependencies. (3) The package
provides novel visualizations for probabilistic reasoning in the network. (4) The inference
tools for probabilistic reasoning connect seamlessly with existing graphical modeling tools
in R for structural learning. (5) The package is also supported through a shiny (Chang,
Cheng, Allaire, Xie, and McPherson 2020) app that is coupled with Cytoscape visualizations
(Shannon et al. 2003) designed to be accessible to the non-technical user.

This paper is organized as follows. In Section 2, we place the BayesNetBP package in the
context of existing graphical modeling tools in R. In Section 3 we provide a brief description
of the theory of BNs (Section 3.1), motivate probabilistic reasoning and demonstrate select
features of the package (Section 3.2), provide an overview of the belief propagation procedures
implemented in BayesNetBP (Section 3.3), and describe measures used to quantify proba-
bilistic changes for the comparisons and visualizations of networks (Section 3.4). Section 4
provides examples in statistical genetics for CG-BNs (Section 4.1) and discrete BNs (Sec-
tion 4.2). In Section 4.3, we describe the shiny app. Finally, conclusions and future directions
are outlined in Section 5.

https://CRAN.R-project.org/package=BayesNetBP
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2. Existing tools and implementation
The general workflow of the BayesNetBP is illustrated in Figure 1. Note that network struc-
ture is the input from which BayesNetBP provides post-hoc probabilistic reasoning and visu-
alizations. BayesNetBP can be seamlessly integrated with other tools in R that provide struc-
tural learning (Højsgaard et al. 2012; Scutari and Denis 2014). For example, bnlearn (Scutari
2010, 2017), catnet (Balov and Salzman 2020), deal (Boettcher and Dethlefsen 2003), pcalg
(Kalisch, Mächler, Colombo, Maathuis, and Bühlmann 2012) and RHugin (Konis 2017), all
provide structural learning for different types of BNs that can serve as input to BayesNetBP.
The network input can also be specified by a user based on prior knowledge. BayesNetBP is
compatible with networks that are discrete (multinomial), continuous (Gaussian) or a mixture
of discrete and continuous variables (CG-BN).
In the R programming language, there are only two packages that can perform exact inference
for probabilistic reasoning in BNs, RHugin and gRain (Højsgaard 2012). RHugin can be used

PGM + data (or paramaterization)

Semi-elimination Tree

The computational object for belief propagation is derived and initialized.

Enter Evidence

Set evidence for a single node or multiple notes in the network

Probabilistic Queries

Predict the states of other d-connected nodes in the network

Visualization

using R package or Shiny App

Input: PGM

R packages for structural learning:

bnlearn, catnet, deal, pcalg, RHugin 

or 

user specified 

Schematic of BayesNetBP workflow and capabilities

BayesNetBP

Figure 1: The BayesNetBP workflow. The program integrates with existing tools for struc-
tural learning available in R, or the network can be user-specified based on prior knowledge.
Parameters are estimated for the local conditional distributions using data, or are user-defined.
A semi-elimination tree is inferred and initialized, which is the computational object for belief
propagation. The user can enter evidence for a node(s) in the network, and perform prob-
abilistic queries to predict the state of other nodes in the network. These queries can be
visualized using the R package or in a shiny app.
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for structural learning and exact inference for BNs, but relies on the commercial software,
Hugin (Hugin Expert A/S 2017). A free demo version called huginlite can be used in connec-
tion with RHugin, but the models are limited to smaller networks and data (50 states and
500 cases) for the demo version. The gRain package can handle large datasets and networks,
but it only supports probabilistic reasoning in purely discrete networks. BayesNetBP also
supports inferences that gRain can do on discrete BNs, but can also preform probabilistic
reasoning on continuous BNs and CG-BNs. Package BayesNetBP fills a major gap in the
graphical modeling tools available in R. To our knowledge, BayesNetBP is the only fully open
source R package to support exact inference in CG-BNs. BayesNetBP also provides tools for
quantification and visualization of distributional changes.
The R package ramidst (Salmeron et al. 2016) links to the AMIDST (Masegosa et al. 2019)
toolbox for scalable, but only approximate inference algorithms for BNs written in Java
(Gosling, Joy, Steele, and Bracha 2000). The package was recently removed from the CRAN
repository for check issues, but the Java toolbox remains functional. Notably, the most
probable explanation (MPE) and maximum a posteriori (MAP) inferences that are utilized
only output information associated with the highest probabilities, and thus do not capture the
uncertainty of the approximate inference. The package also implements approximate inference
based on importance sampling for single target variables. In cases of massive networks, the
ramidst package presents computational advantages over BayesNetBP. However, in moderate
to large networks (several hundreds of nodes), BayesNetBP offers more precision, and a more
comprehensive output.

3. Theory

3.1. Bayesian networks: Introduction and terminology
BayesNetBP exclusively targets BNs. We begin with a simplistic BN for an emission problem
(Figure 2) that will be used to demonstrate terminology and motivate probabilistic reasoning
with BayesNetBP throughout this section. The discrete variables are filter state (Fs), waste
type (W ), and burning regimen (B), and the continuous variables are metals in waste (Mi),
metals emission (Mo), filter efficiency (E), dust emission (D), CO2 concentration in the
emission (C), and light penetrability (L). The network can be used to predict emission of
heavy metals, diagnose the stability of burning regimen and the filter state, and so forth. A
brief description is provided below, and additional details and model parameters are provided
in Lauritzen (1992).

The emission from a waste incinerator differs due to compositional differences
in incoming waste. Another factor is the waste burning regimen which can be
monitored by measuring the concentration of CO2 emissions. The filter efficiency
depends on the technical state of the electrofilter and the amount and composition
of waste. The emission of heavy metals depends both on the concentration of
metals in the incoming waste and the emission of dust particulates in general.
The emission of dust is monitored by measuring the penetrability of light.

BNs are directed acyclic graphs (DAGs), a network with only directed edges and no cycles.
For example, D → W is not an allowable edge in the emissions BN because it would create
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Figure 2: BN for the emission problem. The discrete variables are filter state (Fs =
{intact, defect}), waste type (W = {industrial, household}), and burning regimen (B =
{stable, unstable}). The continuous variables are metals in waste (Mi), metals emission (Mo),
filter efficiency (E), dust emission (D), CO2 concentration in the emission (C), and light pen-
etrability (L).

a cycle D � W (Figure 2). The relationships between nodes in a network are described
using a standard familial terminology. Parent nodes are connected by directed edges to their
downstream child nodes (e.g., {D,Mi} are parents of M0). We define a local distribution as
the conditional probability distribution defined by conditioning a child node on its parent
nodes. Specifically, the local distributions are defined for each node conditional on the set
of parents, e.g., f (M0 | D,Mi) ∼ N(β0 + β1 ·D + β2 ·Mi, σ

2), where {β0, β1, β2} denote the
estimated coefficients from regressing a child node on its parents. The full specification of
local distributions for a BN is the parameterization of the network. For purely continuous
or purely discrete BNs, these local distributions are often defined as multivariate Gaussian
(Geiger and Heckerman 1994) or multinomial (Heckerman, Geiger, and Chickering 1995),
respectively.
The structure of a BN encodes a set of conditional independencies between random variables,
X = (X1, X2, . . . , Xn), which can be used to represent the joint distribution in compact
factored form. BNs follow theMarkov assumption, which states that each node is conditionally
independent of its non-descendants (nodes that are not parents) in the network, given the
value of its parent nodes, e.g, f (M0 | D,Mi,W ) = f (M0 | D,Mi). This assumption enables
the joint distribution to be expressed as a product of conditional probabilities (Lauritzen
1996; Koller and Friedman 2009):

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi | pa(Xi),Θi) ,

where pa(Xi) are the parent nodes of Xi, and Θi denotes the parameters of the local distribu-
tion. Notably, the BN paradigm is especially powerful in high-dimensions, where it may not
be tractable to estimate the parameters necessary to represent the joint distribution directly.
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D-separation (dependence separation) is an important property that ultimately governs how
information can flow through a network for probabilistic reasoning (Spirtes, Glymour, and
Scheines 2000; Pearl 2014). In a BN, if two nodes, X and Y , are d-separated relative to a
set of variables Z, then they are independent conditional on Z in all probability distributions
represented by the BN. In other words, X provides no additional information about Y if
Z is known. A pair of nodes is d-separated if all paths (sets of connected edges) between
them contain what is known as a v-structure (aka collider). For example, D and Mi are d-
separated because M0 forms a v-structure between them, formed by D →M0 and Mi →M0.
However, when information is absorbed into a BN, the patterns of d-separation within the
graph change, see Koller and Friedman (2009) for details. Nodes that are not d-separated are
known as d-connected.

Conditional Gaussian Bayesian networks

Conditional Gaussian Bayesian networks (CG-BNs) include a mixture of discrete and con-
tinuous variables (Figure 2). Additional modeling assumptions on the structure of the BN
are necessary in CG-BNs for the local distributions. Following Lauritzen (1996), we denote
the set of discrete nodes as ∆, and the set of continuous nodes as Γ. For a continuous
variable Y = Xj ∈ Γ, we define a local distribution as a conditional Gaussian regression
(CG-regression), denoted by Λ, on the states of the discrete parents I of child node Y :

Λ(Y | I = i, Z = z) = N
(
α(i) + β(i)>z, σ2(i)

)
,

where α(i) is the mean of the regression, β denotes the regression coefficients, Z ∈ Γ are the
the continuous parents of Y , and the variance, σ2(i) depends only on the discrete states of the
parent nodes. Importantly, in a CG-BN, discrete nodes can be parents of continuous nodes,
but not vice versa. Networks known as chain graphs also contain a mixture of discrete and
continuous nodes, as well as directed and undirected edges (Cox and Wermuth 1993). Chain
graphs do not require the assumptions made for a CG-BN and are outside of the scope of the
BayesNetBP package.

Structure and parameter learning

BNs require up to two layers of learning for the network structure and parameters of the
local distributions. The learning requirements depend on the data, user knowledge and the
modeling objectives. For example, a user can construct the graph based on prior domain
knowledge about the relationships between variables. In this scenario, only parameterization
of the local distributions is required, which can also be either user-specified or directly inferred
from the data.
In many cases, the network structure is not known and has to be learned. Identifying the
BN that best explains the data is an NP-hard problem (Chickering, Heckerman, and Meek
2004). The BayesNetBP package does not provide structural learning, but can interface
with many of the existing and popular learning packages described in Section 2 (Højsgaard
et al. 2012; Scutari and Denis 2014). Structural learning algorithms can be broadly classified
as constraint-based, score-based, or as a hybrid of these. Briefly, we describe the basics of
three foundational approaches, from which more complex modification have been developed.
Constraint-based methods are inspired by the inductive causation (IC) algorithm (Verma
and Pearl 1991). The IC algorithm initially carries out sets of conditional independence



Journal of Statistical Software 7

tests to identify an undirected graph, a graph with undirected edges, which are then directed
in a way that ensures that there are no directed cycles. Score-based methods rely on the
definition of a measure that reflects how well the data supports the structure of the network.
For example, the Bayesian information criterion (Yu, Smith, Wang, Hartemink, and Jarvis
2004) is a popular score that naturally favors sparser graphs in terms of the number of edges.
Probabilistic scores enable the integration of user knowledge about node relationships into
the structural learning process. This can be achieved by (1) constraining the structural
learning procedure to search over networks that contain known relationships, or (2) setting
a graphical prior, e.g. see Werhli and Husmeier (2007) and Mukherjee and Speed (2008).
Hybrid approaches blend the constraint and score based methods. For example, the PC
algorithm (named after its authors, Peter and Clark; Spirtes et al. 2000) depends on statistical
independence tests for all pairs of variables to derive an undirected skeleton, v-structures
in the graph are identified and remaining edges are directed at random to enforce a DAG
structure. Several other hybrid structural learning algorithms have been developed, and can
be implemented in different R packages, see Højsgaard et al. (2012) and Scutari and Denis
(2014) for a more in depth description.

3.2. A simple motivating example

In order to motivate probabilistic reasoning with BayeNetBP, consider a simple emissions
network (Figure 2). Suppose that we want to make informed decisions about operations and
possible malfunctions. For example, we may want to query the CG-BN for the distribution
of metals emission (Mo), filter efficiency (E), dust emission (D) after observing the values of
waste type (W ), CO2 concentration in the emission (C), and light penetrability (L).
The BayesNetBP can be installed from CRAN.

R> install.packages("BayesNetBP")

To get started, we need to create a ‘ClusterTree’ object. The initialization requires as input
a ‘graphNEL’ object, a data frame and a vector to indicate explicitly whether the variables
are discrete. The emission1000 data in BayesNetBP package includes the network structure
and a simulated dataset based on the parameterization from Lauritzen (1992).

R> library("BayesNetBP")
R> data("emission1000", package = "BayesNetBP")
R> node.class <- rep(c(TRUE, FALSE), c(3, 6))
R> names(node.class) <- c("B", "Fs", "W", "L", "Mo", "D", "Mi", "C", "E")
R> node.class

B Fs W L Mo D Mi C E
TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

R> tree.init <- Initializer(dag = emission1000$dag,
+ data = emission1000$data, node.class = node.class)

Suppose that we observe some new evidence (information) about variables in our network.
Probabilistic reasoning is performing queries about probability distributions (marginal, con-
ditional and joint) in the BN once this new evidence has been absorbed and propagated
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through the network. For example, suppose we observe that waste has been of industrial type
(W = "industrial"), the light penetrability has been recently measured (L = 1.1), and
the CO2 concentration in the emission was also measured (C = −0.9). AbsorbEvidence can
be used to absorb evidence into a ‘ClusterTree’ object. Updated probability distributions
for marginal, conditional and joint distributions can be obtained for the remaining variables
using FactorQuery. For example, we can query the joint probability distribution of filter
state and burning regime, before and after absorbing and propagating the new evidence.

R> tree.post <- AbsorbEvidence(tree.init, vars = c("W", "L", "C"),
+ values = list("industrial", 1.1, -0.9))
R> FactorQuery(tree.init, vars = c("Fs", "B"), mode = "joint")

B Fs prob
1 stable defect 0.040138
2 stable intact 0.813862
3 unstable defect 0.006862
4 unstable intact 0.139138

R> FactorQuery(tree.post, vars = c("Fs", "B"), mode = "joint")

Fs B prob
1 defect stable 8.989126e-05
2 defect unstable 4.173244e-04
3 intact stable 1.050902e-02
4 intact unstable 9.889838e-01

From this, we can see that under initial (typical) conditions, it is most likely that the filter
is intact and the burning regime is stable, with the joint distribution P (Fs = intact,B =
stable) = 0.81. However, once this new observed evidence is taken into account, the updated
probabilities suggest and intact filter, but unstable burning regime, with P (Fs = intact,B =
unstable) = 0.99. We can also look at the updated marginal probabilities to further assess
the situation.

R> marg.pre <- Marginals(tree.init, c("E", "D", "Mi", "Mo"))
R> SummaryMarginals(marg.pre)

Mean SD n
E -3.2585315 0.6913124 4
D 3.0267606 0.7482027 8
Mi -0.2197765 0.4584857 2
Mo 2.8068047 0.8382861 8

R> marg.post <- Marginals(tree.post, c("E", "D", "Mi", "Mo"))
R> SummaryMarginals(marg.post)

Mean SD n
E -3.8982243 0.07903811 4
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D 3.5698591 0.38444326 4
Mi 0.5035502 0.10328602 1
Mo 4.0687900 0.39975314 4

The updated marginal probabilities suggest that with an unstable burning regime it is also
likely to have reduced filter efficiency and an increase in dust and metals. The belief propaga-
tion procedure in BayesNetBP facilitates probabilistic inquiries of this type, and the inference
for the updated distributions is exact. Note that the same setting was used in Lauritzen (1992)
and Lauritzen and Jensen (2001), and negligible differences are due to the fact that the local
distributions were estimated using simulated data.

3.3. Belief propagation

BNs enable probabilistic reasoning (queries) within the network through a process known as
belief propagation. Belief propagation algorithms for probabilistic reasoning in a BN typically
involve operations along a computational object known as a cluster tree, an undirected graph
with no cycles derived from the BN. The nodes in a cluster tree are clusters, Ci, from the
BN such that Ci ⊆ {X1, X2, . . . Xn}. Sepsets, defined as Si,j = Ci ∩ Cj , are the edges in a
cluster tree. We define potentials as non-negative functions that parameterize the BN and
represent the local distributions. They are in the form of conditional probability tables for
discrete variables (ψ), and CG regressions for continuous variables (Λ). The cluster tree serves
as a computational object that absorbs evidence and passes messages (functions of cluster
potentials) between clusters and ultimately regulates the updating of potentials.
BayesNetBP supports reasoning with soft evidence that specifies likelihoods, or hard evidence
that specifies actual values of individual nodes. The package also supports probabilistic rea-
soning in discrete multinomial, Gaussian BNs and CG-BNs. However, reasoning in CG-BNs
requires a specialized set of operations to accommodate both discrete and continuous variables.
Lauritzen (1992) developed an approach to reasoning in CG-BNs that was later modified to
alleviate numerical instabilities (Lauritzen and Jensen 2001). This propagation scheme is
currently implemented in the commercial software Hugin (Hugin Expert A/S 2017). Cowell
(2005) developed an approach to reasoning in CG-BNs that is simpler to implement, and
can be generalized to accommodated purely discrete or continuous BNs. BayesNetBP imple-
ments this approach and its generalizations, and provides unique visualizations to facilitate
understanding of the probabilistic reasoning results. BayesNetBP simultaneously accom-
modates discrete and continuous clusters by compartmentalizing the cluster tree and the
corresponding operations accordingly, and then interfacing the computation between these
two compartments.

Construction of the elimination tree

A special type of cluster tree, known as an elimination tree, is the main computational object
of the BayesNetBP package. Following Cowell (2005), we briefly describe four basic steps to
constructing an elimination tree from a BN.

1. Moralization: The DAG is moralized by eliminating the directionality of the edges in
G and connecting all parent nodes that have a common child (Figure 3A).
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2. Triangulation based on elimination ordering: Elimination ordering is derived
such that for every directed edge X → Y in the network, Y comes before X in the
ordering. Continuous nodes always precede discrete nodes in the elimination order, e.g.,
{L,M0, D,Mi, C,E,B, Fs} is an elimination ordering for Figure 3A. Triangularization
depends on the elimination ordering, as well as neighbors in a graph, which are simply
nodes that share an edge. Specifically, in the triangularization, an undirected edge is
added between nodes X and Y in the moral graph if they share a common neighbor
and Z, and Y appears later than X and Z in the elimination ordering (Figure 3B).

3. Cluster sets: For each node Xi, a cluster set Ci is formed, which contains all of
its neighbors in the triangulated graph that appear later in the elimination ordering,
and itself (e.g., Figure 3C). Xi is termed the elimination node of Ci and is the unique
identifier of the cluster set.

4. Elimination tree formation: Let Ci and Cj be two cluster sets with more than one
node and with elimination nodes Xi and Xj , respectively. A directed edge is added
between Ci and Cj (Ci → Cj) if the elimination node Xi appears first in the elimi-
nation ordering among Cj\{Xj}. Certain discrete clusters can be merged to improved
computational efficiency, as described in Algorithm 3.3 by Cowell (2005). The obtained
cluster tree is called strong semi-elimination tree. This construction satisfies the run-
ning intersection property, which ensures that if a variable appears in more than one
cluster set in the elimination tree, then this variable will appear in every cluster set in
the path between them (Koller and Friedman 2009, Figure 3D).

In practice, the number of parents for a node is usually very small relative to n, so the above
steps typically have time complexity of O(n). Suppose the maximum number of parents for a
node ism, then in the worst case Step 1 and 2 can have time complexity of O(nm2), while Step
4 can be up to O(n2) (Cowell 2005). Elimination trees built from CG-BNs have two separated
compartments. Clusters in the discrete compartment only contain discrete nodes, while those
in the continuous part can include both discrete and continuous nodes. The boundary cluster
is the discrete cluster that neighbors the continuous compartment (e.g., {B,W,Fs} in Fig-
ure 3D). A strong root is a cluster such that, when a sepset between two clusters is not purely
discrete, the cluster furthest away from the root has only continuous nodes beyond the sepset
(Lauritzen 1992). Importantly, due to the compartmentalization of discrete clusters, a strong
root will always exist in a CG-BN since any cluster containing discrete nodes (e.g., {B,W,Fs}
in Figure 3D) naturally satisfies the strong root conditions (Lauritzen 1992). Otherwise, the
cluster whose elimination node is at the end of the elimination order will serve as the root.
After construction, each node must be assigned to a cluster that contains the node itself and
its parents (local family) in the BN. In a CG-BN, discrete nodes must be assigned to a cluster
that contains the local family, but may not include any continuous variables. Importantly,
this will always be satisfied due to the elimination ordering in a CG-BN, which enforces the
elimination of continuous nodes before the discrete ones.

An overview of the belief propagation procedure

BayesNetBP couples a series of four algorithms described in Cowell (2005) with classic proce-
dures of belief propagation for discrete networks (Koller and Friedman 2009). The algorithms
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Figure 3: Construction of an elimination tree for the emissions BN of Figure 2. (A) The graph
is moralized by dropping the directionality of edges in the BN, and connecting nodes with a
common child, e.g., an undirected edge is added between D andMi. (B) The moralized graph
is triangulated by the elimination ordering {L,Mo, D,Mi, C,E,B,W,Fs}. (C) Cluster sets
are derived. For example, the cluster set of E is formed by itself and all its neighbor nodes
that appear after E in the elimination ordering, which are {B,W,Fs} (blue). Likewise, the
cluster set ofMi is formed by itself and {E,B,W} (orange). (D) Formation of the elimination
tree. For example, cluster sets with elimination nodes of E and Mi are connected. Note that
among the members of cluster set Mi, E also appears first in the elimination order other
than Mi itself. Clusters {Fs} and {W,Fs} are also merged to form the boundary cluster,
{B,W,Fs}.

are used to allocate potentials, perform the initialization of the CG regressions of the tree, en-
ter and propagate evidence into the tree through a series of exchange and push operations, and
finally to evaluate the posterior marginals. Briefly, the exchange operation is an application of
Bayes’ theorem, which enables the representation of two CG regressions as two distributions,
such that the joint distribution does not change. The push operation follows Lauritzen and
Jensen (2001) and operates by pushing evidence absorbed into a continuous variable up the
tree to the boundary cluster using a series of exchange operations. In BayesNetBP, track-
ing the push and exchange operations utilizes two different list structures for storing and
organizing CG regressions as introduced in Cowell (2005).
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Figure 4: The belief propagation process after observing L = l. (A) The assignment of
potentials is made, and (B–C) the potential for L becomes conditionally independent on
the other continuous variables as it gets pushed up the tree. (D) At the boundary cluster,
{B,W,F}, the potential of L depends only on discrete variables. (E) The potentials of discrete
clusters are updated. (F) An example of how the marginal of Mi is obtained.

An overview of the process is described using the emissions example (Figure 4) and we refer
the reader to Cowell (2005) for the comprehensive description of the four algorithms that
facilitate belief propagation. During initialization, the CG regression of a continuous variable
can always be assigned to the cluster where it is the elimination node for the cluster, while
guaranteeing the potentials of its tails are all assigned upward of this cluster in the tree. The
head and tail(s) of a CG regression are defined in the same way as in Lauritzen and Jensen
(2001) with only one head variable. Specifically, a CG regression is defined as Λ(Head |
Tail1,Tail2, . . . , A,B, . . . ), where the tails are the continuous nodes that the head variable is
conditional on, while A,B, . . . are additional discrete variables. In our example, a possible
assignment of CG regressions is shown in Figure 4A. The regression of L is assigned to the
cluster {L,D}, whose elimination node is L.
To absorb evidence L = l into the network, the potential of L will be pushed toward the
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boundary cluster, {B,W,Fs}. As the first step, the potential of L is pushed to the cluster set
{D,Mi, E,B,W} (Figure 4B), where the exchange operation is performed on the potentials
Λ(L | D) and Λ(D | E,B,W ). The exchange operation removes D from the tail of Λ(L | D)
using Bayes’ theorem (Figure 4C). Through a series of push and exchange operations, the
potential of L arrives at the boundary cluster and all continuous variables are removed from
its tail (Figure 4D).

Interfacing the compartments

After this pushing completes, a message in the form of likelihood, will be passed from the
continuous compartment to the discrete compartment. This message will then be propagated
within that compartment using a standard sum-product algorithm (Koller and Friedman
2009). Interfacing the compartments is straightforward due to the fact that after the push
operations are completed, the potential of observed variable only depends on a set of discrete
variables. As described earlier, these discrete variables are guaranteed to be members of the
involved boundary cluster (Figure 4D). Since the likelihood function is given as:

L(B,W,Fs | L = l) = fL|B,W,F (l | B,W,Fs), and
P (B,W,Fs | L = l) ∝ P (B,W,Fs) · L(B,W,Fs | L = l),

the potential ψ(B,W,Fs) can be updated as ψ∗(B,W,Fs) = ψ(B,W,Fs)L(B,W,Fs | L = l)
(Figure 4E). When there are multiple discrete clusters, the joint distribution of all clusters
will be obtained by the sum-product algorithm (Koller and Friedman 2009), with the evidence
L = l absorbed. Since all of the boundary clusters’ updated joint distributions will then be
available, they can be used to further update the marginals of the continuous variables after
their potentials have been pushed to them.

Querying the marginal distribution of a continuous variable

After the propagation among discrete clusters completes, the marginal distributions of the
continuous variables will be further updated through refreshed discrete potentials. The
marginal distribution of a continuous variable is also obtained by pushing its potential up-
wards to the boundary cluster. When the pushing operations are complete, its distribution
only depends on discrete factors. At this stage, the marginal can be readily obtained as a
mixture of Gaussian distributions. For example, if we are interested in the marginal ofMi, its
potential can be pushed from {Mi, E,B,W} to {E,B,W,Fs} (Figure 4F), and the marginal
fMi|L (mi | L = l) can be computed as:∑

B,W,Fs

fMi|B,W,Fs
(mi | L = l, B = b,W = w,Fs = fs)P (B = b,W = w,Fs = fs) .

3.4. Network comparisons and visualizations

After the absorption and propagation of new evidence, nodes that are d-connected to a node
where the evidence is entered, can be expected to exhibit changes in their distributions. Thus,
assessing the node-specific changes in the network can be done systematically by examining
the marginal distributions before and after evidence is absorbed and propagated (Moharil
et al. 2016). BayesNetBP calculates a symmetric version of Kullback-Leibler divergence
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known as Jeffrey’s information (JI; Jeffreys 1946) to quantify the change in the marginals
for the continuous nodes. JI is a function of the parameters of the two distributions (before
and after belief propagation). BayesNetBP utilizes a signed JI in order to visualize the
magnitude and direction of effect. Alternative quantities can be used (e.g., fold change) and
can be computed directly using information from the local distributions. Future releases
will include additional options for quantifying distributional changes. BayesNetBP can also
extract conditional and joint probabilities for all combinations of discrete variables.

4. Examples in statistical genetics
In this section, we present examples that are motivated by problems in statistical genet-
ics (Benfey and Mitchell-Olds 2008; Rockman 2008). However, we emphasize that package
BayesNetBP can be used in connection with any application. The data itself consists of a
mixture of genotypes at SNP (single nucleotide polymorphism) markers, and phenotypes,
which can be broadly defined as any complex trait, e.g., clinical traits or arising from array-
based profiling (Jansen and Nap 2001). Over the past decade, a tremendous amount of
research has been centered on the structural learning problem (Zhu et al. 2007, 2008; Li
et al. 2006; Liu, de la Fuente, and Hoeschele 2008; Chaibub Neto, Ferrara, Attie, and Yandell
2008; Chaibub Neto, Keller, Attie, and Yandell 2010; Hageman, Leduc, Korstanje, Paigen, and
Churchill 2011; Blair, Kliebenstein, and Churchill 2012; Chaibub Neto et al. 2013). Genotype-
phenotype networks are often used to form hypothesis about candidate intermediates (e.g.,
genes and metabolites) to generate hypotheses and guide future experiments. Therefore, be-
lief propagation offers a unique layer of information and insights from the quantification and
visualization of probabilistic changes in the network.
In this application area, there are tools within the R programming language for quantitative
trait loci (QTL) mapping, and network inference for structural learning, but not probabilistic
reasoning (Table 1). BayesNetBP fills a gap by delivering accessible tools that will enable
investigators to reason with genotype-phenotype networks based on their QTL mapping re-
sults. In this section, we showcase the flexibility of BayesNetBP for CG-BNs and discrete
BNs and demonstrate interfacing with existing select packages for structural learning.

4.1. CG-BN example

Expression quantitative trait loci (eQTL; Jansen and Nap 2001) data from the livers from a
MRL/MpJ× SM/J mouse intercross (Leduc et al. 2012) is used throughout the next examples.
Each sample in the dataset has a gene expression profile, genotypes at SNP markers and
high density lipoprotein (HDL; Leduc et al. 2012). Genes that share a QTL with HDL on
chromosome 1, and also relate to enriched categories for lipid metabolism in KEGG and gene

Analysis task R package
QTL mapping qtl (Broman, Wu, Sen, and Churchill 2003; Broman and Sen

2009), eqtl (Khalili and Loudet 2012)
Network structural learning bnlearn, catnet, deal, qtlnet, RHugin
Probabilistic reasoning BayesNetBP, gRain, RHugin

Table 1: R packages for genotype-phenotype mapping and network analysis.



Journal of Statistical Software 15

ontologies, were selected to be included in a BN (Alvord et al. 2007). This filtered data is
included in the BayesNetBP package. In this section, examples are provided that demonstrate
analyses and visualizations using BayesNetBP on a CG-BN with structure that was learned
using qtlnet (Chaibub Neto et al. 2010). Within this network, we also dichotomized one of
the nodes to demonstrate a CG-BN with two discrete layers.

Generating a cluster tree object
The BayesNetBP package can utilize a pre-specified network structure and a dataset to
estimate the local distributions. The LocalModelCompile function can be used to compute
local distributions. qtlnet (Chaibub Neto et al. 2010) is a package for structural learning of
genotype-phenotype networks. The package produces a ‘qtlnet’ object, which can be used
input. More generally, a network of class ‘graphNEL’ and a dataset can also be used as input.
The BN structure and a vector indicating the node types needs to be extracted. Below, we
extract the network from a ‘qtlnet’ object which is contained in the file liver.rda that is
available in the supplementary material.

R> library("qtlnet")
R> load("liverqtl.rda")
R> dag <- liverqtl$dag
R> liver <- liverqtl$data
R> node.class <- liverqtl$node.class
R> qtlnet.fit <- liverqtl$qtlnet.fit

Local distributions are computed using the LocalModelCompile function. The next step is to
compile the cluster tree with ClusterTreeCompile. Since the input to ClusterTreeCompile
is a ‘graphNEL’ object, we demonstrate the conversion below for cluster tree compilation.

R> library("igraph")
R> library("qtl")
R> models.qtl <- LocalModelCompile(data = qtlnet.fit)
R> dag <- qtlnet_to_graphNEL(qtlnet.fit)
R> graph::nodes(dag) <- gsub("@", "_", graph::nodes(dag))
R> d.nodes <- names(models.qtl$pots)
R> c.nodes <- names(models.qtl$bags)
R> node.class <- rep(c(TRUE, FALSE), c(length(d.nodes), length(c.nodes)))
R> names(node.class) <- c(d.nodes, c.nodes)
R> cst <- ClusterTreeCompile(dag = dag, node.class = node.class)

This cluster tree object can be used for probabilistic reasoning using BayesNetBP in the R
environment or imported into the shiny app.

Probabilistic reasoning with a CG-BN
Alternatively, we demonstrate the use of a ‘graphNEL’ object to build the cluster tree. The
Initializer function is used to generate and propagate a cluster tree. The input to this
function is a DAG in the format of a ‘graphNEL’ object, a data frame for the estimation
of the local distributions and a vector specifying node types. In this example, the vector
node.class indicates which nodes are discrete (TRUE) and continuous (FALSE).
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R> data("liver", package = "BayesNetBP")
R> liver$node.class[1:5]

HDL Pla2g4a Nr1i3 Cyp2b10 Ppap2a
TRUE FALSE FALSE TRUE FALSE

R> tree.init.p <- Initializer(dag = liver$dag, data = liver$data,
+ node.class = liver$node.class, propagate = TRUE)

Note that the initialization of cluster tree comprises multiple steps. Instead of using the
single wrapper function, Initializer, BayesNetBP also provides functions to implement
these steps separately so that the user can obtain the intermediate outputs. This can be
achieved using ClusterTreeCompile and LocalModelCompile, as shown in the previous ex-
ample. The ElimTreeInitialize function initializes the cluster tree by integrating cluster
tree structure with local distributions. In the following example, for illustrative purposes,
the three phenotype variables (HDL, Spgl1, Cyp2b10) are dichotomized such that some of the
discrete variables will have discrete parents, thereby resulting in two discrete clusters in the
cluster tree.

R> data("liver", package = "BayesNetBP")
R> models <- LocalModelCompile(liver$data, liver$dag, liver$node.class)
R> cst <- ClusterTreeCompile(dag = liver$dag, node.class = liver$node.class)
R> tree.init <- ElimTreeInitialize(tree = cst$tree.graph, dag = cst$dag,
+ model = models, node.sets = cst$cluster.sets,
+ node.class = cst$node.class)

The cluster tree object is not ready for evidence absorption or making queries until it has
been propagated. The function Propagate will perform the propagation within the discrete
compartment so that the joint distribution tables of all clusters are computed.

R> tree.init@propagated

[1] FALSE

R> tree.init.p <- Propagate(tree.init)
R> tree.init.p@propagated

[1] TRUE

At this point the cluster tree is ready for probabilistic reasoning. Different types of evi-
dence can be simultaneously entered for different variables in the network. The function
AbsorbEvidence embeds hard or soft evidence about variables into the cluster tree object.
For example, suppose that the continuous node Nr1i3 is observed with value and chr1@42.65
is set to state to 1 (hard evidence). Likelihood evidence (soft evidence) is entered for Spgl1
(High: 0.9, Low: 0.2). After evidence absorption, this function propagates the cluster tree
automatically, such that the returned object is ready for probabilistic queries or additional
evidence absorption.
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R> tree.post <- AbsorbEvidence(tree.init.p, c("Nr1i3", "chr1_42.65",
+ "Spgl1"), list(1, "1", c(High = 0.9, Low = 0.2)))

The marginal distributions of both continuous and discrete variables can be queried using
the function Marginals. For continuous variables, the marginal is a mixture of Gaussian
distributions. The output is a data frame with three columns of sub-population probabilities,
means and variances. For a discrete variable, the marginal is a vector of state probabilities.
The function SummaryMarginals computes means and standard deviations for continuous
variables.

R> marg <- Marginals(tree.post, c("HDL", "Ppap2a", "Neu1", "chr1_71.35"))
R> marg$marginals$HDL

High Low
0.2524564 0.7475436

R> SummaryMarginals(marg)

Mean SD n
Ppap2a 0.1204055 1.0061905 108
Neu1 -0.7446580 0.6710785 108

R> head(marg$marginals$Ppap2a)

prob mu sd
1 6.514238e-03 0.1466045 1.1614251
2 9.852202e-03 -0.6530988 0.8787452
3 9.704217e-04 -1.1213652 0.9937244
4 3.341952e-03 0.1476780 1.1888417
5 2.277200e-03 -0.6808841 0.8862256
6 2.432649e-05 -1.3578320 0.9972592

FactorQuery is a function that can provide the joint distribution of any combination of
discrete variables, as well as their conditional distributions. For example, the joint distribution
of HDL and Cyp2b10, and the conditional distribution of HDL, can be computed.

R> FactorQuery(tree.post, c("HDL", "Cyp2b10"), mode = "joint")

HDL Cyp2b10 prob
1 High High 0.18567653
2 High Low 0.06677985
3 Low High 0.52273666
4 Low Low 0.22480697

R> FactorQuery(tree.post, "HDL", mode = "conditional")
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HDL Spgl1 chr1_71.35 prob
1 High High 1 0.36725775
2 Low High 1 0.63274225
3 High High 2 0.20257483
4 Low High 2 0.79742517
5 High High 3 0.04563497
6 Low High 3 0.95436503
7 High Low 1 0.59305462
8 Low Low 1 0.40694538
9 High Low 2 0.42154566
10 Low Low 2 0.57845434
11 High Low 3 0.17304262
12 Low Low 3 0.82695738

Observations can also be generated from a joint distribution of the BN using the Sampler
function. Sampling results can also be used to approximately estimate the covariance and
joint distributions of continuous variables.

R> set.seed(12345)
R> x <- Sampler(tree.post, n = 100)
R> head(x)

Spgl1 HDL chr1_84.93 chr1_86.65 chr12_30.87 Cyp2b10 chr1_71.35 Neu1
1 High High 1 1 1 High 2 0.4771764
2 High High 1 1 2 Low 1 -1.9987354
3 High High 1 2 1 High 2 -0.1088504
4 High High 1 2 2 High 1 -1.6582488
5 High High 1 2 3 High 1 0.3342812
6 High High 1 3 2 High 1 -2.6548826

Degs1 Ppap2a Apoa2 Kdsr Pla2g4a
1 -2.22942643 -0.8508257 -0.3710051 2.236634489 1.4462282
2 -0.35203008 0.7104870 0.2861025 -0.001581723 -0.9104425
3 0.28419039 -1.0847334 0.2551665 0.860638216 0.7459274
4 0.02938886 0.3400735 0.5378564 0.121909064 0.5980080
5 -0.26948601 2.2764720 0.1436680 0.259898526 1.8696464
6 0.65596537 -1.1265880 -0.4516221 -0.070646689 0.6319818

R> cov(x[c("Ppap2a", "Neu1", "Degs1")])

Ppap2a Neu1 Degs1
Ppap2a 1.2376771 0.3886075 0.3739735
Neu1 0.3886075 0.5748370 0.1246443
Degs1 0.3739735 0.1246443 1.0266060

BayesNetBP can be used to visualize marginal distributions of both discrete and continuous
nodes with the PlotMarginals function. Marginals of continuous and discrete nodes are
shown as density plots (Figure 5A) and bar plots (Figure 5B–C), respectively.
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Figure 5: An example visualization of marginals for (A) continuous nodes (Ppap2a and Neu1)
and discrete nodes (B) HDL and (C) chr@71.35.

R> PlotMarginals(marg)

PlotCGBN provides a visualization that quantifies changes in marginal distributions, as de-
scribed in Section 4.3. The inputs are two cluster tree objects that are used to calculate, and
return as output, the signed symmetric KL divergence between marginals for each node in the
BN. PlotCGBN outputs the BN with nodes colored accordingly. An example is shown in Fig-
ure 6, where Nr1i3 and chr1@42.65 have absorbed and propagated hard evidence (orange),
and the changes of the marginals for the other nodes are quantified. Color bars are used to
capture the range of these changes for the continuous nodes (Figure 6), where red indicates
an increase in mean (activation), and blue a decrease in mean (inhibited). Since there is no
directionality for changes in discrete variables, only red is used to show the differences in
marginal distributions.

R> library("Rgraphviz")
R> PlotCGBN(tree.init.p, tree.post)

HDL Spgl1 Cyp2b10 chr12_30.87 chr1_86.65
0.1307547416 0.3534706656 0.0925031249 0.0001042556 0.0245952583

chr1_84.93 chr1_71.35 Neu1 Degs1 Ppap2a
0.0057804993 0.0288291851 -0.6530478228 -0.0485877305 0.0075482375

Apoa2 Kdsr Pla2g4a
-0.0016797245 0.0023407076 0.0129152918

In the following example, PlotCGBN is utilized to demonstrate how the patterns of d-separation
in the BN change depending on where evidence has been observed. Spgl1 and chr1@84.93
are not d-separated. Thus, after observing Spgl1 (Figure 7A), the marginal of chr1@84.93
will change (signed symmetric KL divergence is 0.0047). However, if Cyp2b10 is also observed
(gray), then Spgl1 and chr1@84.93 become d-separated, and further absorption of evidence
on Spgl1 will not change the distribution of Cypb10 (symmetric KL divergence is 0; Fig-
ure 7B). Theses conditional independencies can be explored by absorbing Cyp2b10 into the
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Figure 6: The signed symmetric KL divergence of d-connected nodes after the absorption and
propagation of evidence for Nr1i3 and chr@42.65 (orange). Darker shades represent a larger
shift in marginal distributions. For continuous variables, red indicates an increase in mean
and blue indicates a decrease.

original cluster tree object to obtain tree.1, then absorbing Spgl1 on top of this to obtain
tree.2, and finally by comparing tree.1 and tree.2 using PlotCGBN.

R> tree.1 <- AbsorbEvidence(tree.init.p, c("Cyp2b10"), list("High"))
R> tree.2 <- AbsorbEvidence(tree.1, c("Spgl1"), list("High"))
R> tree.3 <- AbsorbEvidence(tree.init.p, c("Spgl1"), list("High"))
R> PlotCGBN(tree.init.p, tree.3)

HDL Cyp2b10 chr12_30.87 chr1_86.65 chr1_84.93 chr1_71.35
4.813077e-02 7.428658e-02 0.000000e+00 0.000000e+00 4.669436e-03 1.337859e-17

chr1_42.65 Neu1 Nr1i3 Degs1 Ppap2a Apoa2
4.054185e-17 1.127977e-03 1.242260e-02 1.639993e-04 4.198759e-03 0.000000e+00

Kdsr Pla2g4a
0.000000e+00 1.599930e-03

R> PlotCGBN(tree.1, tree.2)
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Figure 7: An example of how conditional dependencies change when new information is
entered into the network. (A) When Spgl1 is observed, a shift in the marginal will occur for
chr1@84.93, because they are d-connected. (B) However, if Cyp2b10 is also observed (gray),
then there will not be change in chr1@84.93, because they have become d-separated.

HDL chr12_30.87 chr1_86.65 chr1_84.93 chr1_71.35 chr1_42.65
1.907479e-02 1.299197e-17 4.103860e-17 0.000000e+00 1.198082e-17 4.054185e-17

Neu1 Nr1i3 Degs1 Ppap2a Apoa2 Kdsr
2.475948e-04 2.619255e-03 6.421556e-05 1.672824e-03 0.000000e+00 0.000000e+00

Pla2g4a
6.225181e-04

BayesNetBP also provides a systematic assessment of changes in marginals over a range of
evidence. For example, evidence for node Nr1i3 can be set to a range between −3 and 3.
Evidence in this range is then absorbed and propagated in the BN, and ComputeKLDs can then
be used to calculate the signed symmetric KL divergence for all d-connected nodes, which
returns the results as a data frame for inspection of visualization (Figure 8).

R> library("reshape2")
R> library("ggplot2")
R> klds <- ComputeKLDs(tree = tree.init.p, var0 = "Nr1i3",
+ vars = setdiff(tree.init.p@node, "Nr1i3"), seq = seq(-3, 3, 0.2),
+ pbar = FALSE)
R> klds.melt <- melt(klds, id = "x")
R> ggplot(data = klds.melt, aes(x = x, y = value, group = variable,
+ color = variable)) + geom_line() + ylab("Divergence") +
+ xlab("Nr1i3") + theme(legend.key = element_blank()) + theme_bw()
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Figure 8: Profiles of signed and signed symmetric KL-divergence for other nodes as Nr1i3 is
observed at values ranging from −3 to 3.

4.2. Discrete BN example

In this example, we consider a subset of gene expression data from 112 F1 segregants from a
cross between BY4716 and RM11-1a strains of Saccharomyces Cerevisiae (Brem and Kruglyak
2005). The original dataset consists of expression values reported as log2(sample/reference)
for 6,216 genes and was accessed from gene expression omnibus (GSE1990; Barrett et al.
2013). For network analysis, a subset of genes was identified after filtering, linkage analysis
and regression modeling. Briefly, 901 expression values mapped to the YeastNet database
(Kim et al. 2013). Linkage analysis was performed on these traits using the R package qtl. A
set of 369 genes that had a significant QTL were used as predictors in an elastic net regression
model (Zou and Hastie 2005) with COX10 as the response variable. The optimal shrinkage
parameter was estimated as 0.086 using 10-fold cross validation. The resulting model shrunk
all but 37 regression coefficients to zero. The corresponding 37 genes, COX10 and 12 SNP
markers from significant QTL were included as variables for the BN.
For this example, gene expression values were dichotomized at the median. Thus, the data
consists of discretized gene expression variables (phenotypes) and SNP variables that indi-
cate with states for the parental strain of origin (genotypes; Brem and Kruglyak 2005). To
demonstrate compatibility with existing packages, the structure of the BN is learned using
a hill-climbing algorithm in the bnlearn package. The modeling assumptions that require
genotypes to be upstream of phenotype can be directly encoded using the blacklist option.

R> library("bnlearn")
R> library("igraph")
R> data("yeast", package = "BayesNetBP")
R> node.names <- names(yeast)
R> geno <- node.names[1:12]
R> pheno <- node.names[13:50]
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Figure 9: The structure of semi-elimination tree for the yeast network.

R> bl <- rbind(expand.grid(geno, geno), expand.grid(pheno, geno))
R> names(bl) <- c("from", "to")
R> dag.bn <- bnlearn::hc(yeast, blacklist = bl)
R> dag.graphNEL <- bn_to_graphNEL(dag.bn)

After the network structure is learned, the cluster tree can be built using the same procedure
that was used for a CG-BN. Figure 9 shows the constructed semi-elimination tree, which is
plotted using the PlotTree function.

R> node.names <- graph::nodes(dag.graphNEL)
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Figure 10: Select marginal distributions after evidence is entered and propagated.

R> node.class <- rep(TRUE, length(node.names))
R> names(node.class) <- node.names
R> tree.init.p <- Initializer(dag = dag.graphNEL, data = yeast,
+ node.class = node.class, propagate = TRUE)
R> PlotTree(tree.init.p)

Evidence absorption and marginal computation can be performed in the exactly same man-
ner as in the CG-BN example. The marginals can also be visualized using PlotMarginals
(Figure 10).

R> tree.post <- AbsorbEvidence(tree.init.p, c("MSY1", "Qchr4"),
+ list("1", "2"))
R> marg.yeast <- Marginals(tree.post, node.names[2:5])
R> PlotMarginals(marg.yeast)

PlotCGBN provides a comparison of the marginals after evidence is entered and propagated
through the cluster tree object (Figure 11).

R> div <- PlotCGBN(tree.init.p, tree.post)

Queries on joint and conditional distributions of factors can be output in tabular form.

R> FactorQuery(tree.post, node.names[2:5], mode = "joint")

Qchr2 Qchr3 Qchr14 Qchr12 prob
1 1 1 1 1 0.05827458
2 1 1 1 2 0.06970097
3 1 1 2 1 0.06039366
4 1 1 2 2 0.07223555
5 1 2 1 1 0.06919652
6 1 2 1 2 0.08276447
7 1 2 2 1 0.07171276
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Figure 11: Visualization of the node-specific shift after evidences on Qchr4 and MSY1 were
absorbed.

8 1 2 2 2 0.08577408
9 2 1 1 1 0.04395494
10 2 1 1 2 0.05257356
11 2 1 2 1 0.04555331
12 2 1 2 2 0.05448533
13 2 2 1 1 0.05218683
14 2 2 1 2 0.06241955
15 2 2 2 1 0.05408454
16 2 2 2 2 0.06468935

R> FactorQuery(tree.post, "ERG9", mode = "conditional")
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Figure 12: (A) A screenshot of the shiny console. The console allows the user to enter evidence,
propagate and make queries. Users can also visualize changes in marginals over spectrums
of evidence. (B) The interactive graphics, supported by Cytoscape, allow the investigator to
explore the network, and (C) subset to regions.

ERG9 Qchr12 prob
1 -1 1 0.07843137
2 1 1 0.92156863
3 -1 2 0.85245902
4 1 2 0.14754098

4.3. shiny app

The shiny app console of package BayesNetBP consists of three panels (Figure 12). The first
panel controls the loading of a ‘clustertree’ object and network layouts. It also enables
the user to subset the network in order to improve and customize visualization. The Expand
function generates subgraphs around specified nodes. The second panel is used for the ab-
sorption of hard and soft evidence. The users can add multiple pieces of evidence to a list
and absorb them into the cluster tree object simultaneously. The nodes that have evidence
absorbed are colored orange. Marginals of the nodes can be queried and displayed as density
or bar plots by node type. If a set of evidence has been absorbed, the marginals before and
after absorption will be returned to facilitate comparison. The Shift in Marginals function
computes the signed symmetric divergence for all d-connected nodes and colors them in the
same manner as the function PlotCGBN. The function for systematic assessment of changes
in node marginals is provided in the third panel. Users can specify the node for evidence
absorption and the nodes whose signed symmetric KL divergence is to be calculated. The
result is visualized in an interactive plot. A video introduction of the shiny app can be found
at https://youtu.be/4qLt__E6h2c.

https://youtu.be/4qLt__E6h2c
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5. Conclusions
The BayesNetBP package was developed in the R programming language for probabilistic
reasoning in BNs that are discrete, continuous or mixed (CG-BNs). To the authors’ knowl-
edge, this is the first non-commercial package in R that supports exact reasoning of this type.
A limitation of the package is that intense computation may be required when the number
of possible factor configurations of the discrete nodes is large. Moreover, the queries of joint
distributions for discrete nodes that are members of a given cluster are more efficient com-
pared to out of cluster queries, which require an additional run of message passing through a
sub-tree. A list of efficient queries with respect to a node can be obtained through function
FactorQuery by setting mode to list. Future developments will focus on improving the com-
putational efficiency, implementation of additional measures of divergence and the extension
of the package to perform loopy belief propagation in undirected graphs.
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