
JSS Journal of Statistical Software
June 2020, Volume 94, Issue 5. doi: 10.18637/jss.v094.i05

AssocTests: An R Package for Genetic Association
Studies

Lin Wang
Capital University of

Economics and Business

Wei Zhang
Chinese Academy

of Sciences

Qizhai Li
Chinese Academy

of Sciences

Abstract

The R package AssocTests provides some procedures which are commonly used in
genetic association studies. These procedures are population stratification correction
through eigenvectors, principal coordinates of clusterings, Tracy-Widom test, distance
regression, single-marker test, maximum test based on three Cochran-Armitage trend
tests, non-parametric trend test, and non-parametric maximum test. The trait values for
these methods should be discrete or continuous. The discrete traits can be coded by 1/0
for cases/controls. The genotype values can be 0, 1, or 2 indicating the number of risk
alleles for a biallelic single-nucleotide polymorphism. This article introduces the methods
and algorithms implemented in the package. Some examples are provided to illustrate
the package’s capability.

Keywords: distance regression, genetic association studies, population stratification, Tracy-
Widom test, R.

1. Introduction
Genetic association study has become a popular tool to identify the genetic variants predis-
posing to human complex diseases (Klein et al. 2005; Sladek et al. 2007; Burton et al. 2007;
Ardlie et al. 2015). Currently, more than 10,000 deleterious single-nucleotide polymorphisms
(SNPs) have been identified (http://www.genome.gov/gwastudies/). Two important issues
are often considered in population-based genetic association studies. One issue is the adjust-
ment for confounders in which the population stratification (PS) is noteworthy, and the other
is the adoption of powerful tests. Single-marker analysis is crucial in many gene- or pathway-
based procedures, such as the truncated p value combination method (Zaykin, Zhivotovsky,
Westfall, and Weir 2002; Yu et al. 2009) and the minimum p value approach (Hoh, Wille, and
Ott 2001; Dudbridge and Koeleman 2004). In the single-marker analysis, investigators have
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developed many methods to consider the genetic mode of inheritance (Sladek et al. 2007; Li
and Yu 2008; Conneely and Boehnke 2007).
First, the PS may lead to many false-positive findings because of the ancestral differences
between cases and controls. The genomic control (Devlin and Roeder 1999; Zheng, Freidlin,
and Gastwirth 2006), structure association (Pritchard, Stephens, Rosenberg, and Donnelly
2000; Satten, Flanders, and Yang 2001), and component-based analysis (Price et al. 2006; Li
and Yu 2008; Hibar et al. 2015) are three main types of procedures to correct for the PS.
The genomic control could be inadequate or superfluous for adjusting for the PS, whereas
the structure association is time consuming. The component-based analyses including the
principal component analysis (PCA, Price et al. 2006) and the multidimensional scaling (Li
and Yu 2008) are computationally feasible to handle considerably numerous markers and have
been widely used in current genome-wide association studies. In the PCA, Price et al. (2006)
proposed the use of several eigenvectors to represent the ancestral differences between cases
and controls. Li and Yu (2008) proved that these eigenvectors are the common principal
components if the similarity measure suggested in Price et al. (2006) is adopted. However,
if other similarity measures, such as the Hamming distance, are adopted, the eigenvectors
might not be the principal components. Therefore, Li and Yu (2008) proposed the principal
coordinates of clusterings (PCOC) procedure, which uses the techniques from the multidi-
mensional scaling (Mardia, Kent, and Bibby 2003) and clustering (Kaufmann and Rousseeuw
1990) methods to correct for the PS. The PCOC could be considered as an extension of the
PCA.
Second, the Tracy-Widom (TW) test was proposed by Tracy and Widom (1994) to evaluate
the significant eigenvalues of a matrix. It could be used to select the important principal
components in the PCA. In conventional PCA approaches, the contribution rate is often
adopted. However, this rate follows the rule of thumb and cannot provide the statistical
significance. The TW test could remedy this defect.
Third, the distance regression (DR), which was proposed by McArdle and Anderson (2001) to
analyze the multispecies responses in multifactorial ecological experiments, could be adopted
to do the multiple-marker analysis (Lin and Schaid 2009; Wessel and Schork 2006) and to test
the association between gene expression patterns and related variables (Zapala and Schork
2006). The original DR prohibits adjustments for the covariates. Li et al. (2009) extended
the original DR to support adjustments for the covariates. In addition, they proposed an
efficient Monte Carlo algorithm to evaluate the statistical significance and used the extended
DR to select the important principal components or principal coordinates.
Fourth, the single-marker analysis, which tests for one SNP each time, is commonly used in
genome-wide association studies, multiple-SNP analyses, and gene- or pathway-based proce-
dures. The multiple-SNP, the gene-based, and the pathway-based analyses all test the asso-
ciation between a phenotype and many SNPs simultaneously. Some authors have developed
p value combination methods, where the p values are calculated based on the single-marker
analysis (Li and Yu 2008; Hu, Zhang, Zhang, Ma, and Li 2016; Zaykin et al. 2002). The
Cochran-Armitage trend test (Sasieni 1997) and the Wald test derived for the additive model
are often used in the single-marker analysis, but they may not be robust under other modes
of inheritance, such as the recessive and dominant models. In addition, the Wald test is
an asymptotic test. Under certain regularity conditions (Shao 2007), the Wald test statistic
converges in distribution to a Chi-square distribution under the null hypothesis. The MAX3,
a robust test based on the maximum of three trend tests derived from the recessive, additive,
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and dominant models, has been used to identify the genetic variants associated with type II
diabetes (Sladek et al. 2007). The MAX3 test has been included in the SAS JMP Genomics
Software (SAS Institute Inc. 2008). However, it was based on the results of Freidlin, Zheng,
Li, and Gastwirth (2002) and did not support adjustments for the covariates. Li, Zheng,
Li, and Yu (2008) employed the generalized equation to obtain the MAX3 test, which could
support adjustments for the covariates.
Finally, the linear regression model is a classical approach to evaluate the association between
genetic variants and a quantitative trait when the quantitative trait variable follows a normal
distribution. However, if the normal assumption for the quantitative trait variable does
not hold, non-parametric tests such as the Kruskal-Wallis test (Kruskal and Wallis 1952)
and the Jonckheere-Terpstra test (Jonckheere 1954; Terpstra 1952), are preferred. Recently,
Zhang and Li (2015) proposed a non-parametric trend test (NPT) considering the genetic
mode of inheritance and showed that it is more powerful than the Kruskal-Wallis test and
the Jonckheere-Terpstra test. They also provided a robust non-parametric maximum test
(NMAX3), which is free from the genetic models.
In this article, we introduced a new R (R Core Team 2020) package, AssocTests (Wang,
Zhang, Li, and Zhu 2020), which provides some procedures focusing on genetic association
studies. The package implements the following methods: population stratification correction
through eigenvectors (EIGENSTRAT; Price et al. 2006), PCOC, TW test, DR, single-marker
test, MAX3, NPT, and NMAX3. The trait values for these methods should be discrete or
continuous. The discrete traits can be coded by 1/0 for cases/controls. The genotype values
can be 0, 1, or 2 indicating the number of risk alleles for a biallelic SNP. Many packages for
genetic association studies are reported. Some packages such as GenABEL (Aulchenko 2013),
pbatR (Hoffmann 2018), and snpMatrix (Clayton and Leung 2008), provide functions to
perform genome-wide association studies. The function egscore() in the package GenABEL
could perform EIGENSTRAT, which is also involved in our package AssocTests (Wang et al.
2020). Some packages such as gap (Zhao 2007), tdthap (Clayton 2013), and Rassoc (Zang,
Fung, and Zheng 2010), provide functions to test the association between individual genetic
markers and a phenotype. gap supports the genetic data analysis of both population and
family data, tdthap is designed for the transmission/disequilibrium tests for extended marker
haplotypes, and Rassoc provides functions to perform robust tests for case/control genetic
association studies. However, the procedures PCOC, TW test, DR with adjustments for the
covariates, MAX3 test with adjustments for the covariates, NPT, and NMAX3 in our package
AssocTests are not included in any of these packages. Package AssocTests is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
AssocTests.
This paper is organized as follows. Section 2 summarizes the methods from which the As-
socTests package was developed and also describes the functions in the package. Section 3
illustrates the capabilities of AssocTests by using some simulation data sets. Section 4 pro-
vides a real data example related to the PS. Finally, Section 5 concludes the paper.

2. The R package AssocTests
The procedures provided in the R package AssocTests are eigenstrat(), pcoc(), tw(), dr(),
smt(), max3(), npt(), and nmax3(). The eigenstrat() procedure was developed to correct
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for the PS in genetic association studies by searching for some “top” eigenvectors (Price et al.
2006). The pcoc() procedure could correct for the PS by identifying the clustering and
continuous patterns of the genetic variation (Li and Yu 2008). The tw() procedure is based
on the TW test and could evaluate the significant eigenvalues of a matrix (Tracy and Widom
1994). The dr() procedure is based on the DR and could detect the association between
gene patterns and some independent variants of interest with or without adjustments for the
covariates (Li et al. 2009). The smt() procedure is an implementation of the single-marker
analysis used to identify the association between a genotype and a trait (Hoh and Ott 2003;
Marchini, Donnelly, and Cardon 2005). The max3() procedure is a robust test to identify
the association between a SNP and a binary phenotype with or without adjustments for the
covariates (Sladek et al. 2007; Li et al. 2008). Finally, the npt() and nmax3() procedures
perform the NPT and the robust NMAX3, which are against the normal assumption and the
genetic uncertainty (Zhang and Li 2015), respectively.

2.1. Function index

The function index of the package AssocTests is listed as follows:

• eigenstrat(): EIGENSTRAT for correcting for the PS.

• pcoc(): Principal coordinates of clusterings for correcting for the PS.

• tw(): Tracy-Widom test.

• dr(): Distance regression.

• smt(): Single-marker test.

• max3(): Maximum test based on the maximum value of the three Cochran-Armitage
trend tests under the recessive, additive, and dominant models.

• npt(): Non-parametric trend test based on the non-parametric risk under a given
genetic model.

• nmax3(): NMAX3 test based on the maximum value of the three NPTs under the
recessive, additive, and dominant models.

More details about them are described below.

2.2. Function eigenstrat()

The EIGENSTRAT for detecting and correcting for the PS provides the test through search-
ing for the eigenvectors of the similarity matrix among the subjects in population-based
genetic association studies (Price et al. 2006). The function eigenstrat() calculates the top
eigenvectors or the eigenvectors with significant eigenvalues of the similarity matrix among
the subjects to infer the potential population structure. It is used as follows:

eigenstrat(genoFile, outFile.Robj = "out.list", outFile.txt = "out.txt",
rm.marker.index = NULL, rm.subject.index = NULL, miss.val = 9,
num.splits = 10, topK = NULL, signt.eigen.level = 0.01,
signal.outlier = FALSE, iter.outlier = 5, sigma.thresh = 6)
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The arguments of the function are described as follows:

• genoFile: A text file containing the genotypes (0, 1, 2, or 9). The element of the file
in row i and column j represents the genotype at the i-th marker of the j-th subject. 0,
1, and 2 denote the number of risk alleles, and 9 (default) is for the missing genotype.

• outFile.Robj: The name of an R object for saving the list of the results. Such list is
the same as the return value of this function. The default is out.list.

• outFile.txt: A text file for saving the eigenvectors corresponding to the top significant
eigenvalues.

• rm.marker.index: A numeric vector containing the indices of the removed markers.
The default is NULL.

• rm.subject.index: A numeric vector containing the indices of the removed subjects.
The default is NULL.

• miss.val: The value used to fill in the blanks caused by missing values in the input
data. The default is 9. The element 9 representing the missing data in the genoFile
should be replaced according to the value of miss.val.

• num.splits: The number of groups into which the markers are split. The default is 10.

• topK: The number of eigenvectors to return. If it is NULL, it is calculated by the TW
test. The default is NULL.

• signt.eigen.level: A numeric value indicating the significance level of the TW test.
It should be 0.05, 0.01, 0.005, or 0.001. The default is 0.01.

• signal.outlier: A logical value indicating whether the function searches for and
deletes outliers of the subjects. The default is FALSE.

• iter.outlier: A numeric value indicating the maximum iteration number for the
outlier detection of the subjects. The default is 5.

• sigma.thresh: A numeric value indicating the threshold for the outlier elimination.
The default is 6.

The arguments rm.marker.index and rm.subject.index could be provided according to
the user-specified rules for data cleaning instances, such as an individual with excessively
many missing genotype values. The argument num.splits does not affect the results of the
EIGENSTRAT. It is used to reduce the working set (i.e., the amount of memory that an
application requires) when we scan the file given by genoFile. Large num.splits results in
the need for a small working set and results in slow eigenstrat() function run. The same
usage is observed for num.splits in the function pcoc().
This function returns a list of num.markers (the number of markers excluding the removed
markers), num.subjects (the number of subjects excluding the outliers), rm.marker.index
(the indices of the removed markers), rm.subject.index (the indices of the removed sub-
jects), TW.level (the significance level of the TW test), signal.outlier (indicating whether
the function deletes the outliers of the subjects), iter.outlier (the maximum iteration
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number for the outlier detection), sigma.thresh (the threshold for the outlier elimina-
tion), num.outliers (the number of the outliers), outliers.index (the indices of the out-
liers), num.used.subjects (the number of the used subjects), used.subjects.index (the
indices of the used subjects), similarity.matrix (the similarity matrix among the sub-
jects), eigenvalues (the eigenvalues of the similarity matrix), eigenvectors (the eigen-
vectors corresponding to the eigenvalues), topK (the number of the significant eigenvalues),
TW.stat (the observed values of the TW statistics), topK.eigenvalues (the top eigenvalues),
topK.eigenvectors (the eigenvectors corresponding to the top eigenvalues), and runtime
(the execution time of this function).

2.3. Function pcoc()

The PCOC for correcting for the PS identifies the clustering and continuous patterns of the
genetic variation. The function pcoc() calculates the principal coordinates and the clustering
of the subjects in the PCOC for correcting for the PS. It is used as follows:

pcoc(genoFile, outFile.txt = "pcoc.result.txt", n.MonteCarlo = 1000,
num.splits = 10, miss.val = 9)

Most of the arguments are the same as those in eigenstrat(), and the different ones are as
follows:

• outFile.txt: A text file for saving the results of this function. The default value is
"pcoc.result.txt".

• n.MonteCarlo: The repeat number of the Monte Carlo sampling procedure. The default
is 1000.

This function returns a list with elements principal.coordinates and cluster, where
principal.coordinates stores the principal coordinates and cluster stores the clustering
of the subjects. If the number of the clusters is only one, cluster is omitted.

2.4. Function tw()

The TW test detects the significant eigenvalues of a matrix. The function tw() calculates the
number of significant eigenvalues and the TW statistics. This function was written by Bejan
(2005, 2008) and is used as follows:

tw(eigenvalues, eigenL, criticalpoint = 2.0234)

The arguments of the function are described as follows:

• eigenvalues: A numeric vector whose elements are the eigenvalues of a matrix. The
values should be sorted in a descending order.

• eigenL: The number of the eigenvalues.

• criticalpoint: A numeric value corresponding to the significance level. It should be
set to 0.9793, 2.0234, 2.4224, or 3.2724, corresponding to the significance levels of
0.05, 0.01, 0.005, or 0.001, respectively (Bejan 2008). The default is 2.0234.
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This function returns a list with the class ‘htest’ containing statistic (a vector of the TW
statistics), alternative (a character string describing the alternative hypothesis), method
(a character string indicating the type of the test performed), data.name (a character string
providing the name of the data), and SigntEigenL (the number of significant eigenvalues).

2.5. Function dr()

The pseudo F statistic based on the DR with or without adjustments for the covariates
detects the association between a distance matrix and some independent variants of interest.
A distance matrix can be transformed into a similarity matrix easily. The function dr()
calculates the observed value of the test statistic and the p value of the test by using the
pseudo F statistic based on the DR. It is used as follows:

dr(simi.mat, null.space, x.mat, permute = TRUE, n.MonteCarlo = 1000,
seed = NULL)

The arguments of the function are described as follows:

• simi.mat: The similarity matrix among the subjects.

• null.space: A numeric vector containing the indices of those columns in x.mat corre-
sponding to the null space.

• x.mat: The covariate matrix which combines the null space and the matrix of interest.

• permute: A logical value indicating whether the Monte Carlo sampling procedure is
invoked without replacement. The default is TRUE.

• n.MonteCarlo: The repeat number of the Monte Carlo sampling procedure. The default
is 1000.

• seed: The seed of the random number generator. The default is NULL.

This function returns a list with the class ‘htest’ containing statistic (the observed value
of the test statistic), p.value (the p value of the test), alternative (a character string
describing the alternative hypothesis), method (a character string indicating the type of the
test performed), and data.name (a character string describing the names of the data). The
return values of the functions max3(), npt(), and nmax3() described below are similar to
that of this function.

2.6. Function smt()

The single-marker test is used to identify the association between the genotype at a biallelic
marker and a trait using the Wald test or the Fisher’s exact test. The function smt()
calculates the number of the valid subjects and the p value of the single-marker test. It is
used as follows:

smt(y, g, covariates = NULL, min.count = 5, missing.rate = 0.20,
y.continuous = FALSE)
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The arguments of the function are described as follows:

• y: A numeric vector of the observed trait values in which the i-th element is for the
i-th subject. The elements could be discrete (0 or 1) or continuous. Any missing value
is represented by NA.

• g: A numeric vector of the observed genotype values (0, 1, or 2, denoting the number
of risk alleles) in which the i-th element is for the i-th subject. Any missing value is
represented by NA. g has the same length as y.

• covariates: An optional data frame, list, or environment containing the covariates
used in the model. The default is NULL, that is, no covariates are present.

• min.count: A threshold to decide which method is used to calculate the p value when
the trait is discrete and covariates = NULL. For a certain genotype and a certain trait
value, we have a corresponding number of the subjects. If the minimum value of all
such numbers traversing all possible genotypes and trait values is less than min.count,
the Fisher’s exact test is adopted; otherwise, the Wald test is adopted. The default is 5.

• missing.rate: The highest missing value rate of the genotype values that this function
can tolerate. The default is 0.20.

• y.continuous: A logical value indicating whether y is continuous. The default is FALSE.

If y is continuous, this function returns a list with the class ‘htest’, which contains the
components statistic, p.value, alternative, method, data.name, and sample.size. The
components statistic, p.value, alternative, method, and data.name are similar to those
of dr(). sample.size is a vector providing the numbers of the subjects with the genotypes 0,
1, and 2 (n0, n1, and n2, respectively). If y is discrete, this function returns a list with the class
‘htest’ containing the components statistic, p.value, alternative, method, data.name,
sample.size, and bad.obs. The components statistic, p.value, alternative, method,
and data.name are similar to those of dr(). Meanwhile, sample.size is a vector that provides
the number of the subjects with the trait value 1 and the genotype 0 (r0), the number of the
subjects with the trait value 1 and the genotype 1 (r1), the number of the subjects with the
trait value 1 and the genotype 2 (r2), the number of the subjects with the trait value 0 and
the genotype 0 (s0), the number of the subjects with the trait value 0 and the genotype 1
(s1), and the number of the subjects with the trait value 0 and the genotype 2 (s2). bad.obs
is a vector that provides the number of the missing genotype values with the trait value 1
(r.miss), the number of the missing genotype values with the trait value 0 (s.miss), and
the total number of missing genotype values (n.miss).

2.7. Function max3()

The MAX3 test based on the trend tests without adjustments for the covariates or based on
the Wald tests with adjustments for the covariates is conducted for the association between
a SNP and a binary phenotype. The test statistic is the maximum value of the three test
statistics derived for the recessive, additive, and dominant models. The function max3()
calculates the observed value of the MAX3 statistic and the p value of the MAX3 test. It is
used as follows:
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max3(y, g, covariates = NULL, Score.test = TRUE, Wald.test = FALSE,
rhombus.formula = FALSE)

The arguments of the function are described as follows:

• y: A numeric vector of the observed trait values in which the i-th element is for the i-th
subject. The elements should be either 0 or 1.

• g: A numeric vector of the observed genotype values (0, 1, or 2, denoting the number
of risk alleles) in which the i-th element is for the i-th subject. Any missing value is
represented by NA. g has the same length as y.

• covariates: A numeric matrix specifying the covariates used in the model. Each
column is for one covariate. The default is NULL, that is, no covariates are needed to be
adjusted for.

• Score.test: A logical value. If it is TRUE, the score tests are used. Either Score.test
or Wald.test should be FALSE, and the other should be TRUE. The default is TRUE.

• Wald.test: A logical value. If it is TRUE, the Wald tests are used. Either Score.test
or Wald.test should be FALSE, and the other should be TRUE. The default is FALSE.

• rhombus.formula: A logical value. If it is TRUE, the p value of the MAX3 test is
approximated by the rhombus formula. Otherwise the twofold integration is adopted
to calculate the p value. The default is FALSE.

The rhombus formula is an approximation formula to estimate the two-sided test p value for
the MAX3 statistic (Li et al. 2008). It is an extension of the W -formula, which was originally
derived to estimate the one-sided test p value of the MAX3 statistic (Efron 1997).
The function max3() in the package AssocTests can test the association between a SNP and
a binary phenotype with or without correcting for the covariates. This function differs from
the function MAX3() in the package Rassoc, which can only test for the association without
correcting for the covariates.

2.8. Function npt()

The NPT examines the association between a genetic variant and a non-normally distributed
quantitative trait based on the non-parametric risk. The function npt() calculates the ob-
served value of the NPT statistic and the p value of this test under a specific genetic model.
It is used as follows:

npt(y, g, varphi)

The arguments of the function are described as follows:

• y: A numeric vector of the observed quantitative trait values in which the i-th element
is the trait value of the i-th subject.

• g: A numeric vector of the observed genotype values (0, 1, or 2, denoting the number
of risk alleles) in which the i-th element is the genotype value of the i-th subject for a
biallelic SNP. g has the same length as y.
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• varphi: A numeric value representing the genetic model. It should be 0, 0.5, or 1,
which indicates that the calculation should be performed under the recessive, additive,
or dominant model, respectively.

2.9. Function nmax3()

When the genetic model is uncertain, a robust test is preferred. The MAX3 test is a widely-
used robust test in case/control association studies. NMAX3 is a non-parametric MAX3 test
based on the NPT to evaluate the association between a biallelic SNP and a quantitative
trait. The function nmax3() calculates the observed value of the NMAX3 statistic and the
p value of this test. It is used as follows:

nmax3(y, g)

The arguments y and g are the same as those in npt().
The function nmax3() in the package AssocTests differs from the functions max3() described
above in the package AssocTests and MAX3() in the package Rassoc. nmax3() is constructed
on the basis of the NPT for quantitative trait association studies, whereas max3() and MAX3()
are used for case/control association studies and derived from the Cochran-Armitage trend
test.

3. Simulation examples
Some simulation examples are used to illustrate the usages and capabilities of the functions
in AssocTests (Wang et al. 2020). The analyses were conducted using the R version 3.6.3 (R
Core Team 2020).
The data sets used in this section and the next section have been placed into a data-only pack-
age AssocTests.data (Wang, Zhang, Li, and Zhu 2015). This package can be downloaded from
https://github.com/statscueb/AssocTests.data or use the function install_github()
in the package devtools (Wickham, Hester, and Chang 2019) to install it directly.

R> library("devtools")
R> install_github("statscueb/AssocTests.data")
R> library("AssocTests.data")
R> help(package = "AssocTests.data")

The data sets contained in package AssocTests.data are arthritisG, arthritisP, drG, drP,
drS, extreme2PSG, extreme2PSP, extreme3PSG, extreme3PSP, moderate2PSG, moderate2PSP,
moderate3PSG, and moderate3PSP.

3.1. Simulation: eigenstrat() and tw()

The simulation data set consists of 1,000 cases and 1,000 controls. For each individual, we gen-
erate the genotypes of 10,000 SNPs that are not associated with the disease. Following Price
et al. (2006) and Li and Yu (2008), we consider two population substructures for the study
population as follows: S1 (two underlying discrete subpopulations) and S2 (three underlying

https://github.com/statscueb/AssocTests.data


Journal of Statistical Software 11

Substructure Level Case proportion Control proportion
S1 moderate (0.6, 0.4) (0.4, 0.6)
S1 extreme (0.5, 0.5) (0, 1)
S2 moderate (0.45, 0.35, 0.20) (0.35, 0.20, 0.45)
S2 extreme (0.33, 0.67, 0) (0, 0.33, 0.67)

Table 1: The PS for discrete population substructures S1 and S2.

discrete subpopulations). The Hardy-Weinberg equilibrium (HWE) within each subpopula-
tion is assumed. The allele frequency for each SNP is generated from the Beta distribution
with the parameters p(1 − FST )/FST and (1 − p)(1 − FST )/FST in which the inbreeding co-
efficient FST is 0.01 and the ancestry population allele frequency p is drawn from the uniform
distribution on [0.1, 0.9]. In each population substructure, we consider two levels of the an-
cestral differences between the cases and the controls, which are moderate and extreme, by
varying the sampling fractions summarized in Table 1. For the first simulation example, the
population substructure is S1, and the level of the ancestral differences between the cases
and the controls is moderate. In the package AssocTests.data, the data sets moderate2PSG
and moderate2PSP are the genotype data and the phenotype data, respectively, under this
condition. We save the data set moderate2PSG in a text file which can be used as the input
of the function eigenstrat().

R> data("moderate2PSG", package = "AssocTests.data")
R> data("moderate2PSP", package = "AssocTests.data")
R> gFile <- "moderate2PSG.txt"
R> write.table(moderate2PSG, file = gFile, quote = FALSE, sep = "",
+ row.names = FALSE, col.names = FALSE)

In the function eigenstrat(), accordingly, we know that genoFile = gFile. We consider
that outFile.Robj = "moderate2PS.E.list" and outFile.txt = "moderate2PS.E.txt".
signt.eigen.level is set to 0.05 and the other arguments are set to their default values.

R> result.E <- eigenstrat(genoFile = gFile,
+ outFile.Robj = "moderate2PS.E.list",
+ outFile.txt = "moderate2PS.E.txt", signt.eigen.level = 0.05)
R> result.E$topK

[1] 1

R> n <- length(result.E$eigenvalues)
R> n

[1] 2000

In function tw(), we use result.E$eigenvalues[1:(n - 1)] as the value of eigenvalues
and n - 1 as the value of eigenL. The criticalpoint is set to 0.9793, which corresponds
to the significance level of 0.05.
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Figure 1: Samples in the space of the first two eigenvectors. (A)–(D) are for the samples
corresponding to the first, second, third, and fourth examples, respectively. The red circles
and the blue pluses represent the cases and the controls, respectively.

R> cp <- 0.9793
R> result.TW <- tw(eigenvalues = result.E$eigenvalues[1:(n - 1)],
+ eigenL = n - 1, criticalpoint = cp)
R> result.TW$SigntEigenL

[1] 1

The value of result.E$topK from the function eigenstrat() is 1, which is consistent with
the value of result.TW$SigntEigenL from the function tw(). Thus, the number of significant
eigenvalues is 1 in this example. For the second simulation example, the population substruc-
ture is S2, and the level of the ancestral differences between the cases and the controls is
moderate. In the package AssocTests.data (Wang et al. 2015), the data sets moderate3PSG
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and moderate3PSP are the genotype data and the phenotype data, respectively, generated
under this situation. For the third simulation example, the population substructure is S1,
and the level of the ancestral differences between the cases and the controls is extreme. In
the package AssocTests.data, the data sets extreme2PSG and extreme2PSP are the generated
genotype and phenotype data, respectively. For the fourth simulation example, the popu-
lation substructure is S2, and the level of the ancestral differences between the cases and
the controls is extreme. In the package AssocTests.data, the data sets extreme3PSG and
extreme3PSP are the generated genotype and phenotype data, respectively. The R codes for
the second, third, and fourth simulation examples are similar to those for the first one.
The results of result.E$topK from the function eigenstrat() are 1, 2, 1, and 2 for the four
examples, respectively, conforming to the results of result.TW$SigntEigenL from the func-
tion tw(). Hence, the numbers of the significant eigenvalues are 1, 2, 1, and 2, respectively.
Figure 1 plots the samples in the space of the first two eigenvectors of the similarity matrices
for the four simulation examples. The clustering patterns are noticeable, with the subjects
from the same subpopulation staying close. Furthermore, the distributions of cases (repre-
sented by red circles) are nonuniform in controls (represented by blue pluses), especially in
the third and fourth examples (Figure 1 C and D), illustrating the allele frequency differences
between the cases and the controls due to systematic ancestry differences, that is, the PS.

3.2. Simulation: pcoc()

The simulation design and the examples for the function pcoc() are the same as those for
eigenstrat(). For the first example, genoFile = gFile. Furthermore, outFile is set to
"moderate2PS.PCOC.txt". The other arguments are all set to their default values.

R> result.PCOC <- pcoc(genoFile = gFile, outFile = "moderate2PS.PCOC.txt")

The R codes for the second, third, and fourth simulation examples are similar to those for
the first one.
We can calculate the accuracies of the clusterings provided by the function pcoc() by using
the values of result.PCOC$cluster, considering that we know the true clusterings of the
subjects in the simulation design. We find that pcoc() can classify the subpopulations with
100% accuracy in the four examples, where the subpopulation patterns are tremendously
recognizable and no overlap exists between different subpopulations.

3.3. Simulation: dr()

Considering the linkage disequilibriums among the SNPs, we use the real data set that con-
tains the genotypes of 127 SNPs in the uronyl-2-sulfotransferase gene from Genetic Analysis
Workshop 16 (Cupples et al. 2009; Amos et al. 2009; Lin et al. 2009) to generate the sim-
ulation data set. After the deletion of the subjects containing missing values, the real data
set consists of 1,081 subjects. The disease prevalence is set to 0.05 and the first 50 SNPs
are assumed to be associated with the disease with a log odds ratio ln(1.05). We use the
model ln pj

1−pj
= ln(0.05/0.95) + ln(1.05) × xj1 + · · · + ln(1.05) × xj50 (j = 1, · · · , 1081) to

simulate the phenotypes of the subjects. In the package AssocTests.data (Wang et al. 2015),
the data sets drG, drP, and drS are the genotype data, phenotype data, and the similarity
matrix of the genotype data, respectively. In the function dr(), the left and the right parts
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of the argument x.mat are set to a 1,081-dimensional column vector of 1s and the vector of
the phenotype values, respectively. The null.space stores the column indices of the left part
of x.mat. The other arguments are all set to their default values.

R> data("drP", package = "AssocTests.data")
R> data("drS", package = "AssocTests.data")
R> set.seed(100)
R> x.mat <- cbind(rep(1, length(drP)), drP)
R> result.DR <- dr(simi.mat = drS, null.space = 1, x.mat)
R> result.DR

Distance regression

data: drS and x.mat
F = 0.0018221, p-value = 0.011
alternative hypothesis: the pair-wise similarity is influenced by the
variants of interest

This test is two-sided. The null hypothesis is that all the regression coefficients are 0s, that is,
the pair-wise similarity is not influenced by the variants of interest. The alternative hypothesis
is that some regression coefficients are nonzero, that is, the pair-wise similarity is influenced
by the variants of interest. The result indicates that the p value is less than 0.05, illustrating
that the markers are associated with the disease, conforming to the simulation design.

3.4. Simulation: smt()

The simulation design in this section is similar to that in Li et al. (2008). The simulation
data set consists of 1,000 cases and 1,000 controls. HWE is assumed and the minor allele
frequency (MAF) is set to 0.3. Furthermore, the additive model is considered. The relative
risks of the groups with genotypes 1 and 2 relative to the group with genotype 0 are 1.2 and
1.4, respectively. The disease prevalence is set to 0.05.

R> ncases <- 1000
R> ncontrols <- 1000
R> y <- rep(c(1, 0), c(ncases, ncontrols))
R> g <- rep(2, ncases + ncontrols)
R> MAF <- 0.3
R> rr10 <- 1.2
R> rr20 <- 1.4
R> dp <- 0.05
R> x <- dp / ((1 - MAF)^2 + rr10 * 2 * MAF * (1 - MAF) + rr20 * MAF^2)
R> a <- round(x * (1 - MAF)^2 / dp * ncases)
R> b <- round(rr10 * x * 2 * MAF * (1 - MAF) / dp * ncases)
R> d <- round((1 - x) * (1 - MAF)^2 /(1 - dp) * ncontrols)
R> e <- round((1 - rr10 * x) * 2 * MAF * (1 - MAF) / (1 - dp) * ncontrols)
R> g[1:a] <- 0
R> g[(a + 1):(a + b)] <- 1
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R> g[(ncases + 1):(ncases + d)] <- 0
R> g[(ncases + d + 1):(ncases + d + e)] <- 1

We can use the function smt() to test the association between y and g.

R> result.SMT <- smt(y, g)
R> result.SMT

Single-marker test

data: y and g
p-value = 0.006666
alternative hypothesis: the phenotype is significantly associated with the
genotype

The p value of the test illustrates that the genotype and the phenotype in this example are
significantly associated, with the significance level of 0.05.

3.5. Simulation: max3()

The simulation data sets of the first example for max3() are the same as those for smt(). We
can use the function max3() to test the association between the genotype g and the phenotype
y from Section 3.4.

R> max3(y, g, covariates = NULL, Score.test = FALSE, Wald.test = TRUE,
+ rhombus.formula = FALSE)

MAX3 test

data: y and g
MAX3 = 2.7169, p-value = 0.0152
alternative hypothesis: the phenotype is significantly associated with the
genotype

R> max3(y, g, covariates = NULL, Score.test = FALSE, Wald.test = TRUE,
+ rhombus.formula = TRUE)

MAX3 test

data: y and g
MAX3 = 2.7169, p-value = 0.01515
alternative hypothesis: the phenotype is significantly associated with the
genotype

R> max3(y, g, covariates = NULL, Score.test = TRUE, Wald.test = FALSE,
+ rhombus.formula = FALSE)
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MAX3 test

data: y and g
MAX3 = 2.7169, p-value = 0.0152
alternative hypothesis: the phenotype is significantly associated with the
genotype

R> max3(y, g, covariates = NULL, Score.test = TRUE, Wald.test = FALSE,
+ rhombus.formula = TRUE)

MAX3 test

data: y and g
MAX3 = 2.7169, p-value = 0.01515
alternative hypothesis: the phenotype is significantly associated with the
genotype

The p values of the tests illustrate that significant association is found between the genotype
and the phenotype in this example with the significance level of 0.05.
The simulation design of the second example for max3() is similar to that in Li et al. (2008).
The simulation data sets consist of two subpopulations, the sample sizes of which are both
1,000. The proportions of the cases from the two subpopulations are 0.6 and 0.4, respectively,
whereas those of the controls from the two subpopulations are 0.4 and 0.6, respectively.
Therefore, the numbers of the cases and the controls are both 1,000. HWE is assumed within
each subpopulation. The MAFs are 0.3 and 0.35 for the two subpopulations, respectively.
The additive model is considered. The relative risks of the groups with genotypes 1 and 2
relative to the group with genotype 0 are 1.2 and 1.4, respectively, within each subpopulation.
The disease prevalence is set to 0.05 for the two subpopulations.

R> n.sp1 <- 1000
R> n.sp2 <- 1000
R> ncases.sp1 <- n.sp1 * 0.6
R> ncases.sp2 <- n.sp2 * 0.4
R> ncontrols.sp1 <- n.sp1 * 0.4
R> ncontrols.sp2 <- n.sp2 * 0.6
R> n <- c(ncases.sp1, ncontrols.sp1, ncases.sp2, ncontrols.sp2)
R> sn <- cumsum(n)
R> y <- rep(c(1, 0, 1, 0), n)
R> g <- rep(2, n.sp1 + n.sp2)
R> MAF <- c(0.3, 0.35)
R> rr10 <- 1.2
R> rr20 <- 1.4
R> dp <- 0.05
R> x <- dp / ((1 - MAF)^2 + rr10 * 2 * MAF * (1 - MAF) + rr20 * MAF^2)
R> a <- round(x * (1 - MAF)^2 / dp * c(ncases.sp1, ncases.sp2))
R> b <- round(rr10 * x * 2 * MAF * (1 - MAF) / dp *
+ c(ncases.sp1, ncases.sp2))
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R> d <- round((1 - x) * (1 - MAF)^2 / (1 - dp) *
+ c(ncontrols.sp1, ncontrols.sp2))
R> e <- round((1 - rr10 * x) * 2 * MAF * (1 - MAF) / (1 - dp) *
+ c(ncontrols.sp1, ncontrols.sp2))
R> g[1:a[1]] <- 0
R> g[(a[1] + 1):(a[1] + b[1])] <- 1
R> g[(sn[1] + 1):(sn[1] + d[1])] <- 0
R> g[(sn[1] + d[1] + 1):(sn[1] + d[1] + e[1])] <- 1
R> g[(sn[2] + 1):(sn[2] + a[2])] <- 0
R> g[(sn[2] + a[2] + 1):(sn[2] + a[2] + b[2])] <- 1
R> g[(sn[3] + 1):(sn[3] + d[2])] <- 0
R> g[(sn[3] + d[2] + 1):(sn[3] + d[2] + e[2])] <- 1

We run the function max3() with adjustments for the subpopulation structure, namely
covariates. covariates is a matrix with a size (n.sp1 + n.sp2) ×1, the elements of
which are 0s and 1s for the subjects from the two subpopulations, respectively.

R> z <- matrix(rep(c(0, 1), c(n.sp1, n.sp2)), ncol = 1)
R> max3(y, g, covariates = z, Score.test = FALSE, Wald.test = TRUE,
+ rhombus.formula = FALSE)

MAX3 test

data: y and g
MAX3 = 2.6494, p-value = 0.01849
alternative hypothesis: the phenotype is significantly associated with the
genotype

R> max3(y, g, covariates = z, Score.test = FALSE, Wald.test = TRUE,
+ rhombus.formula = TRUE)

MAX3 test

data: y and g
MAX3 = 2.6494, p-value = 0.01847
alternative hypothesis: the phenotype is significantly associated with the
genotype

R> max3(y, g, covariates = z, Score.test = TRUE, Wald.test = FALSE,
+ rhombus.formula = FALSE)

MAX3 test

data: y and g
MAX3 = 2.6551, p-value = 0.0182
alternative hypothesis: the phenotype is significantly associated with the
genotype
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R> max3(y, g, covariates = z, Score.test = TRUE, Wald.test = FALSE,
+ rhombus.formula = TRUE)

MAX3 test

data: y and g
MAX3 = 2.6551, p-value = 0.01815
alternative hypothesis: the phenotype is significantly associated with the
genotype

According to the results of the function max3(), the p values of the tests are 0.01849, 0.01847,
0.0182, and 0.01815 when we choose to use the Wald test and the twofold integration, the
Wald test and the rhombus formula, the score test and the twofold integration, and the score
test and the rhombus formula, respectively, illustrating that a significant association is found
between the marker and the phenotype with correcting for the PS in this example with the
significance level of 0.05.

3.6. Simulation: npt() and nmax3()

The simulation data set consists of 1,000 subjects. Following Zhang and Li (2015), we assume
that the quantitative trait y relates to a biallelic SNP with the genotype g as the linear
model y = β0 + gβ1 + e, where e is the error term that follows a generalized extreme value
distribution, tGEV(0, 0, 1), with the shape parameter 0, the location parameter 0, and the
scale parameter 1. We set β0 = 0.5, β1 = ln 1.2, and MAF = 0.3 in the population. The
genetic model is assumed to be additive in this simulation.

R> n <- 1000
R> set.seed(100)
R> e <- rgev(n, 0, 0, 1)
R> MAF <- 0.3
R> g <- rbinom(n, 2, MAF)
R> y <- 0.5 + g * log(1.2) + e

We can use the function npt() to test the association between the quantitative trait y and
the SNP with the genotype being g.

R> result.NPT <- npt(y, g, 0.5)
R> result.NPT

Nonparametric trend test

data: y and g
NPT = 4.1097, p-value = 3.962e-05
alternative hypothesis: the phenotype is significantly associated with the
genotype

The p value of the NPT for the additive model is 3.962 × 10−5, which is far less than the
significance level of 0.05. Thus, the quantitative trait is significantly associated with this
SNP.
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We can also use the function nmax3() to test the association between the quantitative trait
y and the biallelic SNP with genotype g by using the NMAX3.

R> result.NMAX3 <- nmax3(y, g)
R> result.NMAX3

Nonparametric MAX3 test

data: y and g
NMAX3 = 4.1097, p-value = 7.779e-05
alternative hypothesis: the phenotype is significantly associated with the
genotype

This result also shows that the continuous phenotype y is associated with the biallelic SNP
by using the NMAX3 with the significance level of 0.05.

4. An application: Rheumatoid arthritis with PS
This section presents a detailed application of this package on the association analysis of
rheumatoid arthritis with the PS. The data is from the Genetic Analysis Workshop 16 Prob-
lem 1 (Cupples et al. 2009; Amos et al. 2009). The genotype data set used for correcting for
the PS consists of 868 cases and 1,194 controls at 12,749 SNPs that are not associated with the
disease (Yu et al. 2008). The genotype and the phenotype data sets are saved in arthritisG
and arthritisP, respectively, in the package AssocTests.data (Wang et al. 2015).

R> data("arthritisG", package = "AssocTests.data")
R> data("arthritisP", package = "AssocTests.data")
R> arth.gFile <- "arthritisG.txt"
R> write.table(arthritisG, file = arth.gFile, quote = FALSE, sep = "",
+ row.names = FALSE, col.names = FALSE)

We can use the function eigenstrat() to calculate the significant eigenvalues and the corre-
sponding eigenvectors of the similarity matrix.

R> arth.E <- eigenstrat(genoFile = arth.gFile,
+ outFile.Robj = "arthritis.E.list", outFile.txt = "arthritis.E.txt")
R> arth.E$topK

[1] 4

We can also use tw() and arth.E$eigenvalues[1:(nrow(arthritisP) - 1)] to calculate
the significant eigenvalues.

R> arth.TW <- tw(eigenvalues = arth.E$eigenvalues[1:(nrow(arthritisP) - 1)],
+ eigenL = nrow(arthritisP) - 1)
R> arth.TW$SigntEigenL

[1] 4
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Figure 2: Samples in the space of the first four eigenvectors. The red circles and the blue
pluses represent the cases and the controls, respectively.

The value of arth.E$topK from the function eigenstrat() is 4, which is consistent with
the value of arth.TW$SigntEigenL from the function tw(). Thus, the number of significant
eigenvalues is 4 in this example. Figure 2 plots the samples in the space of the first four eigen-
vectors of the similarity matrix. The distributions of the cases (represented by the red circles)
are nonuniform in the controls (represented by the blue pluses), especially in Figure 2 C, E,
and F, where the fourth eigenvector is involved in, illustrating that the PS exists in the data.
The function pcoc() can be used to detect the population structure of this example. This
data set consists of two subpopulations according to the result of pcoc().
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R> arth.PCOC <- pcoc(genoFile = arth.gFile, outFile = "arthritis.PCOC.txt")
R> levels(arth.PCOC$cluster)

[1] "1" "2"

5. Conclusions
In this article, we have outlined some methods and algorithms for the genetic association
studies and described the R package AssocTests (Wang et al. 2020), which contains the
procedures EIGENSTRAT, PCOC, TW test, DR, single-marker test, MAX3 test with or
without adjustments for the covariates, NPT, and NMAX3. The descriptions of the functions
have their counterparts in the R package AssocTests.
We demonstrated the usages and the capabilities of this package in some simulation studies
and real data analyses in genetic association studies. Actually, the functions can also be used
in other application areas, such as food processing, economics, and finance. All the functions
in this package performed well. The computational complexity is often extremely high in the
genome-wide association study, typically using 500,000 ∼ 1,000,000 SNPs across the genome.
The functions in this package are effective. Considerably numerous SNPs are feasibly handled.
Although the execution time is relatively long, it is affordable. Furthermore, the multitrait
genetic association study (Thoen et al. 2017), which is developing rapidly recently, is not
involved in this package. For further works, the methods for the multitrait genetic association
study will be implemented in an updated version of this package. Depending on the demands
of users, we may consider developing a graphical user interface for this package.
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