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Abstract

Disease spreading simulations are traditionally performed using coupled differential
equations. However, in the setting of metapopulations, most of the solutions provided by
this method do not account for the dynamic topography of subpopulations. Conversely,
the alternative approach of individual-based modeling (IBM) may add computational cost
and complexity.

Hybrid models allow for the study of disease spreading because they combine both
aforementioned approaches by separating them across different scales: a local scale that
addresses subpopulation dynamics using coupled differential equations and a global scale
that addresses the contact between these subpopulations using IBM.

We present a simple way of simulating the spread of disease in dynamic networks us-
ing the high-level statistical computational language R and the hybridModels package.
We built four examples using disease spread models at the local scale in several different
networks: an animal movement network; a three-node network, whose model solution
using a stochastic simulation algorithm is compared with the ordinary differential equa-
tions approach; the commuting of individuals between patches, which we compare with
the permanent migration of individuals; and the commuting of individuals within the
metropolitan area of São Paulo.
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1. Introduction
Coupled differential equation models are traditionally used to study disease spreading. These
models carry assumptions that apply to scenarios with large populations whose individuals
are well mixed. Despite being effective even in complex scenarios (Keeling 2005), coupled
differential equation models do not describe sufficiently well the behavior of all systems.
A population is often spatially divided into subpopulations (metapopulation), and the com-
munication between these subpopulations occurs irregularly, such as in animal movement net-
works (Dubé, Ribble, Kelton, and McNab 2008; Bigras-Poulin, Thompson, Chriel, Mortensen,
and Greiner 2006; Grisi-Filho et al. 2013; Negreiros 2010) in which animals migrate irregularly
from one subpopulation to another in time and space, thus forming a dynamic movement net-
work. The usual terminology for migration in veterinary epidemiology is “movement”. Thus,
when this paper refers to the migration of animals from farm A to farm B, we will use the
term “movement”. In addition, the term “metapopulation” denotes a population that lives
across a fragmented landscape of potential habitat patches. Therefore, this paper considers
the animal movement network as a rather special case of a metapopulation model.
A dynamic movement network (i.e., a spatial network in which individuals migrate along the
edges at discrete time points) can violate the assumptions of coupled differential equation
models, which restricts the use of the model. In cases where the model treats the metapop-
ulation as a single population, the assumption of homogeneity of contacts among individuals
may be violated because the connections between subpopulations may take a topology that
is far from the homogeneous mixing of individuals (Bigras-Poulin et al. 2006; Kao, Green,
Johnson, and Kiss 2007; Bigras-Poulin, Barfod, Mortensen, and Greiner 2007; Rautureau,
Dufour, and Durand 2011; Büttner, Krieter, and Traulsen 2015). In cases where the model
describes subpopulations individually, the equations may not capture the dynamic behavior
of migrations of individuals from one subpopulation to another.
There is an alternative approach able to address these situations known as the individual-
based model (IBM). This class of models uses a bottom-up strategy and starts by creating
rules for the behavior of individuals, and based on the interaction among these individuals, it
attempts to understand the properties that emerge from the system (Grimm and Railsback
2005; Grimm et al. 2005). An IBM has a more flexible construction, but depending on the
degree of granularity desired for the model, its complexity increases and its computational
performance can be compromised; the number of parameters, the difficulty of model construc-
tion and communication, and analysis of results all increase (Osgood 2007; Rahmandad and
Sterman 2008; Vincenot, Giannino, Rietkerk, Moriya, and Mazzoleni 2011).
The response to the difficulties found in both approaches came in the form of a hybrid model,
which combines an IBM with coupled differential equations. This combination balances the
complexity of the former with the assumptions of the latter. In this approach, the subpop-
ulations are treated as a homogeneous mixing of individuals, and the migrations between
the subpopulations are treated by the IBM. In other words, using the terminology employed
by Vincenot and Moriya (2011), there is a local scale in which the assumptions used in the
formulation of coupled differential equations are employed, and there is a global scale that is
managed by the IBM. The local scale is a submodel within the IBM structure, making the
IBM a hybrid model.
Nevertheless, both scales can be treated stochastically. At the local scale, this stochasticity is
a model requirement in many situations. Subpopulations may contain a few individuals that
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violate the assumption that the situations generated by coupled differential equations are good
approximations of the average behavior of large populations. In these cases, the stochasticity
and the discrete aspect of the population may have an important role in the evolution of the
system. In models described by coupled ordinary differential equations, each process (e.g.,
infection and recovery) has a rate. This approach assumes that the time evolution is both
continuous and deterministic and that the number of individuals can change by fractions
for each time interval. However, this is not the case, as population size can change only by
discrete integers (Gillespie 1977). Alternatively, instead of focusing on a process rate, one
can develop models centered on individual reaction events, such as migration, that do not
necessarily occur at regular intervals. The timing of these events is stochastic rather than
deterministic (Monk 2012).
For these reasons, the R (R Core Team 2020) package hybridModels (Marques, Grisi-Filho,
and Amaku 2020) does not address the local scale using coupled differential equations, but
rather, it uses the stochastic simulation algorithm or its approximations (Gillespie 1976, 1977,
2001; Chatterjee, Vlachos, and Katsoulakis 2005; Cao, Gillespie, and Petzold 2006; Gillespie
2007) with the help of the GillespieSSA package (Pineda-Krch 2008), which considers the
stochasticity and the discrete aspect of the system. The Gillespie stochastic simulation algo-
rithm (SSA) is a procedure for generating the time-evolution trajectories of finite populations
over continuous time and has become the standard algorithm for these types of stochastic
models (Pineda-Krch 2008). The discrete aspect of the stochastic simulation also agrees with
the discrete aspect of the number of individuals that migrate from one subpopulation to
another, and this does not require approximations that may influence the evolution of the
epidemic.
The purpose of the hybridModels package is to allow the user to implement simulations of in-
fectious disease spreading in dynamic networks while considering the local (within the subpop-
ulation) and global (among subpopulations) scales. In the hybridModels package, it is possible
to implement models that consider the permanent migration of individuals or the commuting
of individuals between nodes. Package hybridModels is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=hybridModels. In
Section 3, we show four different examples of applications of this package: a susceptible-
infected-recovered (SIR) model applied to the dynamics of an animal movement network; a
susceptible-infected (SI) model in a three-node network, whose solution using a stochastic
simulation algorithm is compared with the ordinary differential equations approach; commut-
ing of individuals between nodes using a susceptible-infected-susceptible (SIS) model, which
we compare with a model of permanent individual migration; and disease spread accounting
for commuting of individuals within São Paulo.

2. Methodology
We will describe how the models are implemented by closely following the overview, design
concepts, and details (ODD) protocol (Grimm et al. 2006; Grimm, Berger, DeAngelis, Polhill,
Giske, and Railsback 2010). One of the purposes of the ODD protocol is to clearly commu-
nicate the features of an IBM, thus making it reproducible. Here, the protocol will be used
to describe the implementation of the hybrid models of the hybridModels package, which are
customizable at the local scale; i.e., they allow the creation of propensity functions and other
objects (Gillespie 2007) that describe the disease spread dynamics within subpopulations. A

https://CRAN.R-project.org/package=hybridModels
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propensity function is related to the probability of a certain event (e.g., infection or recov-
ery) occurring in an infinitesimal time interval, and it can be given by rates of individuals
transferred among the states of the system.

2.1. Purpose

From a given initial condition and under the structure of functions that describe disease
spreading in subpopulations, the models aim to study the progression of an epidemic in a
dynamic migration network of individuals, in which there is no individual identification or in
which it is not of interest.

2.2. Entities, state variables, and scales

The subpopulation is the model entity. It is described by state variables that represent the
number of individuals in each compartment of the subpopulation. For example, in a disease
model, the state variable S refers to the number of susceptible individuals and the state
variable I refers to the number of infected individuals.

These variables describe the subpopulation state at the local scale. With migration between
the subpopulations, state variables influence the state of other entities, producing the global
behavior. When individuals in a given state migrate, they are subtracted from the number of
individuals in that state in the origin subpopulation and added to the destination subpopula-
tion in the corresponding state. Each subpopulation corresponds to a node in the movement
network and may have its own behavior with regards to the migration of individuals, including
either permanent migration or commuting.

2.3. Process overview and routine

Both scales (local and global) implemented in this package are executed alternately (Figure 1).
The input data (Section 2.6) contain the number of individuals that migrated from an origin
to a destination subpopulation, and the time when the migration occurred. After setting the
initial condition of the simulation, the state variables of each subpopulation are updated with
the data on the migration of individuals (i.e., the migration events occur instantaneously at
the points of time specified in the input data).

Subsequently, based on the stochastic simulation model chosen (Pineda-Krch 2008), the sim-
ulation is performed for the local scale submodels that address disease spreading within the
subpopulations. The disease spread within a node occurs between migration events. Once
the local scale simulation is concluded, the state variables of each subpopulation are updated
again with migration data, following the chronological order in which they appear. The sim-
ulation of local dynamics and the migration process are performed alternately. The time
interval used in each step of the local scale is the interval between the migrations of individ-
uals. Local dynamics stop in all subpopulations when a migration occurs, no matter which
subpopulation is undergoing migration.
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Figure 1: Flow chart of the sequential steps used to perform the models in the hybridModels
package.

2.4. Design concepts

Basic principles

The principles guiding hybrid models are that the topology of the dynamic individual move-
ment network influences disease spreading (Shirley and Rushton 2005; Vincenot and Moriya
2011) and, in addition, subpopulations allow the use of equations that assume a homogeneous
mixing of contact between individuals.

Emergence

Spatiotemporal disease spread emerges from interacting local population and infection dy-
namics within subpopulations as well as the migration of (infected) individuals among sub-
populations. Both the network topology and the interaction of the topology with the spread
dynamics within subpopulations are important for disease spread behavior.
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Interaction
The interaction between subpopulations occurs with the migration of individuals that change
the state variables of each subpopulation, both in subpopulations that had immigrations and
in those that had emigrations. We assume that the migration of individuals is an instanta-
neous process. The mortality of individuals during migration is not considered.

Stochasticity
Stochasticity is present at the global and local scales. At the local scale, stochasticity is
defined by the numerical simulation method chosen (Pineda-Krch 2008). At the global scale,
stochasticity is present in the random selection of individuals that are going to migrate. The
migration process is described in Section 2.7.

Observation
It is possible to choose the number of simulations to be performed. For each simulation, the
state variables of each subpopulation are stored in a data frame at the end of each time period
in which individual migrations are recorded. The state variables are those of the epidemic
model that describes the local dynamics. In a SIR model, for instance, the state variables
represent the number of susceptible, infected, and recovered individuals. The data frame and
other information relevant for the model (for example, state variables, parameters, and initial
conditions) are stored in an S3 class object ‘HM’ by the hybridModels package.

2.5. Initialization
Initial conditions are specified in a named vector indicating the initial state of the subpopu-
lations’ state variables. To demonstrate how to provide the initial conditions, let us suppose
that we have only three subpopulations, each of which has 200 susceptible individuals (state
variable S). Additionally, there is one infected individual (state variable I) in subpopula-
tion number 2. To set the initial conditions, it is necessary to indicate the state variable
followed by the number assigned to the subpopulation and, after an “equal” sign, the number
of individuals in that state. In this particular case, the initial conditions would be given by:

R> init.cond <- c(S1 = 200, S2 = 200, S3 = 200, I2 = 1)

The model uses this information to start the simulations, according to the description given
in Section 2.3.

2.6. Input data
The input data for models simulated by this package are the connections between subpopu-
lations (migrations or commutings), which are described in a data frame in which each row
contains the date of the movement, the origin, the destination, and the number of individuals
moving between just these two subpopulations.

2.7. Submodels
There are three separate submodels: a submodel for local population dynamics, a submodel for
migration between subpopulations, and a submodel for commuting between subpopulations.
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Submodel for local subpopulation dynamics
The submodel for local subpopulation dynamics is determined by the following objects:

• prop.func, a vector with the propensity functions that describe changes of state vari-
ables due to local population and disease dynamics. The propensity functions are given
by rates of individuals transferred from one state to another. For instance, in a SIR
model without vital rates, the propensity functions are the transmission term (i.e., inci-
dence), related to the transition between the compartments of susceptible and infected
individuals, and the recovery rate, which is related to the transition between the com-
partments of infected and recovered individuals. Examples of propensity functions are
given in Section 3.

• state.change.matrix, a state change matrix that describes how propensity functions
influence the state variables. The state change matrix values indicate whether a given
propensity function does (1 or −1) or does not (0) change the corresponding state
variable.

• model.parms, model parameters such as contact, recovery, and immunity waning rates.

• state.var, a vector with state variables. For instance, in a SIR model, the state
variables are the number of susceptible, infected, and recovered individuals.

• infl.var, a vector with state variables of commuting individuals. This should only be
used in the commuting submodel (explained above).

Models for the infection dynamics at the local scale can be constructed using these objects.
Examples of these objects can be found in Section 3. In addition to the objects described
above, the submodel also comprises the implementation of the migration process described
below.

Submodel for migration between subpopulations
Individuals that migrate are sampled randomly from a node using the sample function with-
out replacement, which returns a vector composed of randomly chosen individuals. These
individuals are distributed among the destination nodes following the order of the nodes ap-
pearance in the input data frame. Below, we provide an illustrative example of the migration
process.

1. Let us suppose that, at a specific time, nine individuals migrate from node A to nodes
X, Y and Z, according to data from the input data frame described in Section 2.6.
Let us also suppose that four susceptible (S), three infected (I), and two recovered
(R) individuals are randomly sampled to migrate using the sample function without
replacement, resulting in the following vector [S, S,R, I, I, R, I, S, S].

2. In addition, according to the input data frame, three individuals migrate to node X,
four individuals to node Y , and two individuals to node Z. If the order of the destination
nodes in the input data frame is, for instance, Y , X, and Z, then the four first individuals
in the migration vector ([S, S,R, I]) migrate to node Y , the following three individuals
([I,R, I]) migrate to node X, and the remaining two individuals ([S, S]) migrate to node
Z.
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Variable Description
Day Day when the animal movement occurs.
originID Premises of origin.
destinationID Destination premises.
num.animals Number of animals moved.

Table 1: Variables in the networkSample data frame.

Submodel for commuting between subpopulations

In this submodel, moving individuals contribute to the spread of disease on the target node,
but the demography on the origin and target nodes are unaffected. All subpopulations are
considered to have the same individuals over time. This is a useful approach for scenarios in
which there is contact between subpopulations, but individuals do not migrate in a definitive
manner, such as people commuting to work and home on a daily basis. This may also be
applied to scenarios in which it is hard to keep track of all individuals, but the subpopulations
are considered stable over time. If the user provides a infl.var parameter, the package
automatically uses the commuting model.
The commuting process, including sampling of individuals and vector’s arrangement, is similar
to the migration process explained above, with the only difference being that all commuting
individuals will remain at the origin node, but they will contribute to the local dynamics at
the destination nodes through the infl.var parameter.

3. Examples

3.1. The cattle trade network

To illustrate the configuration and execution of hybrid models using the high-level statistical
computational language R and the hybridModels package, we will use a SIR model applied
to a small fragment of the real dynamic cattle trade network of the state of Pernambuco,
Brazil, extracted from the animal movement network provided by the local veterinary agency
(Agência de Defesa e Fiscalização Agropecuária de Pernambuco, ADAGRO-PE).
To simulate the model with the animal trade network, the package and its database must be
loaded using the codes below:

R> library("hybridModels")
R> data("networkSample", package = "hybridModels")

The networkSample data frame (Table 1) describes the movement of cattle between the
premises. The cattle trade network fragment (Figure 2) has 43 premises. In 2012 and 2013,
680 animals were moved across these premises in 78 batches. The distribution of the number
of animals per batch based on the variable num.animals in the networkSample data frame is
shown in Figure 3.
For each of the premises, we calculate the following network parameters to characterize the
network: ingoing and outgoing contact chain using the dynamic movement network.
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Figure 2: The circles represent the premises, and the arrows represent the direction of cattle
movement. The network is dynamic, but the movements were aggregated to generate this
visualization. In the examples below, premises in pink correspond to the initial infection cases
of condition 1, and premises in yellow correspond to condition 2.
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Figure 3: Histogram of the number of animals moved in each batch.

The outgoing contact chain is defined as the number of farms that can be reached through
the movement of animals from a given farm, either directly or indirectly (Nöremark and
Widgren 2014). The calculation of this measure considers that the network is dynamic, i.e.,
the temporal sequence of the movements is respected. Thus, the outgoing contact chain can
be used for forward tracing because it is composed of all the farms that can be reached directly
or indirectly from the source farm in a given time window.
The ingoing contact chain is defined as the number of farms that can reach, directly or
indirectly, a given farm through the movement of animals, also respecting the temporal order
of movements. Thus, the ingoing contact chain can be used for backward tracing. A schematic
illustration of both the outgoing and ingoing contact chains can be found in Nöremark and
Widgren (2014).
In general, these parameters contribute to the identification of farms that are most likely to
contract or spread infectious diseases, and in the case of the contact chain, they also allow the
estimation of the maximum size of the epidemic (Nöremark, Håkansson, Lewerin, Lindberg,
and Jonsson 2011; Frössling, Ohlson, Björkman, Håkansson, and Nöremark 2012; Büttner
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Figure 4: Histogram of the ingoing and outgoing contact chains.

et al. 2015). However, these parameters were used here to help understand the network
topology and the behavior of premises regarding the trade of animals.
The hybridModels package provides a function to calculate the contact chain size (ingoing
and outgoing), and its use is shown by the code below:

R> contactChain <- findContactChain(Data = networkSample,
+ from = "originID", to = "destinationID", Time = "Day",
+ selected.nodes = c(36966, 36798, 37226, 37345))

The histograms shown in Figures 3 and 4 indicate that the network of animal movements
in Figure 2 has highly heterogeneous distributions for the ingoing and the outgoing contact
chains.
Some farms trade batches with few animals, but some batches have many animals. Few farms
are connected with many network nodes, and most have few connections. These characteristics
are common in animal movement networks (Aznar, Stevenson, Zarich, and León 2011; Bigras-
Poulin et al. 2006; Buhnerkempe, Grear, Portacci, Miller, Lombard, and Webb 2013; Büttner
et al. 2015; Green, Gregory, and Munro 2009; Nöremark, Håkansson, Lindström, Wennergren,
and Lewerin 2009; Rautureau et al. 2011; Rasamoelina-Andriamanivo et al. 2014; Thakur,
Revie, Hurnik, Poljak, and Sanchez 2016), which makes this network fragment an interesting
example.

The local dynamics

Let Si, Ii, and Ri be the number of susceptible, infected, and recovered animals, respectively,
in a given subpopulation i. We assume local dynamics described by the SIR model with a
frequency-dependent transmission term given by βSiIi/Ni, where β is the contact rate, and
Ni is the total number of animals in subpopulation i. Individuals recover from infection at
a rate of γ. In this model, immunity is life-long, and subpopulations are finite and have the
same size initially. It is worth noting that the size of subpopulations varies over time due to
animal migrations. The model does not account for mortality or breeding. In addition, we
assume that the disease neither causes mortality nor affects individual performance.
Although the process is stochastic, we will use the differential equation notation below to help



Journal of Statistical Software 11

build the propensity functions and the state change matrix.

dSi

dt
= −βSi

Ii

Ni
(1)

dIi

dt
= βSi

Ii

Ni
− γIi (2)

dRi

dt
= γIi (3)

Ni = Si + Ii +Ri .

These equations define a compartmental model for each subpopulation i = 1, . . . , 43.

Model input

The names of the variables in the database that refer to the origin node, destination node,
date of movement, and number of cattle moved must be entered in the var.names list, as
shown in the next code chunk. Furthermore, the propensity functions and the state change
matrix must be constructed, identifying which are the state variables. These two objects are
built based on the differential Equations 1, 2 and 3, as shown in the following code chunk.

R> var.names <- list(from = "originID", to = "destinationID", Time = "Day",
+ arc = "num.animals")
R> prop.func <- c("beta * S * I / (S + I + R)", "gamma * I")
R> state.var <- c("S", "I", "R")
R> state.change.matrix <- matrix(c(-1, 0, 1, -1, 0, 1), nrow = 3, ncol = 2,
+ byrow = TRUE)

Each line of the state change matrix corresponds to a state in the order presented by the
state.var vector, and each column corresponds to a propensity function in the order pre-
sented by the prop.func vector. The state change matrix values indicate whether a given
propensity function does (1 or −1) or does not (0) change the corresponding population.
For example, the first position of the state change matrix is −1, which means that the first
propensity function (βS I

S+I+R) models the reduction of the population of susceptible indi-
viduals.

Model simulation

The model simulation also requires establishing the values of parameters and the initial con-
ditions of the system in which two initial conditions are established:

R> model.parms <- c(beta = 1, gamma = 0.01)
R> init.cond <- rep(200, 43)
R> names(init.cond) <- paste0("S", unique(c(networkSample$originID,
+ networkSample$destinationID)))
R> init.cond1 <- c(init.cond, I36966 = 1, I36798 = 1)
R> init.cond2 <- c(init.cond, I37226 = 1, I37345 = 1)

After defining the beta and gamma parameters of the model, we assigned 200 susceptible
animals to each subpopulation. For the first set of simulations, we choose two farm premises
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Initial condition Premises Contact chain Degree
Outgoing Ingoing Out In

1 36966 19 1 1 0
36798 18 1 1 0

2 37226 13 34 6 5
37345 13 34 3 2

Table 2: Centrality measures for the premises chosen to contain initial infection cases.

with high outgoing contact chain values (premises 36966 and 36798) as the initial infection
cases. For the second set, we choose two farm premises with low outgoing contact chain
values (premises 37226 and 37345) as the initial infection cases. Some parameters describing
the abovementioned premises are shown in Table 2.

Results and discussion

For each initial condition, 100 simulations were performed using the direct method of the
package (Pineda-Krch 2008). The stochastic simulations may have a high computational cost;
therefore, the hybridModels package allows running them in parallel using the doParallel and
foreach packages (Kane, Emerson, and Weston 2013; Microsoft Corporation and Weston 2019,
2020). In this example, four cores were used (the default is "max", which is the maximum
number of real cores in the computer processor).

R> results.Cond1 <- hybridModel(network = networkSample,
+ var.names = var.names, model.parms = model.parms,
+ state.var = state.var, prop.func = prop.func,
+ state.change.matrix = state.change.matrix, init.cond = init.cond1,
+ sim.number = 100, num.cores = 4)
R> results.Cond2 <- hybridModel(network = networkSample,
+ var.names = var.names, model.parms = model.parms,
+ state.var = state.var, prop.func = prop.func,
+ state.change.matrix = state.change.matrix, init.cond = init.cond2,
+ sim.number = 100, num.cores = 4)

Figures 5, 6, 7, and 8 were generated by the generic plot function (see code below). These
plots are customizable via the commands available in ggplot2 (Wickham 2009).

R> plot(results.Cond1, plot.type = "subpop.mean")
R> plot(results.Cond1, plot.type = "pop.mean")
R> plot(results.Cond2, plot.type = "subpop.mean")
R> plot(results.Cond2, plot.type = "pop.mean")

Using the same initial conditions, we changed the value of the transmission rate β from 1 to
0.1. The results are shown in Figures 7 and 8.
The function summary() summarizes the distribution of the simulation results (i.e., the num-
ber of susceptible and infected individuals) for specific nodes at a given time. The default is
the last date in the input data frame. Let us suppose we are interested in the summary of
susceptible and infected individuals in nodes 36812 and 36813 with initial conditions 1 and
2, and β = 1 and γ = 0.01. The outputs are shown below.
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Figure 5: Initial condition 1 with β = 1: (a) mean number of individuals in each subpopula-
tion; (b) mean number of individuals in the population.
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Figure 6: Initial condition 2 with β = 1: (a) mean number of individuals in each subpopula-
tion; (b) mean number of individuals in the population.
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Figure 7: Initial condition 1 with β = 0.1: (a) mean number of individuals in each subpopu-
lation; (b) mean number of individuals in the population.
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Figure 8: Initial condition 2 with β = 0.1: (a) mean number of individuals in each subpopu-
lation; (b) mean number of individuals in the population.
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R> summary(results.Cond1, stateVars = c("S", "I"), nodes = c(36812, 36813))

S36812 I36812 S36813 I36813
Min. :7 Min. :0.00 Min. : 0.00 Min. : 0.00
1st Qu.:7 1st Qu.:0.00 1st Qu.: 0.00 1st Qu.: 0.00
Median :7 Median :0.00 Median : 0.00 Median : 0.00
Mean :7 Mean :0.32 Mean : 1.29 Mean : 1.12
3rd Qu.:7 3rd Qu.:1.00 3rd Qu.: 0.00 3rd Qu.: 1.00
Max. :7 Max. :5.00 Max. :10.00 Max. :16.00

R> summary(results.Cond2, stateVars = c("S", "I"), nodes = c(36812, 36813))

S36812 I36812 S36813 I36813
Min. :219.0 Min. :0.00 Min. :266 Min. :0
1st Qu.:228.0 1st Qu.:0.00 1st Qu.:266 1st Qu.:0
Median :228.0 Median :0.00 Median :266 Median :0
Mean :227.6 Mean :0.05 Mean :266 Mean :0
3rd Qu.:228.0 3rd Qu.:0.00 3rd Qu.:266 3rd Qu.:0
Max. :228.0 Max. :3.00 Max. :266 Max. :0

Using a fragment of a dynamic cattle trade network, we showed how to customize and simulate
hybrid epidemic models. We also aimed to highlight the role of the dynamic network in the
disease spread.
Hybrid epidemic models can provide information that contributes to identifying farms that
represent greater risk for the rest of the trade network or generate the largest epidemics. To
address this question and exemplify the complexity that the network brings to the evolution
of the epidemic, initial cases of infected animals in premises that occupied different positions
in the trade network were added.
In initial condition 1, these premises were more isolated in the network, although they had
higher outgoing contact chain values. In initial condition 2, premises that occupied more
central positions were chosen (Figure 2). For the higher transmission rate (β = 1), condition
1 produces a larger epidemic, on average, than condition 2 (Figures 5 and 6). For the lower
transmission rate (β = 0.1), condition 2 (premises that had initial infection cases were more
connected and had smaller outgoing contact chains than those in condition 1) generated a
slightly larger epidemic, on average, than condition 1 (Figures 7 and 8).
In the simulations described above, the number of animals traded is independent of premises’
state variables (S, I and R). Moreover, animals have equal probabilities of emigrating, as
they are randomly sampled. However, one might want to simulate scenarios in which animals’
chance of emigration is influenced by the state variables of their premises. For such scenarios,
two arguments can be applied: emigrRule and probWeights. An example of how to use these
arguments is presented below (results not shown).

R> networkSample[, "num.animals"] <- 1
R> emigrRule <- "if (I < 0.05 * (S + I + R)) {0.1 * (S + I + R)}
+ else {0.02 * (S + I + R)}"
R> probWeights <- c(S = "1",
+ I = "if (I < 0.05 * (S + I + R)) {1} else {100}", R = "1")
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Figure 9: Schematic representation of the network: two sets of nodes (shaded regions) and
three nodes connected by arcs that represent the movement direction of individuals.

R> results <- hybridModel(network = networkSample,
+ probWeights = probWeights, emigrRule = emigrRule,
+ var.names = var.names, model.parms = model.parms,
+ state.var = state.var, prop.func = prop.func, sim.number = 100,
+ state.change.matrix = state.change.matrix, init.cond = init.cond1)
R> plot(results, plot.type = "pop.mean")

In the code shown above, each premises trades animals at a constant rate, and trade re-
strictions are applied to premises in which the proportion of infected animals (prevalence) is
greater than 5% of the population (emigrRule). In premises with a prevalence less than 5%,
10% of all animals are allowed to emigrate; otherwise, 2% are allowed to emigrate. Premises
with restrictions adopt a strategy of trying to sell more infected animals than the number sold
in the no-restriction scenario (probWeights). If the prevalence is less than 5%, the weight
applied to the probability of migration for an infected animal is 1; otherwise, the weight is
100. For susceptible and recovered animals, the weight is 1. Thus, in this particular example,
the migration of an infected animal is more likely to occur than the migration of a susceptible
or a recovered animal if the prevalence of infection on the premises is greater than 5%.

3.2. Three-node model

Comparison with a deterministic model

This example compares a hybrid model with a coupled ordinary differential equations (ODE)
model. We simulated disease spread using a SI model in the network shown in Figure 9. We
focus on the three nodes that connect two set of nodes. One of these two sets of nodes (on the
left in Figure 9) works as a source compartment from which individuals transition to node 1;
the other set of nodes (on the right in Figure 9) is equivalent to a destination compartment for
individuals departing from node 3. In the network of Figure 9, 100 individuals migrate from
one node to another every 30 days, and the migrations occur on the same day. In addition,
only healthy individuals reach node 1 (i = 1), and emigrants are randomly chosen from each
node.
In terms of connections among the nodes, this network is simpler than that of the previous
example. The three nodes we are interested in have well-behaved connections; as a conse-
quence, we might consider it as a static network. In contrast with a temporal network, the
arcs between these nodes behave in the same way over time.
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ODE model
To describe the disease spread throughout the network, we set a deterministic SI model
(coupled ODE) that follows the equations below. Let us not forget that we are only interested
in nodes i = 1, 2 and 3.

dSi

dt
= −βSi

Ii

Ni
+ α

Si−1
Ni−1

− α
Si

Ni

dIi

dt
= +βSi

Ii

Ni
+ α

Ii−1
Ni−1

− α
Ii

Ni

Ni = Si + Ii

N0 = S0 .

Si, Ii and Ni represent the number of susceptible, infected, and total number of individuals
in node i, and α is the migration rate. We consider the sets of nodes as two single nodes, and
their indices are i = 0 and i = 4.
Because the hybridModels package does not solve ODEs, we simulate this scenario using
the deSolve package (Soetaert, Petzoldt, and Setzer 2010). The code used to conduct the
simulation is presented in Appendix A.

Hybrid model
The hybrid model approach for the disease spread follows Equations 4 and 5 that have the
same force of infection as that in the deterministic approach. However, the migration of
individuals from one node to another is set by building a data frame that describes it.

dSi

dt
= −βSi

Ii

Ni
(4)

dIi

dt
= +βSi

Ii

Ni
(5)

Ni = Si + Ii .

The code used to create the network is shown below, and the first six rows of the data frame
are presented in Table 3.

R> network <- data.frame(originNode = rep(0:3, 3600/30),
+ destinationNode = rep(1:4, 3600/30),
+ Day = rep(seq.Date(from = as.Date("2006-01-31"),
+ by = 30, length.out = 120), each = 4), num.individuals = 100)

All of the parameters needed to simulate disease spread are presented in Table 4.
We first set the names of the variables, the propensity function, the state variables, and the
state change matrix as follows.

R> var.names <- list(from = "originNode", to = "destinationNode",
+ Time = "Day", arc = "num.individuals")
R> prop.func <- "(beta * S * I) / (S + I)"
R> state.var <- c("S", "I")
R> state.change.matrix <- matrix(c(-1, 1))
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originNode destinationNode Day num.individuals
0 1 2006-01-31 100
1 2 2006-01-31 100
2 3 2006-01-31 100
3 4 2006-01-31 100
0 1 2006-03-02 100
1 2 2006-03-02 100

Table 3: First 6 rows of the data frame of individuals (num.individuals) that migrate from
originNode to destinationNode on a given date (Day).

Parameter Value Description
α 10/3 Migration rate.
β 0.006 Transmission rate.
tf 3600 Duration of the simulation in days.
Ni 1000 Number of individuals inside each node.
I1(0) 1 Initial condition.

Table 4: Values and description of the parameters used.

We then define the values of the parameters and the initial conditions. Note that we choose
arbitrary values for the susceptible population in each node and one infected individual in
node 1.

R> model.parms <- c(beta = 0.006)
R> init.cond <- c(S0 = 120000, S1 = 999, S2 = 1000, S3 = 1000, S4 = 10)
R> init.cond <- c(init.cond, I1 = 1)

The parameters used in this example are summarized in Table 4.

Results

After setting the model parameters, we conducted the simulation using the hybridModels
package.

R> results <- hybridModel(network = network, var.names = var.names,
+ model.parms = model.parms, state.var = state.var,
+ prop.func = prop.func, state.change.matrix = state.change.matrix,
+ init.cond = init.cond, sim.number = 100, num.cores = "max")

The number of infected individuals in each node under both simulation approaches is shown
in Figure 10: black lines represent the results of the ODE model, and gray lines denote each
run of the hybrid model.
This example emphasizes aspects concerning the hybridModel package, i.e., validation and
differences from deterministic models. We expected that both approaches would provide
qualitatively comparable results for simple models, such as that illustrated in Figure 10.
First, let us highlight the main difference of both approaches.
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Figure 10: Results of the simulations for the number of infected individuals using the ODE
approach (black solid line) and the curves obtained using the hybrid model (gray lines).

The hybrid model simulations show that there are two, three and four basins of attraction
(plateaus with a concentration of gray lines in Figure 10) for nodes 1, 2, and 3, respectively,
whereas the deterministic approach has only one. The hybrid model simulations show that
each node adds basins of attractions from the previous node. This event occurs because all
of the nodes are able to end up without infected individuals. The ODE approach does not
generate this outcome. Even in this simple simulation, stochasticity contributes to a more
complex scenario, which represents the main difference of both approaches.
In simulations in which all of the nodes have infected individuals, notwithstanding the fact
that the stochastic model provides several alternative solutions, the curves obtained using
the hybridModels package were qualitatively similar to the results of the ODE approach
(Figure 10). This event can be understood as a numerical way to validate or check the
accuracy of the hybridModels simulations.

3.3. Commuting

The hybridModels package can also be used to simulate the commuting of individuals between
nodes. We used a modeling framework similar to that described by Coelho, Cruz, and Codeço
(2008) based on the “forest fire” model (Grenfell, Bjørnstad, and Kappey 2001). In this
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approach, individuals that commute between nodes contribute temporarily to the number of
infected individuals in the destination node but not to its demography (Coelho et al. 2008).
As an example, we used a SIS model; however, users can implement their own customized
model.

Local dynamics in the commuting model
Let Si and Ii be the number of susceptible and infected individuals in a subpopulation i.
At the local scale, we consider SIS model dynamics with a frequency-dependent transmission
term described by the following set of equations:

dSi

dt
= −βSi

Ii + iini
Ni + nin

i

+ γIi

dIi

dt
= βSi

Ii + iini
Ni + nin

i

− γIi

Ni = Si + Ii ,

where β is the contact rate, Ni = Si + Ii is the total number of individuals in subpopulation
i, γ is the recovery rate, iini is the number of infected individuals that commute to node i at
a given time, and nin

i = sin
i + iini is the total number of individuals that commute to node i.

Model input
In this example, we simulate the spread of an infectious disease among 30 patches, each of
which has a population between 500 and 1,000 individuals, among which 10 to 50 commute
on randomly sampled days. We assume that a given number of commuting connections (each
of which has a given number of individuals commuting on a given date) occur across the
30 patches between April and June. The following code starts by setting randomly 1,000
commuting connections; then, we discard all of the loops, i.e., connections from a given
patch to itself. We randomly select the date (Day), origin patch (origin), destination patch
(destination), and number of individuals commuting from the origin to the destination
patch (num.individuals). We then create a data frame (commuting) containing these data.

R> Day <- sample(seq(as.Date("2017/04/01"), as.Date("2017/06/30"),
+ by = "day"), size = 1000, replace = TRUE)
R> origin <- sample.int(30, size = 1000, replace = TRUE)
R> destination <- sample.int(30, size = 1000, replace = TRUE)
R> num.individuals <- as.integer(runif(1000, min = 10, max = 50))
R> commuting <- data.frame(Day = Day, origin = origin,
+ destination = destination, num.individuals = num.individuals)
R> commuting <- commuting[-which(origin == destination), ]

Next, we need to set the names of the variables, the propensity functions for the SIS model,
the state variables, and the state change variables as in the example of Section 3.1. In the
commuting model, an additional infl.var vector is related to the number of infected and
susceptible individuals that influence the disease spread dynamics in the destination node.

R> var.names <- list(from = "origin", to = "destination", Time = "Day",
+ arc = "num.individuals")
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R> prop.func <- c("beta * S * (I + i) / (S + I + s + i)", "gamma * I")
R> state.var <- c("S", "I")
R> infl.var <- c(S = "s", I = "i")
R> state.change.matrix <- matrix(c(-1, 1, 1, -1), nrow = 2, ncol = 2,
+ byrow = TRUE)

Model simulation and results

Before running the model, we need to provide the parameters related to the disease dynamics
(model.parms) and the initial condition (init.cond). In the code below, we set β = 0.1
day−1 and γ = 0.05 day−1. We also assume that all nodes have between 500 and 1,000
individuals and that only nodes 10 and 12 have ten infected individuals each.

R> model.parms <- c(beta = 0.1, gamma = 0.05)
R> init.cond <- as.integer(runif(30, min = 500, max = 1000))
R> names(init.cond) <- paste0("S", seq(1, 30, by = 1))
R> init.cond <- c(init.cond, I10 = 10, I12 = 10)

We run the model using the hybridModel function.

R> sim.commuting <- hybridModel(network = commuting, var.names = var.names,
+ model.parms = model.parms, state.var = state.var, infl.var = infl.var,
+ prop.func = prop.func, init.cond = init.cond,
+ state.change.matrix = state.change.matrix, sim.number = 100,
+ num.cores = 4)

Comparison with the permanent migration model

To run a permanent migration model using the same data frame, parameters and initial
conditions of the commuting model, we use the following code to set the propensity functions,
the state variables, and the state change matrix.

R> prop.func <- c("beta * S * I / (S + I)", "gamma * I")
R> state.var <- c("S", "I")
R> state.change.matrix <- matrix(c(-1, 1, 1, -1), nrow = 2, ncol = 2,
+ byrow = TRUE)

We then conduct the simulations for the permanent migration model.

R> sim.migration <- hybridModel(network = commuting, var.names = var.names,
+ model.parms = model.parms, state.var = state.var,
+ prop.func = prop.func, init.cond = init.cond,
+ state.change.matrix = state.change.matrix, sim.number = 100,
+ num.cores = 4)

The results for the number of susceptible and infected individuals in the patches for both
commuting and permanent migration models are shown in Figure 11.
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Figure 11: Results of the simulations for the mean number of susceptible and infected individ-
uals in the patches, using the commuting model (a) and the permanent migration model (b).

R> plot(sim.commuting, plot.type = "subpop.mean")
R> plot(sim.migration, plot.type = "subpop.mean")

In Figure 11, we note that more intense oscillations occurred in the number of susceptible
and infected individuals in the permanent migration model than in the commuting model.

3.4. Commuting within São Paulo

As another example of the commuting model, we implemented a SLIR (susceptible-latent-
infected-recovered) model with the influenza parameters and real network data on the daily
commuting of people within the metropolitan area of São Paulo. Also known as “Greater São
Paulo”, this is the biggest metropolitan area in Brazil, with approximately 20 million people
distributed among 39 municipalities, including the city of São Paulo.

Local dynamics in the commuting model

Let Si, Li, Ii and Ri be the number of susceptible, latent, infected and recovered individuals in
a subpopulation i. At the local scale, we consider a SLIR model with a frequency-dependent
transmission term described by the following set of equations:

dSi

dt
= −βSi

Ii + iini
Ni + nin

i

dLi

dt
= βSi

Ii + iini
Ni + nin

i

− κLi
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dIi

dt
= κLi − γIi

dRi

dt
= γIi

Ni = Si + Li + Ii +Ri ,

where β is the contact rate, Ni = Si + Li + Ii + Ri is the total number of individuals in
subpopulation i, 1/κ is the latent period, 1/γ is the infectious period, iini is the number of
infected individuals who commute to node i at a given time, and nin

i = sin
i + lini + iini + rin

i is
the total number of individuals who commute to node i.

Data

We used data from the “2007 Origin and Destination Survey” conducted by the “Companhia
do Metropolitano de São Paulo – Metro”, an organization within the São Paulo state govern-
ment that is responsible for the implementation and operation of the subway system. This
survey was conducted to estimate the number of daily trips within the metropolitan area
of São Paulo. The area was divided into 460 districts/zones, and the number of daily trips
between each zone was estimated based on a household survey. The data on daily trips and
the population were downloaded and are accessible through the Metro Transparency Portal
(Portal de transparência do Metro), at https://transparencia.metrosp.com.br/dataset/
pesquisa-origem-e-destino. For this example, we estimate the number of daily commutes
based on the first commute of each person leaving their home to another district/zone, which
results in almost 10 million daily commutes.
We first load the commute and population databases:

R> daily_commuting <- read.csv2("daily_commuting_from_residence.csv",
+ fileEncoding = "UTF-8")
R> zones <- read.csv2("zones.csv", fileEncoding = "UTF-8")

We assume that these commutes occur on every day of the simulation period and replicate
them accordingly. We choose the duration and initial date of the simulation and create a
database with the same daily commutes for each day of the time period.

R> duration <- 360
R> initial.date <- as.Date("2017/01/01")
R> days <- seq(initial.date, initial.date + duration, by = "day")
R> commuting <- expand.grid(1:nrow(daily_commuting), days)
R> names(commuting) <- c("commute", "Day")
R> commuting[, "origin"] <- daily_commuting[commuting[, "commute"],
+ "origin"]
R> commuting[, "destination"] <- daily_commuting[commuting[, "commute"],
+ "destination"]
R> commuting[, "num.individuals"] <- daily_commuting[commuting[, "commute"],
+ "num.individuals"]

https://transparencia.metrosp.com.br/dataset/pesquisa-origem-e-destino
https://transparencia.metrosp.com.br/dataset/pesquisa-origem-e-destino
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Model input

As previously described in Section 3.3, we need to set the names of the variables, the propen-
sity functions, the state change matrix, and the number of individuals who influence the
disease spread dynamics in the destination node.

R> var.names <- list(from = "origin", to = "destination", Time = "Day",
+ arc = "num.individuals")
R> prop.func <- c("beta * S * (I + i) / (S + L + I + R + s + l + i + r)",
+ "kappa * L", "gamma * I")
R> state.var <- c("S", "L", "I", "R")
R> infl.var <- c(S = "s", L = "l", I = "i", R = "r")
R> state.change.matrix <- matrix(c(-1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1),
+ nrow = 4, ncol = 3, byrow = TRUE)

Model simulation and results

To provide the model.parms, we set κ = 1
1.9 day−1 ≈ 0.53 day−1 and γ = 1

4.1 day−1 ≈ 0.24
day−1, assuming the rates κ and γ, respectively, as the inverse of a latent period of 1.9 days
and of an infectious period of 4.1 days for pandemic influenza (Longini, Jr., Halloran, Nizam,
and Yang 2004; Mills, Robins, and Lipsitch 2004). We estimate β assuming that R0 = β/γ
and that R0 = 1.7 (Longini, Jr. et al. 2004) such that β = 1.7 ∗ 4.1−1 = 0.41 day−1. The
purpose of this section is to provide an example of a simulation running on a larger dataset,
based on real-world data. For more information on the model parameters please refer to
Longini, Jr. et al. (2004); Mills et al. (2004); Chowell, Miller, and Viboud (2008); Chowell,
Viboud, Simonsen, Miller, and Alonso (2010).

R> model.parms <- c(beta = 1.7/4.1, kappa = 1/1.9, gamma = 1/4.1)

We set the initial condition init.cond with the entire population of each zone being suscepti-
ble, and insert 100 infected individuals in zone 217, which corresponds to Cidade Tiradentes,
a peripheral district in the city of São Paulo.

R> nodes <- sort(unique(c(commuting[, "origin"],
+ commuting[, "destination"])))
R> init.cond <- as.integer(zones[nodes, "population"])
R> names(init.cond) <- paste0("S", nodes)
R> init.cond <- c(init.cond, I217 = 100)

To save running time, we use the explicit tau-leap method (ETL) instead of the traditional
direct method. It is also possible to use other methods implemented by the GillespieSSA
package (Pineda-Krch 2008), like the binomial tau-leap or the optimized tau-leap. The direct
method is an exact method in the sense presented by Gillespie (Gillespie 2001), but it is
computationally demanding. To do this, we set the parameter ssa.method to "ETL", in the
hybridModel function. This run takes approximately 60 minutes in a computer with a i7
processor 7th generation (we used just one core) and 16GB RAM (note that the process
consumed only 2 GB RAM).
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(a) (b)

Figure 12: Number of susceptible, latent, infected and recovered individuals in the total
population (a) and in each zone of São Paulo metropolitan area (b).

R> sim.results <- hybridModel(network = commuting, var.names = var.names,
+ model.parms = model.parms, state.var = state.var, infl.var = infl.var,
+ prop.func = prop.func, init.cond = init.cond,
+ state.change.matrix = state.change.matrix, sim.number = 1,
+ num.cores = 1, ssa.method = list(method = "ETL", tau = 0.3))

The plot function shows the number of susceptible, latent, infected and recovered individuals.
It is possible to adapt the plots using ggplot2 functions, as shown in the following code, which
generates Figure 12.

R> plot(sim.results, plot.type = "subpop.mean") +
+ ylab("Number of individuals") +
+ scale_x_date(date_breaks = "1 month", date_labels = "%b")
R> plot(sim.results, plot.type = "pop.mean") +
+ ylab("Number of individuals") +
+ scale_x_date(date_breaks = "1 month", date_labels = "%b")

4. Discussion
The results of the simulation using a fragment of a dynamic cattle trade network (Section 3.1)
showed that classifying the importance of the farms in the epidemic progression depends on
a combination of, at least, its position in the network and the submodel applied at the local
scale.
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In the schematic three-node network example, we compared the stochastic simulations ob-
tained using the GillespieSSA package and the numerical solution of a system of ODEs (solved
using the deSolve package). We tested the functions of the hybridModels package through
a series of visual and spot checks. However, validation is a difficult task, and we decided
to accomplish this goal by comparing the hybridModels package with a deterministic com-
partmental model (Grimm and Railsback 2005). We found that, in the numerical simulation
performed using the hybridModels package, the stochastic model provides several alternative
solutions compared with the results of the ODE approach, allowing for the consideration of
more complex scenarios.
The hybridModels package aims to help create hybrid models that can contribute to the
investigation of epidemics among subpopulations and to other studies that might benefit
from the hybrid modeling paradigm. The hybridModels package could be applied to simulate
disease spread in both human and animal populations, considering the interplay between local
dynamics and migration processes, either by permanent migration or commuting.
As examples, we showed simulations of disease spread between farms through animal move-
ment and between different localities through human commuting; however, the hybridModels
package can be used for a wide range of applications. For example, it can be used to simulate
the transfer of patients between hospitals and the spread of nosocomial pathogens in hospital
units or the spread of infectious diseases across countries via travelers, considering the flow
of air traffic.
The simulation software Epigrass (Coelho et al. 2008), which is written entirely in the Python
language (van Rossum et al. 2011), is a tool to simulate network-epidemic models using
an epidemiological modeling approach based on the assumption that individuals commute
between localities and contribute temporarily to the number of infected individuals at the
destination locality but not to its demography. The user can conduct the simulation routines
of the hybridModels package using a commuting assumption similar to that used in Epigrass
or considering the effective migration of individuals between localities, which might be more
realistic depending on the scenario analyzed.
Simulation models exist for the spread of infectious diseases in animal populations such as
AusSpread (Garner and Beckett 2005), NAADSM (Harvey et al. 2007) and InterSpread Plus
(Stevenson et al. 2013). These simulation models have an IBM structure in which clusters of
animals are the units of interest. They are spatially explicit, stochastic, and state-transition
models (Harvey et al. 2007). The InterSpread Plus model (Stevenson et al. 2013) was written
in C++, and the user is able to specify model parameters via a graphical user interface. The
NAADSM (Harvey et al. 2007) model also provides a graphical user interface and output
visualization features, and AusSpread (Garner and Beckett 2005) produces tabulated statis-
tics and outbreak maps. The hybridModels package is an interesting alternative for users
(particularly those of R) interested in customizing the interaction between local and global
scales as well as the internal transmission process by defining the epidemic model at the local
scale.
Implementing the stochastic simulation algorithm is a bottleneck in the performance of the
simulations, which is currently implemented in the R language (Pineda-Krch 2008). Thus,
a direction for future development of the package is the implementation of functions that
execute the local dynamics with greater efficiency.
Currently, the package is implemented to address customizable equations at the local scale.
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However, migration is the only type of interaction allowed between nodes. A possible next
step in the development of the package is the possibility of allowing other forms of interaction
between the network nodes.
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A. Procedure to solve the ODE model
The procedure to solve the ODE model is presented below.

R> library("deSolve")

We then define the parameters, initial condition, and time sequence.

R> alpha <- 10/3
R> n <- 3
R> beta <- rep(0.006, n)
R> alpha.S1 <- c(alpha, 0, 0)
R> A <- matrix(c(-alpha, alpha, 0, 0, -alpha, alpha, 0, 0, -alpha),
+ nrow = n, ncol = n, byrow = TRUE)
R> init.si.md <- c(S = c(999, 1000, 1000), I = c(1, 0, 0))
R> time.seq <- seq(1, 10 * 12 * 30, 1)

The set of differential equations that describe the migration and disease dynamics is provided
as a function.

R> sirmodel <- function(t, Y, p) {
+ S <- Y[1:n]
+ I <- Y[(n+1):(2*n)]
+ N <- S + I
+ dS <- - beta * S * I / N + (S / N) %*% A + alpha.S1
+ dI <- + beta * S * I / N + (I / N) %*% A
+ list(c(dS, dI))
+ }

To run the model using the deSolve package, we use the following code:

R> resultsODE <- as.data.frame(ode(times = time.seq, func = sirmodel,
+ y = init.si.md, parms = NULL))
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