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Abstract

Subset identification methods are used to select the subset of a covariate space over
which the conditional distribution of a response has certain properties – for example,
identifying types of patients whose conditional treatment effect is positive. An often
critical requirement of subset identification methods is multiplicity control, by which the
family-wise Type I error rate is controlled, rather than the Type I error rate of each
covariate-determined hypothesis separately. The credible subset (or credible subgroup)
method provides a multiplicity-controlled estimate of the target subset in the form of two
bounding subsets: one which entirely contains the target subset, and one which is entirely
contained by it.

We introduce a new R package, credsubs, which constructs credible subset estimates
using a sample from the joint posterior distribution of any regression model, a description
of the covariate space, and a function mapping the parameters and covariates to the subset
criterion. We demonstrate parametric and nonparametric applications of the package to
a clinical trial dataset and a neuroimaging dataset, respectively.

Keywords: credible subgroups, multiple hypothesis testing, R, subset identification, subgroup
analysis.

1. Introduction

Subset identification, the selection of the subset of an index set for which random variables
have certain properties, can be applied to a wide variety of topics, but is especially useful in
medicine and public health. In this context, the goal is usually to identify the types of patients,
identified by their baseline covariate profiles, for whom a treatment has a positive effect. Given
an index set X and an unknown, possibly parametric, real-valued function b(x;θ), the large
class of subset identification problems considered in this paper can be formulated as identifying
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the subset B(θ), comprised of the x ∈ X for which b(x;θ) > δ. In one example presented
here, an analysis of clinical trials of Alzheimer’s disease treatments, b(x;θ) is a personalized
(or conditional average) treatment effect, i.e., the difference in expected outcomes between
subjects with identical baseline covariate profiles x, E[Y |x, t = 1;θ] − E[Y |x, t = 0;θ]. The
target subset B(θ) is then the set of covariate profiles that represent patients with positive
personalized treatment effects, i.e., the benefiting subgroup. In a second example, x represents
coordinates of a voxel in a 2-dimensional slice of an fMRI scan of the brain, b(x;θ) is the blood
oxygen level response to a stimulus, and B(θ) is the set of voxels excited by that stimulus.
The subset identification problems considered here can be seen as collections of tests of the
hypotheses Hx = {θ : b(x;θ) ≤ δ}. The subset B(θ) is then the x for which the Hx are
false, and a natural estimate B̂ is the set of x for which the hypotheses are rejected by some
test. However, in many cases the outcome of the family of tests as a whole is of interest.
In particular, it may be desirable to control the probability that at least one member of
B̂ is not truly in B, or that at least one member of B is not placed in B̂. This article
introduces the R (R Core Team 2020) package credsubs (Schnell and Carlin 2020), available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=credsubs, based on the “credible subgroups” methods developed by Schnell, Tang,
Offen, and Carlin (2016), Schnell, Tang, Müller, and Carlin (2017), and Schnell, Müller,
Tang, and Carlin (2018). Given a sample from the joint posterior distribution of b(x;θ) or
the information necessary to construct one, the method constructs an estimator (D,S) with
the property that P [D ⊆ B(θ) ⊆ S|data] ≥ 1 − α, thereby controlling multiplicity in both
dimensions mentioned above. In most common cases, the estimator also has the frequentist
property that P [D ⊆ B(θ0) ⊆ S|θ0] ≥ 1− α.
The original credible subgroups methodology focused on identification of patient populations
who benefit from treatment. This subgroup identification problem is one among many related
problems under the umbrella of subgroup analysis, and credible subgroups is one among many
possible approaches to addressing it. The broad problem of subset identification presented
here is a generalization of subgroup identification as it appears in medicine. Broadly, subgroup
analysis in medicine is concerned with treatment effects that may be heterogeneous among dif-
ferent subsets of the patient population, and includes problems such as detecting such hetero-
geneity, estimating treatment effects in subgroups, identifying subgroups that are anomalous
in some way, identifying subgroups with positive average treatment effects, and identifying
baseline covariate profiles that correspond to positive personalized treatment effects. It is
especially important for our purposes to distinguish between the final two problems. Suppose
that for the purpose of prescribing treatment for a particular condition, patients are charac-
terized by their sex and a particular biomarker status. If biomarker-positive male patients
benefit from treatment, and there is no effect for other patients, then the answer to the former
problem is that three subgroups of the population have positive average treatment effects:
male patients, biomarker-positive patients, and biomarker-positive male patients. However,
the answer to the latter problem is that the only baseline covariate profile corresponding to
a positive personalized treatment effect is that of biomarker-positive male patients.
As described in Schnell et al. (2016), there exist many approaches to benefiting subgroup
identification. These include direct Bayesian inference from linear models with skeptical priors
on interaction effects (Simon 2002), and tree-based or “flowchart-style” approaches such as
classification and regression trees (Breiman, Friedman, Stone, and Olshen 1984; Chipman,
George, and McCulloch 1998). A recent survey of variations on these approaches is given in

https://CRAN.R-project.org/package=credsubs
https://CRAN.R-project.org/package=credsubs


Journal of Statistical Software 3

Zhang, Seibold, Vettore, Song, and François (2018), along with examples in R. In principle,
the credible subsets approach may be applied on top of any modeling technique from which
a sample from the joint posterior of b(x;θ) can be obtained.
The scope of this package includes only the construction of the estimator given properly for-
matted regression output. It does not include functionality for fitting any regression models.
Packages that provide output in forms that facilitate use of this package include those which
can directly produce a sample from the joint posterior of the regression surface, such as the
BayesTree (Chipman and McCulloch 2016) package implementing Bayesian additive regres-
sion trees (BART; Chipman, George, and McCulloch 2010), and interfaces to hierarchical
model samplers such as R2OpenBUGS (Sturtz, Ligges, and Gelman 2005), rjags (Plummer
2019), nimble (de Valpine et al. 2019; de Valpine, Turek, Paciorek, Anderson-Bergman, Tem-
ple Lang, and Bodik 2017), INLA (Martins, Simpson, Lindgren, and Rue 2013), and rstan
(Carpenter et al. 2017; Stan Development Team 2020), which give samples from the joint
posterior of the parameters.
The rest of this article proceeds as follows. Section 2 gives a brief overview of the credible
subsets estimator’s definition and construction. Section 3 illustrates the basic usage of the
package for a parametric example analysis of an Alzheimer’s disease clinical trial dataset.
Section 4 presents a nonparametric example analysis of a neuroimaging dataset. Finally,
Section 5 concludes with a discussion.

2. Credible subsets

2.1. Definition
Given a covariate space X consisting of points x, and a real-valued function b(x;θ) possibly
parameterized by θ, the credible subsets method is concerned with estimating the set B(θ) ≡
{x : b(x;θ) > δ}, i.e., the subset of the covariate space for which b exceeds some threshold.
The method constructs a credible subset pair (D, S) with the aim that D ⊆ B(θ) ⊆ S. The
set D is termed the exclusive credible subset and is intended to contain only covariate points
for which b(x;θ) > δ, and the set S is termed the inclusive credible subset and is intended to
contain every covariate point for which b(x;θ) > δ.
The credible subset pair is constructed from a sample from the joint posterior distribution of
b(x;θ), written compactly as b(X;θ). The pair may be interpreted in the Bayesian sense that
P (D ⊆ B(θ) ⊆ S|data) ≥ 1−α. However, under the construction of (D, S) from simultaneous
confidence or credible bands detailed below, pairs constructed from a posterior sample often
have asymptotic frequentist interpretations.
In most applications, b(x;θ) is estimated via regression of a response Y onto the covariate
space. In the original credible subgroups usage, b(x;θ) ≡ E [Y |x, t = 1;θ]− E [Y |x, t = 0;θ],
i.e., the conditional treatment effect (t = 1 versus t = 0). Thus, setting δ = 0, B(θ) is the
subgroup of patient types having positive conditional treatment effects.

2.2. Construction
In this section we present the construction of credible subsets in the Bayesian framework.
We suppress dependence on both θ and Y in our notation, and unless otherwise stated, all
distributions are posterior.
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Algorithm 1 Step-down procedure.
1 LetM = 1, T0 = X, and R0 = ∅ be the starting iteration, base test set, and base rejection
set, respectively;

2 repeat

3 Let TM = TM−1 \ RM−1 = X \ (⋃m<M Rm) be the new test set;

4 Construct a two-sided 1 − α restricted covariate space simultaneous confidence band
(1) or (3) for b(x) over all x ∈ TM ;

5 Let RM be the set of x for which the band does not contain δ;

6 Increment M ;

7 until RM = ∅;

8 Reject Hx for all x ∈ ⋃m<M Rm.

Credible subset pairs are constructed primarily through simultaneous credible bands, i.e, up-
per and lower bound surfaces u(X) and l(X) constructed so that the entirety of the regression
surface b(X) lies between them with posterior probability 1 − α. If the marginal distribu-
tions of the b(x) are bell-shaped (e.g., b(X) is multivariate normal or multivariate t), then a
familiar form generalized from Uusipaikka (1983) may be used to construct the band:

[l(x), u(x)] = b̄(x)±W ∗α,X
√

VAR [b(x)], (1)

where b̄(x) and VAR [b(x)] are the posterior mean and variance, respectively, of b(x) at each
x, and W ∗α,X is the 1− α quantile of

WX = sup
x∈X

∣∣∣b(x)− b̄(x)
∣∣∣√

VAR [b(x)]
. (2)

In cases where the marginals of the b(x) are not so well-behaved (for example, if they are
discrete or multimodal) a quantile-based band may be used instead. For a fixed x temporarily
suppressed in notation, let FB(b) = P [B ≤ b] be the cumulative distribution function of
b, Gb(b) = P [B < b] be its left-continuous counterpart, and F−1

B (p) = inf {b : p ≤ FB(b)},
G−1
B (p) = sup {b : p ≥ GB(b)} be their inverses. We may then use the simultaneous credible

band given by Schnell et al. (2018):

[l(x), u(x)] =
[
F−1
b(x)

(
1−W ∗α,X

)
, G−1

b(x)

(
W ∗α,X

)]
, (3)

where W ∗α,X is the 1− α quantile of

WX = sup
x∈X

max
{

1− Fb(x) [b(x)] , Gb(x) [b(x)]
}
. (4)

In either case, the distribution and quantile function of WX may be estimated from the
posterior sample of b(X). Credible subsets may be constructed as D = {x : l(x) > δ} and S =
{x : u(x) ≥ δ}. Under mild regularity conditions (Gelman, Carlin, Stern, Dunson, Vehtari,
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and Rubin 2013; Carlin and Louis 2009), the posterior of b(X) corresponds asymptotically to
the sampling distribution of its maximum likelihood estimate, thus the Bayesian simultaneous
credible bands and credible subset pairs are interpretable in the frequentist sense.
When interpreting credible subset pairs in the frequentist sense, the estimate may be improved
by using a step-down testing procedure similar to the Holm-Bonferroni procedure (Holm
1979). For a given covariate vector x, let Hx = {θ : b(x) = δ} be the null hypothesis that
b(x) = δ. Then Algorithm 1 controls the overall Type I error rate at α. In words, the step-
down procedure reconstructs the simultaneous credible band on the smaller subset of X for
which previous iterations did not reject Hx. The proof of validity for this procedure relies on
showing that it is a closed testing procedure (Marcus, Peritz, and Ruben 1976), in part by
noting that W ∗α,V ≤ W ∗α,U for V ⊂ U. If Hx is rejected, we may place x in D when the lower
credible bound at x was greater than δ, and S{ (the complement of S) when the upper bound
was less than δ. If Hx is not rejected, we leave x in S \D.

3. Package
This section describes the use of the package’s three main functions:

• sim.cred.band, which constructs simultaneous credible bands according to (1) or (3);

• credsubs, which determines the membership of each covariate point in the exclusive
and inclusive credible subsets using the step-down procedure described by Algorithm 1;

• credsubs.level, which determines the maximum credible level at which each covariate
point is a member of either D or S{.

It is important to note that this package provides functionality only for constructing credible
subsets given a sample from the posterior of b(X;θ), or of the parameters necessary to con-
struct them. The package provides no functionality for producing a regression fit in the first
place, which is intended to be handled by software of the user’s choice, as long as it can pro-
vide the input necessary for the credsubs package. In this section, we analyze a dataset from
four clinical trials of Alzheimer’s disease treatments, using nimble as the modeling package.
The clinical trials of Alzheimer’s disease treatments were carried out by AbbVie, Inc., and
originally analyzed in the context of credible subsets in Schnell et al. (2018). The experimental
treatment arms have been excluded, leaving the placebo (T = 0) and standard of care (T =
1) arms. Although the standard of care is palliative rather than disease-modifying, it is
expected to alleviate symptoms, including worsening of the cognitive endpoint used in the
trials. The primary endpoint Y is improvement in cognitive function from baseline, and the
covariates making up x are sex, carrier status of a genetic biomarker, baseline severity, and
rate of cognitive decline since diagnosis. The quantity of interest for defining the benefiting
population is the personalized treatment effect (PTE), b(x;θ) ≡ E[Y |x, t = 1;θ]−E[Y |x, t =
0;θ], not to be confused with the improvement of individual subjects assigned to the treatment
arm.

3.1. Formatting input

Each of the three main functions relies on the same three primary input objects:
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• params, a matrix whose rows are draws from the posterior of b(X;θ), or of θ;

• design, a matrix whose rows represent points in the covariate space X;

• FUN, a function which takes as arguments a row of design and the entirety of params
and returns the corresponding sample from the posterior of b(x;θ).

By default, design is set to NULL, in which case params is taken to be a sample from the
posterior of b(X;θ) and FUN is ignored. If design is not NULL, params is taken to be a sample
from the posterior of θ. Also by default, FUN is set to function(x, params) { params %*%
t(x) }, so that a linear model is assumed whenever design is provided and FUN not otherwise
specified. The outputs of each function are aligned with the rows of design if not NULL, and
with the columns of params otherwise.
Note that params and design are matrices rather than data frames, and will be used in
computations as such. Each function will attempt to coerce objects supplied to the params and
design arguments to matrices via data.matrix(). In particular, vectors will be interpreted
as matrices with a single column, and factors will be replaced by their numerical codes (so
“dummy variable” or other coding schemes must be applied manually).
To begin our example, we load the data and reform it to be used by nimble. The nimble R
package allows models to be specified in a manner similar to that of the BUGS language (Lunn,
Spiegelhalter, Thomas, and Best 2009), can automatically configure an MCMC sampler, and
compile to C. We take use of the BUGS model specification here for clarity, and in Section 4
take advantage of another feature: new datasets can be associated with the compiled model
and sampler without recompilation.

R> library("nimble")
R> library("credsubs")
R> set.seed(1)
R> data("alzheimers", package = "credsubs")
R> head(alzheimers)

Treatment Severity Decline Sex Carrier Improvement
1 Placebo 22.0000 3.9834 F CARRIER -3.6667
2 Standard of Care 34.6667 2.4624 M NON-CARRIER 14.0000
3 Standard of Care 27.6667 1.0639 F NON-CARRIER 12.3333
4 Placebo 34.0000 4.8407 M CARRIER 5.0000
5 Placebo 34.3333 4.2348 F NON-CARRIER 5.6667
6 Standard of Care 28.6667 2.9314 M NON-CARRIER -1.0000

R> alzheimers$Treatment <- as.numeric(alzheimers$Treatment) - 1
R> alzheimers$Sex <- as.numeric(alzheimers$Sex) - 1
R> alzheimers$Carrier <- as.numeric(alzheimers$Carrier) - 1
R> alzheimers$Severity <- scale(alzheimers$Severity)
R> alzheimers$Decline <- scale(alzheimers$Decline)

We then specify the Bayesian normal linear model:
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R> nimble.code <- nimbleCode({
+ for (i in 1:N) {
+ mean[i] <- beta[1] +
+ beta[2] * Severity[i] + beta[3] * Decline[i] +
+ beta[4] * Sex[i] + beta[5] * Carrier[i] +
+ beta[6] * Sex[i] * Carrier[i] +
+ gamma[1] * Treatment[i] +
+ gamma[2] * Severity[i] * Treatment[i] +
+ gamma[3] * Decline[i] * Treatment[i] +
+ gamma[4] * Sex[i] * Treatment[i] +
+ gamma[5] * Carrier[i] * Treatment[i] +
+ gamma[6] * Sex[i] * Carrier[i] * Treatment[i]
+
+ Improvement[i] ~ dnorm(mean[i], tau)
+ }
+
+ for (j in 1:6) {
+ beta[j] ~ dnorm(0, 10E-4)
+ gamma[j] ~ dnorm(0, ifelse(j == 1, 10E-4, 1))
+ }
+
+ tau ~ dgamma(10E-4, 10E-4)
+ })

Here beta and gamma are the regression parameters, of which we will be primarily concerned
with gamma in making inferences about the PTEs. The parameter tau is the inverse of the
usual error variance σ2. The following code compiles the model and runs a MCMC sampler
for 11,000 iterations.

R> nimble.constants <- list(N = nrow(alzheimers))
R> nimble.data <- list(Treatment = as.numeric(alzheimers$Treatment),
+ Severity = as.vector(alzheimers$Severity),
+ Decline = as.vector(alzheimers$Decline),
+ Sex = as.numeric(alzheimers$Sex),
+ Carrier = as.numeric(alzheimers$Carrier),
+ Improvement = as.vector(alzheimers$Improvement))
R> nimble.inits <- list(beta = rep(0, 6), gamma = rep(0, 6), tau = 1)
R> nimble.model <- nimbleModel(code = nimble.code, name = "example",
+ constants = nimble.constants, data = nimble.data, inits = nimble.inits)
R> nimble.spec <- configureMCMC(nimble.model)
R> nimble.mcmc <- buildMCMC(nimble.spec)
R> C.model <- compileNimble(nimble.model)
R> C.mcmc <- compileNimble(nimble.mcmc, project = nimble.model)
R> C.mcmc$run(11000)
R> mcmc.trace <- as.matrix(C.mcmc$mvSamples)[1001:11000, ]

Only some of the parameters for which we have a sample from the joint posterior are needed
to compute PTEs. We extract these columns to form the params object for later use in
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Figure 1: Estimated (posterior mean) personalized treatment effects and observed improve-
ments in cognitive function for subjects in trials.

constructing credible subsets. We can compute a posterior sample of the PTEs for subjects
included in the dataset by applying the appropriate regression parameters to a design matrix
with all treatment indicators set to 1.

R> pte.params <- mcmc.trace[, c("gamma[1]", "gamma[2]", "gamma[3]",
+ "gamma[4]", "gamma[5]", "gamma[6]")]
R> subject.mat <- alzheimers[setdiff(colnames(alzheimers), "Improvement")]
R> subject.mat$Treatment <- 1
R> subject.mat$Sex.by.Carrier <- subject.mat$Sex * subject.mat$Carrier
R> subject.pte <- as.matrix(subject.mat) %*% t(pte.params)
R> subject.pte.est <- rowMeans(subject.pte)
R> plot(subject.pte.est ~ alzheimers$Improvement,
+ pch = ifelse(alzheimers$Treatment, 3, 1), main = "Subjects in trials",
+ xlab = "Observed improvement", ylab = "Estimated PTE")
R> abline(lm(subject.pte.est[alzheimers$Treatment == 1] ~
+ alzheimers$Improvement[alzheimers$Treatment == 1]), lty = 1)
R> abline(lm(subject.pte.est[alzheimers$Treatment == 0] ~
+ alzheimers$Improvement[alzheimers$Treatment == 0]), lty = 2)
R> legend("topleft", legend = c("Placebo", "SOC"), lty = c(2, 1),
+ pch = c(1, 3))

Figure 1 displays the estimated PTEs versus the observed improvements, stratified by treat-
ment arm. Note that while the observed improvements visually appear related to treatment
assignment (observed improvements in the control group tend to be farther left than those in
the treatment group), the estimated PTEs do not. Least squares regression lines are also in-
cluded, indicating a positive correlation between improvement and PTE in the treatment arm,
but not in the control arm. Standard methods of hypothesis testing for these relationships
are not applicable, as the estimated PTEs are not independent, and are omitted.
When identifying the benefiting subgroup, we consider not only the covariate profiles of
subjects enrolled in the trials, but those of all potential patients. Thus, we construct our
design object as a design matrix representing the covariate space over which we will make
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inferences. We must place the design matrix on the same (here, standardized) scale as the
data.

R> design <- expand.grid(Treatment = 1, Severity = 9:49,
+ Decline = 0:8, Sex = c(0, 1), Carrier = c(0, 1))
R> design$Severity <- scale(design$Severity,
+ center = attr(alzheimers$Severity, "scaled:center"),
+ scale = attr(alzheimers$Severity, "scaled:scale"))
R> design$Decline <- scale(design$Decline,
+ center = attr(alzheimers$Decline, "scaled:center"),
+ scale = attr(alzheimers$Decline, "scaled:scale"))
R> design$Sex.by.Carrier <- design$Sex * design$Carrier
R> head(design)

Treatment Severity Decline Sex Carrier Sex.by.Carrier
1 1 -1.613593 -1.283438 0 0 0
2 1 -1.525112 -1.283438 0 0 0
3 1 -1.436632 -1.283438 0 0 0
4 1 -1.348151 -1.283438 0 0 0
5 1 -1.259670 -1.283438 0 0 0
6 1 -1.171190 -1.283438 0 0 0

3.2. Inference

Four arguments determine the behavior of the primary functions in ways that may affect their
primary outputs:

• cred.level, the credible level 1−α (default 0.95) at which simultaneous credible bands
or credible subset pairs are constructed;

• threshold, the threshold δ (default 0) of b(x;θ) for membership in B(θ);

• method, either "asymptotic" (default, using (1)) or "quantile" (using (3)), specifying
which simultaneous credible band construction method is used;

• step.down, whether or not the step-down procedure should be used (default TRUE).

Table 1 displays the applicability of each of the above arguments to the primary functions.
Additionally, the argument sides (default "both") may be used to specify one-sided construc-
tions by passing the values "lower" or "upper" for sim.cred.band(), and "exclusive" or
"inclusive" for credsubs() and credsubs.level().
The output of sim.cred.band() is a list of class ‘sim.cred.band’ with the primary elements
upper and lower. These are numeric vectors of length equal to nrow(design), if provided,
and to ncol(params) otherwise. Their entries are the upper and lower bounds, respectively,
of the simultaneous credible band at the corresponding covariate point.

R> scb <- sim.cred.band(params = pte.params, design = design)
R> scb
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sim.cred.band credsubs credsubs.level
cred.level ! !

threshold ! !

method ! ! !

step.down ! !

Table 1: Applicability of behavior arguments to primary functions.

Simultaneous credible band

Credible level: 0.95
Method: asymptotic
Critical W: 3.082141

Upper bounds: 3.333657 3.358145 3.386394 3.418632 3.45509 3.495999 ...
Lower bounds: -3.391408 -3.231213 -3.074779 -2.922334 -2.77411 -2.630336 ...

The output of credsubs() is a list of class ‘credsubs’ with the primary elements exclusive
and inclusive, which are logical vectors of the same lengths as the primary elements of
the output of sim.cred.band(). An element of exclusive equal to TRUE indicates that
the corresponding covariate point is a member of the exclusive credible subset D; a similar
relationship holds for inclusive and the inclusive credible subset S.

R> cs <- credsubs(params = pte.params, design = design)
R> cs

Credible subsets

Credible level: 0.95
Threshold: 0
Method: asymptotic
Step-down: TRUE
Critical W: 2.98266

Exclusive credible subset: FALSE FALSE FALSE FALSE FALSE FALSE ...
Inclusive credible subset: TRUE TRUE TRUE TRUE TRUE TRUE ...

The output of credsubs.level() is a list of class ‘credsubs.level’ and is somewhat more
complicated. The primary elements are numerical vectors level, which gives the maximum
credible level at which each covariate point is not a member of S\D, and sign, which is equal
to 1 if the covariate point is in D for credible levels less than or equal to that specified by
level and −1 if it is in S{ for the same credible levels. If a covariate point is always in S \D
(i.e., the credible band is centered at δ there), its entries in level and sign are both 0.

R> csl <- credsubs.level(params = pte.params, design = design)
R> csl
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Maximum credible levels

Threshold: 0
Method: asymptotic
Step-down: TRUE

Maximum levels: 0.0053 0.0053 0.0054 0.01 0.0195 0.0195 ...
Signs: -1 1 1 1 1 1 ...

3.3. Diagnostics

The package offers several facilities for diagnostics of simultaneous credible band and credible
subsets outputs. This section describes them and presents illustrations.

Target function distributions

The material input to the credible subsets methods is the sample from the joint posterior
of the b(x;θ), and thus it is an important target of diagnostics. In particular, the realized
distribution of each of the b(x;θ) should be examined to determine whether the asymptotic
simultaneous credible band (1) is appropriate, or if the quantile-based version (3) should be
used instead.
For parametric models, a sample from the posterior of θ and the matrix representing X are
passed to the package’s functions and the b(x;θ) computed internally. In this case the user
may request the samples of the b(x;θ) from a subset (or all) of the x using the track argument
to any of the primary functions. The argument (default numeric(0)) is a vector containing
the indices of the x in X for which the sample of the b(x;θ) should be returned. For example,
setting track = c(1, 10, 100) would result in the output of sim.cred.band() containing
a 3-column matrix trace whose columns are samples of b(x;θ) where x is the first, tenth,
and hundredth row of design. The value of track is retained as the column names of trace.

R> scb <- sim.cred.band(params = pte.params, design = design,
+ track = c(1, 10, 100))
R> hist(scb$trace[, "1"], xlab = "Value",
+ main = expression("Distribution of b(x"[1]*")"))
R> hist(scb$trace[, "10"], xlab = "Value",
+ main = expression("Distribution of b(x"[10]*")"))

The output is shown in Figure 2. The approximate normality of b(x1;θ) and b(x10;θ) indi-
cates that the asymptotic simultaneous credible bands may be used. The same process may
be repeated at several “sentinel” points throughout the covariate space.

Band and credible level plots

The ‘sim.cred.band’ and ‘credsubs.level’ objects are equipped with plotting methods that
produce visualizations ignoring the spatial relationships between covariate points. Discarding
the covariate information allows generic plots to be produced regardless of the quantity, type,
or range of the covariates. In the case of the ‘sim.cred.band’ object, the covariate points



12 credsubs: Multiplicity-Adjusted Subset Identification

Distribution of b(x1)

Value

F
re

q
u
e
n
c
y

−4 −2 0 2 4

0
5
0
0

1
0
0
0

1
5
0
0

Distribution of b(x10)

Value

F
re

q
u
e
n
c
y

−2 0 2 4

0
5
0
0

1
0
0
0

2
0
0
0

Figure 2: Histograms of the computed samples of b(x1;θ) and b(x10;θ).
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Figure 3: Plots of the simultaneous credible band and maximum credible levels.

are placed in ascending order according to the estimates of b(x;θ), by default their posterior
means (method = "asymptotic") or medians (method = "quantile"). The estimates are
then plotted along with the corresponding upper and lower bounds. The plot method for
‘credsubs.level’ objects plots the signed maximum credible levels credsubs.level$sign
* credsubs.level$level in ascending order.

R> plot(scb, main = "95% simultaneous credible band")
R> plot(csl, main = "Maximum credible levels")

The output is shown in Figure 3. The plot of the simultaneous credible band may be used to
examine the range of widths of the band and compare its bounds to arbitrary thresholds. In
the presented case the majority of the estimates, along with many lower bounds, are above
zero, and no upper bounds are below zero. That of the maximum credible levels may be
examined to determine the proportion of covariate points falling outside of S \ D at various
credible levels. Here, roughly two-thirds of the points have maximum credible levels above
80%.
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Figure 4: Posterior means and standard deviations of target function at each covariate point.
Points below the sloped line (green) are in the exclusive credible subset, while the rest (gold)
constitute the remainder of the inclusive credible subset.

Funnel plots

The ‘credsubs’ objects also have a plot method inspired by the funnel plots often used to
detect publication bias in meta-analysis (Richard and Pillemer 1984). Funnel plots relate
estimates – study treatment effects in meta-analyses, and b̄(x;θ) − δ in credible subsets
analyses – to their standard errors. Since constructing a funnel plot in our context requires
a posterior mean and standard error, the method is only available for objects created with
the method = "asymptotic" argument. If visible, the vertical and horizontal lines through
the origin, as well as those through the origin with slopes ±1/W ∗α,X, are added. Points falling
below the positively sloped line are members of the exclusive credible subset D, while those
falling below the negatively sloped line are not members of the inclusive credible subset S.
Points falling above both lines fall in S \ D. When step.down = TRUE, the value of W ∗α,X
from the final iteration is used.

R> plot(cs, main = "Funnel plot of credible subsets")

Figure 4 displays the result. The funnel plot may be used to understand how the distribution
of points among D, S \ D, and S{ change as the threshold varies (points are translated
horizontally) and as the credible level decreases (sloped lines approach vertical) or increases
(approach horizontal).

3.4. Reporting

The package contains functions for building and running a shiny (Chang, Cheng, Allaire, Xie,
and McPherson 2020) application that allows users to choose a covariate point by selecting
levels from a list for each covariate, and obtain the maximum credible level and interpreta-
tion. The application is built by passing a ‘credsubs.level’ object along with a data frame
cov.space representing the covariate space to build.shiny.calc(). The cov.space object
should be formatted to be human-readable, e.g., covariate values on the original scales, and
well-formatted column names and factor levels.
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Credible Subsets
Calculator
Select a covariate point.  

Baseline Severity

Rate of Decline

Sex

Carrier Status

Result
The covariate point selected is in the
exclusive credible subset at a maximum
credible level of 91.85%. At higher credible
levels, no conclusion may be drawn. 

Close

21

5

Female

Non-Carrier

Figure 5: Example of calculator for reporting the Alzheimer’s disease dataset credible subset
results.

R> cov.space <- expand.grid("Baseline Severity" = 9:49,
+ "Rate of Decline" = 0:8, "Sex" = c("Female", "Male"),
+ "Carrier Status" = c("Non-Carrier", "Carrier"))
R> build.shiny.calc(csl, cov.space, name = "alzheimers")

Building calculator in ./alzheimers/
Execute run.shiny.calc('./alzheimers') to run.

R> run.shiny.calc("alzheimers")

An image of the example calculator is displayed in Figure 5. The build.shiny.calc()
function creates a directory containing the shiny application, which can be moved to any
location or deployed online. The argument to run.shiny.calc() need only point to the
intended directory.
The credible subsets represent bounds on the benefiting subgroup with a clinically useful
interpretation: With high credibility (or confidence, depending on the desired paradigm),
researchers can make the claim that all types of patients in the exclusive credible subset have
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a positive PTE, and all types of patients with positive PTEs are contained in the inclusive
credible subset. A primary utility of such a global inference is regulatory: Investigators control
the probability of erroneously declaring benefit for one or more types of patients that do not
in fact benefit. This family-wise Type I error control is critical when submitting results to
a regulatory agency such as the United States Food and Drug Administration. Another use
is in designing enrichment studies, which target a particular population thought to be more
likely to benefit or have a stronger treatment effect. In this case, the calculator may be used
to define eligibility criteria, e.g., in order to enroll, patients must be part of the exclusive
credible subgroup at a maximum credible level of 90% or higher. The multiplicity control
provided by this approach then protects against proceeding with an enrichment trial on a
target population that is either overoptimistically large or entirely spurious.

4. A nonparametric example
The example usage presented in Section 3 is parametric both in the modeling and credible
subsets senses: A subset of the regression parameters in the model are collected in θ and
passed to the package’s functions along with a design matrix. In this section we present a
usage which is nonparametric in the sense that a posterior draw from b(C) is passed directly.
Additionally, the following analysis is an example outside of the clinical trials scope for which
the credible subsets method was originally developed.
We analyze a neuroimaging dataset derived from that described in the SPM12 manual (The
FIL Methods Group 2014), Chapter 30, and provided in the supplementary materials. The
data are from an fMRI experiment in which subjects were given alternating blocks of auditory
stimulus and no stimulus. We preprocessed the data using FSL (Woolrich et al. 2009). The
preprocessing steps were as follows. We applied motion correction using mcflirt (Jenkinson,
Bannister, Brady, and Smith 2002; rigid body transform; cost function normalized correlation;
reference volume the middle volume), and then we smoothed the images using a Gaussian
kernel with FWHM = 5mm. We consider data from one patient, which consist of 96 blood
oxygen level scans of 64 × 64 × 64 voxels. We restrict our attention to the 33rd horizontal
slice, and at the advice of the SPM12 Manual, we ignore the first 12 scans to avoid start-up
artifacts. Each scan lasts for 7 seconds, and the scans are grouped into blocks of 6. The
blocks alternate between no stimulus and an auditory stimulus, beginning with a no-stimulus
block. The blood oxygen level does not respond instantaneously to stimulus; instead, the
canonical hemodynamic response function (HRF; Friston, Fletcher, Josephs, Holmes, Rugg,
and Turner 1998) is convolved with the stimulus indicator to produce the design coefficient
x(t) pattern shown in Figure 6.

R> library("credsubs")
R> library("neuRosim")
R> library("nimble")
R> load("slice32.RData")
R> slice.arr <- array(as.vector(t(slice[-(1:3), ])), dim = c(64, 64, 96))
R> experiment <- rep(rep(c(0, 1), each = 6), 8)
R> chrf <- canonicalHRF(1:96 * 7)
R> design <- convolve(experiment, rev(chrf), type = "open")[1:96]
R> plot(experiment, main = "Experiment and design coefficients",
+ ylim = range(experiment, design), ylab = "Coefficient", xlab = "Scan")
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Figure 6: Raw experimental design (◦) and HRF-convolved design (—) coefficients.

R> lines(design)
R> abline(v = seq(6, 90, by = 6) + 1 / 2, lty = 2)

For the sake of simple illustration, we model each voxel individually. The blood oxygen level
measurement for the voxel v at time t is denoted Yv(t), and modeled as

Yv(t) = αv + βvx(t) + (t− 1)sv + εv(t), (5)

where εv(t) is a normal lag-1 autoregressive (AR(1)) process and the sv coefficient models scan-
ner drift. For the prior specification, αv, βv iid∼ Normal[0, 10−6], the autoregressive coefficient
ρv

iid∼ Uniform[−1, 1], and the prior precision of εv(t)|εv(t− 1) is τv iid∼ Gamma[10−4, 10−4].

R> M <- 1000
R> trace <- array(NA, dim = c(64, 64, M))
R> nimble.code <- nimbleCode({
+ r[1] <- 0
+ bold[1] ~ dnorm(alpha + design[1] * beta + scan * (1) + r[1] * rho,
+ tau)
+ for (t in 2:N.t) {
+ r[t] <- bold[t - 1] - (alpha + beta * design[t - 1] + scan * (t - 1))
+ bold[t] ~ dnorm(alpha + design[t] * beta + scan * (t) + r[t] * rho,
+ tau)
+ }
+
+ alpha ~ dnorm(0, 1E-6)
+ beta ~ dnorm(0, 1E-6)
+ rho ~ dunif(-1, 1)
+ tau ~ dgamma(1E-4, 1E-4)
+ scan ~ dnorm(0, 1E-6)
+ })
R> nimble.constants <- list(N.t = 84)
R> nimble.data <- list(bold = slice.arr[1, 1, 13:96], design = design[13:96])
R> nimble.inits <- list(alpha = 0, beta = 0, rho = 0, tau = 1, scan = 0)
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R> nimble.model <- nimbleModel(code = nimble.code, name = "example",
+ constants = nimble.constants, data = nimble.data, inits = nimble.inits)
R> nimble.spec <- configureMCMC(nimble.model, monitors = "beta")
R> nimble.mcmc <- buildMCMC(nimble.spec, progressBar = FALSE)
R> C.model <- compileNimble(nimble.model)
R> C.mcmc <- compileNimble(nimble.mcmc, project = nimble.model)
R> set.seed(1)
R> for (x in 1:64) {
+ cat(x, "\n")
+ for (y in 1:64) {
+ nimble.data <- list(bold = slice.arr[x, y, 13:96])
+ C.model$setData(nimble.data)
+ C.mcmc$run(niter = M * 1.1, nburnin = M * 0.1, progressBar = FALSE)
+ trace[x, y, ] <- as.matrix(C.mcmc$mvSamples, "beta")
+ }
+ }

A large portion of the scan slice is outside the brain. As a crude method of restricting further
inference to the brain alone, we select the voxels for which the observed mean blood oxygen
level measurement is at least 1,000.

R> brain <- rowMeans(slice.arr[, , 13:96], dims = 2) >= 1000

The activation coefficient βv is our primary inferential target. We identify the voxels at which
the ratio of the posterior mean to posterior standard deviation corresponds to the 10th and
90th quantiles of the standard normal distribution, and also compute the maximum credible
levels for each voxel.

R> est <- rowMeans(trace, dims = 2)
R> sd <- apply(trace, c(1, 2), sd)
R> z.score <- matrix(NA, nrow = 64, ncol = 64)
R> z.score[brain] <- est[brain] / sd[brain]
R> p <- (pnorm(abs(z.score)) > 0.90) * sign(z.score)
R> params <- trace
R> dim(params) <- c(64 * 64, M)
R> params <- t(params)
R> csl <- credsubs.level(params[, brain], threshold = 0, sides = "both")
R> thresh.mat <- matrix(NA, nrow = 64, ncol = 64)
R> thresh.mat[brain] <- (csl$level >= 0.80) * csl$sign
R> plot(csl)
R> colors <- c("firebrick", "gold", "forestgreen")
R> par(mai = c(0.5, 0.5, 0.5, 0.5), oma = c(0, 0, 0, 0), mfrow = c(1, 2))
R> image(p, col = colors, ylim = c(1.025, -0.025), xaxt = "n", yaxt = "n",
+ main = "Uncorrected 80% Tests", useRaster = TRUE)
R> image(thresh.mat, col = colors, ylim = c(1.025, -0.025), xaxt = "n",
+ yaxt = "n", main = "80% Credible Subsets", useRaster = TRUE)

Figure 7 shows the signed maximum credible levels for the βv. The shape shown, in which
most voxels have maximum credible levels very close to 0, and the remaining few have much
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Figure 7: Maximum credible levels for the βv.
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Figure 8: Spatial representations. Red indicates negative activation, and green positive.

larger maximum credible levels, suggests that most of the voxels are in truth not activated.
Compare this to the maximum credible levels shown in Figure 3, which steadily climb from
near 0 to near 1, suggesting that the treatment effect is positive over most of the covariate
space but the data lack the strength to make a conclusion.

The left side of Figure 8 displays the voxels for which the ratio of posterior mean to standard
deviation is below the 10th or above the 90th quantile of the standard normal distribution.
Note that a great many voxels are “significant” in this sense, but the result appears noisy.
The right side displays the 80% credible subsets. Because the posterior distributions of the
βv are uncorrelated due to our independent modeling strategy, the credible subsets procedure
is very underpowered. A model in which the αv and βv are spatially correlated, and other
parameters are perhaps shared across all voxels, is likely to yield a much larger exclusive
credible subset and smaller inclusive credible subset. Regardless of inefficiency, several voxels
are identified as positively or negatively activated. These voxels appear to fall into three
clusters: The middle left and right green voxels lie in the auditory cortex, while the lower red
voxels lie in the visual cortex – sensible conclusions about responses to auditory stimuli.
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5. Discussion
This article presented the R package credsubs for implementing the credible subsets inference
procedure, which provides exclusive and inclusive bounds for a target subset of the covariate
space. The essential input to package functions is a sample from the joint posterior from an
arbitrary regression model, which may be obtained via various other software packages, for
example nimble. The credible subsets approach was initially developed in order to identify
benefiting subgroups in clinical trials, as illustrated by the example in Section 3, but is
also applicable to a wide range of other settings, for example the neuroimaging analysis in
Section 4.
In the clinical trial context, we hope that our package can form the basis for a “lingua franca”
between drug developers and regulatory authorities, the former of whom are increasingly
interested in targeting therapies to relevant patient subgroups, while also satisfying the latter
group with regard to overall Type I error protection. We also hope to explore the capabilities
of this approach in other areas. For example, it is likely that the neuroimaging example could
be greatly improved by taking into account spatial correlation among the activation levels via
a conditional autoregressive (CAR; Besag 1974, 1975) or other smoothing prior.
Other future work may include investigations into frequentist analogs through bootstrap
sampling, and parallel computing or other methods to handle larger and higher-dimensional
samples.
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