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Abstract

A large number of statistical decision problems in the social sciences and beyond can
be framed as a (contextual) multi-armed bandit problem. However, it is notoriously hard
to develop and evaluate policies that tackle these types of problems, and to use such
policies in applied studies. To address this issue, this paper introduces StreamingBan-
dit, a Python web application for developing and testing bandit policies in field studies.
StreamingBandit can sequentially select treatments using (online) policies in real time.
Once StreamingBandit is implemented in an applied context, different policies can be
tested, altered, nested, and compared. StreamingBandit makes it easy to apply a mul-
titude of bandit policies for sequential allocation in field experiments, and allows for the
quick development and re-use of novel policies. In this article, we detail the implementa-
tion logic of StreamingBandit and provide several examples of its use.

Keywords: sequential decision-making, multi-armed bandit, data streams, sequential experi-
mentation, Python.

1. Introduction
In the canonical multi-armed bandit (MAB) problem a gambler faces a number of slot ma-
chines, each with a potentially different payoff. It is the gambler’s goal to make as much profit
(or, in the case of gambling, as little loss) as possible by sequentially choosing which machine
to play, learning from the observations as she goes along (Whittle 1980; Berry and Fristedt
1985). The gambler faces a trade-off between exploration and exploitation (Macready and
Wolpert 1998): on the one hand she wishes to play the machine that was successful in earlier
attempts as often as possible (exploitation), but on the other hand she wishes to find the
machine with the highest payoff through experimentation (exploration). The MAB problem,
and its generalization, the contextual MAB (or CMAB) problem – in which before selecting
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a machine the gambler observes the state of the world that could be related to the optimal
choice of machine at that point in time – provides a flexible formalization for studying sequen-
tial treatment-allocation procedures in the social sciences and beyond (Dudík et al. 2011a;
Li, Chu, Langford, and Wang 2011; Agrawal and Goyal 2013).

A multitude of policies addressing (contextual) decision problems have been conceived and
evaluated (see, e.g., Berry and Fristedt 1985; Chapelle and Li 2011; Dudík et al. 2011a). In-
deed, the randomized controlled trial (RCT, or ε-first in the literature on sequential decision-
making; Chapelle and Li 2011) is in itself a specific policy devised to address the exploration-
exploitation trade-off in which an exploration phase, the trial itself, is followed by exploitation.
Other policies range from simple heuristics such as “play the winner” (Lachin, Matts, and Wei
1988; Villar, Bowden, and Wason 2015) to asymptotically optimal policies such as upper con-
fidence bound (UCB) methods (Auer and Ortner 2010; Garivier and Cappé 2011; Audibert,
Munos, and Szepesvári 2009), and Bayesian methods such as Thompson sampling (Thomp-
son 1933; Chapelle and Li 2011; Agrawal and Goyal 2012). It is difficult to assess which of
these policies performs best in distinct applied problems, however, due to the omission of the
counterfactuals in the (field) evaluations of a policy (Li et al. 2011): one does not know what
the outcome would have been had another choice been made anywhere along the sequence of
decisions. Hence the data resulting from an evaluation can often not be used to evaluate alter-
native policies. To evaluate a range of possible policies one has to resort to either simulation
methods – which often lack external validity due to the large number of assumptions encoded
in the simulation – or to recent offline evaluation methods (Li et al. 2011; Agarwal et al. 2016).
Offline methods provide the opportunity to obtain unbiased estimates of the performance of
different policies on historical data, but these approaches are only practically feasible when
the number of choice alternatives is relatively low and/or the number of sequential choices is
large. Furthermore, the assumptions that justify these methods – such as stationarity and
a non-zero probability for each possible treatment at each interaction (Li et al. 2011) – are
rarely fully justified in practice.

Despite these difficulties, effective (contextual) decision policies are potentially of great use in
many areas. To unleash this potential researchers need to be able quickly to implement and
evaluate distinct bandit policies in the field. This can be achieved by allowing substantive
researchers easily to test different sequential allocation schemes. If easy-to-use software were
available for evaluating and disseminating novel policies, such policies – which are actively
being developed (e.g., Eckles and Kaptein 2014; Osban and Roy 2015; Bastani and Bayati
2020) – would be within reach of a broader research community. It is to this end that we
developed StreamingBandit: an open-source RESTful Web application that allows researchers
to formalize their sequential-allocation procedure as a CMAB problem and, by virtue of this
formalization, easily to experiment with different policies.

In the remainder of this section we first engage in a high-level discussion of the basic usage
of StreamingBandit, discuss related approaches, and provide an overview of the application
and its installation. In Section 2, we describe the application in more detail, and demonstrate
the setup and evaluation of a single policy. Here we also discuss the use of StreamingBandit
for offline policy evaluation and we offer a number of performance measures. In Section 3,
we introduce a number of currently implemented “default” policies and discuss methods of
combining multiple policies. We detail two practical applications of StreamingBandit in
Section 4, and finally in Section 5 we briefly discuss future work directions.
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1.1. Basic usage

The basic setting we consider is the following. Consider an experimenter who interacts with
the environment. At each interaction t:

1. the experimenter observes a context xt,

2. subsequently, the experimenter chooses an action at,

3. and finally a reward rt is observed.

The main aim of the experimenter is to maximize the cumulative reward ∑N
t=1 rt where N

denotes the total number of interactions. To do so, the experimenter applies a policy π which
is some function that takes the context xt and the historical interactions, and returns an
action. For convenience we denote all historical interactions using D(t−1) and thus we have
π(xt,Dt−1)→ at.
This sequential decision-making scheme is encountered in many real-life situations:

• Personalized healthcare: A physician meets with patients sequentially. For each patient,
she observes a number of background characteristics (gender, age, current condition)
constituting the context. Subsequently, her action is to choose a treatment such that
the reward – measured in terms of the general health of the patient – is maximized.

• Online advertising: In online advertising a firm selecting an ad observes the context
consisting of a description of the current user visiting a specific webpage. The action is
to choose an advertisement from of a set of possible advertisements (possibly dependent
on the context), and the rewards constitute the clicks on the ad.

• Product-recommendation systems: The context denotes all that is known about the
user at a certain point in time. The action is choosing one of a set of products, and the
reward consists of the revenue generated at each interaction.

• Social-science experiments: Many social-science experiments constitute a special case
of contextual decision-making: participants are recruited sequentially during the exper-
iment. The context consists of all that is known about the participant, and sequentially
the action is to assign a participant to a specific experimental condition (possibly depen-
dent on the context in cases of stratified sampling, for example). Finally, the reward(s)
consist of the outcome measures of the experiments.

The above list illustrates the generality of our approach: StreamingBandit can be used to
allocate actions in all of the above applications.
To ensure the computational scalability of StreamingBandit we assume that, at the latest
interaction t = t′, all the information necessary to choose an action can be summarized using
a limited set of parameters denoted θt′ , the dimensionality of θt often being (much) smaller
than that of Dt−1. Given this assumption, we identify the following two steps of a policy:

1. The decision step: In the decision step, using xt′ and θt′ , and often using some (statis-
tical) model relating the actions, the context, and the reward, which is parametrized by
θt′ , the next action at′ is selected. Making a request to StreamingBandit’s getaction
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REST endpoint returns a JSON object containing the selected action. Optionally, the
probability pt′ of selecting this action (the propensity) and/or an identifier for this
specific request (the advice_id), both of which are explained in more detail below, is
also returned.

2. The summary step: In each summary step θt′ is updated using the new information
{xt′ , at′ , rt′ , pt′}. Thus, θt′+1 = g(θt′ , xt′ , at′ , rt′ , pt′) where g() is some update function.
Effectively, all the prior data, Dt−1 are summarized in θt′ . This choice means that
the computations are bounded by the dimension of θ and the time required to update
θ instead of growing as a function of t. Note that this effectively forces users to im-
plement an online policy (Michalak, DuBois, DuBois, Wiel, and Hogden 2012) as the
complete dataset Dt−1 is not revisited at subsequent interactions. Making a request to
StreamingBandit’s setreward endpoint containing a JSON object including either the
advice_id or a complete description of {xt′ , at′ , pt′}, and the reward rt′ , allows one to
update θt′+1 and subsequently to influence the actions selected at t′ + 1.

For the basic usage of StreamingBandit the experimenter – or rather an external server or
mobile application – sequentially executes requests to the getaction and setreward end-
points, and allocates actions accordingly. Using this setup, StreamingBandit can be used
to sequentially select advertisements on webpages, for example, allocate research subjects to
different experimental conditions in an online experiment, or sequentially optimize the feed-
back provided to users off a mobile eHealth application. We provide a number of practical
examples in Section 4.

1.2. Related approaches
Theoretically, contextual decision-making relates to a broad literature ranging from active
learning (e.g., Beygelzimer, Hsu, Langford, and Zhang 2010; Hanneke 2014) to the general
setting of reinforcement learning (Sutton and Barto 1998; Szepesvári 2010). The contextual
MAB problem (Dudík et al. 2011a; Li, Chu, Langford, and Schapire 2010; Agarwal, Hsu,
Kale, Langford, Li, and Schapire 2014) we consider here is a specific instance of reinforcement
learning: it is a problem that is well-studied both without contextual information (Berry and
Fristedt 1985) and in numerous generalizations, such as the continuous bandit (Mandelbaum
1987) and bandits with dependencies (Pandey, Chakrabarti, and Agarwal 2007). The current
work also relates to recent discussions on offline policy evaluation (Dudík, Erhan, Langford,
and Li 2012; Dudík, Langford, and Li 2011b), although it is distinct from the multi-world
testing service presented by Agarwal et al. (2016) in its focus on running (adaptive) policies
online versus the online collection of data combined with the offline evaluation of policies. The
field is too large to be properly reviewed in this paper, and we refer the reader to Schwartz,
Bradlow, and Fader (2017) and the references therein for an accessible introduction and
contemporary applications.
Here we narrow our discussion of related approaches to related software projects, which we
split into the following four categories: (i) software for A/B testing, (ii) software for general
(supervised) learning, (iii) software for offline policy evaluation, and (iv) software for (se-
quential) optimization. The first category relates to our current project in that A/B tests
– or randomized experiments – are used in many fields to address (C)MAB problems: one
devotes a (pre-set) number of interactions to random exploration, after which the best per-
forming action is selected and further exploited. This approach has become standard in many
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web companies (Jiang, Shi, Shang, Geng, and Glass 2016). A more advanced version, often
referred to as “multi-variate testing” runs many A/B tests in parallel, possibly exploiting a
factorial structure between the actions. Several commercial systems, such as Google Analyt-
ics, provide A/B testing abilities (Google 2018), Optimizely (Optimizely 2017), and Mixpanel
(Mixpanel 2017).
An effective policy depends heavily on the ability to predict the next reward given a context.
Once available, a (large) dataset of contexts, actions, and rewards constitutes a supervised
learning problem. Many general supervised learning solutions have been developed recently,
such as CNTK (Seide and Agarwal 2016), GraphLab (Collet, Sassolas, Lhuillier, Sirdey, and
Carlier 2016), GeePS (Cui, Zhang, Ganger, Gibbons, and Xing 2016), MLlib (Meng et al.
2016), TensorFlow (Abadi et al. 2016), and Minerva (Reagen et al. 2016). Some of these,
such as Vowpal Rabbit (Langford, Li, and Strehl 2011) and Jubatus (Hido, Tokui, and Oda
2013), explicitly include libraries implementing specific bandit policies, or evaluation meth-
ods for bandit policies on existing, offline, data sets. Specific software projects for offline
policy evaluation, and hence the ability to evaluate policies on existing datasets, are also
available (see, e.g., Komiyama, Honda, and Nakagawa 2015; Nugent 2015; Striatum Con-
tributors 2016). Others have provided language-specific code libraries implementing different
policies, although most of these efforts seem to be a) geared towards computer scientists and
experienced developers and b) not focused on field deployment (see Kaufmann, Cappé, and
Garivier 2012a; Galbraith 2016; Sola 2015, and the references therein).
There are a number of platforms that allow for sequential optimization: Google Analytics
(Google 2018), for example, supports Thompson sampling (Agrawal and Goyal 2012; Kaptein
2014; Thompson 1933), which is a method for sequentially allocating visitors to different ac-
tions dynamically based on the observed outcomes. However, contextual knowledge is not
included. Yelp MOE (Yelp 2014) is an open-source software package that implements opti-
mization over a large parameter space via sequential A/B tests in which Bayesian optimiza-
tion is used to compute parameters for the next best A/B test. Finally, the Decision Service
(Agarwal et al. 2016) implements a number of functionalities implemented by StreamingBan-
dit using a similar formalization (the summary and decision steps). This software package
focuses on continuously collecting data to update and deploy policies that are evaluated offline,
whereas StreamingBandit focuses on evaluating (adaptive) policies online.

1.3. An overview of streaming bandit API calls

StreamingBandit is a Python 3 (Van Rossum et al. 2011) application that runs a Tornado
web server (The Tornado Authors 2016) and discloses a REST API that facilitates the imple-
mentation of the summary and decision steps described above. A user of StreamingBandit
first creates an experiment and subsequently implements – or adopts based on the library of
available policies – a policy using Python 3. A policy specification consists of a) some code
implementing the decision step given θt′ and xt′ , and b) some code implementing the summary
step given the observed outcomes to update θt′ . Figure 1 presents an overview of the architec-
ture of StreamingBandit. The application discloses a number of REST endpoints to facilitate
the creation and editing of experiments and the extraction of data from running experiments.
All endpoints apart from the getaction and setreward require the user to authenticate using
a secure cookie. Logging in can be done by passing a JSON object to the login endpoint
containing the parameters username and password; if the username and password are valid a
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Figure 1: High-level architecture of StreamingBandit.

secure-cookie is returned. New users can be created using the user call and posting the rele-
vant information. For convenience, we provide a separate UI (a separate software project that
can be found at https://github.com/Nth-iteration-labs/streamingbandit-ui) that al-
lows easy point-and-click administration and management of experiments. Here we detail
the primary endpoints and describe their functionality. We have already introduced the
getaction and setreward calls, of which the full specification is:

GET getaction: The query-string parameters consist of the experiment identification num-
ber, exp_id (string), a key (string), and the context (JSON). The call executes the
decision step of a policy associated with the exp_id and returns an action (JSON),
which optionally contains the elements advice_id (string), and propensity (float).
The key is used to authenticate the request.

GET setreward: The query-string parameters consist of the exp_id, the key, the reward
(JSON) and either the advice_id, in which case the context and action are retrieved
from the associated getaction call, or the the context and action themselves. Sub-
sequently, the summary step of the policy associated with the associated exp_id is
executed and a JSON object containing the status is returned.

The primary endpoints at which to manage the experiments are:

GET exp: Returns a JSON object listing the exp_id and name of each experiment.

POST exp: Posting a JSON object containing the parameters name, getcontext, getaction,
getreward and setreward creates a new experiment. The last four fields should contain
executable restricted Python 3 code. To ensure some safety in the executed code we
limit the functionality of these customer scripts to a subset of Python 3 code, using
self-defined built-ins. This will disallow, for instance, the import of any other packages
apart from the one we already make available. It also means that the user does not
need to import any packages into the code because they are made available in the

https://github.com/Nth-iteration-labs/streamingbandit-ui
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built-ins before any code is executed. The code in the getaction and setreward fields
implements the decision and summary steps, respectively. The exp endpoint accepts a
number of optional parameters, which we detail in Section 2.1. A valid POST request
to the exp endpoint returns a JSON object containing the exp_id and the key of the
newly created experiment.
The code in the getcontext and getreward fields is not strictly necessary; these two
snippets of code provide for the opportunity to simulate sequential decisions. This is
extremely useful for debugging and can be used in simulation studies of a policy. Passing
the query-string parameter n (int, default=1) to rest endpoint eval/<exp-id>/simulate
sequentially executes the getcontext, getaction, getreward and setreward code of
the associated experiment n times.

PUT exp/<exp_id>: If the exp_id string in the url is a valid experiment for the current
user, this call edits the existing experiment. The parameters are the same as those used
for creating experiments.

GET exp/<exp_id>: Returns the name and getaction and setreward code for a specific
experiment.

DELETE exp/<exp_id>: Deletes an experiment. When an experiment is deleted all the
user-generated settings are removed, as well as the current θ. However, logged data
associated with the experiment is maintained.

GET exp/<exp_id>/resetexperiment: Resets the experiment: the current state of θ is
deleted, but all the other information is retained and the policy can still be executed.

Next to these administrative calls, the application provides a number of calls to monitor
running experiments and retrieve logged data.

GET stats/<exp_id>/currenttheta: Returns the current θ for the experiment as a JSON
object.

GET stats/<exp_id>/summary: Returns an overview of the number of requests to the
getaction and setreward endpoints.

GET stats/<exp_id>/rewardlog: Returns the logged setreward events (including the
context, action, and reward objects) for the current experiment. It can be used
for offline policy evaluation (see, e.g., Li et al. 2011; Agarwal et al. 2016). The limit
(int) query-string parameter limits the dump to the last k events.

GET stats/<exp_id>/actionlog: Returns all the getaction events for the current exper-
iment. Again, the limit parameters limit the dump to the last k events.

GET stats/<exp_id>/log: Returns a JSON file of all data that was explicitly logged by
the user using self.log() in the policy specification of an experiment.

Requests made to non-existing REST endpoints result in a 404 status error, whereas erroneous
calls to existing end-points return a JSON object containing a key error with an informative
error message.
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Implemented policies: “defaults”
StreamingBandit comes with a number of implemented policies to tackle standard (contex-
tual) decision problems. A JSON object containing a list of defaults can be retrieved using the
endpoint default, and calling default/<default_id> gives the code for a specific default.
We have implemented the following policies, amongst others:

• ε-first: Implements the standard randomized clinical trial approach to the (C)MAB
problem: the first t < n interactions, where n is set by the user, are allocated to actions
randomly, after which the action with the highest average reward is selected for the
remaining interactions.

• ε-greedy: Implements a greedy policy in which a proportion p of interactions is randomly
allocated to the available actions, whereas a proportion of (1−p) interactions is allocated
to the action with the highest average reward at that point in time.

• Thompson sampling for the k-armed Bernoulli bandit: Thompson sampling provides a
Bayesian solution to the MAB problem (Thompson 1933; Agrawal and Goyal 2012). We
implement Thompson sampling for the Bernoulli bandit (e.g., r ∈ {0, 1}). Thompson
sampling allocates actions proportional to one’s current belief – as quantified using a
posterior distribution – that an arm is optimal (Kaptein 2014).

• Lock-in feedback: Lock-in feedback is an allocation scheme for dealing with continuous
actions (a ∈ R) in which small systematic oscillations in the action choice over time are
used to derive the gradient of the reward function and take a step toward the (local)
maximum of that function (see Kaptein, Emden, and Iannuzzi 2016a; Kaptein, Van
Emden, and Iannuzzi 2016b, for details).

• Bootstrap Thompson sampling: Bootstrap Thompson sampling provides a computa-
tionally appealing alternative to Thompson sampling in cases in which it is hard to
sample directly from the posterior distribution of a model online (see Eckles and Kaptein
2014). In essence, the posterior distribution is approximated using an online bootstrap
distribution (Owen and Eckles 2012).

We provide examples of the use of these policies in Section 3. StreamingBandit is easily
extended and new defaults can be added by adding code to the /resources/defaults folder
of the application in a folder with an informative name that contains the following four files:

1. get_context.py: A Python script that generates a JSON object encoding a context.

2. get_action.py: A script that takes a JSON object encoding the context, and returns
a JSON object containing the action.

3. get_reward.py: A script that generates a reward using a context and action JSON.

4. set_reward.py: A script that takes a context, action, and reward JSON and handles
the logic of updating θ.

Restarting the web application after adding these files will automatically include the novel
policy in the list of defaults. We welcome submissions of new default policies and other
implementations. See Section 1.5 for more details.
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StreamingBandit libraries

StreamingBandit was created to quickly create and test alternative policies in the field. This
can be done by altering the getaction and setreward codes associated with an experiment.
However, given that a number of operations are often encountered in the online processing of
incoming data, StreamingBandit also provides a number of Python modules:

• base: This module provides functionalities for online (row-by-row) updates of, e.g.,
counts, means, variances, proportions, and covariances.

• lm: Implements an online version of a linear regression model.

• bts: Takes a model (e.g., lm) and a row of data and produces (or updates) an online
bootstrap distribution of the parameters.

• lif: Implements the lock-in feedback policy, as described in Kaptein and Ianuzzi (2016).

• thompson: Implements Thompson sampling for the k-armed Bernoulli bandit, amongst
others.

• thompson_bayes_linear: Implements model-based Thompson sampling using a Bayesian
linear regression model.

New modules can be added to the application by adding a script to /libs. For detailed
documentation of the individual modules we refer the reader to http://nth-iteration-
labs.github.io/streamingbandit/libs.html.

1.4. Installation, deployment, and documentation

The StreamingBandit source code is available from https://github.com/Nth-iteration-
labs/streamingbandit/ and the documentation can be accessed on http://nth-iteration-
labs.github.io/streamingbandit/. There are several ways in which StreamingBandit can
be used:

1. At http://sb.nth-iteration.com we provide a running instance of StreamingBandit.
You apply for a user account by sending an email to the corresponding author of this
paper, and use our hosted webserver for (small-to-medium-sized) projects.

2. The easiest way to get going independently is probably to use our Docker container
(Merkel 2014). The following commands assume that you have docker and docker-
compose installed, and that you are inside a folder in which you wish to put the source-
code of StreamingBandit1. If so, starting StreamingBandit requires, first, pulling the
repository to your local system and going inside the folder:

$ git clone http://github.com/Nth-iteration-labs/streamingbandit/
$ cd streamingbandit

Next, once you are inside the folder with all the source code, we can launch Streaming-
Bandit by running:

1For more information on how to get started with Docker, see https://docs.docker.com/get-started/.

http://nth-iteration-labs.github.io/streamingbandit/libs.html
http://nth-iteration-labs.github.io/streamingbandit/libs.html
https://github.com/Nth-iteration-labs/streamingbandit/
https://github.com/Nth-iteration-labs/streamingbandit/
http://nth-iteration-labs.github.io/streamingbandit/
http://nth-iteration-labs.github.io/streamingbandit/
http://sb.nth-iteration.com
https://docs.docker.com/get-started/
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$ docker-compose up -d
$ docker exec -t streamingbandit_web_1 python3 ../insert_admin.py -p \
> test

The first command makes sure that all necessary containers, including the databases,
are running. The second command creates a user account admin with the password
“test”. To gracefully stop and start the container after running the first command, run
the following command:

$ docker-compose stop
$ docker-compose start

Starting the service will make StreamingBandit available at http://localhost:8080
or the Docker-set IP address.
Note that the above commands only start the back-end REST service. The following
commands are also needed to launch our front-end:

$ docker-compose -f docker-compose.yml \
> -f docker-compose.front-end.yml up -d
$ docker exec -t streamingbandit_web_1 python3 \
> ../insert_admin.py -p test

The start and stop commands now change slightly as well:

$ docker-compose -f docker-compose.yml \
> -f docker-compose.front-end.yml stop
$ docker-compose -f docker-compose.yml \
> -f docker-compose.front-end.yml start

which starts and stops both the front-end and the back-end at the same time. The
front-end can be reached at http://localhost or the Docker-set IP address.
The front-end source-code can be found in a separate repository at https://github.
com/Nth-iteration-labs/streamingbandit-ui, but for this use-case it is not nec-
essary to download the repository to your local system because we have uploaded a
Docker image to the internet and Docker will download that image automatically via
the docker-compose command.

3. For larger-scale projects we recommend installing from source and perhaps using a load-
balancer. For details, please consult the documentation at http://nth-iteration-
labs.github.io/streamingbandit/.

1.5. Further development
The above sections give the essential details of StreamingBandit. We gladly accept any
contributions towards making StreamingBandit better and more useful. The guidelines for
contributing to the development of StreamingBandit can be found in the documentation.

2. Getting started

http://localhost:8080
http://localhost
https://github.com/Nth-iteration-labs/streamingbandit-ui
https://github.com/Nth-iteration-labs/streamingbandit-ui
http://nth-iteration-labs.github.io/ streamingbandit/
http://nth-iteration-labs.github.io/ streamingbandit/
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Figure 2: Screen shot of the default front-end for StreamingBandit.

In the remainder of this article we assume that the reader is running the default Docker
container installation of StreamingBandit, and is using the management front-end for the
administration of experiments. In introducing the details of setting up a policy we describe
the setup and usage of a simple – but very frequently used – policy: ε-first. The code for this
section and the following Sections 2.1, 3.1, and 3.2 is supplied with the package in the default
experiments. It is called ε-first. When this policy is executed a sample of size n interactions is
uniformly randomly allocated to a control (a = control) or treatment (a = treatment) action
(or condition), after which the treatment is adopted if it is more effective than the control
condition. With slight abuse of the notation this can be denoted:

πε-first(D, n) =
{
at ∼ random(control, treatment) if t ≤, n
at = max(r̄control, r̄treatment) otherwise,

(1)

where r̄control denotes the sample average of outcomes observed in the control condition when
t ≤ n, and the last line denotes selection of the action with the highest empirical average
reward when t > n. The management front-end – of which Figure 2 shows a screenshot –
makes it easy to create a new experiment or to use one of the defaults as a starting point for
creating one’s own policies. We present the front-end in more detail in Appendix A. Once the
experiment has been created it receives an exp_id and a key key. This enables the REST
endpoints

http://HOST/getaction/<exp_id>?key=<key>&context={}

and

http://HOST/setreward/<exp_id>?key=<key>&context={}&reward={}&action={}.

The actual functionality is provided by the getaction and setreward code specified when
the experiment is created, whereas the getcontext and getreward codes are useful for simu-
lations and testing. Below we detail each of these in turn for the version of ε-first implemented
in the defaults. Before that we should note that we will denote a few variables and functions
using self inside the code. These variables and functions are denoted with self because
they are part of the experiment class in which the custom code runs. For the most part, we
will only use a reference to self with the following variables and functions:
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• self.context

• self.action

• self.reward

• self.get_theta()

• self.set_theta()

The code for a simple ε-first implementation is as follows:

• getcontext: The canonical ε-first strategy does not consider a context. Hence, we leave
this blank.

• getaction: The implementation of the decision step of ε-first is:

n = 100
mean_list = base.List(self.get_theta(key = "treatment"),

base.Mean, ["control", "treatment"])
if mean_list.count() >= n:

self.action["treatment"] = mean_list.max()
self.action["propensity"] = 1

else:
self.action["treatment"] = mean_list.random()
self.action["propensity"] = 0.5

This code uses a number of libraries implemented in StreamingBandit: below we detail
each line in turn. First, the sample size of the experiment, n in Equation 1, is set.
The next line of code generates a list of base.Mean objects. This object provides the
functionality to compute streaming updates of sample averages, and the list contains one
such average for each of the possible treatments specified by name, using ["control",
"treatment"]. The self.get_theta() call is used to retrieve θt′ , which in this case
thus contains two base.Mean objects named “control” and “treatment”. A count, n,
and mean reward, r̄, are contained within each base.Mean object.
The resulting mean_list object thus, in this case, contains two base.Mean objects, each
of which contains a mean value and a count that can be updated and manipulated. In
the next lines the total count of the number of observations over all mean elements in
the list is retrieved. If this is larger than n, the treatment with the highest average
value is returned, otherwise a random element of the list is returned. The returned
JSON object when making a call to http://HOST/<exp_id>/getaction?key=<key>
and filling in the correct exp_id and key appears as follows:

{"action":
{"treatment": "control",
"propensity": 0.5},

"context": {}}

where the value of treatment changes randomly as long as n ≤ t.

http://HOST/<exp_id>/getaction?key=<key>
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• getreward: Rewards can be simulated by using a few lines of Python 3 code

if self.action["treatment"] == "control":
self.reward["value"] = np.random.normal(4, 1)

else:
self.reward["value"] = np.random.normal(6, 2)

in which the rewards for the selected action in the decision step are drawn from a normal
distribution (rcontrol ∼ N (4, 1), rtreatment ∼ N (6, 2)).

• setreward: When a reward has been generated, the summary step for the ε-first policy
is implemented as:

n = 100
mean_list = base.List(self.get_theta(key = "treatment"),

base.Mean, ["control", "treatment"])
if mean_list.count() < n:

mean = base.Mean(self.get_theta(key = "treatment",
value = self.action["treatment"]))

mean.update(self.reward["value"])
self.set_theta(mean, key = "treatment",

value = self.action["treatment"])

which again uses the libs.base library. After this the action is retrieved and the as-
sociated mean object is updated using mean.update as long as the exploration phase
is ongoing. The last line stores θt′+1 such that it can be retrieved again for future
decision-making. In this implementation, after the experiment when n > t, θ is no
longer updated. Note that a slightly more elaborate version of this example that facili-
tates propensity scores (see Section 2.1) can be found in the defaults (see Section 1.3).

As stated above, the getcontext and getreward codes are not strictly necessary to use the
implemented policy in field studies; these two snippets of code merely provide the opportunity
to simulate an experiment, a feature that is extremely useful for debugging. In actual evalu-
ations of a policy the data resulting from these calls would be sent by the outside world (e.g.,
via a website or mobile application). However, to demonstrate the utility of the getcontext
and getreward codes, note that a request to the endpoint /eval/<exp_id>/simulate with
parameters N=150, seed=1271246, and verbose=False yields the following JSON response:

{
"theta": {

"treatment:control": {
"n": "52",
"m": "4.0259030511640885"

},
"treatment:treatment": {

"n": "48",
"m": "5.829777419810004"

}
},
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"simulate": "success",
"experiment": "121e3e0aeb"

}

which shows the number of times the treatment and control conditions were selected (n)
and their respective mean reward (m). Although we simulated 150 interactions, the total
number of interactions stored in θ is 48 + 52 = 100 because in the implementation above we
stop updating θ when t > n.

2.1. Additional features
We described the setup and simulation of a simple bandit experiment in the previous section.
The description skipped over a number of useful features of StreamingBandit, which we
address below.

Offline analysis of bandit policies
When we first introduced the getaction endpoint we mentioned the optional return field
propensity. In a number of default policies, the return object contains this propensity pt,
which is the probability of selecting the action at interaction t. By way of an illustration, for
ε-first, as detailed above, the computation of pt is as follows:

pt =
{

0.5 if t ≤ n
1 otherwise

Whenever it is possible to compute these propensities – which is sometimes difficult, such as
when a ∈ R – the default policies include pt. This serves two purposes:

1. When addressing contextual sequential decision problems, and when the probability of
selecting an action depends on the context, the propensity pt can be used for inverse
propensity matching or weighting (Austin 2011) to improve the estimate of the causal
effect of the action by accounting for the contextual covariates (see, e.g., Imbens and
Rubin 2015; Pearl 2009).

2. When pt is included, the logged data of an experiment can be used for the offline eval-
uation of alternative decision policies. This can be attained by using inverse propensity
scoring (ips). Suppose we are evaluating a policy π using a logged dataset containing N
events. The ips estimate of average reward of the policy can be obtained by computing

ips(π) = 1
N

N∑
t=1

1{π(xt) = at}rt/pt

where the indicator is 1 when the action of π matches the action in the logs. Agarwal
et al. (2016) provide a more extensive discussion of the benefits of using offline methods
to evaluate alternative policies.

Advice ID, delayed rewards, and logging
When we described the [POST] exp endpoint we omitted a number of optional parameters
that can be supplied in the JSON object. First of all, we skipped discussion of the advice_id
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parameter. This Boolean indicates whether or not the getaction call should return an
advice_id. When set to True the advice_id parameter enforces a direct link between the
getaction and setreward endpoints. In the example discussed above we were implicitly
assuming that the application consuming the REST API would handle the logic that en-
sures that by the time the setreward endpoint is called, the context, action (including the
propensity), and reward are properly supplied. However, this could be challenging for some
consuming applications. In such cases, setting advice_id = True would require the consum-
ing application to merely specify the advice_id when making a request to the setreward
endpoint; StreamingBandit will merge the actions and context that were provided earlier in
the associated getaction call with the rewards supplied in the setreward call.
When setting advice_id = True, one can also specify a) how long the advice_id will be
retained (in hours). This is useful in some specific applications. In an online advertising
experiment, for example, when a click on an advertisement is not registered within 12 hours
it is extremely unlikely that this will happen in the future; it is more likely that the ap-
propriate call to the setreward with rt = 0 failed to register. Setting delta_hours=12
and default_reward = {"reward":"0"} ensures that after twelve hours the setreward call
associated with the advice_id is automatically executed with a reward of zero. It should
also be noted that although all the examples provided in this paper sequentially execute the
getaction and setreward calls, this is not at all a necessity. However, any bias in a (learn-
ing) model that might originate from, e.g., a delay in the arriving data in the setreward calls
should be explicitly handled by the user.
Finally, we have not yet discussed the hourly_theta Boolean: if this is set to True when
creating the experiment, the state of θ will be logged every hour. Calling stats/<exp_id>/
hourlytheta with parameter limit returns the last k of these snapshots of θ, which could
be useful for monitoring the progress of an experiment over time.

The nesting of policies

In addition to the libraries described earlier, and the methods for storing and retrieving data
self.get_theta() and self.set_theta(), there are a number of methods available to the
user from the code supplied in the getaction and setreward fields. The most interesting of
these is the ability to instantiate other experiments within a running experiment. By way of
illustration, the code

experiment = Experiment(exp_id = <exp_id>)
self.action = experiment.run_action_code(context = self.context)

can be used to run the getaction code of the experiment with exp_id=<exp_id> from another
experiment. Similarly, experiment.run_reward_code() would execute the setreward code
for another experiment. This allows the user to nest different experiments, and hence to
essentially use a sequential decision policy π∗ to decide from among a range of policies that are
being executed π1,...,k. We provide a working example of this policy nesting in the Section 3.6.

2.2. Performance

To examine the performance of our RESTful API we set up an Ubuntu 16.04 x64 quad-
core virtual server with 16GB of RAM running the StreamingBandit server, and additionally
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Figure 3: Latencies of basic Tornado calls when taxed by wrk2 at a maximum through-
put of 100 (Tornado_R100) versus 500 (Tornado_R500) calls per second (cps), as com-
pared to StreamingBandit “AB test” (AB_GetSet_R100, throughput limited at 100 cps)
and empty getaction/setreward calls (with Empty_GetSet_100, Empty_GetSet_200,
Empty_GetSet_300 at respectively 100, 200 and 300 cps).

installed the wrk2 load generator on a smaller (single core, 1GB RAM) Ubuntu 16.04 x64
machine connected to the same subnet within the same datacenter. We chose wrk2 (Tene
2015) as our load generator, as it is a HTTP benchmarking tool that is capable of generating
significant load when run on a single CPU, and can easily be extended to test different
RESTful HTTP methods through the use of Lua (Ierusalimschy 2016) scripts.
To ensure that our load tests would not be hampered by OS related limitations we optimized
sysctl.conf on both machines, turning off disk swapping, upping the number of connections
per port, and optimizing port reuse. We also tested our client-server throughput with iPerf3
(The iPerf Authors 2016). These tests indicated a throughput of 736 Mbits/s – more than
enough bandwidth to safeguard against system-level I/O bottlenecks interfering with our
API-level tests.
On completion of our test-bed we proceeded to run several wrk2 load tests, focusing on
industry-standard API performance measures (De 2017). The results for a single wrk2 thread
running 100 concurrent AB test getaction calls at a time with a throughput limit of 1000
requests per second were the following:

• Average, max and standard deviation of latency: 21.09ms, 90.56ms, 13.22ms

• Throughput, in requests per second: 100 (equal to max set wrk2 throughput)

• Top total CPU utilization: 69% (Of which: Python 3 65% of one of four available CPU’s)

• Top Heap memory utilization: 3%

When we compared these numbers against some representative Python web framework bench-
marks (Klenov 2015) we found that StreamingBandit could hold its own. Still, to obtain a
more objective measure of how “empty” versus “AB test” StreamingBandit getaction calls
measure up to basic, vanilla Tornado requests, we compared these as well. The results, as
illustrated in Figure 3, demonstrate that StreamingBandit adds little overhead to basic Tor-
nado processing, and scales well up to 250 to 300 requests per second when running on a
single virtual CPU core. The relatively minor increment in throughput and latency between
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the “empty” and the “AB test” experiments further indicates that StreamingBandit offers
sufficient capacity to implement more complex experiments.

3. Examples of the implemented policies
In the following we work out a number of different (C)MAB policies. First, we present a
simple implementation of ε-greedy (Sutton and Barto 1998), then we introduce Thompson
sampling for the canonical k armed Bernoulli bandit (Thompson 1933), and for optimal design
in between-subject experiments (Kaptein 2014). We proceed by demonstrating two possible
policies to deal with the continuum-bandit problem (problems in which a ∈ R): Bootstrap
Thompson sampling for a CMAB problem using a simple linear model (Eckles and Kaptein
2014) and lock-in feedback (LIF, Kaptein and Ianuzzi 2016). We further demonstrate how
StreamingBandit can be used to nest multiple policies, and show how StreamingBandit can
be used to evaluate multiple policies in parallel using the offline evaluation method proposed
by Li et al. (2011). This latter approach is, to the best of our knowledge, novel. All of the
implementations discussed in this section can be found in the defaults (see Section 1.3).

3.1. E-greedy

One frequently used policy is called ε-greedy (Sutton and Barto 1998). It is implemented
in a simple problem consisting of a control and a treatment arm, as we considered when
we introduced ε-first, by playing the arms uniformly randomly with some probability ε, and
selecting the hitherto best-performing arm with probability 1− ε. The same getcontext and
setreward codes as in our ε-first example above are used to implement ε-greedy, as follows:

• getaction:

e = .1
mean_list = base.List(self.get_theta(key = "treatment"),

base.Mean, ["control", "treatment"])
if np.random.binomial(1,e) == 1:

self.action["treatment"] = mean_list.random()
self.action["propensity"] = 0.1*0.5

else:
self.action["treatment"] = mean_list.max()
self.action["propensity"] = (1-e)

Where, contrary to our ε-first example, we explicitly include the computation of the
propensity pt.

• setreward: The summary step for the ε-first can be implemented as:

mean = base.Mean(self.get_theta(key = "treatment",
value = self.action["treatment"]))

mean.update(self.reward["value"])
self.set_theta(mean, key = "treatment",

value = self.action["treatment"])
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which is the same as for ε-greedy except for the fact that the respective means are
updated at each interaction t instead of n < t.

Running a simulation with n = 1000 and seed = 1271246 gives:

{
"theta": {

"treatment:control": {
"n": "70",
"m": "4.011771491758239"

},
"treatment:treatment": {

"n": "930",
"m": "5.9609857188253015"

}
},
"simulate": "success",
"experiment": "3ea45886b5"

}

in which it is clear that the treatment arm is preferred.

3.2. Thompson sampling for the K-armed Bernoulli bandit

As our second example we provide the code to implement Thompson sampling for the classical
Bernoulli bandit problem where the rewards are either 0 or 1, and for each arm k = 1, . . . ,K
the probability of success (reward = 1) is µk (Kaufmann, Korda, and Munos 2012b). Thomp-
son sampling is a Bayesian policy in which one selects an action with a probability that is
proportional to one’s posterior belief that the action is optimal (see Kaufmann et al. 2012b,
for details). In the Bernoulli reward case the Beta(α, β) distribution provides a convenient
a priori choice in that after observing a Bernoulli trial the posterior distribution is simply
Beta(α+ 1, β) in the case of success, and Beta(α, β + 1) in the case of failure. Using Sk and
Fk to denote the number of failures and successes for arm k, both of which are 0 at the start,
Thompson sampling proceeds as follows; at each interaction t,

1. for each arm k = 1, . . . ,K, sample dk(t) from Beta(Sk + 1, Fk + 1),

2. select arm k(t) = arg maxk dk(t),

3. and if rt = 1 then Sk = Sk + 1 or when rt = 0 then Sk = Sk + 1.

Thompson sampling for the 4-arm Bernoulli bandit problem can be implemented as follows:

• getcontext: The Bernoulli bandit does not consider a context; we leave this field blank.

• getaction: The decision step, using the libs.thompson library, can be implemented
using:
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propl = thmp.BBThompsonList(self.get_theta(key = "treatment"),
["1","2","3","4"])

self.action["treatment"] = propl.thompson()
self.action["propensity"] = propl.propensity(self.action["treatment"])

where the four arms are indexed using the numbers 1− 4.

• getreward: Bernoulli rewards can be simulated using:

self.reward["value"] = np.random.binomial(1,
(0.2*int(self.action["treatment"])))

which produces Bernoulli rewards with a probability of 0.2, 0.4, 0.6, 0.8 for the four arms
respectively.

• setreward: Finally, the updates of the posterior distributions are implemented using

prop = base.Proportion(self.get_theta(key = "treatment",
value = self.action["treatment"]))

prop.update(self.reward["value"])
self.set_theta(prop, key = "treatment",

value = self.action["treatment"])

Running a simulation with n = 1000 and seed = 1271246 gives:

{
"theta": {

"treatment:1": {
"p": "0.14285714285714288",
"n": "7"

},
"treatment:4": {

"p": "0.8025404157043878",
"n": "866"

},
"treatment:2": {

"p": "0.20000000000000004",
"n": "10"

},
"treatment:3": {

"p": "0.5982905982905986",
"n": "117"

}
},
"experiment": "1de9753f51",
"simulate": "success"

}

Which demonstrates that arm 4 is clearly, and correctly, preferred.
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3.3. Thompson sampling for optimal design

Another example that could have practical relevance in social-science experiments is pre-
sented in Kaptein (2014): when running an experiment comparing two groups that receive
different treatments, assuming unequal variances in the observed continuous outcomes, it is
beneficial to allocate a larger number of subjects to the treatment with the highest variance
to increase the precision in the obtained effect-size estimate. The Thompson sampling policy
to implement this sequential allocation is to compute – using a normal-inverse χ2 model –
the posterior variances σ2

1 and σ2
2 of the two treatments in the summary step. Next, in the

decision step, a draw d from each of the two posterior distributions σ2
1 and σ2

2 is obtained
and the treatment is selected for which d

n , where n denotes the number of subjects allocated
to the respective treatment, is highest. This choice leads to the largest reduction in the esti-
mated standard error of the mean difference between the two groups. We refer the interested
reader to Kaptein (2014) for details. This sequential allocation scheme can be implemented
In StreamingBandit using:

• getcontext: Left blank as no context is considered

• getaction: In the summary step, we retrieve a list of two variance objects one for each
treatment. Variance objects, and the ability to update these online, are included in base
library. Next, we implement Thompson sampling on the level of the posterior variances
of the outcomes; this is included in the libs.thompson library:

varList = thmp.ThompsonVarList(self.get_theta(key = "treatment"),
["control","treatment"])

self.action["treatment"] = varList.experimentThompson()

• getreward: To simulate outcomes with unequal variances we can use:

if self.action["treatment"] == "control":
self.reward["value"] = np.random.normal(0, 1)

else:
self.reward["value"] = np.random.normal(1, 5)

• setreward: And finally, we update the respective posterior variance when new obser-
vations arrive:

var = base.Variance(self.get_theta(key = self.action["treatment"]))
var.update(self.reward["value"])
self.set_theta(var, key = "treatment", value = self.action["treatment"])

Running a simulation with n = 100 and seed = 43123 gives:

{
"theta": {

"treatment:treatment": {
"s": "1453.3754330265062",
"n": "77",
"x_bar": "0.777831868342291",
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"v": "19.123360960875083"
},
"treatment:control": {

"s": "32.31094303640007",
"n": "23",
"x_bar": "0.032257238191552844",
"v": "1.4686792289272759"

}
},
"experiment": "84b4d7eda",
"simulate": "success"

}

This result highlights two things: First, it is clear that the treatment condition with the
highest variance is indeed selected more often. This is the expected behavior to ensure that
the precision of the estimate is increased. Second, the result demonstrates the internals of
the base.Variance object: to compute a variance in a data stream we maintain a count (n),
a mean (m), and the numbers s and v; of these v is the current sample variance, whereas s
in an auxiliary variable used to implement Welford’s method for computing a variance online
(Welford 1962).

3.4. Bootstrap Thompson sampling
Bootstrapped Thompson sampling (BTS) is a recent approach devised to address CMAB
problems (see, e.g., Eckles and Kaptein 2014; Osban and Roy 2015). The basic idea behind
BTS is that instead of using a draw from the posterior distribution of the parameters of
interest to decide on the next allocation, as is the case in previous Thompson sampling
examples, one can maintain, online, a number of bootstrapped estimates of the parameters.
These bootstrapped estimates can then be used to balance exploration and exploitation by
randomly selecting one of the bootstrap replicates (see Eckles and Kaptein 2014, for details).
StreamingBandit implements this sequential allocation scheme quite generally using the double-
or-nothing bootstrap (Owen and Eckles 2012). The appeal of BTS compared to traditional
Thompson sampling is that a) it can be fully carried out online as long as the point estimates
of interest can be obtained online, and b) it can be used in many situations in which obtaining
draws from the true posterior density of interest is computationally difficult. Here we provide
a simple example of the implementation of BTS using a linear model to relate the actions,
the contexts, and the rewards.
For ease of exposition, let us consider a practical example. Suppose we are concerned with
choosing a price (the action) of a product sold online such that the revenue is maximized
(the reward). Let us further assume that we believe the relation between these two quantities
is quadratic, and that we think the optimal sales price differs between new customers and
returning customers. The following code implements this scenario such that it can be
simulated:

• getcontext: The get context code simulates the visit of either a new or a returning
visitor.

self.context["customer"] = random.choice(["new", "returning"])
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• getaction: Next, the get action code, which is slightly more involved, uses the lm
library to instantiate m = 100 linear models of the form

revenue ∼ β0 + β1price + β2price2 + β3new +
β4price ∗ new + β5price2 ∗ new.

Here, the starting values of the model β’s are initially set to zero. The BTS object
maintains m = 100 of these models, whereas the remaining code samples one of these
m = 100 models and computes the price that maximizes the expected revenue given
the current customer and the current state of the parameters. We add comments to the
code to improve readability:

# Instantiate BTS with m=100 samples:
BTS = bts.BTS(self.get_theta(), lm.LM, m = 100, default_params = \

{'b': np.zeros(6).tolist(), 'A' : np.identity(6).tolist(), 'n' : 0})

# Return one of the m samples:
model = lm.LM(default = BTS.sample())

# Retrieve its coefficients:
betas = model.get_coefs()

# Create dummy for customer
if(self.context["customer"] == "returning"):

customer = 1
else:

customer = 0

# Maximize the function
if betas[2] != 0 or betas[5] != 0:

x = ( (-(betas[1] + betas[4] * customer)) /
(2*(betas[2] + betas[5] * customer)) )

x = np.asscalar(x)
if x < 5 or x > 20:

x = np.random.uniform(5,20)
else:

x = np.random.uniform(5,20)

# Return the price
self.action["price"] = x

Note that we restrict the prices to be between 5 and 20, such that if BTS needs some
more exploration, it will not go towards extreme values, which may happen if a linear
model is selected that has no parabola – in a field experiment you might want not have
your prices restricted to certain ranges as well.

• getreward: In the get reward code we use a logistic function to simulate the probabilities
of accepting or rejecting the product at the offered price for different customer types.
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# Get parameters
# Create dummy for customer
if(self.context["customer"] == "returning"):

customer = 1
else:

customer = 0
price = self.action["price"]

# Create logistic function
logistic = lambda x: 1 / (1 + numpy.exp(-x))

# Compute purchase yes / no
buy = numpy.random.binomial(1,

logistic(-0.1 * (price - (10+4*customer))**2))

# Compute the reward
self.reward["revenue"] = buy * price

Here it is clear that new customers are more inclined than returning customers to buy
for higher prices, the revenue-maximizing price being ≈ 10.9 for new customers, and
≈ 14.7 for returning customers.

• setreward: Finally, after generating the reward, the summary step for this policy can
be implemented as follows:

# Extract values:
# Create dummy for customer
if(self.context["customer"] == "returning"):

customer = 1
else:

customer = 0
price = self.action["price"]

# Create feature vector and response:
X = [1, price, price**2, customer, customer*price, customer*price**2]
y = self.reward["revenue"]

# Instantiate the m = 100 lm models
BTS = bts.BTS(self.get_theta(), lm.LM, m = 100, default_params = \

{'b': np.zeros(6).tolist(), 'A' : np.identity(6).tolist(), 'n' : 0})

# Update the model parameters using the new observation
BTS.update(y, X)

# Store the updated values
self.set_theta(BTS)

To illustrate the outcomes of this sequential allocation scheme we run a simulation with
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Figure 4: Overview of the selected prices of BTS with m = 10 and N = 1000 for both
returning and new customers (separate lines).

N = 1000 and seed = 43123 setting the “log results” to True. Next, using the logged data,
we plot the selected prices for each of the customer types separately. Figure 4 shows the
progression of the recommended prices for each customer type; it is clear that these display
a lot of exploration behavior early in the data stream, but after about 100 observations the
BTS policy seems to exploit more and settles on a price that is close to the maximum in a
large number of the interactions.

3.5. Lock-in feedback

Picking a price was considered the intended action in the previous example. Hence, in this
case at ∈ R. This so-called continuum bandit problem (Bubeck, Munos, and Stoltz 2011)
has many practical applications. Here we provide an example of an alternative strategy for
selecting the actions in such a setting. The term “lock-in feedback” has been coined for this
policy, which is described in detail in Kaptein and Ianuzzi (2016). The basic idea of the policy
is to oscillate the values of the actions at a known frequency and to amplify this frequency
in the observed rewards. Next, the noise can be integrated out, which produces a result that
– given mild assumptions regarding the function relating the reward and the action, which
we denote r = f(a) – is directly proportional to the first derivative of f(). Subsequently,
this first derivative can be applied, using a gradient-ascent-type algorithm, to move a step
towards the maximum of f().2

Lock-in feedback is appealing because the experimenter does not need to specify f() explicitly
– as we did in the previous example – and the allocation policy has proved to be robust in
cases of concept drift (e.g., a situation in which f() changes over time). Lock-in feedback can

2Note, however, that lock-in feedback does not attain asymptotically optimal performance due to its con-
stant exploration.
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be implemented as follows:

• getcontext: For the sake of simplicity we consider a case without contextual informa-
tion.

• getaction: The implementation of the decision step lock-in feedback is relatively simple
using the lif library:

theta = self.get_theta(all_float = False)
Lif = lif.LiF(theta, x0 = 3.0, a = 0.5, t = 20, gamma = 0.02,

omega = 1.0, lifversion = 1)
suggestion = Lif.suggest()
self.action["x"] = suggestion["x"]
self.action["t"] = suggestion["t"]
self.action["x0"] = suggestion["x0"]

where we refer to the lif documentation at http://nth-iteration-labs.github.
io/streamingbandit/ for details regarding the parameters of the lif method.

• getreward: Rewards can be simulated as follows:

x = self.action["a"]
self.reward["r"] = -1 * pow((x - 5), 2)

where clearly the highest reward is obtained when a = 5.

• setreward: Finally, the summary step can be implemented using

theta = self.get_theta(all_float = False)
Lif = lif.LiF(theta, x0 = 3.0, a = 0.5, t = 20, gamma = 0.02,

omega = 1.0, lifversion = 1)
Lif.update(self.action["t"], self.action["x"], self.reward["r"],

self.action["x0"])
self.set_theta(Lif)

Running a simulation with n = 1000 and seed = 43123 gives:

{
"experiment": "2c070b0c17",
"simulate": "success",
"theta": {

"x0": "4.9885573624026183",
"t": "1000",
"Yw":
"[[981.0, 5.32735516395185, -0.0364325832561265],
[982.0, 4.8625703653723935, 0.0023573471591685955],
[983.0, 4.512596828979011, 0.11280696009422152],
[984.0, 4.599313553861246, 0.06234374986452693],
[985.0, 5.0430128577187805, -0.00010219719086955388],
[986.0, 5.435840666435192, -0.0851018295535888],

http://nth-iteration-labs.github.io/streamingbandit/
http://nth-iteration-labs.github.io/streamingbandit/
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[987.0, 5.416689112014516, -0.07446606113542824],
[988.0, 5.00321866842203, -1.599797646219837e-07],
[989.0, 4.575643921281427, 0.07422661156312545],
[990.0, 4.527110675559689, 0.10305907582127445],
[991.0, 4.902338977243727, 0.0008184672724298606],
[992.0, 5.356344978818639, -0.046745403226967665],
[993.0, 5.471845324305438, -0.10767081744630806],
[994.0, 5.142633922830094, -0.00314257165629084],
[995.0, 4.671518435948291, 0.034171390252964014],
[996.0, 4.491614635071014, 0.128372350733584],
[997.0, 4.7684753555595965, 0.011794462261213126],
[998.0, 5.247511963923335, -0.01586222111864476],
[999.0, 5.488454341053454, -0.11925205127092639],
[1000.0, 5.26974690054797, -0.020460304127878852]]"

}
}

Where Yw and t are internals used to execute the policy, and x0 represents the current
location of the search algorithm; initialized at 3.0 it is, with a value of 4.988 after t = 1000
observations, indeed close to the actual maximum of 5.
The libs.lif library has already been applied successfully in various settings, as described, for
example, in a recent paper investigating the use of the LIF algorithm to optimize scenarios in
behavioral economics (Kaptein et al. 2016a), and in another paper in which LIF is applied to
the optimization of the physical features of an avatar in multiple dimensions in response to a
continuous stream of ratings, provided by the participants of the experiment (Kaptein et al.
2016b). In both settings, LIF proved admirably capable of finding, and locking into, optima
– despite the considerable noise often inherent in such human-choice-related studies. Hence,
StreamingBandit was used successfully in these settings to allocate, in real-time, experimental
treatments to subjects in a social-science study.

3.6. Nesting of policies
A further interesting use of StreamingBandit relates to the ability to nest multiple policies;
this allows the user to, e.g., use an ε-greedy strategy to decide between the use of lock-in
feedback and BTS, as presented above. Here we provide an example of this nesting of policies
in which we assume that the user has instantiated two experiments, one implementing ε-first
as described in Section 2, and one implementing ε-first as described in Section 3.1. We can
now setup a third experiment that allocates interactions to either of these two experiments
by referring to their exp_id’s3. This can be achieved as follows:

• getcontext: We do not consider a context in this example

• getaction: Let us assume that we wish to uniformly randomly allocate half of our inter-
actions to the ε-first experiment, and half of our interactions to the ε-greedy experiment.
This can be done using:

3Note that including a non-existent exp_id leads to errors in running the code. StreamingBandit does not
explicitly check for such errors inside the code of the user. We have implemented an implicit call that can be
used to check if the experiment is valid by using exp_nested.is_valid().
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id1 = "275fc0a66" # The exp_id of E-First
id2 = "18aec502c2" # The exp_id of E-Greedy

choice = np.random.binomial(1, 0.5)

# Run the e-first experiment
if choice == 0:

exp_nested = Experiment(exp_id = id1)
self.action = exp_nested.run_action_code(context = {})
# We return the experiment number for later use
self.action["experiment"] = id1
# We re-compute the propensity based on the probability of picking
# the nested experiment
self.action["propensity"] = self.action["propensity"] * 0.5

# or, run the e-greedy experiment
else:

exp_nested = Experiment(exp_id = id2)
self.action = exp_nested.run_action_code(context = {})
self.action["experiment"] = id2
self.action["propensity"] = self.action["propensity"] * 0.5

• getreward: Rewards can be simulated using the code we also introduced in Section 3.1.

• setreward: The summary step for these nested experiments can be implemented using:

# Based on the exp_id we know which experiment to update
exp_id = self.action["experiment"]

exp_nested = Experiment(exp_id = exp_id)
exp_nested.run_reward_code(context = self.context,

action = self.action, reward = self.reward)

Which simply, based on the supplied exp_id, updates the correct experiment.

Running a simulation with n = 2 and seed = 13214, and the output set to verbose, gives:

{
"data": {

"0": {
"theta": {},
"context": {},
"reward": {

"value": 4.439687566610595
},
"action": {

"propensity": 0.45,
"experiment": "18aec502c2",
"treatment": "treatment"
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}
},
"1": {

"theta": {},
"context": {},
"reward": {

"value": 7.559583564021055
},
"action": {

"propensity": 0.25,
"experiment": "275fc0a66",
"treatment": "treatment"

}
}

},
"experiment": "1c57b6d641",
"simulate": "success"

}

Which shows that in the first interaction ε-greedy was selected, which subsequently selected
the treatment arm, and in the second interaction ε-first was selected. Obviously, this func-
tionality can be greatly extended to use any sequential decision policy to decide between any
other policy. This nesting makes StreamingBandit a versatile tool; we illustrate a practical
application of the nesting in Section 3.7.

3.7. Parallel evaluation of multiple policies

Whereas the nesting discussed in the previous section allows one to allocate different interac-
tions to different policies, the example we provide here allows one to evaluate, using a measure
of average reward for example, multiple bandit policies in parallel. The idea behind the par-
allel evaluation derives from recent work on the offline evaluation of bandit policies. Li et al.
(2011) show that one can evaluate multiple bandit policies offline by simply running through
an existing data set of actions and rewards obtained using uniform random selections of the
actions. For each interaction t in the offline data set one uses a bandit policy to generate
a proposal action a′t, and if the randomly selected action at that point in time matches the
proposal (thus a′t = at), then the reward is used to update the estimated performance of the
policy. If not, then the time point is discarded. This leads to an evaluation of the policy with
an expected number of observations of 1

kT , where k is the number of possible actions and T
the total number of observations in the offline data set. Multiple offline evaluation runs can
subsequently be used to estimate and compare the expected performance of different policies.
Here we extend this idea to the parallel evaluation of multiple bandit policies. The implemen-
tation in StreamingBandit to compare, in parallel, the performance of the ε-first and ε-greedy
experiments as introduced above is surprisingly straightforward:

• getcontext: For simplicity we again consider an empty context.

• getaction: In the decision step an action is chosen at random:
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self.action["treatment"] = random.choice(["control","treatment"])

• getreward: Rewards can again be simulated using the code we also introduced in
Section 3.1.

• setreward: Finally, after generating a reward, the summary step for the parallel eval-
uation of the policies is given below, where we again insert comments in the code to
improve readability:

# Create a list of experiments / policies to evaluate
policies = ["18aec502c2", # E-Greedy

"275fc0a66"] # E-First

# For each experiment
for exp_id in policies:

# Initialize the experiment:
exp_nested = Experiment(exp_id)

# Compute the suggested action:
suggestion = exp_nested.run_action_code(context = {})

# See if the suggested action matches the actual action:
if suggestion["treatment"] == self.action["treatment"]:

# And if so store the performance of the policy:
mean = base.Mean(self.get_theta(key = "policy_means",

value = exp_id))
mean.update(self.reward["value"])
self.set_theta(mean, key = "policy_means", value = exp_id)

# And finally update the policy:
exp_nested.run_reward_code(context = {},

action = self.action, reward = self.reward)

This code implements Algorithm 2 of Li et al. (2011).

Running a simulation with n = 250 and seed = 43123 using the above specification gives:

{
"theta": {

"policy_means:275fc0a66": {
"m": "5.243151928222057",
"n": "114"

},
"policy_means:18aec502c2": {

"m": "6.050783848360902",
"n": "114"

}
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},
"experiment": "270ed59474",
"simulate": "success"

}

This output shows that, in this test run, the average reward of the ε-greedy policy is slightly
higher than that of the ε-first policy. This is due to the fact that ε-first has a random
exploration phase of n = 100. Since both policies now only have had 114 accepted actions,
ε-first will have explored much more than ε-greedy and will choose the suboptimal action
more, resulting in a lower average reward.

4. Applied usage
In this section, we describe some of the practical applications of StreamingBandit. First, we
explore its use in assessing the effects of discounts in online selling; this small, initial trial
highlights the simple use of StreamingBandit to collect data in-the-field. Second, we introduce
its use in a social-science experiment.

4.1. Online marketing

StreamingBandit was used by an online cash-refund company to examine the effects of their
pricing scheme. The company offers customers the opportunity to sign up for a refund pro-
gram. After signing up they are provided with discounts, in the form of a cash refund, as long
as their online purchases are carried out through the online platform. The refund company
has negotiated different agreements with a large number of different e-commerce stores, and
the discount percentages they have obtained vary from store to store. By default, the refund
company offers half of its negotiated discount to the customer, and takes the other half as
a fee for its services. However, it has no clear idea as to whether this 50/50 (or 1

2) split is
optimal in the sense that it maximizes its profit, which is influenced by the total number of
purchases, the size of the purchases, and the way in which the negotiated discount is split
between the company and the customer.
The company set up StreamingBandit to explore the effects of the different splits – in their
definition running from 0 to 1 where 1 means that the total negotiated discount is fully passed
on to the customer and 0 means that all of it is retained by the company – on their resulting
profits. Here we present a simple implementation of the random exploration of different splits
that the company carried out for a very small number of n = 103 unique customers in one
specific store. The implementation was as follows:

• getcontext: Because this is a field exploration, the context was provided by the partic-
ipating company. It consisted of a JSON object containing the maxpercentage, which
contained the negotiated discount for the specific store that was viewed by a customer.
It looked like this:

{"context" : {"maxpercentage" : 8.5}}

where the maxpercentage for the specific store from which our presented data origi-
nated was always 8.5%. However, our implementation described below is able to address
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changing maximum percentage(s) between different stores. Note that this can be sim-
ulated in StreamingBandit using the following getcontext code:

self.context["maxpercentage"] = numpy.random.uniform(1,10)

• getaction: The implementation of the decision step was straightforward since the
company initially set out merely to examine the effects of random fluctuations of the
discounts offered. The implementation was as follows:

maxpercentage = self.context['maxpercentage']
split = np.random.uniform()
discount = split * maxpercentage
self.action['split'] = split
self.action['discount'] = discount

Here, first the maxpercentage is retrieved. Next, a split is computed with split ∼
unif(0, 1), after which the percentage discount to be offered to the customer is computed
and then both the split and the actual discount are returned in the action object.

• getreward: The online platform would display the computed discount to the visiting
customer, and subsequently a reward would be generated by virtue of the customer’s
purchasing one or multiple products resulting in a revenue. The online platform returns
both the revenue as well as the split and discount. This can be simulated using:

self.action['split'] = self.action['split']
self.action['discount'] = self.action['discount']
self.reward['revenue'] = numpy.random.uniform(0,100)

• setreward: Finally, given that the aim of the company was merely to collect data on
the effect of the changing splits, it did not need any setreward code because Stream-
ingBandit automatically logs all the data that is received with a setreward call.

This simple implementation allowed the refund company to vary the split randomly (instead
of using the current de-facto 1

2 split) and to log the resulting revenue.
Figure 5 provides an overview of the relation between the suggested split and the resulting
profit in euros of the refund company. The profit for the rebate-company is defined as the
maximum discount percentage (8.5%) times one minus the split (between 0 and 1), times the
revenue. Each dot represents one completed purchase by one customer (possibly containing
multiple products). Note that we while limit the presented results here to a single e-commerce
store, the store sells multiple products and hence the revenue per customer can vary greatly.
It seems from the limited data of these n = 103 unique customers for a single store that a high
customer-refund offer – but as a result a low margin for the company – leads to low profits,
whereas an offer that is significantly below the current 1

2 split increases the company’s profits.
The company intends to use StreamingBandit, now that the software is integrated into its
current online service, to experiment with different sequential allocation schemes that offer
different splits between competing stores or between different customers. Using the random
data and an adaption of the offline evaluation method developed by Li et al. (2011) (also
described in Section 3.7), the company hopes to find the policy that has the best model fit
on their data. Note that here every step towards solving this statistical decision problem
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Figure 5: Overview of the effect of the offered split of the discount on the profit of the refund
company in euros. Data collected using random selection of the refund percentage using
StreamingBandit. The figure presents data on n = 103 unique customers. The dashed red
line represents the company’s current 1

2 split.

involves using StreamingBandit – from gathering data, to policy evaluation, to the final, live
setting. This provides a simple example of the utility of StreamingBandit for field trials of
bandit policies.

4.2. Social science experiment

The second applied use of StreamingBandit we present concerns a social-science experiment
examining the decoy effect (see Kaptein et al. 2016a, for a full description of the experiment).
In short, the decoy effect states that people may be persuaded to switch from one offer to
another by the presence of a third option (the decoy) that, rationally, should have no influence
on the decision-making process. For example, when asked to choose between a laptop with
a good battery but a poor memory and a laptop with a poor battery but a good memory,
people seem to shift their preference between the two if the offer is accompanied by a third
laptop, the decoy, that has a battery as good as the latter but an even worse memory, and
hence should in any case be an irrelevant option. The placement of the decoy in the product-
attribute space is heavily studied in the literature: researchers manipulate the exact battery
life in hours and the RAM in GB of the decoy laptop, and study the resulting choices that
people make.
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{ 
“context” : 

{ 
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“scenario” : 3

}
}

StreamingBandit

Figure 6: Schematic setup of the 4 StreamingBandit experiments used to realize the data-
collection in (Kaptein et al. 2016a).

Kaptein et al. (2016a) used StreamingBandit to study whether lock-in feedback, the sequential
optimization scheme introduced in Section 3.5, can be used to find the optimal placement
of the decoy – only considering changes on one dimension. The authors considered not only
the laptop scenario but also eight different decoy scenarios. The study was carried out online
using a drupal-based survey, which communicated with StreamingBandit to implement the
allocation of the exact positioning of the decoy. The researchers allocated participants to one
of 3 between-subject conditions using StreamingBandit:

1. Baseline: participants in this condition were presented with a binary choice between
two products, and no decoy was present. This was implemented by sending an action
with {"decoy":"none"} response to the survey front-end.

2. Random: participants in this condition were presented with a random positioning of
the decoy. The range of possible values of the random positioning depended on the
specific scenario, and were hard-coded and retrieved using the scenario supplied in the
context.

3. Lock-in feedback: participants in this condition were presented with a value of the
decoy that depended on the previous interactions of other participants. The lock-in
feedback algorithm was used to suggest a new placement each time a participant viewed
a product. Subsequently, the (binary) choice made by the participant was used to update
the algorithm in the setreward stage. We refer the reader to (Kaptein et al. 2016a) for
details and for the exact settings of the tuning parameters.

Figure 6 presents an overview of the setup of this study. A number of the details of the
implementation are covered in earlier sections of this paper: the implementation of both
the baseline and the random condition are straightforward, with self.action["decoy"] =
"none" and self.action["decoy"] = np.random.uniform(low,high), respectively, as the
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core getaction implementations. In the latter implementation the low and high bounds
were implemented as a simple list indexed by the scenario number. Finally, the lock-in
feedback condition was implemented as presented in Section 3.5, the only exception being
that the theta was stored independently for each scenario. Hence, the novel part of the
implementation of this study is the persistent allocation of participants to one of the three
conditions; this was achieved in experiment 1 in Figure 6 by using the following getaction
code:

if not("condition" in self.get_theta("user_id", self.context["user_id"])):
self.action["note"] = "First allocation"
draw = random.choice(["baseline", "random", "lockin"])
self.set_theta({"condition":draw}, "userid", self.context["userid"])

self.action["condition"] =
self.get_theta("userid", self.context["userid"])["condition"]

which assigns participants randomly to one of the three conditions persistently based on the
user_id supplied in the context to the getaction call.4 The data resulting from this exper-
iment are available at https://doi.org/10.7910/DVN/FCHU0J. This field implementation
provides a prime example of the use of StreamingBandit both for the allocation of partici-
pants to conditions in (web based-) experiments, as well as in sequential decision policies such
as lock-in feedback in such experiments.

5. Conclusion and future work
This paper presented StreamingBandit a RESTful web application that enables researchers
to develop, evaluate, and deploy CMAB policies in online experiments and field studies. By
making StreamingBandit publicly available we hope to contribute to the more extensive use
of such policies to solve statistical decision problems. The software could help in extending
the currently prevailing use of basic random assignment to the use of more refined strategies
throughout the social and medical sciences. To that effect, we started out with a clarification
of the design rationale behind StreamingBandit. We explained our decision to split up the
summary and the decision step of a policy – a split meant to encourage the implementation
of computationally efficient online policies. We subsequently illustrated StreamingBandit’s
versatility and flexibility in a number of examples, and we concluded with two case studies
in which we used StreamingBandit to run field experiments.
We are currently aware of a number of limitations of StreamingBandit. First, as of now,
StreamingBandit still runs single-threaded. Although parallelization for larger-scale appli-
cations ought to be relatively easy to implement on the level of policies, it may prove sub-
stantially harder within policies. Nevertheless, by forcing policies online by design, and using
state-of-the-art web technology for its back end, StreamingBandit is already more than ca-
pable of being deployed in a multitude of small-to-medium-sized field trials. We are of the
opinion that parallelization is an obvious next step in StreamingBandit’s development, en-
suring its future scalability.

4Note that the actual implementation in the study differed slightly to allow for unequal sample sizes in each
of the conditions. In addition, the baseline and random conditions where manually removed after sufficient
data had been collected.

https://doi.org/10.7910/DVN/FCHU0J
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Second, in some applications we find that certain types of reward manifest themselves faster
than others. In one instance of the use of StreamingBandit, for example, the decision to reject
a loan to a customer after an application had been submitted to the firm was much faster
than the decision (and subsequent confirmation) to accept the customer. Such an asymmetric
delay might bias learning and thus needs to be addressed. Currently, we do not provide an
off-the-shelf solution to this problem – admittedly because it is thus far unclear to us how to
address the problem in general – hence users will need to resort to custom implementations
of the getaction and setreward codes to deal with this issue.
Finally, our current CMAB libraries and toolkit still offer ample room for improvement and
extension. Outside of the currently implemented methods, there are many more policies that
address the exploration-exploitation trade-off in various settings. In that respect, we hope and
expect the open-source nature of StreamingBandit to be conducive to the continued growth of
the platform, encouraging researchers to implement, test, and disseminate new and existing
bandit policies and algorithms.
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A. Setting up an experiment

This appendix introduces the front-end of StreamingBandit.5 We will how show to get from
the login screen to setting up your first simulation using one of the default experiments.

First, when you have set up the front-end (using, e.g., the available Docker container), go to
the login screen in your browser (for the Docker container this would be http://localhost
or the Docker-set IP address) as shown in Figure 7.

After logging in, you will find the dashboard as in Figure 8. To show all the active experiments,
click on Experiments. This will bring you to an environment as shown in Figure 10. Continue
clicking on the Create button, which will give you an empty Create Experiment field, as in
Figure 10.

On the creation page you can fill in a name, for example E-First, and select a default
experiment from the Use experiment template list. Selecting the default ε-first experiment,
will end up with a filled-in form, as in Figure 11. Next, clicking on the Save button will save
the experiment in the database.

When the experiment has been created the dashboard (Figure 12) shows that the experiment
is active and has an ID and key assigned. Clicking on the Edit button will take you back to
the settings of the experiment. Now you can choose to go to the Simulate tab as displayed
in Figure 13. After filling in 1000 for the number of iterations and 43123 as the seed you
can click Run a simulation of the experiment, which will give a result as in Figure 14.
Finally, you can click on the Theta tab and inspect the parameters that are stored in the
database (Figure 15). Here you can also download the data that has been logged for the
current experiment.

Figure 7: The login screen. Here you can set the URL for the back-end and login.

5Which can be found at https://github.com/Nth-iteration-labs/streamingbandit-ui.

http://localhost
https:// github.com/Nth-iteration-labs/streamingbandit-ui
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Figure 8: The dashboard of StreamingBandit, here you can navigate to the list of experiments
and find some extra information.

Figure 9: This screenshot shows an empty list of experiments. You can start creating an
experiment by clicking on the Create button.
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Figure 10: This is an empty form for an experiment, which is normally shown inside the
dashboard. Here you can type a name, choose a default and edit the code for the experiment.
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Figure 11: We have selected the E-First template, which is automatically filled in the correct
fields. Pressing the Save button will create the experiment.
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Figure 12: If you return to the dashboard you can view and edit your newly created experiment
(and the associated ID and key).

Figure 13: Here you can see the simulation panel, which you can use to easily run a simulation
of the experiment. You can set the speed and the the number of iterations, log the results to
the database and even show verbose results. Click Run a simulation of the experiment
to run a simulation and get an output of the results.
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Figure 14: Run a simulation and look at the output of the results.

Figure 15: The theta panel shows the current state of θ and other information.
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