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Abstract

Empirical Bayes inference assumes an unknown prior density g(θ) has yielded (un-
observables) Θ1,Θ2, . . . ,ΘN , and each Θi produces an independent observation Xi from
pi(Xi|Θi). The marginal density fi(Xi) is a convolution of the prior g and pi. The Bayes
deconvolution problem is one of recovering g from the data. Although estimation of g – so
called g-modeling – is difficult, the results are more encouraging if the prior g is restricted
to lie within a parametric family of distributions. We present a deconvolution approach
where g is restricted to be in a parametric exponential family, along with an R package
deconvolveR designed for the purpose.

Keywords: Bayes deconvolution, g-modeling, empirical Bayes, missing species, R package de-
convolveR.

1. Introduction
Modern scientific technology excels at the production of large data sets composed of a great
many small estimation problems. A microarray experiment, for example, might produce N
one-dimensional Normal theory estimates Xi,

Xi ∼ N (Θi, 1), i = 1, 2, . . . , N, (1)

with the estimation of the Θi’s being the goal. This was the case for the prostate cancer
study pictured in Figure 2.1 of Efron (2010), where there were N = 6, 033 genes, with Xi

measuring a standardized difference between patients and controls for the ith gene.
A Bayesian analysis begins with a prior density g(θ) for the Θi. Inference is based on the
posterior density of Θi given Xi = x,

g(θ | x) = g(θ)p(x | θ)/f(x); (2)

https://doi.org/10.18637/jss.v094.i11
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here p(x | θ) is the density of X given Θ = θ, and f(x) is the marginal density of X,

f(x) =
∫ ∞
−∞

g(θ)p(x | θ) dθ. (3)

In the setting of Equation 1 p(x | θ) is ϕ(x − θ), with ϕ the standard Normal density
exp(−x2/2)/

√
2π.

What if we don’t know the prior density g(θ)? Empirical Bayes methods attempt to estimate
g(θ) from the observed sample X = (X1, X2, . . . , XN ). An estimate ĝ(·) then produces
posterior approximations ĝ(θ | x) from Equation 2. Both ĝ(θ) and ĝ(θ | x) can be of interest
in applied problems.
In the Normal model above, f(x) is the convolution of g(θ) with a standard N (0, 1) density.
The empirical Bayes task is one of deconvolution: using the observed sample X from f(x)
to estimate g(θ). This can be a formidable job. Convergence rates of ĝ to g are notoriously
slow in the general framework where g(θ) can be anything at all (Carroll and Hall 1988).
Efron (2016) showed that parametric models, where g(θ) is assumed to lie in a known ex-
ponential family, allow reasonably efficient and practical estimation algorithms. This is the
“g-modeling” referred to in our title.
Empirical Bayes deconvolution and estimation does not require the Normal model. We might,
for example, have

Xi ∼ Poisson(Θi), (4)

or Xi given Θi Binomial, etc., the only requirement being a known specification of the dis-
tribution p(x | θ) for Xi given Θi. The “Bayes deconvolution problem” is a general name for
estimating g(θ) in Equation 3 given a random sample from f(x).
Empirical Bayes applications have traditionally been dominated by f -modeling where the
probability models for the marginal density f(x), usually exponential families, are fit directly
to the observed sample. Several packages for such estimation are available in R, particularly
as part of the Bioconductor project (Gentleman et al. 2004). Package siggenes (Schwender
2020) implements the approach outlined in Efron (2010) for differential expression of genes;
others, such as baySeq (Hardcastle 2019) and edgeR (Robinson, McCarthy, and Smyth 2010)
use an empirical Bayes approach to estimate the parameter of a Negative Binomial prior or a
dispersion parameter. Our package, deconvolveR, on the other hand, is devoted specifically
to g-modeling.
Section 2 presents a brief review of g-modeling estimation theory, illustrated in Section 3
with a Poisson example relating to the “missing species problem”, a classical empirical Bayes
test case. The main content of this note appears in Section 4: a guide to a new R (R Core
Team 2020) package deconvolveR, for the empirical Bayes estimation of g(θ) and g(θ | x).
Package deconvolveR (Efron and Narasimhan 2020) is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=deconvolveR and
GitHub. Efron (2016) gives a full explanation of the theory and its implementation.

2. Empirical Bayes estimation theory
This section presents a condensed review of the empirical Bayes estimation theory in Efron
(2014, 2016), emphasizing its application as carried out by the deconvolveR package of Sec-
tion 4.

https://CRAN.R-project.org/package=deconvolveR
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An unknown probability density g(θ) (possibly having discrete atoms) has yielded an unob-
servable random sample of independent realizations,

Θi
ind∼ g(θ) for i = 1, 2, . . . , N. (5)

Each Θi independently produces an observed value Xi according to a known family of prob-
ability densities p(x | θ),

Xi
ind∼ p(Xi | Θi). (6)

From the observer’s point of view, the Xi are an independent and identically distributed
(i.i.d.) sample from the marginal density f(x),

f(x) =
∫
T
p(x | θ)g(θ) dθ, (7)

T the sample space of the Θi. We wish to estimate g(θ) from the observed sample X =
(X1, X2, . . . , XN ).
The prior density g(θ) might in general be some mixture of discrete and continuous distri-
butions. Here it will be convenient, both for explanation and computation, to assume Θ’s
sample space T to be finite and discrete,

T =
(
θ(1), θ(2), . . . , θ(m)

)
. (8)

A continuous formulation appears in Remark A1 of Efron (2016), but this is of no advantage
in applications since Equation 8 can always be specified sufficiently finely to capture as much
detail as is possible within the practical limitations of empirical Bayes inference. The support
points θ(j) in Equation 8 need not be equally spaced, and in fact are not in the Shakespeare
example of Section 3. The only downside of unequal spacing is that some care is needed to
give the correct visual impression when plotting ĝ(θ); see Figure 2 in Section 3. In particular,
a “flat prior” won’t have equal weights if the θ(j)’s are unequally spaced.
Choosing T can be a matter of some numerical experimentation, to see if a wider range or
finer grid substantially changes the estimated prior ĝ(θ). For the Normal model (1), the range
of T can be assumed smaller than that of the observed sample X1, X2, . . . , XN , though “not
much smaller” is a good rule of thumb. There is no great penalty for increasing the number
of support points m in Equation 8, but often no great gain either.
Similarly, X , the sample space of the observations Xi, is assumed finite and discrete,

X =
(
x(1), x(2), . . . , x(n)

)
. (9)

This is no restriction since X can be taken to be the entire order statistic of Xi values. (Or,
for continuous situations like Equation 1, the Xi can be discretized by binning.)
In the discrete formulation of Equation 8, the prior g(θ) is represented by a vector g =
(g1, g2, . . . , gm)>. Likewise, the marginal f(x) in Equation 7 has vector form f = (f1, f2, . . . ,
fn)>. Both g and f have nonnegative components summing to 1. Letting

pkj = P
{
X = x(k) | Θ = θ(j)

}
, (10)
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we define the n×m matrix P = (pkj). An advantage of the specifications in Equation 8 and
Equation 9 is that the convolution-type relationship in Equation 3 between g(θ) and f(x)
reduces to matrix multiplication,

f = Pg. (11)

The count vector y = (y1, y2, . . . , yn)>,

yk = #{Xi = x(k)} for k = 1, 2, . . . , n, (12)

is a sufficient statistic for g; it follows a multinomial distribution for n categories, N draws,
probability vector f ,

y ∼ multn(N,f). (13)

G-modeling assumes that g(θ) is a member of a p-parameter exponential family on T , ex-
pressed in the discrete formulation as

g(α) = eQα/c(α), (14)

where Q is an m × p structure matrix, the default choice in deconvolveR being the natural
spline basis ns(T , p); α is the unknown p-dimensional natural parameter vector; c(α) is the
divisor necessary to make g sum to 1. There is no deep mathematical reason for choosing
splines, though their good behavior at the extremes of T helps reduce the volatility of ĝ(θ).
Coordinate-wise, Equation 14 says that

gj(α) = eQ
>
j α/c(α), (15)

Q>j the jth row of Q, with

c(α) =
m∑
j=1

eQ
>
j α. (16)

The log likelihood function l(α) of y is

l(α) =
n∑
k=1

yk log fk(α), (17)

where f(α) = Pg(α). Define

wkj(α) = gj(α) {pkj/fk(α)− 1} , (18)

and let Wk be the m-vector

Wk(α) = [wk1(α), wk2(α), . . . , wkm(α)]> , (19)

for k = 1, 2, . . . , n. (Note that wkj(α) equals gj/k(α) − gj(α) where gj/k(α) indicates the
conditional probability of θ(j) given x(k).)
The score function for α then turns out to be

l̇(α) =
(
∂l(α)
∂α1

,
∂l(α)
∂α2

, . . . ,
∂l(α)
∂αp

)>
= Q>W+(α),

(20)
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where
W+(α) =

n∑
k=1

Wk(α)yk. (21)

The maximum likelihood estimate (MLE) α̂ is found by numerically maximizing l(α) or by
solving l̇(α̂) = 0.
There is also a compact expression for the Fisher information matrix I(α) = Eα{l̇(α)l̇(α)>},

I(α) = NQ>
[
N∑
k=1

Wk(α)fk(α)Wk(α)>
]
Q. (22)

We could take I(α̂)−1 as an estimate of covariance for α̂. However a small amount of
regularization greatly improves the stability of α̂ and its corresponding deconvolution estimate
g(α̂).
Rather than l(α) deconvolveR maximizes a penalized log likelihood

m(α) = l(α)− s(α), (23)

where

s(α) = c0

( p∑
h=1

α2
h

)1/2

= c0‖α‖; (24)

c0 = 1 is the default value in deconvolveR. Standard asymptotic calculations give

cov(α) = {I(α) + s̈(α)}−1 I(α) {I(α) + s̈(α)}−1 (25)

as an approximate covariance matrix of α̂ when α is the true value in model (14). The Hessian
matrix s̈(α) in Equation 25 is calculated to be

s̈(α) = c0
‖α‖

(
I − αα

>

‖α‖2

)
, (26)

I the p× p identity.
Finally, define the p× p matrix D(α) to be

D(α) = diag {g(α)} − g(α)g(α)>, (27)

diag{g(α)} denoting the m × m diagonal matrix with jth diagonal entry gj(α). Then the
approximate covariance matrix of g(α̂) is

cov[g(α̂)] .= D(α)Q cov(α)Q>D(α). (28)

Larger values of c0 shrink g(α̂) more forcefully toward the flat prior g = (1/m, 1/m, . . . , 1/m)
(if T is equally spaced). Looking at Equation 25, a measure of the strength of the penalty
term compared to the observed data is the ratio of traces S(α),

S(α) = tr[s̈(α)]
tr[I(α)] = c0(p− 1)

‖α‖ tr[I(α)] . (29)
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S(α̂) is printed out by deconvolveR, allowing adjustment of c0 for more or less shrinking if
so desired. S(α̂) was quite small in our examples, supporting c0 = 2 as a conservative choice.

3. The Shakespeare data
Word counts for the entire Shakespearean canon appear in Table 1: 14,376 distinct words
were so rare they appeared just once each, 4,343 twice each, 2,292 three times each, with
the table continuing on to the five words observed 100 times each throughout the canon.
We assume that the ith distinct word, in a hypothetical listing of Shakespeare’s complete
vocabulary (not just that seen in the canon), appeared Xi times in the canon, Xi following a
Poisson distribution with expectation Θi,

Xi ∼ Poisson(Θi). (30)

As in Efron and Thisted (1976) we are interested in the distribution of the unseen parameters
Θi, but here based on the g-modeling methodology of Section 2.
The support set T for Θ (8) was taken to be equally spaced on the

λ = log(θ) (31)

scale,
λ = (−4.000,−3.975,−3.950, . . . , 4.500), (32)

with m = 341 support points (a denser grid than turned out to be necessary). Modeling Θ
on a log scale is useful here because rare words, with very small values of Θ, comprise the
bulk of Shakespeare’s vocabulary, as Table 1 suggests.
The sample space X for X (9) was

X = (1, 2, . . . , 100). (33)

(Eight hundred forty-six distinct words appear more than 100 times each in the canon; these
are common words such as “and” or “the” that form the bulk of the canon’s approximately

1 2 3 4 5 6 7 8 9 10

0+ 14376 4343 2292 1463 1043 837 638 519 430 364
10+ 305 259 242 223 187 181 179 130 127 128
20+ 104 105 99 112 93 74 83 76 72 63
30+ 73 47 56 59 53 45 34 49 45 52
40+ 49 41 30 35 37 21 41 30 28 19
50+ 25 19 28 27 31 19 19 22 23 14
60+ 30 19 21 18 15 10 15 14 11 16
70+ 13 12 10 16 18 11 8 15 12 7
80+ 13 12 11 8 10 11 7 12 9 8
90+ 4 7 6 7 10 10 15 7 7 5

Table 1: Shakespeare’s word counts; 14, 376 distinct words appeared once each in the canon,
4, 343 twice each, etc.
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Figure 1: Empirical Bayes deconvolution estimate for Shakespeare word counts. Solid curve is
prior ĝ = g(α̂) is given by Equation 14 and α̂ is the maximum likelihood estimate calculated
from Equation 21; dashed curve is adjusted prior g̃ in Equation 37 correcting for absent zero
counts in Table 1. Vertical green bars are ± one standard error, calculated from diagonal
elements of formula (25).

900,000 total count, but they are of less interest here than those at the rarer end of the Θ
distribution.) Table 1 gives the count vector y, y1 = 14, 376, y2 = 4, 343, etc.
The structure matrixQ (14) was taken to be a natural spline in λ with five degrees of freedom,

Q = ns(T , 5) (34)

in language R, a 341× 5 matrix. Some care is needed in setting the entries pkj of the matrix
P . Letting

p̃kj = e−θ(j)
θ
x(k)
(j)
x(k)!

, (35)

the entries pkj (10) are

pkj = p̃kj

/ 100∑
h=1

p̃hj . (36)

This compensates for the truncated data in Table 1: the zero category – words in Shakespeare’s
vocabulary he didn’t use in the canon – are necessarily missing. (Also missing, less necessarily,
are words appearing more than 100 times each.) The definition in Equation 36 makes column
j of P into the truncated Poisson distribution of X given Θ = θ(j). Function deconv()
in R package deconvolveR was run with y, T , Q, and P as previously specified, and with
regularization constant c0 = 2. The solid curve in Figure 1 plots the entries of ĝ = (· · · ĝj · · · )>
(plotted as continuous curve) versus λj = log(θ(j)). About 45% of the total mass

∑
ĝj = 1

lies below Θ = 1 (λ = 0), indicating the prevalence of rare words in Shakespeare’s usage.
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Figure 2: Estimated posterior densities g̃(θ | x) from Equation 38 for x = 1, 2, 4, 8. (Graphs
shown actually proportional to g̃jpkj/θ(j) to account for the unequal spacing of θ(j).) The
preponderance of small Θ values pulls the mode of g̃(θ | x) below x but less so as x increases.

Forty-five percent is an underestimate. A word with parameter Θi has probability exp(−Θi)
of yielding Xi = 0, in which case it will not be observed. Words with small Θi values are
systematically thinned out of the observed counts. We can correct for thinning by defining

g̃j = c1ĝj
/(

1− e−θ(j)
)
, (37)

c1 the constant that makes g̃ sum to 1. The red dashed curve in Figure 1 shows g̃. This
is a g-modeling estimate for the prior distribution of Θ we would see if there were no data
truncation. It puts 88% of its probability mass below Θ = 1. (See later discussion for some
difficulties with this result.) Equation 37 is by no means obvious. It helps to consider a
simple case: suppose Θ can take on only two possible values, T = {1, 10}, with equal prior
probabilities (in the untruncated situation), say g̃1(1) = g̃2(10) = 0.5. If we begin with some
large number Ñ of draws Xi ∼ Poisson(Θi), we will observe about Ñ/2 from Θ = 10, but
only about 0.632Ñ/2 from Θ = 1 since Xi = 0 is unobservable. That is, we will effectively
have prior weights

g1(1) = 0.632
1 + 0.632 = 0.387 and g2(10) = 1

1 + 0.632 = 0.613.
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Figure 3: Estimated standard errors for components of ĝ in Figure 1. Solid curve from
B = 200 parametric bootstrap replications (39); dashed curve from theoretical formula (25).

The estimated prior g̃ = (g̃1, g̃2, . . . , g̃m) can be used to carry out Bayesian computations for
the Θi parameters, for instance, calculating the posterior probabilities

g̃
(
Θi = θ(j) | Xi = x(k)

)
= ckg̃jpkj , (38)

where pkj is the density in Equation 36 and ck = (
∑
g̃jpjk)−1. The cases x(k) equal to 1, 2,

4, and 8 appear in Figure 2, now graphed versus θ instead of log(θ). (To compensate for the
unequal spacing of the θ(j) values, the graphs are actually proportional to g̃jpkj/θ(j).) The
preponderance of small Θ values seen in Figure 1 pulls the mode of g̃(θ | x) toward zero,
though less so for larger x.
The vertical green bars in Figure 1 indicate ± one standard error for ĝj . These were obtained
as the square roots of the diagonal elements of cov(ĝ) from Equation 28. As a check on the
obtained values, a parametric bootstrap simulation was run: bootstrap count vectors

y? ∼ multn
(
N, f̂

)
(39)

(n = 100, the length of x0, and N = 30, 688, the total number of counts in Table 1) were
obtained, with the maximum likelihood estimation f̂ = f(α̂) replacing f in Equation 13;
then α̂? was computed as the maximizer of

∑
y?k log fk(α) in Equation 17, giving g(α̂?) as in

Equation 14. Finally bootstrap standard errors for the components of ĝ were calculated from
B = 200 simulations. Figure 3 compares the theoretical standard errors from Equation 25
with their bootstrap counterparts. The agreement is quite good in this case. In practice the
bootstrap calculations are usually easy to carry out as a reassuring supplement to the theory.
Looking back at Table 1, it is tempting to ask how many “new” words (i.e., distinct words
not appearing in the canon) we might find in a trove of newly discovered Shakespeare. This
is Fisher’s famous missing species problem.
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Figure 4: Predicted ratio of distinct new words found in t newly discovered Shakespeare
canons, relative to the observed number N = 30, 688 already seen. Bars indicate ± one
standard error, as derived from (28) and (41). Light dashed line shows predictions from
Fisher’s gamma model (43)–(44).

Suppose then that a previously unknown Shakespearean corpus of length t · C were found,
C

.= 900, 000 the length of the known canon. Assuming a Poisson process model with intensity
Θi for word i, the probability that word i did not appear in the canon but does appear in the
new corpus is

e−Θi

(
1− e−Θit

)
; (40)

Equation 40 and definition (37) give, after some work, an estimate for R(t), the expected
number of distinct new words found, divided by N , the observed number of distinct words in
the canon:

R(t) =
m∑
j=1

ĝjrj(t), (41)

rj = e−θ(j)

1− e−θ(j)

(
1− e−θ(j)t

)
. (42)

A graph of Shakespeare’s R(t) function is shown in Figure 4, along with standard error bars
derived from Equation 25. It predicts R(t) = 1, that is a doubling of Shakespeare’s observed
vocabulary, at t = 3.74.
All of this might seem like the rankest kind of statistical speculation. In fact though, formula
(41) performs well in cross-validatory tests where part of the canon is set aside and then
predicted from the remainder. See Thisted and Efron (1987).
Fisher’s original proposal for the missing species problem took the prior g(θ) to be an (im-
proper) gamma density,

g(θ) = cθγ−1e−θ/β . (43)
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This is of form (14), now with prior degrees of freedom p just 2. Applied to Shakespeare’s
word counts, Equation 43 gave maximum likelihood estimates

γ̂ = −0.3954, β̂ = 104.263. (44)

The resulting prediction curve, shown in Figure 4, is nearly the same as that for our five
degrees of freedom spline model.
The missing species problem has an inestimable aspect at its rarest extreme: if Shakespeare
knew 1,000,000 words that he only employed once each in a million canons, these would remain
effectively invisible to us. By taking θ(1) = exp(−4) = 0.018 at (32), our model legislates out
the one-in-a-million cases. It gives a good fit to the data, with

ŷ = N · P ĝ (45)

passing a Wilks’ test for fit to the observed count vector y – so in this sense it cannot be
improved by lowering θ(1).
All of this seems mainly of pedantic interest in the Shakespeare example; less so, however,
in biological applications of the missing species problem, where, for instance, the occurrence
rates of cloned DNA segments can range over many orders of magnitude.

4. A guide to a new package deconvolveR
The R package deconvolveR contains one main function deconv() that handles three expo-
nential families, Binomial, Normal and Poisson directly. Since users may wish to experiment
with other exponential family models or change the details of how Q is normalized, deconv()
also accepts user-specified Q and P matrices in its invocation.
The maximum likelihood estimation is carried out using the non-linear optimization function
nlm() in R with the gradient of the likelihood computed via the theoretical formula in Equa-
tion 20. This has a practical effect in that harmless warnings may be generated during the
optimization. The Hessian, although available, is not used to guide the optimization in the
current version of the software due to numerical considerations.
The package contains a vignette that provides the complete code to reproduce all the results
in this paper with additional details. Below we illustrate its use with examples from the three
main models, first with simulated data for the Poisson and Normal cases, followed by real
data examples using the Shakespeare word count data and an intestinal surgery dataset. We
note that although g has discrete support, we plot it as a continuous curve throughout.

4.1. A Poisson simulation

Suppose the Θi are drawn from a χ2 density with 10 degrees of freedom and the Xi|Θi are
Poisson with expectation Θi :

Θi ∼ χ2
10 and Xi|Θi ∼ Poisson(Θi). (46)

We carry out 1000 simulations each with N = 1000 observations by first generating the Θ
and then creating a 1000× 1000 data matrix.
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θ g(θ) Mean Standard deviation Bias Coefficient of variation

5 5.62 5.44 0.36 −0.12 0.07
10 9.16 9.53 0.49 0.26 0.05
15 4.09 3.34 0.31 −0.07 0.09
20 1.10 0.98 0.22 −0.12 0.23
25 0.23 0.15 0.07 0.06 0.45

Table 2: Simulation results for the Poisson model where the Θi ∼ χ2
10 and Xi|Θi are drawn

from Poisson(Θi) for i = 1, 2, . . . , 1000. The middle 4 columns have been multiplied by 100.
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Figure 5: Standard deviations and biases for the simulated Poisson example. Solid curves are
from the formulas and the dashed curves are from simulation.

R> set.seed(238923)
R> N <- 1000
R> nSIM <- 1000
R> theta <- rchisq(N, df = 10)
R> data <- sapply(seq_len(nSIM), function(x) rpois(n = N, lambda = theta))

Taking the support of Θ to be the discrete set T = (1, 2, . . . , 32), we apply the deconv()
function on each column of the matrix to obtain the estimate ĝ along with a host of other
statistics.

R> tau <- seq(1, 32)
R> results <- apply(data, 2,
+ function(x) deconv(tau = tau, X = x, ignoreZero = FALSE))
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Figure 6: Estimates from g-modeling for a Normal model along with 95% credible intervals
(EB.up and EB.lo). They are a close match to the actual Bayes intervals.

Note the use of the ignoreZero above – here, unlike the Shakespeare example zeros are
observed.
We have once again relied on the default Poisson family and a natural cubic spline basis of
degree 5 for Q. The columns of Q are standardized to have mean zero and sum of squares 1.
The regularization (c0) parameter is left at the default value of 1. We construct a table for
ĝ(θ) and related statistics.

R> stats <- sapply(results, function(x) x$stats$mat[, "g"])
R> mean <- apply(stats, 1, mean)
R> sd <- apply(stats, 1, sd)
R> gTheta <- pchisq(tau, df = 10) - pchisq(c(0, tau[-length(tau)]), df = 10)
R> table1 <- data.frame(theta = tau, gTheta = 100 * gTheta,
+ Mean = 100 * mean, StdDev = 100 * sd, Bias = 100 * bias)

Table 2 shows that the g(θ) estimates are reasonable although the coefficient of variation
grows larger for values of θ in the tails.
Figure 5 compares the empirical standard deviations (obtained from square roots of the
diagonal elements of cov[g(α̂)] in Equation 28) and biases of g(α̂) (obtained using Equation 34
of Efron 2016) for a few chosen values of Θ, which perform well here.

4.2. A Normal model

Next, we consider data generated as follows:

zi ∼ N(µi, 1) where µi =
{

0, with probability .9
N(−3, 1), with probability .1

for i = 1, 2, . . . , 10000. (47)
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Figure 7: A bimodal distribution for θ on the left and a histogram of Zi ∼ N(θi, 1) on the
right.

To deconvolve this data, we specify an atom at zero using the parameter deltaAt which
applies only to the Normal case. Using τ = (−6,−5.75, . . . , 3) and a fifth-degree polynomial
for the Q basis yields an estimated probability for µ = 0 as 0.887±0.009 with a bias of about
−0.006.

R> tau <- seq(from = -6, to = 3, by = 0.25)
R> result <- deconv(tau = tau, X = data$z, deltaAt = 0, family = "Normal")

The density estimates removing the atom at zero are not accurate at all, but the g-modeling
estimates of conditional 95% credible intervals (code included in the package vignette) for µ
given z are a good match for the Bayes intervals as shown in Figure 6.

4.3. A twin towers model

In the previous example, the distribution of θ had a significant atom at 0 and the rest of
the density was smeared around −3. We now consider the case where θ has a bimodal
distribution (included in the package as the dataset disjointTheta). Figure 7 is a histogram
of the the θ alongside a histogram of the data, generated using Zi ∼ N(θi, 1). Figure 8, on
the left, reveals the effect of varying the degrees of freedom of the natural spline basis and
regularization parameter. In this case, a choice of 6 or 7 appears reasonable to capture the
bimodality. The right side of Figure 8 shows the effect of the regularization parameter c0 on
the estimates: larger values for c0 smooth out the ĝ making the bimodality less prominent.
Here S(α̂) can serve as a guide for choosing c0. For varying degrees of freedom, Table 3 shows
the estimates of S(α̂). A choice of c0 ≤ 4 would avoid excessive penalization.
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Figure 8: Estimates ĝ obtained by varying the degrees of freedom for the natural spline basis
and the regularization parameter c0. On the left, the degrees of freedom are varied for c0 = 1
suggesting a value of 6 or 7. On the right the penalization parameter c0 is varied for 7 degrees
of freedom. Larger values of c0 smooth out the bimodality as do smaller degrees of freedom.

4.4. Shakespeare example

The data for the Shakespeare example is included in the package as dataset bardWordCount.
Here, the data is a (truncated) vector of Poisson counts for frequencies of words that appeared
exactly once, twice, etc. all the way to 100. We construct the support set T , equally spaced
on the λ = log(θ) scale and call deconv() as shown below.
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DF c0 = 0.5 c0 = 1 c0 = 2.0 c0 = 4.0 c0 = 8.0 c0 = 16.0 c0 = 32.0

5 0.00 0.00 0.01 0.02 0.07 0.19 0.48
6 0.00 0.00 0.01 0.02 0.07 0.20 0.54
7 0.00 0.00 0.01 0.03 0.07 0.20 0.57

Table 3: Estimates of S(α̂) for the twin towers example from Equation 29 for various values
of c0 using 5, 6, 7 degrees of freedom (column DF) for the natural spline basis.

R> lambda <- seq(-4, 4.5, .025)
R> tau <- exp(lambda)
R> result <- deconv(tau = tau, y = bardWordCount, n = 100, c0 = 2)
R> stats <- result$stats
R> head(stats)

theta g SE.g G SE.G Bias.g tg
[1,] 0.0183 0.00178 0.000151 0.00178 0.000151 0.000142 0.0184
[2,] 0.0188 0.00178 0.000151 0.00356 0.000302 0.000142 0.0180
[3,] 0.0193 0.00178 0.000150 0.00534 0.000452 0.000141 0.0176
[4,] 0.0197 0.00179 0.000150 0.00713 0.000601 0.000141 0.0172
[5,] 0.0202 0.00179 0.000149 0.00892 0.000751 0.000140 0.0168
[6,] 0.0208 0.00179 0.000149 0.01071 0.000899 0.000140 0.0164

R> tail(stats)

theta g SE.g G SE.G Bias.g tg
[336,] 79.4 0.000923 4.75e-05 0.995 2.87e-04 5.20e-06 0.000174
[337,] 81.5 0.000916 5.06e-05 0.996 2.36e-04 4.85e-06 0.000172
[338,] 83.5 0.000910 5.38e-05 0.997 1.82e-04 4.48e-06 0.000171
[339,] 85.6 0.000903 5.73e-05 0.998 1.25e-04 4.11e-06 0.000170
[340,] 87.8 0.000897 6.08e-05 0.999 6.45e-05 3.73e-06 0.000169
[341,] 90.0 0.000891 6.45e-05 1.000 6.49e-11 3.34e-06 0.000168

By default, deconv() assumes a Poisson family and works on a sample at a time. The
invocation above provided the prior support tau = T , the sufficient statistic of counts y
and indicated the support of X via the n = 100 parameter so that X = (1, 2, . . . , 100). The
parameter c0 is the regularization parameter in Equation 24.
The result is a list with a number of quantities, including the MLE α̂, the covariance matrix of
α̂, the matrices P and Q etc. Above, we print the head and tail rows of the stats component
that includes ĝ, cumulative Ĝ, standard errors and biases. But one could also print out the
ratio of traces S(α) of Equation 29 for example.

R> print(result$S)

[1] 0.005534954
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Figure 9: Estimates from g-modeling for a Normal model along with 95% credible intervals.
They are a close match to the actual Bayes intervals.

θ ĝ(θ) SEf SEs Biasf Biass
0.01 12.326 0.870 0.911 −0.482 −0.543
0.12 1.033 0.127 0.135 0.051 0.058
0.23 0.369 0.054 0.061 0.023 0.027
0.34 0.757 0.093 0.091 −0.007 −0.008
0.45 1.113 0.118 0.113 −0.037 −0.036
0.56 0.543 0.102 0.097 0.015 0.016
0.67 0.262 0.046 0.049 0.021 0.024
0.78 0.213 0.053 0.050 0.018 0.018
0.89 0.308 0.052 0.046 0.014 0.013
0.99 0.575 0.158 0.157 −0.010 −0.014

Table 4: Comparison of theoretical and bootstrap estimates of standard error (SE) for the
surgery data using a Binomial model. The subscripts f and s denote formula and simulation
values. All values except the first column have been multiplied by 100.

This indicates that the penalty term c0 = 2 used above is not too big compared to the
observed data.

4.5. Intestinal surgery example

The dataset surg contains data on intestinal surgery on 844 cancer patients. In the study,
surgeons removed satellite nodes for later testing. The data consists of pairs (ni, Xi) where
ni is the number of satellites removed and Xi is the number found to be malignant among
them. We assume a Binomial model with Xi ∼ Binomial(ni, θi) with θi being the probability
of any one satellite site being malignant for the ith patient.
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We take τ = (0.01, 0.02, . . . , 0.09) (som = 99), Q to be a 5-degree natural spline with columns
standardized to mean 0 and sum of squares equal to 1 and the penalization parameter at the
default value 1.

R> tau <- seq(from = 0.01, to = 0.99, by = 0.01)
R> result <- deconv(tau = tau, X = surg, family = "Binomial")

Figure 9 shows the estimated prior density ĝ(θ) with error bars one standard error above and
below. The figure shows a large node near Θ = 0 with a 50% chance of Θ ≤ 0.09 and the
remaining 50% spread out almost evenly over [0.1, 1.0].
As a check on the estimates of standard error and bias provided by deconv(), we compare the
results with what we obtain using a parametric bootstrap. The bootstrap is run as follows.
For each of 1000 runs, 844 simulated realizations Θ̂? are sampled from the density ĝ. Each
gave an Xi ∼ Binomial(ni, Θ̂?) with ni the ith sample in the original dataset. Finally, α̂?
was computed using deconv(). The results are shown in Table 4.

5. Summary
Empirical Bayes estimation exploded into the statistics field around the 1950s as a new
branch of statistical inference. Practical tools have been mostly related to f -modeling where
probability models are proposed for the marginal density f(x) of the data. Empirical Bayes
deconvolution, the problem of estimating the prior g from the data, is harder, with slow
nonparametric rates of convergence (Carroll and Hall 1988). Parametric modeling of g (Efron
2016) from a known exponential family offers a way forward and our package deconvolveR
implements this approach. The examples shown here indicate that it works well for a range
of problems.
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