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Abstract

Optimization plays an important role in many methods routinely used in statistics,
machine learning and data science. Often, implementations of these methods rely on
highly specialized optimization algorithms, designed to be only applicable within a spe-
cific application. However, in many instances recent advances, in particular in the field of
convex optimization, make it possible to conveniently and straightforwardly use modern
solvers instead with the advantage of enabling broader usage scenarios and thus promoting
reusability. This paper introduces the R optimization infrastructure ROI which provides
an extensible infrastructure to model linear, quadratic, conic and general nonlinear opti-
mization problems in a consistent way. Furthermore, the infrastructure administers many
different solvers, reformulations, problem collections and functions to read and write op-
timization problems in various formats.

Keywords: optimization, mathematical programming, linear programming, quadratic pro-
gramming, convex programming, nonlinear programming, mixed integer programming, R.

1. Introduction

Optimization is at the core of inference in modern statistics since solving statistical inference
problems goes hand in hand with solving optimization problems (OPs). As such statisticians,
data scientists, and others who regularly employ computational methods ranging from various
types of regression (e.g., constrained least squares, regularized least squares, nonlinear least
squares), and classification (e.g., support vector machines, convex clustering) to covariance
estimation and low rank approximations (e.g., multidimensional scaling, non-negative matrix
factorization) benefit from advances in optimization, in particular in mixed integer and convex
optimization. For example, Bertsimas, King, and Mazumder (2016) show that, thanks to a
striking speedup factor of 450 billion in mixed integer optimization in the period of 1991–
2015, the NP-hard best subset problem (Miller 2002) can now be solved reasonably fast
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(number of observations in the 100s and number of variables in the 1000s is solved within
minutes). O’Donoghue, Chu, Parikh, and Boyd (2016) introduce the SCS solver for convex
optimization problems, which can be used to solve among others (logistic) regression with l{1,2}
regularization, support vector machines, convex clustering, non-negative matrix factorization
and graphical lasso.
For R (R Core Team 2020), being a general-purpose tool for scientific computing and data
science, optimization and access to highly efficient solvers play an important role. The field
of optimization already has many resources to offer, like software for modeling, solving and
randomly generating optimization problems, as well as optimization problem collections used
to benchmark optimization solvers. In order to exploit the available resources more conve-
niently, over the years many modeling tools have emerged. One of the first systems used to
model linear optimization problems is the so-called mathematical programming system (MPS)
format (see Kallrath 2004). Developed in the 1960’s, the MPS format today seems rather
archaic but it is still widely used to store and exchange linear problems and is supported by
most of the linear optimization solvers. Later, algebraic modeling languages (AMLs; e.g.,
GAMS, Bisschop and Meeraus 1982, and AMPL, Fourer, Gay, and Kernighan 1989) became
available. AMLs are domain specific languages (DSLs) dedicated to optimization. Today
modern optimization systems are typically implemented in high-level programming languages
like Julia (Bezanson, Edelman, Karpinski, and Shah 2017), MATLAB (The MathWorks Inc.
2019), Python (Python Software Foundation 2017) or R. Among the modern optimization
systems, many are DSLs specially suited for convex optimization, such as YALMIP (Löfberg
2004) and CVX (Grant and Boyd 2014) in MATLAB, CVXPY (Diamond and Boyd 2016)
and CVXOPT (Andersen, Dahl, and Vandenberghe 2016) in Python, Convex.jl (Udell, Mo-
han, Zeng, Hong, Diamond, and Boyd 2014) in Julia and CVXR (Fu, Narasimhan, and Boyd
2020) in R. JuMP (Lubin and Dunning 2015) is a DSL implemented in Julia designed for
mixed-integer programming. pyOpt (Perez, Jansen, and Martins 2012) is a Python package
for nonlinear constrained optimization.
Despite R having access to many modern optimization solvers which are capable of solving a
wide class of optimization problems (see, e.g., the CRAN Optimization and Mathematical Pro-
gramming Task View by Theußl, Borchers, and Schwendinger 2020), it is still commonplace
to develop highly sophisticated special purpose code (SPC) for many statistical problems.
The reasons are many. To name but a few: 1) availability, i.e., many solvers have not been
easily available in R, 2) capability, i.e., problems could not be solved due to a lack of adequate
solvers, and 3) efficiency, i.e., SPC tends to be faster.
This paper introduces an extensible object oriented R optimization infrastructure (ROI) pro-
moting the usage of optimization in R and R as a tool for optimization. In doing so it strives
to enable users to formulate problems and experiment with different solvers in a straightfor-
ward way, help researchers to find the appropriate solver for their particular problem, or assist
package developers to streamline their package dependencies. The framework is composed
of package ROI (Hornik, Meyer, Schwendinger, and Theußl 2020) and its (at the time of
this writing) 23 companion packages. Package ROI is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=ROI.
In contrast to DSLs, the ROI package does not aim to create a new language but provides
a modeling mechanism borrowing its strength from the rich language features R has to offer.
Optimization problems are constructed in a consistent way and stored in a single object.
This makes it possible that problems are easily altered (reused) and shared before they are
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passed to a unified solve function. Such problems are then formulated and manipulated
by using the provided R functions instead of special syntax from DSLs for which highly
specialized knowledge would be required. Moreover, we believe that this approach makes
it more attractive to add new solvers to the R solver landscape, e.g., to take advantage of
recent advances in conic optimization (increase availability). Another key feature of ROI
is that it is designed to be extensible. Companion packages equip ROI with state of the
art optimization solvers, benchmark collections and functions to read and write optimization
problems in various formats (increase capability). Furthermore, allowing package developers
to plug-in new solvers quite effortlessly not only makes it easy to use their highly efficient
code for a given problem but possibly also in many other applications (eliminate efficiency
detriments). Currently ROI can be used to model and solve linear, quadratic, second order
cone, semidefinite, exponential cone, power cone and general nonlinear optimization problems
as well as mixed integer problems. This covers many optimization problems encountered in
statistics, machine learning and data science (see, e.g., Koenker and Mizera 2014, for a survey
of convex problems in statistics).
The remainder of this paper is organized as follows: In Section 2 we discuss the basic optimiza-
tion problem classes, with a special focus on the newer developments in convex optimization.
A survey of available R packages concerned with solving these problem classes is given in
Section 3. Sections 4 and 5 show, respectively, how to formulate and solve optimization prob-
lems with the ROI package. Based on the tools presented in the previous sections, Section 6
provides basic examples. Section 7 is dedicated to the extension of ROI. Applications in the
field of statistics are presented in Section 8. Section 9 concludes this paper.

2. Problem classes
Optimization is the process of allocating scarce resources to a feasible set of alternative
solutions in order to minimize (or maximize) the overall outcome. Given a function f0 :
Rn → R and a set C ⊆ Rn we are interested in finding an x∗ ∈ Rn that solves

minimize f0(x)
subject to x ∈ C. (1)

The function f0 is called the objective function. A point x is said to be feasible if it satisfies
every constraint given by the set C of all feasible points defining the feasible region. If C is
empty, then we say that the optimization problem is infeasible. Since maximization problems
can be expressed as minimization problems by just changing the sign in the objective function,
we subsequently will mainly deal with minimization problems.
An OP is called bounded if there exists a finite constant u such that f0(x) > u, ∀x ∈ C, if
such constant does not exist, the problem is unbounded. Thus, a problem like in Equation 1
may or may not have a solution. Given a feasible and bounded problem a vector x∗ ∈ C that
satisfies

f0(x∗) ≤ f0(x), ∀x ∈ C,

is commonly referred to as a solution of the OP.
Since any feasible set C can be expressed by the combination of constraint functions, the OP
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from Equation 1 can be written as:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m, (2)

where b ∈ Rm is the so-called right-hand-side (Nocedal and Wright 2006). The constraints
fi, i = 1, . . . ,m are sometimes referred to as functional constraints (Ben-Tal and Nemirovski
2001; Nesterov 2004). Since any equality constraint can be expressed by two inequality
constraints and vice versa any inequality constraint can be expressed as an equality constraint
by adding additional variables (also called slack variables), it is common practice to define
OPs only in terms of either equality, less than or equal or greater than or equal constraints,
to avoid redundancies.
Equation 2 is also sometimes referred to as the primal problem, which highlights the fact
that there exists an alternative problem formulation, the dual problem. The dual problem is
typically defined via the Lagrangian function (Lagrange duality; Nocedal and Wright 2006).
Several interconnected characteristics exist which determine how efficiently a given OP can
be solved, namely convexity, the functional form of the objective, the functional form of the
constraints and if the variable x is binary, integer, or continuous. An OP as displayed in
Equation 1 is convex, if f0 is convex and the set C is convex. Whereas modern solvers can
efficiently solve a wide range of convex OPs and verify that a global solution (i.e., one as
good or better than all other feasible solutions) was obtained, the same is mostly not true
for non-convex problems (several local optima may exist). More information about convex
programming can be found in, e.g., Boyd and Vandenberghe (2004); Ben-Tal and Nemirovski
(2019).
Based on the functional form of the objective function and of the constraints, OPs can be
divided into linear and nonlinear OPs. Furthermore, the class of nonlinear OPs can be further
subdivided into conic, quadratic and general nonlinear OPs. In the following we give a formal
definition of the different classes of OPs and overview their properties.

2.1. Linear programming

A linear program (LP) is an OP where all fi (i = 0, . . . ,m) in Equation 2 are linear. Thus
an LP can be defined as:

minimize a>0 x
subject to Ax ≤ b, (3)

where x is the vector of objective variables which has to be optimized. The coefficients of
the objective function are represented by a0 ∈ Rn. A ∈ Rm×n is a matrix of coefficients
representing the constraints of the LP. Hence, in accordance with Equation 2, Ax ≤ b could
also be written as a>i x ≤ bi, i = 1, . . . ,m (here a>i refers to the ith row of the coefficient
matrix A). All LPs are convex and usually solved via interior-point or simplex methods. For
more information about the origination and mathematical properties of these methods we
refer the reader to the book of Nocedal and Wright (2006).
A typical statistical problem which falls into this problem class is solving the least absolute
deviations (LAD) or L1 regression problem. Following, Wagner (1959) the objective function

minimize
n∑
i=1
|yi − ŷi|
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where ŷi = β0 + x>i β and xi ∈ Rk, can be expressed as

minimize
β0,β,e+,e−

∑n
i=1 e

+
i + e−i

subject to β0 + β>xi + e+
i − e

−
i = yi, i = 1, . . . , n

e+
i , e

−
i ≥ 0, i = 1, . . . , n.

(4)

2.2. Quadratic programming

A quadratic program (QP) is a generalization of the standard LP shown in Equation 3, where
the objective function contains a quadratic part in addition to the linear term. The quadratic
part is typically represented by a matrix Q0 ∈ Rn×n. Therefore QPs can be expressed in the
following manner:

minimize 1
2x
>Q0x+ a>0 x

subject to Ax ≤ b. (5)

Unlike LPs, not all QPs are convex. A QP is convex if and only if Q0 is positive semidefinite.
A generalization of the QP is the quadratically constrained quadratic program (QCQP):

minimize 1
2x
>Q0x+ a>0 x

subject to 1
2x
>Qix+ a>i x ≤ bi, i = 1, . . . ,m. (6)

A QCQP is convex if and only if all Qi (i = 0, . . . ,m) are positive semidefinite (Lobo,
Vandenberghe, Boyd, and Lebret 1998). Whereas convex QPs or even QCQPs are commonly
solved by reformulations (transformations) to second-order cone programming (SOCP) or
semidefinite programming (SDP; see Section 2.3), the question how to obtain a reliable global
solution for a non-convex QCQP is still an active field of research. Details on the necessary
transformations to cast a convex QCQP into an SOCP or SDP can be found in, e.g., Lobo
et al. (1998); Alizadeh and Goldfarb (2003); Bao, Sahinidis, and Tawarmalani (2011).

2.3. Conic programming

Conic programming refers to a class of problems designed to model convex OPs. The most
prominent members of this class are LP, SOCP and SDP. We follow the common practice to
define a conic program (CP) as:

minimize a>0 x
subject to Ax+ s = b

s ∈ K,
(7)

where the set K is a nonempty closed convex cone.
The standard form of a CP as given in Equation 7 minimizes a linear objective over a convex
cone (b− Ax = s ∈ K). As Nemirovski (2006) points out, representing CPs in this form has
two main advantages. First, this formulation has strong unifying abilities which means only
a few cones allow modeling of many different types of OPs. Additionally, the nonlinearities
are no longer represented by general nonlinear objective and constraint functions but vectors
and matrices which allows the algorithms to utilize the structure present in the convex OPs.
Second, the convexity is built-in into the definition of CPs. At the same time, theoretically,
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any convex OP can be reformulated into the form given in Equation 7. Thereby nonlinear
objective functions are expressed in epigraph form (see, e.g., Boyd and Vandenberghe 2004):

minimize t
subject to f0(x) ≤ t

fi(x) ≤ bi.
(8)

Practically the number of OPs which can be solved via CP is limited by the number of cones
supported by a given optimization solver. State of the art solvers distinguish between up to
eight different types of cones. Following the definitions in Diamond and Boyd (2015) and
O’Donoghue et al. (2016), a convex cone K is typically a Cartesian product from simple
convex cones of the following types.

Zero cone and free cone
The zero and free cones are, respectively, given by

Kzero = {0},Kfree = R = K∗zero,

where for a cone K we write K∗ = {y|x>y ≥ 0 for all x ∈ K} for the dual cone (see, e.g.,
Boyd and Vandenberghe 2004 for more information about dual cones). From Equation 7 it
can be immediately seen, that in the case of linear equality constraints si has to be zero, i.e.,
si ∈ Kzero ⇐⇒ si = bi − a>i x = 0 ⇐⇒ a>i x = bi.

Linear cone (non-negative orthant)
The linear cone is given by

Klin = {x ∈ R | x ≥ 0}. (9)
This cone is used to represent linear inequality (less than or equal) constraints, by requiring
si to be non-negative, i.e., si ∈ Klin ⇐⇒ si = bi − a>i x ≥ 0 ⇐⇒ a>i x ≤ bi.
From the definition of the free cone and non-negative cone, it is apparent that any LP can
be written as a CP where K is a product of free and non-negative cones.

Second-order cone
The second-order cone is given by

Knsoc = {(t, x) ∈ Rn | x ∈ Rn−1, t ∈ R, ‖x‖2 ≤ t}. (10)

This cone is used to model sums of norms as well as convex QPs and QCQPs (Lobo et al.
1998; Alizadeh and Goldfarb 2003). CPs where K is a product of free, non-negative and
second-order cones are commonly referred to as SOCPs.

Positive semidefinite cone
The positive semidefinite (PSD) cone is given by

Knpsd = {X | X ∈ Sn, z>Xz ≥ 0 for all z ∈ Rn}. (11)

Here Sn refers to the space of real-symmetric n× n matrices. CPs restricted to the positive
semidefinite cone are referred to as SDPs. They are commonly used for solving combinatorial
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problems (e.g., maximum cut problem) and for solving convex QPs and QCQPs (Vanden-
berghe and Boyd 1996; Helmberg 2000; Freund 2009; Bao et al. 2011). Lobo et al. (1998)
show that each SOCP can be rewritten as an SDP.

Exponential cone

The primal exponential cone is defined as

Kexpp = {(x, y, z) ∈ R3 | y > 0, ye
x
y ≤ z} ∪ {(x, 0, z) ∈ R3 | x ≤ 0, z ≥ 0}. (12)

Its dual is given by

Kexpd = {(u, v, w) ∈ R3 | u < 0,−ue
v
u ≤ ew} ∪ {(0, v, w) ∈ R3 | v, w ≥ 0}. (13)

As can be inferred from Equation 12, the exponential cone can be used to model expo-
nential functions and logarithms. More details about the exponential cone and functions
representable by the exponential cone can be found in Chares (2009) and Serrano (2015).

Power cone

The 3-dimensional primal power cone has already been investigated in Koecher (1957) and is
defined as

Kαpowp = {(x, y, z) ∈ R3 | x, y ≥ 0, xαy1−α ≥ |z|}, where α ∈ [0, 1]. (14)

Its dual is given by

Kαpowd =
{

(u, v, w) ∈ R3 | u, v ≥ 0,
(
u

α

)α ( v

1− a

)1−α
≥ |w|

}
, where α ∈ [0, 1]. (15)

The power cone can be used to model powers and p-norms. For more information about the
power cone and its modeling capabilities we refer to Chares (2009).
Putting the hierarchies described above all together we get the following ordering among OPs

LP ⊂ convex QP ⊂ convex QCQP ⊂ SOCP ⊂ SDP ⊂ CP.

2.4. Nonlinear optimization

The most general problem class is nonlinear optimization or nonlinear programming (NLP).
This is the problem where at least one fi, i = 0, . . . ,m in Equation 2 is not linear. NLPs are
not required to be convex, which makes it in general hard to obtain a reliable global solution.
Contrary to the convex case, in a non-convex setting most optimization algorithms only find
the extremum of f0 in the neighborhood of the starting value (local optimum).

2.5. Mixed integer programming

A mixed integer program (MIP) adds the additional requirement to the optimization problem
that some of the objective variables can only take integer values. Considering Equation 2, a
problem is called a mixed integer problem if the (type) constraint xk ∈ Z for at least one k
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is added. In the case where all n objective variables are integral we speak of a pure integer
programming (IP) problem. An IP where all variables are bounded between zero and one,
i.e., x ∈ {0, 1}n, is called a binary (integer) program.
Since MIPs are non-convex, even mixed integer linear programs (MILP) can already be hard
to solve. Nevertheless an increase in quantity and quality of free and nonfree solvers was
observed in the last decades (Linderoth and Ralphs 2005; Bixby 2012). Typically solvers use
branch-and-bound (Land and Doig 1960) and the cutting plane (Gomory 1960) algorithms or
a combination of both. The algorithms avoid solving the problem directly, but instead solve
multiple relaxations where the integer constraint is dropped.

3. Software
Recently, an increase of the available packages handling many different OPs in R has been
observed. The CRAN task view Optimization and Mathematical Programming (Theußl et al.
2020) currently lists around 100 different optimization related packages. The capability these
packages provide range from solvers which can solve a wide range of optimization problems
(e.g., optimx, Nash and Varadhan 2011; Nash 2014a) to very specialized solvers which are
created to solve a specific problem type very fast (e.g., nonlinear regression solvers). This
section provides an overview of the solver landscape in R. The insights gained in this section
will be used to derive a consistent solver infrastructure. First, we investigate the available
(open source) solvers, splitting these into linear solvers, quadratic solvers, conic solvers and
general purpose solvers. We then discuss commercial solvers (i.e., any solver developed for
sale) and the NEOS server.

3.1. Overview

As pointed out in Section 2, in the field of optimization we are typically facing different
problem classes. The possibly three most important distinctions are between linear versus
nonlinear problems, integer versus continuous and convex versus non-convex problems.
Ordered based on increasing complexity, an objective function might be of type linear, (con-
vex) quadratic, conic (i.e., any objective expressible as a CP) or functional (i.e., any objective
expressible as a function). Similarly constraints are typically of type box, linear, (convex)
quadratic, conic or functional. Box constraints (or variable bounds) are a special type of
linear constraints which enforce lower and upper bounds on the objective variables.
The terms conic objective/constraints are used in a general way and refer to any linear and
nonlinear objective/constraints that can be reformulated as a conic problem. Therefore this
also includes problems with linear and convex quadratic objective/constraints. Note that,
solvers that take as input values a linear objective and conic constraints are also applicable to
OPs with conic objective and conic constraints by making use of the epigraph form transfor-
mation. The most general form are functional objective/constraints which includes all linear
and nonlinear objective/constraints.
Table 1 gives an overview on optimization packages available on CRAN (https://CRAN.
R-project.org) with a focus on open source solvers. The position of a particular package
in the table indicates its ability to solve a given problem. Each problem class to the left and
above of the current position can be handled by the package including its current position.
For instance, the ECOSolveR package (Fu and Narasimhan 2019) which provides an interface
to the ECOS library (Domahidi, Chu, and Boyd 2013) can solve conic problems restricted

https://CRAN.R-project.org
https://CRAN.R-project.org
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Constraints Objective
Linear Quadratic Conic Functional

No BB, mize, trustOptim

Box DEoptim, dfoptim, GenSA,
lbfgsb3, metaheuristicOpt,
minqa, optimx, Rcgmin,
rgenoud, Rmalschains,
Rvmmin, soma, stats,
ucminf

Linear clpAPI∗,
Rglpk∗+,
lpSolve∗+,
rcdd∗,
Rsymphony∗+

coneproj∗,
Dykstra∗,
kernlab,
LowRankQP∗,
osqp∗,
quadprog∗,
ROI.plugin.qpoases

Quadratic

Conic cccp∗,
CLSOCP∗,
ECOSolveR∗+,
Rcsdp∗,
Rdsdp∗,
scs∗

Functional alabama, deoptimr, clue,
NlcOptim, nloptr, Rsolnp

Table 1: Selected R packages displayed based on the types of optimization problems they are
applicable to. Here ∗ indicates that the solver is restricted to convex problems and + indicates
that the solver can model integer constraints.

to combinations of the zero, non-negative, second-order and primal exponential cone. Since
ECOS is equipped with a branch-and-bound algorithm, it can also be used to solve mixed
integer conic problems.

3.2. The R solver landscape

The solver landscape can be split into two parts. First, solvers where the functional form is
fixed and only the coefficients are provided, which includes all LP, QP, QCQP and CP solvers
currently available in R. Second, solvers which can optimize any functional form expressible
as an R function. This includes most NLP solvers, sometimes summarized as general purpose
solvers.
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Linear solvers
Interfaces to several open source LP and MILP solvers are available in R. Most of these
packages provide a high-level access to the solver, those explicitly designed to provide a low-
level access are commonly marked with the suffix API.
The Computational Infrastructure for Operations Research (COIN-OR) project (https://
www.coin-or.org/) provides an open source software framework for the operations research
community including the COIN-OR linear programming (Clp, Forrest, de la Nuez, and
Lougee-Heimer 2004) and the SYMPHONY (Ralphs and Güzelsoy 2005, 2011) solver. Clp
is mainly used as library and provides methods for solving LPs via interior-point methods or
the simplex algorithm. In R Clp is available through clpAPI (Roettger and Gelius-Dietrich
2020a) which provides a low level interface to Clp. SYMPHONY is a flexible MILP solver
written in C++, that transforms the MILP into LP relaxations to be solved by any LP solver
callable through the Open Solver Interface (OSI). Rsymphony (Hornik, Harter, and Theußl
2017a) provides an interface to the SYMPHONY solver, where by default the LP relaxations
are solved by the Clp solver.
GNU Linear Programming Kit (GLPK, Makhorin 2011) is a solver library written in ANSI C,
for solving LP and MILP. In R the low level interface glpkAPI (Roettger and Gelius-Dietrich
2020b) and the high level interface Rglpk (Theußl and Hornik 2019) are available.
lp_solve (Berkelaar, Eikland, and Notebaert 2016) uses the simplex algorithm combined
with branch-and-bound to solve LPs and MILPs. It furthermore allows modeling of semi-
continuous and special ordered sets problems. Packages lpSolve (Berkelaar 2020) and lp-
SolveAPI (Konis and Schwendinger 2020) provide access to the lp_solve solver in R.
Additionally the function lpcdd() from package rcdd (Geyer, Meeden, and Fukuda 2019)
and the function simplex() from package boot (Canty and Ripley 2020) can be used to solve
LPs via the simplex algorithm.
By taking a closer look at the elements needed by packages capable of solving LPs and MILPs1

we can conclude that the following elements should be present in a consistent and convenient
optimization infrastructure for modeling LPs and MILPs.

objective: A numeric vector giving the coefficients of the linear objective.

constraints:

• Includes a constraint matrix A (see Equation 3),
• a vector giving the direction of the constraints (i.e., ==, <= or >=), and
• a vector giving the right-hand-side b (see Equation 3).

bounds: Two vectors giving the lower and upper bounds.

types: A vector storing the type information, i.e., binary, integer and numeric.

maximum: A Boolean indicating if the objective function should be maximized or minimized.

Note that the elements bounds and maximum, as well as the constraint directions and the
binary types are not strictly necessary. Their inclusion is motivated by the fact that they are
supported by many solvers and simplify the problem specification.

1This includes commercial and non-commercial solvers.

https://www.coin-or.org/
https://www.coin-or.org/
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CLSOCP X X X
cccp X X X X
ECOSolveR X X X X
Rcsdp X X X X
Rdsdp X X X X
scs X X X X X X X X

Table 2: Conic packages and the supported cones.

Quadratic solvers

As Table 1 shows, most of the quadratic solvers are designed to solve convex quadratic
problems with linear constraints. The quadprog (Turlach and Weingessel 2019) package
uses the dual method described in Goldfarb and Idnani (1983). LowRankQP (Ormerod and
Wand 2020) is based on an interior-point algorithm described in Fine and Scheinberg (2001).
Dykstra (Helwig 2018) implements Dykstra’s cyclic projection algorithm (Dykstra 1983),
coneproj (Meyer and Liao 2018) transforms the original QP problem into a cone projection
problem (Liao and Meyer 2014) and osqp (Stellato, Banjac, Goulart, and Boyd 2019) uses the
alternating direction method of multipliers described in Stellato, Banjac, Goulart, Bemporad,
and Boyd (2017).
Additionally, the package ROI.plugin.qpoases (Schwendinger 2020) and the ipop() func-
tion from kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004; Karatzoglou, Smola, and
Hornik 2019) can be used to obtain solutions for non-convex quadratic problems with linear
constraints. However, for the non-convex case there is no guarantee that the returned solution
is a global optimum. ROI.plugin.qpoases is an interface to the qpOASES (Ferreau, Kirches,
Potschka, Bock, and Diehl 2014; Ferreau, Potschka, and Kirches 2018) library, which uses an
online active set strategy to solve quadratic optimization problems.
QP solvers generally take the same arguments as LP solvers plus an additional matrix pa-
rameter storing the coefficients of the quadratic term Q0.

Conic solvers

Most of the conic solvers use a standard form similar to Equation 7, where the objective
function is assumed to be linear and the vector b − Ax is restricted to a certain cone K.
Nevertheless, in Table 1 they are shown to have a conic objective function and conic constraints
to express that they are able to solve any LP and convex NLP expressible by a CP. Therefore,
which types of NLPs a given solver can solve, depends on the types of cones the solver can
model. Table 2 shows the conic solvers available in R and the types of cones they support.
Package CLSOCP (Rudy 2011) is specialized in solving SOCPs, it is a pure R implementation
of the one-step smoothing Newton method based on the algorithm described in Tang, He,
Dong, and Fang (2012). For solving SDPs there exist the specialized packages Rcsdp and
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Global GPS Local GPS
Gradient free Gradient Gradient free Gradient

No constraint 6 0 7 19
Box constraint 28 4 8 12
Functional constraint 2 0 7 7

Table 3: Overview of general purpose solvers.

Rdsdp. Since any SOCP can be transformed into an SDP they can also be used for solving
SOCPs. Rcsdp (Corrada Bravo and Borchers 2020) is an interface to the CSDP (Borchers
1999) library which is part of the COIN-OR project. Rdsdp (Zhu and Ye 2020) is an inter-
face to the DSDP (Benson and Ye 2008) library. Both packages can read and Rcsdp can
also write sdpa files, which is a file format commonly used to store SDPs. The cccp (Pfaff
2015) package provides functions to solve LPs, QPs, SOCPs and SDPs, the algorithms are
reported to be similar to those in CVXOPT (Andersen et al. 2016). CVXOPT is a Python
package for solving convex OPs via interior-point methods (more information about the algo-
rithms can be found in Andersen, Dahl, Liu, and Vandenberghe 2012). ECOSolveR (Fu and
Narasimhan 2019) is an interface to the embedded conic solver ECOS (Domahidi et al. 2013).
A special feature of ECOS is that it combines convex optimization with branch-and-bound
techniques; therefore it can be used to solve CPs where some variables are required to be
integer. The scs (O’Donoghue and Schwendinger 2019) package is an interface to the Split-
ting Conic Solver (SCS, O’Donoghue 2015) library, which uses a version of the alternating
direction method of multipliers (ADMM) for solving CPs. SCS is designed to solve large cone
problems faster than standard interior-point methods. More information about the algorithm
and a comparison to other solvers can be found in O’Donoghue et al. (2016).

General purpose solvers

Solvers capable of handling nonlinear objective functions without further restrictions are called
general purpose solvers (GPSs). These solvers can minimize (or maximize) any functional
form representable as an R function with – depending on solver capabilities – different types
of constraints, where again the most general form of constraint is the functional constraint
(i.e., an R function). The generality of GPSs comes at the price of performance and that
there is usually no guarantee that a global optimum is reached.
Important properties of GPSs are whether they are designed to search for a local or global
optimum, if gradient information has to be provided or the method is gradient free and
which type of constraints can be set. Table 3 shows the number of GPS methods grouped
by these properties (the counts are based on Table 5 where additional details can be found)
and reveals some interesting details about the R GPS landscape. Around 60 percent of
the GPS are designed for local optimization, even though most of the local solvers utilize
gradient information, only four of the global solvers use gradient information. The difference
in distribution of gradient based and gradient free optimization algorithms between global
and local GPSs can be explained by the fact that in global optimization, metaheuristics
like evolutionary methods or particle swarm optimization are commonly used. In a recent
study Mullen (2014a) surveys the continuous global optimization packages available in R and
compares their performance on a set of tests bundled in the globalOptTests (Mullen 2014b)
package. Table 5 gives an extensive listing of which methods are designed to search for a
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global solution. For more information about the methods we refer to Mullen (2014a).
Based on the type of constraints, the GPSs can be divided into no constraints, box constraints,
linear constraints, quadratic constraints and functional constraints. As Table 3 shows, most
of the GPSs support no constraint or box constraints. Fortunately, package optimx (Nash and
Varadhan 2011) provides a unified interface to many of these solvers, consolidating methods
from packages stats, ucminf (Nielsen and Mortensen 2016), minqa (Bates, Mullen, Nash, and
Varadhan 2014), Rcgmin (Nash 2014b), Rvmmin (Nash 2018) and BB (Varadhan and Gilbert
2009). It was designed as a possible successor of optim which is part of the stats package
and can be used to solve OPs with box constraints. Another package which incorporates
many different algorithms is nloptr (Ypma and Johnson 2020). It is an R interface to the
NLopt (Johnson 2016) library, which bundles several global and local optimization algorithms.
Depending on the algorithm it can solve NLPs with box constraints or functional constraints.
Most of the GPSs able to handle functional constraints allow to specify functional equality
and/or functional inequality constraints.
To model functional equality constraints the following two forms are most commonly used

• hi(x) = 0, i = 1, . . . , k (e.g., alabama, Varadhan 2015; DEoptimR, Conceicao 2016;
nloptr::auglag, nloptr::isres, nloptr::slsqp, NlcOptim and Rnlminb2, Wuertz
20142),

• hi(x) = bi, i = 1, . . . , k (e.g., Rsolnp, Ghalanos and Theußl 2015),

where h is a function and b ∈ Rk gives the right-hand-side. Similarly, functional inequality
constraints are commonly given in one of the following three forms:

• gj(x) ≤ 0, j = k + 1, . . . ,m (e.g., DEoptimR, nloptr::nloptr, NlcOptim, Chen and
Yin 2019; Rnlminb2, csr::snomadr, Racine and Nie 2019),

• gj(x) ≥ 0, j = k+1, . . . ,m (e.g., alabama, nloptr::auglag, nloptr::cobyla, nloptr::
ires, nloptr::mma, neldermead, Bihorel and Baudin 2018; and nloptr::slsqp),

• lj ≤ gj(x) ≤ uj , j = k + 1, . . . ,m (e.g., ipoptr, Ypma 20112; Rdonlp2, Wuertz 20072;
Rsolnp),

where g is a function and l ∈ Rm−k, u ∈ Rm−k are the lower and upper bounds of the
constraints. A general optimization infrastructure should be designed in a way that the
functional form employed can be transformed into the commonly used forms shown above.
An analysis of the above solver spectrum reveals that the critical arguments to GPSs are:

start: The initial values for the (numeric) parameter vector.

objective: The function to be optimized.

constraints: Depending on the GPS the constraints can be none, linear, quadratic, func-
tional equality or functional inequality constraints. To model functional constraints
consistently with linear and quadratic constraints the following elements are needed:

2Note the packages ipoptr, Rnlminb2 and Rdonlp2 are not available on CRAN but on R-Forge. Information
about the installation of ipoptr can be found at https://coin-or.github.io/Ipopt/INSTALL.html#INSTALL_
R.

https://coin-or.github.io/Ipopt/INSTALL.html##INSTALL_R
https://coin-or.github.io/Ipopt/INSTALL.html##INSTALL_R
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• a function representing the constraints;
• a vector giving the direction of the constraints; and
• a vector giving the right-hand-side.

bounds: Variable bounds, commonly given as lower and upper bounds.

Additionally some GPSs make use of the gradient and/or Hessian of the objective and the
Jacobian of the constraints. The optional elements can be summarized by:

gradient: A function that evaluates the gradient of the argument objective.

hessian: A function that evaluates the Hessian of the argument objective.

jacobian: A function that evaluates the Jacobian of the argument constraints.

maximum: A Boolean indicating whether the objective function should be maximized or min-
imized.

control: Further control arguments specific to the solver.

Return values include:

par: The “solution” (parameters) found.

value/objective: The value of the objective function evaluated at the “solution”.

convergence, status: An integer information about the convergence and exit status of the
optimization task.

gradient: The gradient evaluated at the solution found.

hessian: The Hessian evaluated at the solution found.

message: A text message giving additional information about the optimization / exit status.

iterations/evaluations: The number of iterations and / or evaluations.

3.3. Other optimization back-ends

Commercial solvers

Since commercial solver packages often bundle a variety of solvers, it is often not possible to
assign them to a certain problem class. At the time of this writing R interfaces are avail-
able to the commercial solver software CPLEX (IBM ILOG 2019), MOSEK (MOSEK ApS
2017), Gurobi (Gurobi Optimization, Inc. 2016), Lindo (Lindo Systems 2003) and localsolver
(Benoist, Estellon, Gardi, Megel, and Nouioua 2011). To cover also the commercial side, the
interface packages Rcplex (Theußl and Bravo 2016) and Rmosek (MOSEK ApS 2019) were
included in defining the requirements for a consistent solver infrastructure.
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Network-enabled optimization system (NEOS)

The NEOS (Czyzyk, Mesnier, and Moré 1998; Dolan 2001; Gropp and Moré 1997) server
(https://neos-server.org) provides free access to more than 60 numerical optimization
solvers. It can be accessed via the internet by submitting OPs via the homepage, email, the
XML-RPC application programming interface or Kestrel. Depending on the solver the OPs
have to be formulated in different ways, overall most solvers support input from AMPL and
GAMS. The R packages rneos (Pfaff 2020) and ROI.plugin.neos (Hochreiter and Schwendinger
2020) use the XML-RPC API to communicate with the NEOS server. In order to upload
OPs with rneos, the OPs have to be formulated in the input format supported by the solver
(e.g., AMPL, GAMS, MPS). In contrast to that, ROI.plugin.neos supports OPs generated with
ROI, internally each OP is transformed to GAMS before they are submitted to the server.
The result is again converted back into a suitable solution format.

4. Data structures
After reviewing the optimization resources available in R, it is apparent that the main function
of a general optimization infrastructure package should take at least three arguments:

problem representing an object containing the description of the corresponding OP,

solver specifying the solver to be used (e.g., "glpk", "nlminb", "scs"),

control containing a list of additional control arguments to the corresponding solver.

The arguments solver and control are easily understood, since from the available solver
spectrum we only have to choose those which are capable to handle the corresponding OP
and (optionally) supply appropriate control parameters. However, building the object for the
problem argument, in a general and intuitive way, is a challenging task which leads to several
design issues.
Based on the review in Sections 2 and 3 it seems natural to instantiate OPs based on an
objective function, one or several constraints, types and bounds of the objective variables, as
well as the direction of optimization (whether a minimum or a maximum is sought).
In the remainder of this section we discuss the conceptual design of ROI and how to use it
to formulate optimization problems. For illustrative purposes we already use functionality of
package ROI.

R> library("ROI")

4.1. Objective function

The survey of optimization solvers in Section 3 reveals that the way the objective function is
stored depends primarily on its functional form. If the objective function is linear (L), i.e.,
a>0 x, then it is common practice to only supply a coefficient vector a0 ∈ Rn. For quadratic
objective functions (Q) of the form 1

2x
>Q0x+ a>0 x most solvers take a vector a0 ∈ Rn and a

matrix Q0 ∈ Rn×n as input. General nonlinear objective functions (F, i.e., nonlinear functions
which cannot be represented as an QP or CP), are represented as an R function which takes

https://neos-server.org
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the vector of objective variables as argument and returns the objective value. Depending on
the type of the objective function, i.e., F, Q, or L, only a subset of the solver spectrum can be
used.
Objective function types and corresponding constructors implemented in ROI are:

F The most general form of an objective function is created with the F_objective(F, n, G,
H, names) constructor by simply supplying F, an R function representing f0(x), and
n the length of x. Optionally, information about the gradient and the Hessian can be
provided via the arguments G and H. If no gradient is provided it will be calculated
numerically if needed. The optional names argument is propagated to the solution
object to make the solution more readable.

Q Objective functions representing a quadratic form as outlined above can be easily created
with the Q_objective(Q, L, names) constructor taking Q, the quadratic part Q0, and
optionally L, the linear part a0, as arguments. The names argument is again optional.

L If the objective to be optimized is a linear function then one should use the L_objective(L,
names) constructor supplying L (the coefficients of the objective variables) as a numeric
vector. The names argument is again optional.

All three constructors return an object inheriting from class ‘objective’.

4.2. Constraints

To model all the problem classes introduced in Section 2, four different types of constraints are
sufficient. Thereby arguments with the same name have the same functionality irrespective
of the constraint type and will therefore be explained only once.

F The most general form of constraints can express any constraint representable by an R
function. They are created via F_constraint(F, dir, rhs, J, names). Here F is
either a function or a list of functions, dir is a character vector giving the direction of
the constraint and rhs is a numeric vector giving the right-hand-side of the constraint.
The optional arguments J and names can be used to provide the Jacobian and the
variable names of the constraints.

C Conic constraints are constructed via the function C_constraint(L, cones, rhs, names),
where L can be either a numeric vector of length n or a matrix of dimension m × n.
In accordance with Equation 7 the cones argument imposes a restriction on the slack
variables s. A conic constraint can be comprised of several cones, where each cone type
can occur multiple times. The cone constructors all start with K_ followed by a short
cut of the cone name, as defined in Section 2.3. Currently ROI implements constructors
for the cones K_zero, K_lin, K_soc, K_psd, K_expp, K_expd, K_powp, and K_powd. To
combine different cones the generic combine c() can be used.

Q Quadratic constraints as defined in Equation 6 can be easily created with the constructor
Q_constraint(Q, L, dir, rhs, names). The quadratic constraints Q are given as a
list of length m where the entries are either n× n matrices or NULL.

L Linear constraints are constructed via the function L_constraint(L, dir, rhs, names).
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All constructors return an object inheriting from class ‘constraint’. Since in many situations
it is desirable to optimize a given objective function subject to composite constraints of
different kinds, ROI can combine multiple constraints into a single constraint using the generic
functions c() or rbind(). Since the matrices L and Q can become huge but are typically sparse
we use the simple triplet matrix format from the slam (Hornik, Meyer, and Buchta 2019)
package to store them internally. In the simple triplet matrix format (sometimes referred
to as coordinate list format) only the row indices, the column indices and the values of the
non-zero elements are stored in a list. We choose the slam package not only for efficiency
reasons but also due to the fact that many solver APIs demand such a format.

4.3. Objective variable types
As it is common practice in mixed-integer solvers to distinguish between the variable types
continuous, integer and binary we encode the variable choice with the following characters:
"C" for continuous, "I" for integer and "B" for binary. By default all the variables are assumed
to be of continuous type.

4.4. Bounds
A variable bound is a special type of constraint used to restrict an objective variable between
a real lower and upper bound. Therefore, variable bounds are often also called “box bounds”
or “box constraints”. Although variable bounds could be easily modeled as linear constraints,
many GPSs only support variable bounds (see Table 3). Furthermore, most solvers that
support any type of constraint allow to specify variable bounds directly. Thus, it is reasonable
but also convenient to consider them separately.
Typically, implementations of optimization algorithms differentiate between five types of ob-
jective variable bounds: free (−∞,∞), upper (−∞, ub], lower [lb,∞), double bounded [lb, ub],
and fixed bounds. Variables with fixed bounds are a special case of double bounded variables
where the lower bound is equal to the upper bound. In ROI variable bounds are represented
as a list with two elements – upper and lower, where only the non-default values are stored
in a simple sparse format. In this sparse format only indices and the non-default values are
stored. For the lower bounds the default value is zero and for the upper bounds the default
value is infinity. Thus, for OPs where all the variables are required to take values in the
interval [0,∞) no bounds have to be specified. The default lower and upper bound can be
changed by the arguments ld and ud. Upper and/or lower bounds are specified by providing
the index i of the corresponding variable (arguments li, ui) and its lower (lb) or upper (ub)
bound, respectively. Therefore, the box constraints −∞ ≤ x1 ≤ 4, 0 ≤ x2 ≤ 100, 2 ≤ x3 ≤ ∞
and 0 ≤ x4 ≤ ∞ are constructed in ROI as follows:

R> V_bound(li = 1:4, ui = 1:4, lb = c(-Inf, 0, 2, 0),
+ ub = c(4, 100, Inf, Inf))

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

If all upper and lower values are provided (default values are not omitted) the indices can be
left out:
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R> V_bound(lb = c(-Inf, 0, 2, 0), ub = c(4, 100, Inf, Inf))

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

If the default values are omitted the number of objective variables has to be provided.

R> V_bound(li = c(1L, 3L), ui = c(1L, 2L), lb = c(-Inf, 2), ub = c(4, 100),
+ nobj = 4L)

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

Consider the box constrains 0 ≤ x3 ≤ 20 and −20 ≤ xi ≤ 20 for all i ∈ I = {1, 2, 4}. These
variable bounds can be constructed by the following ROI code:

R> V_bound(li = 3, lb = 0, ld = -20, ud = 20, nobj = 4L)

ROI Variable Bounds:

3 lower and 4 upper non-standard variable bounds.

4.5. Optimization problem

In ROI, a new optimization problem is created by calling

OP(objective, constraints, types, bounds, maximum)

As an example consider the LP

maximize
x

3x1 + 7x2 − 12x3

subject to 5x1 + 7x2 + 2x3 ≤ 61
3x1 + 2x2 − 9x3 ≤ 35
x1 + 3x2 + x3 ≤ 31
x1, x2 ≥ 0, x3 ∈ [−10, 10].

(16)

This problem can be constructed by the following ROI code:

R> A <- rbind(c(5, 7, 2), c(3, 2, -9), c(1, 3, 1))
R> dir <- c("<=", "<=", "<=")
R> rhs <- c(61, 35, 31)
R> lp <- OP(objective = L_objective(c(3, 7, -12)),
+ constraints = L_constraint(A, dir = dir, rhs = rhs),
+ bounds = V_bound(li = 3, ui = 3, lb = -10, ub = 10, nobj = 3),
+ maximum = TRUE)



Journal of Statistical Software 19

Alternatively, an OP can be formulated piece by piece, by creating an empty OP

R> lp <- OP()

and using the setter/getter functions objective(), constraints(), bounds(), types() and
maximum() to set/get the corresponding element.

R> objective(lp) <- L_objective(c(3, 7, -12))
R> constraints(lp) <- L_constraint(A, dir = dir, rhs = rhs)
R> bounds(lp) <- V_bound(li = 3, ui = 3, lb = -10, ub = 10, nobj = 3)
R> maximum(lp) <- TRUE
R> lp

ROI Optimization Problem:

Maximize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 3 constraints of type linear.
- 1 lower and 1 upper non-standard variable bound.

The setter functions make it easy to alter previously created OPs. The getter function
objective() returns the objective as function, which can be directly used to evaluate param-
eters. The number of parameters required can be obtained by the generic function length().

R> param <- rep.int(1, length(objective(lp)))
R> objective(lp)(param)

[1] -2

To access the data of the objective, the generic function terms() should be used.

R> terms(objective(lp))

$L
A 1x3 simple triplet matrix.

$names
NULL

For all the other elements the corresponding getter function returns directly the underlying
data representation.
Function OP() always returns an S3 object of class ‘OP’ which stores the entire OP. Storing
the OP in a single R object has many advantages, among others:

• The OP can be checked for consistency during the creation of the problem.
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• The different elements of the OP can be easily accessed after the creation of the problem.

• The OP can be easily altered, e.g., a constraint can be added, bounds can be changed,
without the need to redefining the entire OP.

The consistency checks verify that the dimensions of the arguments fit together.

5. Functionality
The R optimization infrastructure is structured into the package ROI and its accompanying
extensions (plug-ins and models). Package ROI provides all the necessary classes and methods
and manages the extensions (i.e., automatically loads plug-ins and manages meta data about
the plug-ins). The extension packages add optimization solvers, read/write functions and
additional resources (e.g., model collections). The plug-in extensions play a special role,
hence all plug-ins are loaded automatically when ROI is loaded. When a plug-in is loaded
it provides data about its capabilities. This data is stored in an in-memory database and
includes information about to which problems the plug-in is applicable, which formats it can
read/write, the control arguments available for the solver and how the solver specific control
arguments relate to arguments commonly used.
This mechanism makes it possible that ROI is aware of all the installed plug-ins, without the
need to change ROI when a new plug-in is added. To make the automatic loading possible
the plug-ins have to follow the name convention ROI.plugin.<name>, where <name> is
typically the name of an optimization solver (e.g., ROI.plugin.glpk; Theußl 2017). The prefix
ROI.models (e.g., ROI.models.netlib; Schwendinger 2019a) is used for data packages with
predefined OPs. In Section 5.6 we give an overview on the data packages available in the ROI
format.

5.1. Solving optimization problems
After formulating an OP as described in Section 4, it can be solved by calling the function
ROI_solve(x, solver, control, ...). This function takes an R object of class ‘OP’ con-
taining the formulation of the OP, the name of the solver to be used and a list containing
solver specific parameters as arguments. The solver and control arguments are optional, if
no solver argument is provided ROI will choose an applicable solver automatically (see Sec-
tion 5.7). Alternatively the solver specific parameters can be specified via the dots arguments.
The problem stated in Equation 16 can be solved by the following ROI code:

R> (lp_sol <- ROI_solve(lp, solver = "glpk"))

Optimal solution found.
The objective value is: 8.670149e+01

5.2. Solution and status code

Status code
Solver status codes are used to inform the user about the exit status of the solver. Despite
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the common usage of status codes in optimization solvers there is no widely used standard.
Nevertheless, we believe it is desirable to provide unified status codes. The status codes used
in ROI_solve are simple and consistent with the common practice, to return 0 on success
(if a “solution” meeting the solver specific requirements was found) and 1 otherwise. For
optimization solvers specialized on solving convex LPs, QPs and CPs it can be assumed that
a global solution was found, if the status code is 0. Unfortunately, the same is not true for
non-convex QPs and GPS, here status codes are less informative. Some packages like optimx
and alabama check the Karush-Kuhn-Tucker (KKT) conditions to verify that the solution
found meets the criteria of a local minimum.

Solution
To make the solutions of the various solvers easy to understand, all the solutions are canoni-
calized. After the canonicalization each solution contains the following components:

solution the solution of the OP,

objval the optimal objective value,

status the canonicalized status code,

message the original solver message

and a meta attribute containing the solver name and additional optional arguments.
To obtain the (primal) “solution” the generic function solution(x, type) should be used:

R> solution(lp_sol)

[1] 0.000000 9.238806 -1.835821

Some OPs have multiple solutions, in the case of BLP (MILP) some solvers can retrieve all
(multiple) solutions. For MILPs it is in general not possible to obtain all the solutions but
only multiple solutions, since even this simple MILP

minimize
x

x1 − x2

subject to x1 − x2 = 0
x1, x2 ∈ Z

(17)

has an infinite number of solutions. The following example is based on Fischetti and Salvagnin
(2010) and will be used later to illustrate how multiple solutions can be obtained.

minimize
x

−x1 − x2 − x3 − x4 − 99x5

subject to x1 + x2 ≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
xi ∈ {0, 1}

(18)

The "msbinlp" solver allows to retrieve all the solutions to the OP defined in Equation 18,
here method gives the solver used within the inner loop and nsol_max the maximal number
of solutions to be returned. Since we have a pure binary problem and five objective variables,
we set nsol_max to 32,
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R> blp <- OP(objective = L_objective(c(-1, -1, -1, -1, -99)),
+ constraints = L_constraint(L = rbind(c(1, 1, 0, 0, 0), c(0, 0, 1, 1, 0),
+ c(0, 0, 0, 1, 1)), dir = c("<=", "<=", "<="), rhs = rep.int(1, 3)),
+ types = rep("B", 5L))
R> (blp_sol <- ROI_solve(blp, solver = "msbinlp", method = "glpk",
+ nsol_max = 32))

2 optimal solutions found.
The objective value is: -1.010000e+02

R> solution(blp_sol)

[[1]]
[1] 0 1 1 0 1

[[2]]
[1] 1 0 1 0 1

alternatively it is also possible to set nsol_max to Inf. This is advantageous if an upper
bound on the number of solutions is hard to guess and all the solutions should be retrieved.
If the status code is not zero, solution will return NA to prevent the user from using solutions
with a status code different from 0.

R> lp_inaccurate_sol <- ROI_solve(lp, solver = "scs", tol = 1e-32)
R> solution(lp_inaccurate_sol)

[1] NA NA NA

However in a few situations it can be desirable to obtain solutions even if the solver signals
no success. In these cases ROI can be forced to return the solution provided by the solver
regardless of the status code.

R> solution(lp_inaccurate_sol, force = TRUE)

[1] -8.035136e-16 9.238806e+00 -1.835821e+00

The “solution” to the dual problem can be retrieved by

R> solution(lp_sol, type = "dual")

[1] -4.298507 0.000000 0.000000

Furthermore, solution() can be employed to retrieve auxiliary variables

R> solution(lp_sol, type = "aux")
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$primal
[1] 61.0000 35.0000 25.8806

$dual
[1] 0.5820896 1.4626866 0.0000000

the original solver message

R> solution(lp_sol, type = "msg")

$optimum
[1] 86.70149

$solution
[1] 0.000000 9.238806 -1.835821

$status
[1] 5

$solution_dual
[1] -4.298507 0.000000 0.000000

$auxiliary
$auxiliary$primal
[1] 61.0000 35.0000 25.8806

$auxiliary$dual
[1] 0.5820896 1.4626866 0.0000000

$sensitivity_report
[1] NA

the objective value

R> solution(lp_sol, type = "objval")

[1] 86.70149

the status

R> solution(lp_sol, type = "status")

$code
[1] 0

$msg
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solver glpk
code 5

symbol GLP_OPT
message Solution is optimal.

roi_code 0

and the status code

R> solution(lp_sol, type = "status_code")

[1] 0

of the OP.

5.3. Reformulations

Reformulations are often used to transform a problem of class A into a problem of class B,
where the solution of the original problem can be derived from the solution of the reformu-
lation (which is typically easier to solve). Although reformulation techniques are commonly
used in optimization, the functions performing these reformulations are generally hidden
within the optimization software. To facilitate the comparison of different reformulation al-
gorithms, ROI provides functions for managing reformulations. The available reformulations
are listed by calling function ROI_registered_reformulations() and ROI_reformulate(x,
to, method) performs the reformulation.
Following Boros and Hammer (2002) we illustrate the transformation of a binary QP into a
MILP. The code for the reformulation is based on the implementation in the relations (Meyer
and Hornik 2019) package.
The binary QP is given by:

minimize
x

−x− 4y − z + 3xy + yz

x, y, z ∈ {0, 1}
(19)

In the following the ROI code is given to define the binary QP, transform the problem into a
MILP and solve it:

R> Q <- rbind(c(0, 3, 0), c(0, 0, 1), c(0, 0, 0))
R> bqp <- OP(Q_objective(Q = Q + t(Q), L = c(-1, -4, -1)),
+ types = rep("B", 3))
R> glpk_signature <- ROI_solver_signature("glpk")
R> head(glpk_signature, 3)

objective constraints bounds cones maximum C I B
1 L X X X TRUE TRUE FALSE FALSE
2 L L X X TRUE TRUE FALSE FALSE
3 L X X X TRUE FALSE TRUE FALSE

R> milp <- ROI_reformulate(x = bqp, to = glpk_signature)
R> ROI_solve(milp, solver = "glpk")
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Optimal solution found.
The objective value is: -4.000000e+00

Here ROI selects the applicable reformulations based on the provided signatures. A method
is considered to be applicable if it can transform the given OP into a new OP, where the
signature of the new OP is a subset of the signature provided in the argument to. Since it
is possible that several methods are applicable, the argument method can be used to select a
specific reformulation method.

5.4. ROI solvers
ROI can currently make use of more than thirty different solver methods, applicable to a wide
range of OPs. Inspired by R’s available.packages() function, ROI can return a listing of
the solver plug-ins available at CRAN, R-Forge (https://R-Forge.R-project.org/, Theußl
and Zeileis 2009) and GitHub (https://github.com/). ROI_available_solvers() without
an argument lists all the available solvers. If an OP is provided as argument, only the available
solvers which are also applicable will be returned.

R> ROI_available_solvers(bqp)[, c("Package", "Repository")]

Package Repository
3 ROI.plugin.cplex https://CRAN.R-project.org
9 ROI.plugin.neos https://CRAN.R-project.org
18 ROI.plugin.cplex http://R-Forge.R-project.org
22 ROI.plugin.gurobi http://R-Forge.R-project.org
25 ROI.plugin.mosek http://R-Forge.R-project.org
27 ROI.plugin.neos http://R-Forge.R-project.org
36 ROI.plugin.gurobi https://github.com/FlorianSchwendinger
37 ROI.plugin.mosek https://github.com/FlorianSchwendinger

A listing of all the available plug-ins on CRAN and R-Forge could be easily compiled by just
using the available.packages() function. But to be able to find all the solvers available
and applicable to a given OP also the solver signature is needed. Therefore a database
(an rds file on R-Forge) containing the solver signatures and the information provided by
available.packages() was compiled and is queried whenever ROI_available_solvers()
is called.
A vector of all solvers installed and loaded (registered) can be obtained by calling function
ROI_registered_solvers(),

R> head(ROI_registered_solvers(), 3)

nlminb alabama cbc
"ROI.plugin.nlminb" "ROI.plugin.alabama" "ROI.plugin.cbc"

similarly

R> ROI_applicable_solvers(lp)

https://R-Forge.R-project.org/
https://github.com/
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[1] "alabama" "cbc" "clp" "cplex"
[5] "ecos" "glpk" "gurobi" "ipop"
[9] "lpsolve" "mosek" "neos" "nloptr.cobyla"

[13] "nloptr.mma" "nloptr.auglag" "nloptr.isres" "nloptr.slsqp"
[17] "qpoases" "scs" "symphony"

returns a vector giving the names of the registered solvers applicable to a given problem.
Both return values are based on the solver registry, which stores the solver method and
information about the solver registered by the plug-ins. The solver registry is an in-memory
database based on the registry (Meyer 2019) package.
ROI_installed_solvers() gives a listing of all the installed plug-ins (not necessarily loaded)
delivered directly with ROI and found by searching for the prefix ‘ROI.plugin’ in the R library
trees.

R> head(ROI_installed_solvers(), 3)

nlminb alabama cbc
"ROI.plugin.nlminb" "ROI.plugin.alabama" "ROI.plugin.cbc"

An overview on the currently available solver plug-ins based on the problem types is given
in Table 4. Please note that the functionality provided in a plug-in does not necessarily have
to be the same as the functionality of the solver, e.g., ROI.plugin.nlminb can take functional
constraints, while nlminb can only take box constraints.
Furthermore we want to emphasize that ROI was built to be extended, as shown in Section 7.

5.5. ROI read/write
OPs are commonly stored in flat file formats, different solvers allow to read/write different
types of these file formats. ROI manages the reader/writer registered in the plug-ins, thus
allows to write

R> lp_file <- tempfile()
R> ROI_write(lp, lp_file, "lp_lpsolve")
R> writeLines(readLines(lp_file))

/* Objective function */
max: +3 C1 +7 C2 -12 C3;

/* Constraints */
+5 C1 +7 C2 +2 C3 <= 61;
+3 C1 +2 C2 -9 C3 <= 35;
+C1 +3 C2 +C3 <= 31;

/* Variable bounds */
-10 <= C3 <= 10;

and read
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Constraints Objective
Linear Quadratic Conic Functional

No

Box optimx

Linear clp∗, cbc∗+, glpk∗+,
lpsolve∗+, msbinlp∗+,
symphony∗+

ipop, quadprog∗,
qpoases

Quadratic cplex+,
gurobi∗+,
mosek∗+, neos+

Conic ecos∗+,
scs∗

Functional alabama,
deoptim,
nlminb, nloptr

Table 4: Currently available ROI plug-ins displayed based on the types of optimization prob-
lems they are applicable to. Here ∗ indicates that the solver is restricted to convex problems
and + indicates that the solver can model integer constraints. Note all the plug-ins have the
prefix ROI.plugin and the modeling capabilities of the plug-ins do not necessarily represent
the modeling capabilities of the underlying solvers.

R> ROI_read(lp_file, "lp_lpsolve")

ROI Optimization Problem:

Maximize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 3 constraints of type linear.
- 1 lower and 1 upper non-standard variable bound.

OPs in various formats. Information about the available reader/writer can be obtained via
the functions ROI_registered_reader() and ROI_registered_writer().

5.6. ROI models

Test problem collections are commonly used in optimization to evaluate and compare the
performance of solvers. As each class of optimization problems has its own test sets stored in
various formats, ROI currently provides access to the NETLIB-LP and MIPLIB collections
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and the globalOptTests package. The NETLIB-LP collection (Gay 1985) is a collection of
linear programming problems, which, even though the main part was created more than 30
years ago is still used today. Mixed integer optimization problems are commonly evaluated
using the MIPLIB collection (Koch et al. 2011), an extensive collection of academic and indus-
trial MILP applications. The globalOptTests package contains 50 box constrained nonlinear
global OPs for benchmarking purposes.
The problems contained in these collections and packages were transformed into ROI opti-
mization problems and can be accessed through the ROI.models.netlib, ROI.models.miplib
(Schwendinger and Theußl 2019) and ROI.models.globalOptTests (Schwendinger 2017) pack-
ages. Since MIPLIB provides no license file, the OPs are not included in the package but can
be easily obtained with the miplib_download_*() functions.

R> library("ROI.models.miplib")
R> if (length(miplib()) == 0L) {
+ miplib_download_benchmark(quiet = TRUE)
+ miplib_download_metainfo()
+ }
R> ops <- miplib("ns1766074")
R> ops

ROI Optimization Problem:

Minimize a linear objective function of length 100 with
- 10 continuous objective variables,
- 90 integer objective variables,

subject to
- 182 constraints of type linear.
- 0 lower and 0 upper non-standard variable bounds.

Since the problems are stored as objects of class ‘OP’, they can be directly entered into
ROI_solve.

R> library("ROI.models.netlib")
R> agg <- netlib("agg")
R> ROI_solve(agg, "glpk")

Optimal solution found.
The objective value is: -3.599177e+07

ROI makes these data collections (test problem sets) available in a common format, so users
can easily compare the different solvers and developers interested in creating optimization
software can use them to test their packages. Furthermore, the intuitive structure of ROI
objects and its use of sparse data structures make it possible to directly derive a new format
for the exchange of linear, quadratic and conic optimization problems.
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R> library("jsonlite")
R> nested_unclass <- function(x) {
+ x <- unclass(x)
+ if (is.list(x))
+ x <- lapply(x, nested_unclass)
+ x
+ }
R> agg_json <- toJSON(nested_unclass(agg))
R> tmp_file <- tempfile()
R> writeLines(agg_json, tmp_file)

The resulting text file can be easily imported into any programming language supporting
JavaScript Object Notation (JSON). JSON is an open-standard file format that can be parsed
by almost all programming languages. For historic reasons, OP collections are commonly
provided in flat file formats (e.g., MPS, QPS). We believe, that today it would be advantageous
to store them in general data exchange formats like JSON or XML (Extensible Markup
Language).

5.7. ROI settings
Many general and/or solver-related settings can be set or modified using the ROI_options()
function. Apart from that ROI recognizes some environment variables.

Gradient and Jacobian

When creating a plug-in, the function G should be used to derive the gradient and J should
be used to derive the Jacobian. In ROI the gradient and Jacobian are derived analyti-
cally for linear and quadratic terms. For the derivation of nonlinear terms, by default, the
numDeriv (Gilbert and Varadhan 2019) package with the Richardson extrapolation is used.
However, this can be easily changed by providing customized functions to derive the gradient
or Jacobian function.

R> simple_gradient <- function(func, x, ...) {
+ numDeriv::grad(func, x, method = "simple", ...)
+ }
R> ROI_options("gradient", simple_gradient)
R> simple_jacobian <- function(func, x, ...) {
+ numDeriv::jacobian(func, x, method = "simple", ...)
+ }
R> ROI_options("jacobian", simple_jacobian)

Solver selection

If no solver is provided in ROI_solve, the default solver set in ROI_options will be used.

R> ROI_options("default_solver")

[1] "auto"
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By default the option "default_solver" is set to "auto" which enables automatic solver
selection, if any other solver name (e.g., "glpk") is provided the automatic solver selection is
discarded in favor of the specified solver.

R> ROI_options("default_solver", "glpk")
R> ROI_options("default_solver", "auto")

Load plug-ins

The plug-ins are loaded automatically. However, in some situations it is desirable to deactivate
the automatic loading and require plug-in packages one at a time. This can be accomplished
by setting the environment variable ROI_LOAD_PLUGINS to FALSE.

R> Sys.setenv(ROI_LOAD_PLUGINS = FALSE)

Afterwards the default load behavior of ROI is altered and only the "nlminb" solver (which
is included in ROI) gets registered when library("ROI") is called. Therefore, all the other
plug-ins have to be loaded manually if needed (e.g., library("ROI.plugin.glpk")).

6. Examples
In this section we provide small examples to introduce the reader into the modeling capabilities
of ROI.

6.1. Linear optimization problems

Consider the LP
maximize

x
x1 + 2x2

subject to x1 + 8x2 = 9
5x1 + x2 ≤ 6
x1 ∈ [−9, 9], x2 ∈ [−7, 7].

(20)

To solve this LP we use the following ROI code:

R> lp <- OP(c(1, 2), maximum = TRUE,
+ L_constraint(L = rbind(c(1, 8), c(5, 1)), dir = c("==", "<="),
+ rhs = c(9, 6)), bounds = V_bound(lb = c(-9, -7), ub = c(9, 7)))
R> (lp_sol <- ROI_solve(lp, "glpk"))

Optimal solution found.
The objective value is: 3.000000e+00

R> solution(lp_sol)

[1] 1 1
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6.2. Quadratic optimization problems

Consider the QP
minimize

x

1
2(x2

1 + x2
2)− x1

subject to 4x1 + 6x2 ≥ 10
x1, x2 ≥ 0.

(21)

Recall that for quadratic terms ROI uses the standard form 1
2x
>Qx+ a>x (see Equation 6).

Therefore, this problem can be solved by the following ROI code:

R> qp <- OP(Q_objective(Q = diag(2), L = c(-1, 0)),
+ L_constraint(c(4, 6), ">=", 10))
R> (qp_sol <- ROI_solve(qp, "qpoases"))

Optimal solution found.
The objective value is: -1.538462e-01

R> solution(qp_sol)

[1] 1.4615385 0.6923077

To add the constraint 7x1 + 11x2 − x2
1 − x2

2 ≥ 40 we combine the new constraint with the
existing constraint.

R> qcqp <- qp
R> constraints(qcqp) <- rbind(constraints(qp),
+ Q_constraint(-diag(c(2, 2)), L = c(7, 11), ">=", 40))

In ROI a QCQP can be solved by the solvers

R> ROI_applicable_solvers(qcqp)

[1] "alabama" "cplex" "gurobi" "neos"
[5] "nloptr.cobyla" "nloptr.mma" "nloptr.auglag" "nloptr.isres"
[9] "nloptr.slsqp"

where among these solvers "cplex" and "gurobi" are best suited for this type of problem.
However for reproducibility we use the open source solver "alabama":

R> (qcqp_sol <- ROI_solve(qcqp, "alabama", start = c(5, 5)))

Optimal solution found.
The objective value is: 9.447513e+00

R> solution(qcqp_sol)

[1] 2.845720 4.060584
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and the NEOS server:

R> (qcqp_sol <- ROI_solve(qcqp, "neos", method = "mosek"))

Optimal solution found.
The objective value is: 9.447513e+00

R> solution(qcqp_sol)

[1] 2.845695 4.060596

6.3. Conic optimization problems

Conic optimization problems in standard form (see Equation 7) are comprised of a linear
objective function and conic constraints. The requirement of a linear objective function is
not restrictive, since by making use of the epigraph form (see Equation 8) any CP can be
transformed into the standard form. In conic optimization conic constraints are used to
express predefined linear and nonlinear constraints by the equation Ax + s = b, where the
slack variables s are required to lie in a specific cone b−Ax = s ∈ K.

Zero cone

The zero cone is used to model linear equality constraints, since Ax = b is equivalent to
Ax+ s = b, s ∈ Kzero. The linear constraint x1 + 8x2 = 9 ⇐⇒ 9− (1 8)x = s ∈ Kzero can
be expressed as follows:

R> cpeq <- C_constraint(c(1, 8), K_zero(1), 9)

Linear cone

The linear cone is used to model linear less than equal constraints, since Ax ≤ b is equivalent
to Ax+ s = b, s ∈ Klin. The linear constraint 5x1 + x2 ≤ 6 ⇐⇒ 6− (5 1)x = s ∈ Klin can
be expressed as follows:

R> cpleq <- C_constraint(c(5, 1), K_lin(1), 6)

By combining the zero cone constraint with the linear cone constraint the LP stated in
Equation 20 can also be formulated as a CP.

R> zlcp <- lp
R> constraints(zlcp) <- c(cpeq, cpleq)
R> (zlcp_sol <- ROI_solve(zlcp, solver = "ecos"))

Optimal solution found.
The objective value is: 3.000000e+00

R> solution(zlcp_sol)
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[1] 1 1

Note that since in the definition of Kzero and Klin only one variable is involved, a single zero
cone or linear cone constraint can be expressed by a single row of the constraint matrix A.
For all the other cones at least two rows of the constraint matrix A will be needed to express
a single conic constraint.

Second-order cone

The second-order cone is used to express constraints of the type ‖u‖2 ≤ w (see Equation 10),
where the variables u ∈ Rn−1 and w ∈ R are expressed by b − Ax ∈ Knsoc. Specifically, w is
expressed by b1 − a>1 x and ui is expressed by bi − a>i x, i = 2, . . . , n.
Consider the SOCP

maximize
(y,t)

y1 + y2

subject to
√

(2 + 3y1)2 + (4 + 5y2)2 ≤ 6 + 7t
y1, y2 ∈ R, t ∈ (−∞, 9]

(22)

for x = (y1, y2, t)>, the constraint√
(2 + 3y1)2 + (4 + 5y2)2 ≤ 6 + 7t

is equivalent to √
(b2 − a>2 x)2 + (b3 − a>3 x)2 ≤ b1 − a>1 x,

where

A =

 0 0 −7
−3 0 0

0 −5 0

 , b =

6
2
4

 . (23)

Given the constraint matrix A and the right-hand-side b this can be directly translated into
the following OP:

R> soc1 <- OP(c(1, 1, 0),
+ C_constraint(L = rbind(c(0, 0, -7), c(-3, 0, 0), c(0, -5, 0)),
+ cone = K_soc(3), rhs = c(6, 2, 4)), maximum = TRUE,
+ bounds = V_bound(ld = -Inf, ui = 3, ub = 9, nobj = 3))
R> (soc1_sol <- ROI_solve(soc1, solver = "ecos"))

Optimal solution found.
The objective value is: 2.535571e+01

R> solution(soc1_sol)

[1] 19.055671 6.300041 9.000000
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Consider the SOCP
minimize

x

√
x2

1 + x2
2

subject to x1 + x2 = 2
x1, x2 ≥ 0

(24)

by making use of the epigraph form the OP can be rewritten into the standard form.

minimize
(x,t)

t

subject to
√
x2

1 + x2
2 ≤ t

x1 + x2 = 2
x1, x2 ≥ 0

(25)

This problem can be solved by the following ROI code:

R> A <- rbind(c(0, 0, -1), c(-1, 0, 0), c(0, -1, 0))
R> soc2 <- OP(objective = L_objective(c(0, 0, 1)),
+ constraints = c(C_constraint(A, K_soc(3), c(0, 0, 0)),
+ L_constraint(c(1, 1, 0), "==", 2)))
R> (soc2_sol <- ROI_solve(soc2, solver = "ecos"))

Optimal solution found.
The objective value is: 1.414214e+00

R> solution(soc2_sol)

[1] 1.000000 1.000000 1.414214

Exponential cone
The primal exponential cone is used to express constraints of the type veu

v ≤ w (see Equa-
tion 12), here u ∈ R, v ∈ R, w ∈ R and v > 0. Since three scalar variables are evolved one
primal exponential cone adds three rows to the constraint matrix A. The variables u, v and
w are again expressed by the corresponding elements of b − Ax. Specifically, u := b1 − a>1 x,
v := b2 − a>2 x and w := b3 − a>3 x.
Consider the CP

maximize
(y,t)

y1 + 2y2

subject to exp(7 + 3y1 + 5y2) ≤ 9 + 11t1 + 12t2
y1, y2 ∈ (−∞, 20], t1, t2 ∈ (−∞, 50].

(26)

The constraint exp(7 + 3y1 + 5y2) ≤ 9 + 11t1 + 12t2 can be represented by the exponential
cone by recognizing that u = 7 + 3y1 + 5y2, v = 1 and w = 9 + 11t1 + 12t2.
For x = (y1, y2, t1, t2)> this leads to the matrices

A =

−3 −5 0 0
0 0 0 0
0 0 −11 −12

 , b =

7
1
9

 , (27)

and the following conic constraint:
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R> cexpp <- C_constraint(L = rbind(c(-3, -5, 0, 0), c(0, 0, 0, 0),
+ c(0, 0, -11, -12)), cone = K_expp(1), rhs = c(7, 1, 9))

Therefore this CP can be solved by the following ROI code:

R> expp1 <- OP(c(1, 2, 0, 0), cexpp,
+ bounds = V_bound(ld = -Inf, ub = c(20, 20, 50, 50)), maximum = TRUE)
R> (expp1_sol <- ROI_solve(expp1, solver = "ecos"))

Optimal solution found.
The objective value is: 6.685104e+00

R> solution(expp1_sol)

[1] -33.31490 20.00000 49.99996 49.99996

In many statistical models the objective contains logarithmic and exponential terms (e.g.,
logistic regression, relative risk regression, Poisson regression). As a simple example consider
the CP

maximize
x

log(9 + 7x)
subject to 0 ≤ x ≤ 1,

(28)

or in the epigraph form

maximize
(x,t)

t

subject to log(9 + 7x) ≥ t
0 ≤ x ≤ 1.

(29)

Taking the exponential of log(w) ≥ u gives w ≥ exp(u), therefore the constraint log(9+7x) ≥ t
can be represented by the exponential cone by recognizing that u = t, v = 1 and w = 9 + 7x,
which yields the matrices

A =

 0 −1
0 0
−7 0

 , b =

0
1
9

 . (30)

Therefore this CP can be solved by the following ROI code:

R> A <- rbind(c(0, -1), c(0, 0), c(-7, 0))
R> log1 <- OP(L_objective(c(0, 1), c("x", "t")),
+ C_constraint(A, K_expp(1), rhs = c(0, 1, 9)),
+ bounds = V_bound(lb = c(0, -Inf), ub = c(1, Inf)), maximum = TRUE)
R> (log1_sol <- ROI_solve(log1, solver = "ecos"))

Optimal solution found.
The objective value is: 2.772589e+00

R> solution(log1_sol)
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x t
1.000000 2.772589

Power cone
The primal power cone is used to express constraints of the type uαv1−α ≥ |w| (see Equa-
tion 14), here u ∈ R, v ∈ R, w ∈ R, u, v ≥ 0 and α ∈ [0, 1]. Since three scalar variables
are involved, one primal exponential cone adds three rows to the constraint matrix A. The
variables u, v and w are again expressed by the corresponding elements of b−Ax. Specifically
u := b1 − a>1 x, v := b2 − a>2 x and w := b3 − a>3 x.
Consider the CP

minimize
y

3y1 + 5y2

subject to 5 + y1 ≥ (2 + y2)4

y1 ≥ 0, y2 ≥ 2.
(31)

The constraint 5 + y1 ≥ (2 + y2)4 can be represented by the power cone by recognizing that
u = 5 + y1, v = 1, w = 2 + y2 and α = 1

4 . For x = (y1, y2)> this leads to the matrices

A =

−1 0
0 0
0 −1

 , b =

5
1
2

 , (32)

and the following conic constraint:

R> A <- rbind(c(-1, 0), c(0, 0), c(0, -1))
R> cpowp <- C_constraint(A, K_powp(1/4), rhs = c(5, 1, 2))

Therefore, this CP can be solved by the following ROI code:

R> powp1 <- OP(c(3, 5), cpowp, bounds = V_bound(lb = c(0, 2)))
R> (powp1_sol <- ROI_solve(powp1, solver = "scs", max_iter = 1e6))

Optimal solution found.
The objective value is: 7.629999e+02

R> solution(powp1_sol)

[1] 251 2

Positive semidefinite cone
The positive semidefinite cone is used to express constraints of the typeX ∈ Sn and z>Xz ≥ 0
for all z ∈ Rn (see Equation 11). Positive semidefinite constraints are expressed by the con-
straint matrix A and right-hand-side b. To express the linear matrix inequality∑n

i=1 xiFi � F0
which is equivalent to F0 −

∑n
i=1 xiFi ∈ Kdpsd, in terms of b − Ax ∈ Kpsd the symmetric ma-

trices Fi ∈ Rd×d are transformed into vectors by a half-vectorization. Half-vectorization is a
special kind of matrix vectorization for symmetric matrices, which transforms a symmetric
matrix
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R> (A <- matrix(c(1, 2, 3, 2, 4, 5, 3, 5, 6), nrow = 3))

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 5
[3,] 3 5 6

into a vector. The function vech correspondingly transforms n symmetric d×d matrices into
a (d(d+ 1)/2)× n matrix:

R> vech(A)

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

Consider the SDP

minimize
x

x1 + x2 − x3

subject to x1

(
10 3
3 10

)
+ x2

(
6 −4
−4 10

)
+ x3

(
8 1
1 6

)
�
(

16 −13
−13 60

)
x1, x2, x3 ≥ 0.

This problem can be solved by the following ROI code:

R> F1 <- rbind(c(10, 3), c(3, 10))
R> F2 <- rbind(c(6, -4), c(-4, 10))
R> F3 <- rbind(c(8, 1), c(1, 6))
R> F0 <- rbind(c(16, -13), c(-13, 60))
R> psd <- OP(objective = L_objective(c(1, 1, -1)),
+ constraints = C_constraint(L = vech(F1, F2, F3), cone = K_psd(3),
+ rhs = vech(F0)))
R> (psd_sol <- ROI_solve(psd, solver = "scs"))

Optimal solution found.
The objective value is: -1.486458e+00

R> solution(powp1_sol)

[1] 251 2
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6.4. General nonlinear optimization problems
The following example from Rosenbrock (1960) is known as Rosenbrock’s post office problem.

maximize
x

x1 x2 x3

subject to x1 + 2x2 + 2x3 ≤ 72
x1, x2, x3 ∈ [0, 42]

The following code can be used to solve this problem with ROI.

R> nlp_1 <- OP(maximum = TRUE, bounds = V_bound(ud = 42, nobj = 3L))
R> objective(nlp_1) <- F_objective(F = function(x) prod(x), n = 3,
+ G = function(x) c(prod(x[-1]), prod(x[-2]), prod(x[-3])))
R> constraint <- function(x) x[1] + 2 * x[2] + 2 * x[3]
R> constraints(nlp_1) <- F_constraint(F = constraint, dir = "<=", rhs = 72,
+ J = function(x) c(1, 2, 2))
R> nlp_1

ROI Optimization Problem:

Maximize a nonlinear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 1 constraint of type nonlinear.
- 0 lower and 3 upper non-standard variable bounds.

Alternatively the linear constraint x1 + 2x2 + 2x3 ≤ 72 could and should be modeled directly
as a linear constraint,

R> nlp_2 <- nlp_1
R> constraints(nlp_2) <- L_constraint(L = c(1, 2, 3), "<=", 72)
R> nlp_2

ROI Optimization Problem:

Maximize a nonlinear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 1 constraint of type linear.
- 0 lower and 3 upper non-standard variable bounds.

using L and Q constraints rather than F_constraint has the advantage that for L and Q
constraints the Jacobian is derived analytically if needed and thus the analytical Jacobian
does not need to be provided.
In contrast to LP, QP and CP solvers almost all GPSs require that users specify starting
values. The choice of the starting values has a big influence on how fast and to which solution
the algorithm will converge.
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R> (nlp_1_sol_1 <- ROI_solve(nlp_1, "alabama", start = c(10, 10, 10)))

Optimal solution found.
The objective value is: 3.456000e+03

R> solution(nlp_1_sol_1)

[1] 24.00002 11.99999 11.99999

R> (nlp_1_sol_2 <- ROI_solve(nlp_1, "alabama", start = c(20, 20, 20)))

No optimal solution found.
The solver message was: Convergence due to lack of progress in parameter
updates.
The objective value is: 1.314286e+308

R> solution(nlp_1_sol_2)

[1] NA NA NA

There are several possibilities to help the algorithm to find a good solution. In almost all
practical applications it is possible to specify lower and upper bounds. Carefully chosen
bounds can improve the quality of the solution and decrease the runtime of the algorithm.
The runtime of the algorithm also strongly depends on the tolerances set; if the tolerances are
set too small the algorithm will reach the maximum number of iterations before convergence.

R> (nlp_1_sol_3 <- ROI_solve(nlp_1, "alabama", start = c(10, 10, 10),
+ tol = 1E-24))

No optimal solution found.
The solver message was: ALABaMA ran out of iterations and did not converge.
The objective value is: 3.456000e+03

R> solution(nlp_1_sol_3, force = TRUE)

[1] 24.00002 11.99999 11.99999

Last but not least the chosen method has a big influence on the solution. As mentioned before
some algorithms are designed to search for a global solution, others are designed to search for a
local solution. ROI.plugin.deoptim provides access to the packages DEoptim (Mullen, Ardia,
Gil, Windover, and Cline 2011) and DEoptimR which implement a differential evolution
algorithm for global optimization. For more information about continuous global optimization
in R we refer to Mullen (2014a).

R> (nlp_1_sol_4 <- ROI_solve(nlp_1, "deoptimr", start = c(20, 20, 20),
+ max_iter = 400, tol = 1E-6))



40 ROI: An Extensible R Optimization Infrastructure

Optimal solution found.
The objective value is: 3.456000e+03

R> solution(nlp_1_sol_4)

[1] 23.99997 11.99991 12.00011

In general it is often hard to obtain a global optimum for non-convex optimization problems.
Often the only option is to try different algorithms, parameters and starting values and hope
that one of the solutions is a global optimum. ROI lowers the burden to compare different
algorithms and therefore can assist in finding a global solution.

6.5. Mixed integer problems

Consider the MIP
minimize

x
5x1 + 7x2

subject to 5x1 + 3x2 ≥ 7
7x1 + 1x2 ≥ 9
x1 ∈ {0, 1}, x2 ≥ 0, x2 ∈ Z.

(33)

This problem can be solved by the following ROI code:

R> A <- rbind(c(5, 3), c(7, 1))
R> milp <- OP(c(5, 7),
+ constraints = L_constraint(A, c(">=", ">="), c(7, 9)),
+ types = c("B", "I"))
R> (milp_sol <- ROI_solve(milp, solver = "glpk"))

Optimal solution found.
The objective value is: 1.900000e+01

R> solution(milp_sol)

[1] 1 2

7. Extending ROI
To stay abreast of changes and to further the availability of different solvers in the ROI
ecosystem, ROI allows developers to integrate their own extensions, so called plug-ins. This
can be seen as a key feature, since it allows the use of new solvers with no or minimal code
changes.
Extending ROI with a new solver method can be split into three parts. First, a function to
be called by ROI has to be written. Second, the function plus information about the function
are added into the ROI solver registry. Third, a mapping from the solver specific arguments
and the status codes to their ROI counterpart has to be provided.
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7.1. Signatures

In order to establish a connection between the OP and the solvers provided via plug-ins,
both are equipped with a signature. The signature captures all the information necessary to
determine which solver is applicable to a given problem.

R> OP_signature(lp)

objective constraints bounds cones maximum C I B
1 L L V X TRUE TRUE FALSE FALSE

New signatures are created by the function ROI_plugin_make_signature(). The following
shows how to create the signature for the "glpk" solver,

R> glpk_signature <- ROI_plugin_make_signature(objective = "L",
+ constraints = "L", types = c("C", "I", "B", "CI", "CB", "IB", "CIB"),
+ bounds = c("X", "V"), maximum = c(TRUE, FALSE))

where the objective and the constraints have to be linear. Furthermore, this signature indi-
cates that, the variable types are allowed to be binary ("B"), integer ("I"), continuous ("C")
or any combinations thereof. The bounds have to be variable bounds ("V") or no bounds at
all, encoded by "X". The last argument maximum specifies that GLPK can find both maxima
and minima.

7.2. Writing a new solver method

Any function supposed to add a solver to ROI has to take the arguments x and control,
where x is of class ‘OP’ and control a list containing the additional arguments. Furthermore,
the solution has to be canonicalized before it is returned. The following shows the code from
ROI.plugin.glpk for solving linear problems.

R> glpk_solve_OP <- function(x, control = list()) {
+ control$canonicalize_status <- FALSE
+ glpk <- list(Rglpk_solve_LP, obj = terms(objective(x))[["L"]],
+ mat = constraints(x)$L, dir = constraints(x)$dir,
+ rhs = constraints(x)$rhs, bounds = bounds(x),
+ types = types(x), max = maximum(x), control = control)
+ mode(glpk) <- "call"
+ if (isTRUE(control$dry_run))
+ return(glpk)
+
+ out <- eval(glpk)
+ ROI_plugin_canonicalize_solution(solution = out$solution,
+ optimum = out$optimum, status = out$status, solver = "glpk",
+ message = out)
+ }
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As can be seen from this example, most plug-ins support the optional control argument
dry_run, which returns the solver call. This is especially useful for debugging wrapper func-
tions with more transformation steps, as in this way the data used in the solver call can be
easily shared and inspected.

7.3. Registering solver methods

Registering a solver method can be seen as telling ROI which function it should use when
ROI_solve() with argument solver set to the name of the plug-in (e.g., "glpk") is called.
In order to avoid ambiguity, each plug-in should at most provide one method for each prob-
lem type. Solver methods are registered via the ROI_plugin_register_solver_method()
function, which takes as arguments the problem types (as signatures), the solver name and a
wrapper function, ROI_solve() is dispatched to.
The following code registers the solver, but is not executed as the entry already exists in the
registry.

ROI_plugin_register_solver_method(glpk_signature, "glpk", glpk_solve_OP)

After the solver registration the name of the solver will appear among the registered solvers.

7.4. Adding additional information

To be able to provide a consistent interface, each plug-in has to define a mapping between the
solver specific status codes and the status codes used by ROI, as well as a mapping between
solver specific control variables and ROI control variables.

Status codes

Status codes can be added via the function ROI_plugin_add_status_code_to_db(). The
following code is not executed as the entry already exists in the registry.

ROI_plugin_add_status_code_to_db(solver = "glpk", code = 5L,
symbol = "GLP_OPT", message = "Solution is optimal.", roi_code = 0L)

Here, the "glpk" specific status code 5L is mapped to the canonicalized ROI status code 0L,
which signals that the solution is optimal as indicated by the status message.

Control variables

Plug-ins are contracted to provide a mapping between the names of the control variables
used by ROI and the names of the control variables used by the plug-in. The following maps
the "glpk" argument tm_limit to the ROI equivalent max_time. The following code is not
executed as the entry already exists in the registry.

ROI_plugin_register_solver_control(solver = "glpk", args = "tm_limit",
roi_control = "max_time")
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7.5. Registering reformulations

While in Section 5.3 we showed how to use reformulations, here we explain how new re-
formulations can be added through plug-ins. Again, the signature is used to define which
transformations can be performed by a given method.
We define the signatures for BQP and MILP:

R> bqp_signature <- ROI_plugin_make_signature(objective = "Q",
+ constraints = c("X", "L"), types = c("B"), bounds = c("X", "V"),
+ cones = c("X"), maximum = c(TRUE, FALSE))
R> milp_signature <- ROI_plugin_make_signature(objective = "L",
+ constraints = c("X", "L"),
+ types = c("C", "I", "B", "CI", "CB", "IB", "CIB"),
+ bounds = c("X", "V"), maximum = c(TRUE, FALSE), cones = c("X"))

The following code registers the function bqp_to_lp(), which is based on the function
.linearize_BQP() from the relations package, as a new reformulation named "bqp_to_lp":

ROI_plugin_register_reformulation(
from = bqp_signature, to = milp_signature, method_name = "bqp_to_lp",
method = bqp_to_lp, description = "", cite = "", author = "")

The parameter from defines which signatures the original problem is allowed to have and to
defines all possible signatures the reformulation could have. The code is not executed because
this reformulation is already registered.

7.6. Registering reader/writer

Plug-ins can also add new read and write functions. Any method to be registered as read
function has to take as arguments file, the file name, and ..., for optional additional
arguments.

R> library("slam")
R> json_reader_lp <- function(file, ...) {
+ stopifnot(is.character(file))
+ y <- read_json(file, simplifyVector = TRUE)
+ to_slam <- function(x) do.call(simple_triplet_matrix, x)
+ x <- OP()
+ objective(x) <- L_objective(to_slam(y[["objective"]][["L"]]),
+ y[["objective"]][["names"]])
+ constraints(x) <- L_constraint(to_slam(y[["constraints"]][["L"]]),
+ y[["constraints"]][["dir"]], y[["constraints"]][["rhs"]],
+ y[["constraints"]][["names"]])
+ types(x) <- y[["types"]]
+ bounds(x) <- structure(y[["bounds"]], class = c("V_bound", "bound"))
+ maximum(x) <- as.logical(y[["maximum"]])
+ x
+ }
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The write functions need the additional argument x, which is the OP to be written out.

R> json_writer_lp <- function(x, file, ...) {
+ writeLines(toJSON(nested_unclass(x), null = "null"), con = file)
+ }

Using the JSON based exchange format proposed in Section 5.6, we illustrate how to register
simple JSON read and write functions for linear problems.

R> plugin_name <- "io"
R> ROI_plugin_register_writer("json", plugin_name, milp_signature,
+ json_writer_lp)
R> ROI_plugin_register_reader("json", plugin_name, json_reader_lp)

After the registration of the functions they can be used in the typical way.

R> fname <- tempfile()
R> file <- ROI_write(lp, file = fname, type = "json")
R> (lp_json <- ROI_read(file = fname, type = "json"))

ROI Optimization Problem:

Maximize a linear objective function of length 2 with
- 2 continuous objective variables,

subject to
- 2 constraints of type linear.
- 2 lower and 2 upper non-standard variable bounds.

7.7. ROI tests
Writing tests is an important task in software development. The ROI.tests (Schwendinger
2019b) package provides a collection of tests which should be applied to any ROI plug-in
during development. Since ROI knows the signature of each solver, ROI.tests can select the
appropriate tests based on the solver name.

R> library("ROI.tests")
R> test_solver("glpk")

LP-01: OK!
LP-02: OK!
LP-03: OK!
MILP-01: OK!
MILP-02: OK!

8. Applications
In the following we demonstrate how ROI can be used to solve selected problems from statis-
tics, namely L1 regression, best subset selection, relative risk regression, sum-of-norms clus-
tering, and graphical lasso.
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8.1. L1 regression

The linear programming formulation of the L1 regression problem as shown in Section 2.1
can be constructed using ROI methods via the following R function.

R> create_L1_problem <- function(x, y) {
+ p <- ncol(x) + 1L
+ m <- 2 * nrow(x)
+ L <- cbind(1, x, diag(nrow(x)), -diag(nrow(x)))
+ bnds <- V_bound(li = seq_len(p), lb = rep(-Inf, p), nobj = p + m)
+ OP(objective = L_objective(c(rep(0, p), rep(1, m))),
+ constraints = L_constraint(L, dir = eq(nrow(x)), rhs = y),
+ bounds = bnds)
+ }

One can solve, e.g., Brownlee’s stack loss plant data example from the stats package using
the above OP and the solver GLPK as follows.

R> data("stackloss", package = "datasets")
R> l1p <- create_L1_problem(x = as.matrix(stackloss)[,-4], y = stackloss[,4])
R> L1_res <- ROI_solve(l1p, solver = "glpk")
R> solution(L1_res)[1:ncol(stackloss)]

[1] -39.68985507 0.83188406 0.57391304 -0.06086957

The first value corresponds to the intercept and the others to the model coefficients.

8.2. Best subset selection

Recently Bertsimas et al. (2016) reported a bewildering 450 billion factor speedup from 1991
to 2015 for solving MIP, which is partly due to algorithmic improvements and partly because
of hardware speedups. They show how this speed gain can be utilized to solve the best
subset selection problem in regression (see, for example, Miller 2002), which is an NP-hard
combinatorial OP. The best subset selection problem is a variable selection scheme which
extends linear least-squares by adding a constraint on the number of predictor variables.

minimize
β

1
2‖y −Xβ‖

2
2 subject to

p∑
i=1

I{βi 6=0} ≤ k (34)

As Equation 34 suggests, the best subset selection is in spirit similar to ridge regression and
lasso. However instead of the l2 and l1 norm best subset selection uses the l0 norm which
makes it non-convex and therefore hard to solve. The leaps (Lumley 2020) package imple-
ments an efficient branch-and-bound algorithm which is significantly faster than exhaustive
search. Using an optimization solver has the additional advantage that it is possible to im-
pose additional restrictions, e.g., if the quadratic term of a covariate is selected to be in the
equation the linear term has also to be selected. In ROI best subset selection can be either
implemented as mixed integer quadratic problem or as mixed integer second order cone prob-
lem. This problem can be solved with a mixed integer QP solver or a mixed integer SCOP
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solver. An implementation of the second order cone version can be found in the supplementary
material.

8.3. Relative risk regression
Generalized linear models (GLMs) are often the statisticians’ first choice for regression anal-
ysis of binary response data. The most prominent model of the GLM family is logistic regres-
sion.3 A GLM which is mainly used in epidemiology but closely related to logistic regression
is relative risk regression. The main difference between these two models is the fact that
relative risk regression uses the log link and therefore estimates relative risks instead of odds
ratios. Lumley, Kronmal, and Ma (2006) reviews the algorithms proposed in the literature to
perform relative risk regression. Luo, Zhang, and Sun (2014) suggest to use a log-binomial
model with

maximize
β

n∑
i=1

yi Xi∗β +
n∑
i=1

(1− yi) log(1− exp(Xi∗β)) subject to Xβ ≤ 0. (35)

Here Xi∗ refers to the ith row of the data matrix X, the constraint Xβ ≤ 0 ensures that the
estimated probabilities are in the interval [0, 1]. The log-binomial regression model can be
formulated as a general nonlinear optimization problem:

R> logbin_gps <- function(y, X) {
+ loglikelihood <- function(beta) {
+ xb <- drop(X %*% beta)
+ if (any(xb > 0)) NaN else sum(y * xb + (1 - y) * log(1 - exp(xb)))
+ }
+
+ gradient <- function(beta) {
+ exb <- exp(drop(X %*% beta))
+ drop(crossprod(X, (y - exb) / (1 - exb)))
+ }
+
+ OP(F_objective(loglikelihood, n = ncol(X), G = gradient),
+ L_constraint(L = X, dir = leq(nrow(X)), rhs = double(nrow(X))),
+ bounds = V_bound(ld = -Inf, nobj = ncol(X)), maximum = TRUE)
+ }

which can be solved by any GPS which allows to specify linear constraints (e.g., using package
alabama).
Alternatively the log-binomial regression model can be solved by any CP solver which supports
the linear and the primal exponential cone (e.g., using package scs). The latter formulation
has attractive theoretical and numerical convergence guarantees without the need to find
suitable starting values.

R> logbin_cp <- function(y, X, rhs_eps = 1e-7) {
+ y_is_0 <- y == 0L

3An example for logistic regression can be found on the ROI web page at https://ROI.R-forge.R-project.
org/.

https://ROI.R-forge.R-project.org/
https://ROI.R-forge.R-project.org/
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+ n_y_is_0 <- sum(y_is_0)
+ o <- OP(c(y %*% X, double(n_y_is_0), rep(1, n_y_is_0)), maximum = TRUE)
+ L1 <- cbind(X, matrix(0, nrow(X), 2 * n_y_is_0))
+ log1exp <- function(xi, j, n_y_is_0) {
+ M <- matrix(0, nrow = 6, ncol = length(xi) + 2 * n_y_is_0)
+ M[1, seq_along(xi)] <- -xi
+ M[3, length(xi) + j] <- -1
+ M[4, length(xi) + n_y_is_0 + j] <- -1
+ M[6, length(xi) + j] <- 1
+ M
+ }
+ L2 <- mapply(log1exp, split(X[y_is_0,], seq_len(n_y_is_0)),
+ seq_len(n_y_is_0), MoreArgs = list(n_y_is_0 = n_y_is_0),
+ SIMPLIFY = FALSE)
+ rhs <- c(c(0, 1, 0), c(0, 1, 1))
+ rhs <- c(rep(-rhs_eps, nrow(X)), rep(rhs, n_y_is_0))
+ cones <- c(K_lin(nrow(X)), K_expp(2 * n_y_is_0))
+ L <- do.call(rbind, c(list(L1), L2))
+ constraints(o) <- C_constraint(L, cones, rhs)
+ bounds(o) <- V_bound(ld = -Inf, nobj = length(objective(o)))
+ o
+ }

To illustrate the estimation of GLMs with binary responses and log link using ROI, we
generate a data set similar to an example in the rms (Harrell Jr 2020) manual.

R> generate_data <- function(n) {
+ treat <- factor(sample(c("a", "b", "c"), n, TRUE))
+ num.diseases <- sample(0:4, n, TRUE)
+ age <- rnorm(n, 50L, 10L)
+ cholesterol <- rnorm(n, 200L, 25L)
+ weight <- rnorm(n, 150L, 20L)
+ sex <- factor(sample(c("female", "male"), n, TRUE))
+
+ # Specify population model for log probability that Y = 1
+ L <- (-1 + 0.1 * (num.diseases - 2) + 0.045 * (age - 70)
+ + (log(cholesterol - 10) - 5.2) - 2 * (treat == "a")
+ + 0.5 * (treat == "b") - 0.5 * (treat == "c") )
+ # Simulate binary y to have Prob(y = 1) = exp(L)
+ y <- as.double(runif(n) < exp(L))
+
+ A <- cbind(intercept = 1, age, sex, weight,
+ logchol = log(cholesterol - 10), num.diseases,
+ treatb = (treat == "b"), treatc = (treat == "c"))
+ return(list(y = y, A = A))
+ }
R> suppressWarnings(RNGversion("3.5"))
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R> set.seed(1234)
R> dat <- generate_data(1500L)
R> start <- c(log(0.2), double(ncol(dat$A) - 1))
R> prob_login_bin_gps <- logbin_gps(dat$y, dat$A)
R> s1 <- ROI_solve(prob_login_bin_gps, "alabama", start = start)
R> solution(s1)

[1] -11.655999855 0.051756340 0.054627947 -0.005642101
[5] 1.044477583 0.066972373 2.649430289 1.735273305

R> prob_login_bin_cp <- logbin_cp(dat$y, dat$A)
R> s2 <- ROI_solve(prob_login_bin_cp, solver = "ecos")
R> head(solution(s2), ncol(dat$A))

[1] -11.665400207 0.051763544 0.054607482 -0.005639921
[5] 1.046087685 0.066980548 2.649563917 1.735398851

R> obj_fun <- objective(prob_login_bin_gps)
R> obj_fun(head(solution(s2), ncol(dat$A))) - obj_fun(solution(s1))

[1] 6.43562e-06

We see that both approaches yield a similar result.

8.4. Sum-of-norms clustering

Borrowing ideas from regularization, sum-of-norms (SON) clustering (convex clustering) is
an interesting alternative to established clustering approaches like hierarchical or k-means
clustering, which has attracted a lot of research in recent years (Pelckmans, De Brabanter,
De Moor, and Suykens 2005; Lindsten, Ohlsson, and Ljung 2011; Hocking, Joulin, Bach,
and Vert 2011; Zhu, Xu, Leng, and Yan 2014; Chi and Lange 2015; Tan, Witten et al. 2015).
Pelckmans et al. (2005) and Hocking et al. (2011) describe SON clustering as a convexification
of hierarchical clustering and Lindsten et al. (2011) establish that SON clustering can be seen
as a convex relaxation of k-means clustering. Due to its convexity, SON clustering is not
dependent on the starting values, which is a clear advantage over the non-convex k-means
and hierarchical clustering.
SON clustering solves the following convex OP,

minimize
Mi

1
2

m∑
i=1
‖Xi∗ −Mi∗‖22 + λ

∑
i<j

‖Mi∗ −Mj∗‖q (36)

where q ∈ {1, 2,∞}, X ∈ Rm×n is the data matrix and Mi∗ the ith row of the optimization
variable M . The regularization term λ

∑
i<j ‖Mi∗−Mj∗‖q induces equal rows Mi∗. For λ = 0

all rows are unique and M is equal to X, when λ increases the number of unique rows of M
will decrease. This gives a clustering where all equal rows belong to the same cluster. By
solving Equation 36 for different λi, where λ1 < λ2 < · · · < λk−1 < λk, one can obtain a
hierarchical clustering tree (Pelckmans et al. 2005).
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At least two implementations of SON clustering exist in R, Hocking et al. (2011) provide their
code on R-Forge (Hocking 2015) and Chi and Lange (2015) provide a fast implementation
of SON clustering on CRAN (Chi and Lange 2014). A ROI formulation as SOCP of SON
clustering can be found in the supplementary material.

8.5. Graphical lasso
Obtaining good estimates of the covariance matrix Σ is important in modern statistics. Often
Σ is not estimated directly but its inverse, the precision matrix Θ = Σ−1 (e.g., Meinshausen
and Bühlmann 2006). Estimating the precision matrix instead of the covariance matrix has
the advantage that there is a direct connection between the precision matrix and Gaussian
graphical models, in the sense that the precision matrix defines the structure of the Gaussian
graphical model. The elements of the precision matrix are the partial correlations, Θij is zero
if and only if i and j are conditionally independent. Translated to Gaussian graphical models,
two edges A and B are only connected if the corresponding entry in the precision matrix is
non-zero (Lauritzen 1996).
Several authors proposed an algorithm connected to the lasso (Tibshirani 1996), to obtain
a sparse estimate of the precision matrix, the so-called graphical lasso (glasso; Friedman,
Hastie, and Tibshirani 2008). The glasso solves the following convex OP,

minimize
Θ�0

− log(det(Θ)) + tr(S Θ) + λ ‖X‖1, (37)

where the data matrixX ∈ Rn×p is assumed to be generated from a p-dimensional multivariate
normal distribution Np(µ,Σ) and S is the sample covariance matrix of X. Making use of the
exponential and semidefinite cone, this can be brought into the CP standard form and solved
by ROI using SCS. The corresponding R code can be found in the supplementary material.

9. Conclusions
In this paper we presented the ROI package and its extensions. ROI provides a consistent way
to model OPs in R. ROI makes strong use of R’s generic functions, such that users already
familiar with R are not obliged to learn a new language. The plug-in packages equip ROI
with optimization solvers and predefined optimization models. ROI is currently applicable
to linear, quadratic, conic and general nonlinear OPs and provides access to nineteen solvers
and three model plug-ins.
We illustrated how ROI can be used to solve OPs from many different problem classes.
Furthermore, we have shown how ROI can be used to solve challenging statistical problems like
best subset selection, convex clustering and glasso. The plug-in package ROI.plugin.msbinlp
(Hornik, Meyer, and Schwendinger 2017b) serves as an example to highlight the benefit of
the development of new packages based on ROI. As package ROI.plugin.msbinlp shows, the
main benefit is that there is no need to have a dependency on a specific solver which could be
also interesting for the implementation of nonlinear optimization algorithms (e.g., sequential
quadratic programming). Another benefit is that package authors can reuse test cases from
other packages based on ROI and the plug-in package ROI.tests provides a standardized way
to test new solver plug-ins.
Although ROI already is able to cope with a wide range of optimization problems, there
are still many possibilities for extensions. These include extending the supported functional
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forms of the objective functions and constraints as well as adding additional solvers or model
collections through plug-ins. The following gives an overview of the planned extensions and
possible future work:

• Currently, ROI is lacking a plug-in capable of solving general nonlinear optimization
problems with mixed integer constraints. Within the COIN-OR project the Couenne (Be-
lotti, Lee, Liberti, Margot, and Wächter 2009) and the Bonmin (Bonami and Lee 2013)
solvers are designed to try to obtain a global solution for non-convex MINLPs. Therefore
both solvers would be a valuable extension of ROI.

• Another popular solver from the COIN-OR project is Ipopt (Wächter and Biegler 2006),
which aims to solve general nonlinear optimization problems. As mentioned before,
there exists already the ipoptr package, but since there are many steps needed for the
installation we assume it is currently not accessible to many R users. Therefore a ROI
plugin installable directly from CRAN would be preferable.

• Add a reader for the QPLIB file format (Furini et al. 2017).

• Add plotting methods.

• Explore possibilities of supervised solver recommendation.

We are working on extending the amount of solvers and resources available through ROI.
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A. Solver overview

Method Package Type Constraint G H J
1 auglag alabama Local Nonlinear Yes No Yes
2 dfsane BB Local No No No No
3 sumt clue Local Nonlinear Yes No No
4 DEoptim DEoptim Global Box No No No
5 hjkb dfoptim Local Box No No No
6 nmk dfoptim Local Box No No No
7 GenSA GenSA Global Box No No No
8 lbfgsb3 lbfgsb3 Local Box Yes No No
9 SANN stats Global No No No No
10 Nelder-Mead stats / optimx Local No No No No
11 BFGS stats / optimx Local No Yes No No
12 L-BFGS-B stats / optimx Local Box Yes No No
13 CG stats / optimx Local No Yes No No
14 nlminb stats / optimx Local Box Yes Yes No
15 nlm stats / optimx Local No Yes Yes No
16 ucminf ucminf / optimx Local Box Yes No No
17 uobyqa minqa / optimx Local No No No No
18 newuoa minqa / optimx Local No No No No
19 bobyqa minqa / optimx Local Box No No No
20 Rcgmin Rcgmin / optimx Local Box Yes No No
21 Rvmmin Rvmmin / optimx Local Box Yes No No
22 spg BB / optimx Local Box Yes No No
23 NlcOptim NlcOptim Local Nonlinear No No No
24 auglag nloptr Local Nonlinear Yes No Yes
25 bobyqa nloptr Local Box No No No
26 cobyla nloptr Local Nonlinear No No No
27 DIRECT nloptr Global Box No No No
28 isres nloptr Global Nonlinear No No No
29 lbfgs nloptr Local Box Yes No No
30 mlsl nloptr Global Box Yes No No
31 mma nloptr Local Nonlinear Yes No Yes
32 nedlermead nloptr Local Box No No No
33 newuoa nloptr Local No No No No
34 sbplx nloptr Local Box No No No
35 slsqp nloptr Local Nonlinear Yes No Yes
36 stogo nloptr Global Box Yes No No
37 tnewton nloptr Local Box Yes No No
38 varmetric nloptr Local Box Yes No No
39 genoud rgenoud Global Box Yes No No
40 solnp Rsolnp Local Nonlinear No No No
41 malschains Rmalschains Global Box No No No
42 soma soma Global Box No No No
43 trustOptim trustOptim Local No Yes Yes No
44 DEoptim RcppDE Global Box No No No
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45 JDEoptim DEoptimR Global Nonlinear No No No
46 ga GA Global Box No No No
47 mcga mcga Global Box No No No
48 mcga2 mcga Global Box No No No
49 psoptim pso Global Box Yes No No
50 psoptim psoptim Global Box No No No
51 cma_es cmaes Global Box No No No
52 cmaes cmaesr Global No No No No
53 cmaes parma Global Box No No No
54 GAopt NMOF Global No No No No
55 DEopt NMOF Global Box No No No
56 LSopt NMOF Global No No No No
57 PSopt NMOF Global Box No No No
58 TAopt NMOF Global No No No No
59 GrassmannOptim GrassmannOptim Local No Yes No No
60 lbfgs lbfgs Local No Yes No No
61 powell powell Local No No No No
62 ceimOpt RCEIM Local Box No No No
63 subplex subplex Local No No No No
64 ipoptr ipoptr Local Nonlinear Yes Yes Yes
65 Rdonlp2 Rdonlp2 Local Nonlinear No No No
66 Rnlminb2 Rnlminb2 Local Nonlinear Yes Yes No
67 pureCMAES adagio Global Box No No No
68 snomadr crs Local Nonlinear No No No
69 multimin gsl Local No Yes No No
70 hydroPSO hydroPSO Global Box No No No
71 neldermead neldermead Local Nonlinear No No No
72 cmaOptimDP rCMA Local Nonlinear No No No
73 trust trust Local No Yes Yes No
74 abc_optim ABCoptim Global Box No No No
75 CEoptim CEoptim Global No No No No
76 manifold.optim ManifoldOptim Local No Yes Yes No
77 ALO metaheuristicOpt Global Box No No No
78 DA metaheuristicOpt Global Box No No No
79 FFA metaheuristicOpt Global Box No No No
80 GA metaheuristicOpt Global Box No No No
81 GOA metaheuristicOpt Global Box No No No
82 GWO metaheuristicOpt Global Box No No No
83 HS metaheuristicOpt Global Box No No No
84 MFO metaheuristicOpt Global Box No No No
85 PSO metaheuristicOpt Global Box No No No
86 SCA metaheuristicOpt Global Box No No No
87 WOA metaheuristicOpt Global Box No No No
88 SD mize Local No Yes Yes No
89 BFGS mize Local No Yes Yes No
90 SR1 mize Local No Yes Yes No
91 L-BFGS mize Local No Yes Yes No
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92 CG mize Local No Yes Yes No
93 TN mize Local No Yes Yes No
94 NAG mize Local No Yes Yes No
95 DBD mize Local No Yes Yes No
96 Momentum mize Local No Yes Yes No
97 n1qn1 n1qn1 Local No Yes No No
98 qnbd n1qn1 Local Box Yes No No
99 tnbc Rtnmin Local Box Yes No No

100 COBRA SACOBRA Local Box No No No

Table 5: GPSs in R and their capability to handle type, constraint, gradient (G), Hessian
(H), Jacobian (J) information.

B. Abbreviations

Abbreviation Full name
BLP Binary linear programming
CP Conic programming
IP Integer programming
LP Linear programming
MILP Mixed integer linear programming
MIP Mixed integer programming
NLP Nonlinear programming
QCQP Quadratically constraint quadratic programming
QP Quadratic programming
SDP Semidefinite programming
SOCP Second order cone programming

Table 6: Abbreviations used for the classes of optimization problems.
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