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Abstract

Many popular nonparametric inferential methods are based on ranks. Among the most
commonly used and most famous tests are for example the Wilcoxon-Mann-Whitney test
for two independent samples, and the Kruskal-Wallis test for multiple independent groups.
However, recently, it has become clear that the use of ranks may lead to paradoxical results
in case of more than two groups. Luckily, these problems can be avoided simply by using
pseudo-ranks instead of ranks. These pseudo-ranks, however, suffer from being (a) at
first less intuitive and not as straightforward in their interpretation, (b) computationally
much more expensive to calculate. The computational cost has been prohibitive, for
example, for large-scale simulative evaluations or application of resampling-based pseudo-
rank procedures. In this paper, we provide different algorithms to calculate pseudo-ranks
efficiently in order to solve problem (b) and thus render it possible to overcome the current
limitations of procedures based on pseudo-ranks.

Keywords: nonparametric statistics, ranks, pseudo-ranks, R.

1. Introduction

There exist many rank-based inference methods, and they are used ubiquitously across the
many subject matter areas where statistical inference is applied. Some of the best known
examples include the Wilcoxon-Mann-Whitney test (Wilcoxon 1945; Mann and Whitney
1947) for inference regarding two independent samples and the Kruskal-Wallis test (Kruskal

https://doi.org/10.18637/jss.v095.c01


2 pseudorank: Pseudo-Ranks in R

Group sizes Group Weighted Unweighted
20 1 0.635 0.727
10 2 0.388 0.500
5 3 0.185 0.273
5 1 0.815 0.727
10 2 0.612 0.500
20 3 0.365 0.273

Table 1: Weighted and unweighted relative effects for two different group allocations in case
of normal distributions with F1 = N(1, 1), F2 = N(0, 1) and F3 = N(−1, 1).

1952) for a comparison of multiple groups – each of the above publications having been cited
thousands of times. For detecting ordered alternatives (patterned alternatives, trends), the
Jonckheere-Terpstra test (Terpstra 1952; Jonckheere 1954) and the Hettmansperger-Norton
test (Hettmansperger and Norton 1987; Brunner and Puri 2002) have become popular. Mann
and Whitney (1947) used as an effect size the probability that an observation from the first
group is less than an observation from the second group. This quantity is referred to as
relative effect (Brunner and Puri 2001, 2002) with reference to Birnbaum and Klose (1957).
To extend this idea from two to multiple groups, one could simply consider all pairwise relative
effects. However, these pairwise relative effects are not transitive, thus yielding potential
paradoxical results. Specifically, for independent random variables Xi, i = 1, 2, 3, it may
happen that each of the pairwise effects p1,2 = P(X1 < X2), p2,3 = P(X2 < X3), and
p3,1 = P(X3 < X1) is less than 1/2. This appears paradoxical as its interpretation is that X1
tends to greater values than X2, while X2 tends to greater values than X3, and finally X3
to greater values than X1. Concrete examples are provided, for instance, in Thangavelu and
Brunner (2007) and Brunner, Konietschke, Bathke, and Pauly (2020).
A first step in solving this problem is to compare each group with one and the same reference
group. For instance, one could choose a weighted mean of the cumulative distribution func-
tions (CDFs) as the reference distribution. The effects obtained in this way are referred to as
weighted relative effects, and many rank statistics are based on these effects. For example, in
case of the Kruskal-Wallis test, the CDF of each group is compared with the weighted average
of all CDFs involved in the trial where the weights are chosen as the proportion of group sizes
divided by the total sample size. However, the weighted relative effects thus obtained depend
on the ratios of group sizes. For example, let us consider the following example from Brunner,
Konietschke, Pauly, and Puri (2017) given in Table 1. This example demonstrates that the
weighted relative effects pi =

∫
WdFi, i ∈ {1, 2, 3}, even with known and fixed distribution

functions, heavily depend on the ratio ni/N whereW (x) = 1
N (n1F1(x) + n2F2(x) + n3F3(x))

and N =
∑3
j=1 nj . The distributions Fi, i ∈ {1, 2, 3}, in this example are normal distributions

with variance 1 and expectations µ1 = 1, µ2 = 0, and µ3 = −1. The group sizes are either
n1 = 20, n2 = 10, n3 = 5 or n1 = 5, n2 = 10, n3 = 20. In contrast, the unweighted relative
effects

qi =
∫
UdFi, (1)

i ∈ {1, 2, 3}, do not depend on the allocation rate to the groups. Here,

U(x) = 1
3 (F1(x) + F2(x) + F3(x))
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denotes the unweighted mean of the distribution functions. Note that the quantities pi =∫
WdFi and qi as defined in (1) in this example are not estimates, but the true effects. It is

not desirable that these effects depend on the group sizes. Hence, a straightforward solution
is to use unweighted relative effects, based on the unweighted average U(x) of all CDFs. They
lead in a natural manner to the so-called pseudo-ranks instead of ranks for the estimator of
the group effects, see Section 2.
Other possible paradoxical outcomes when using weighted relative effects have been pointed
out by Brunner (2017); Brunner et al. (2020) and Brunner, Bathke, and Konietschke (2019).
These may be especially problematic for trend tests such as the Hettmansperger-Norton test
(Hettmansperger and Norton 1987) as the trend can be drastically different if the ratios
ni/N are changed. Moreover, the trend may have opposite direction for the same set of
distributions.
Although pseudo-ranks have already been considered by Kulle (1999) and Domhof (2001),
they were first mentioned in the statistical literature by Brunner and Puri (2001) in the dis-
cussion at the end of their paper. Later, Thangavelu and Brunner (2007) and Konietschke,
Hothorn, and Brunner (2012) derived general asymptotic results on pseudo-ranks. Also statis-
tics based on pseudo-ranks have been published by Gao and Alvo (2005b,a); Gao, Alvo, Chen,
and Li (2008); Konietschke et al. (2012), and Brunner et al. (2017). Nevertheless, they have
not gained widespread popularity yet. This may be due to two major reasons: (1) Many
users and statistics practitioners are not yet familiar with the paradoxical results that can
arise using classical rank-based tests. (2) In standard statistical software, there is no efficient
algorithm to calculate pseudo-ranks. Indeed, for example, no fast and efficient method to
calculate pseudo-ranks has been implemented within the statistical software environment R
(R Core Team 2020) so far. The methods available in the R packages nparcomp (Konietschke,
Placzek, Schaarschmidt, and Hothorn 2015) and rankFD (Konietschke, Friedrich, Brunner,
and Pauly 2020) rely on a direct calculation of the pseudo-ranks by using pairwise ranks (see
Section 4.2). Such an approach can be very slow for a large number of groups.
As a remedy, and in order to open up the field of nonparametric statistics to a more widespread
use of pseudo-ranks which will also solve the above-mentioned paradoxa that may arise when
using simple rank-based tests, we provide a fast algorithm to calculate pseudo-ranks even
for large data sets. In Section 5, we illustrate the application of this new algorithm in
context of an artificial data example. Furthermore, we compare this new algorithm with
the pairwise calculation of pseudo-ranks and the calculation based on count functions of all
pairwise differences (see Section 6).

2. Defining ranks and pseudo-ranks
For ease of illustration, consider a one-way factorial model, assuming independent observations
Xik ∼ Fi from subjects k ∈ {1, 2, . . . , ni} in groups i ∈ {1, 2, . . . , a}. Here, N =

∑a
i=1 ni

denotes the total sample size of all groups combined. Let

U := 1
a

a∑
i=1

Fi and W := 1
N

a∑
i=1

niFi (2)

denote the unweighted and the weighted mean distribution function, respectively. In the
definitions above, we use the normalized versions of the distribution functions Fi (i.e., Fi =
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1
2 [F−i + F+

i ]), because the theoretical results can then be applied to continuous as well as
ordinal variables in a straightforward manner, see for example Ruymgaart (1980); Akritas,
Arnold, and Brunner (1997); Akritas and Brunner (1997) among others. We would like to
mention that W is actually a special case of

∑a
i=1wiFi, a weighted sum of the distribution

functions F1, . . . , Fa, where wi ≥ 0 and
∑a
i=1wi = 1. For example, stratified sampling schemes

can thus be accounted for in the nonparametric model, by specifying the weights appropriately.
This more general approach is discussed in detail in Brunner et al. (2020). Moreover, it should
be noted that our model can easily be extended to multi-factorial designs, by splitting up the
index i accordingly. Since in general, the functions U and W are unknown, we therefore
consider their respective empirical versions

Û := 1
a

a∑
i=1

F̂i and Ŵ := 1
N

a∑
i=1

niF̂i,

where F̂i = 1
2

(
F̂−i + F̂+

i

)
, i ∈ {1, . . . , a}, are the normalized empirical distribution functions.

Then, the mid-rank Rik of an observation Xik is defined by

Rik = 1
2 +NŴ (Xik) = 1

2 +
a∑
l=1

nl∑
m=1

c(Xik −Xlm)

and the mid pseudo-rank Rψik by

Rψik = 1
2 +NÛ(Xik) = 1

2 + N

a

a∑
l=1

n−1
l

nl∑
m=1

c(Xik −Xlm) (3)

for i ∈ {1, 2, . . . , a} and k ∈ {1, 2, . . . , ni}. Here, c is a function with c(t) = 0, 1/2, 1 depending
on t <,=, > 0, respectively. If there are no ties (i.e., no equal values) in the data, we can
simply sort the data from the smallest to the largest observation and assign rank 1 to the
smallest, rank 2 to the second-smallest, and so on. This provides for a “natural” and easily
interpretable way to calculate ranks. In case of ties, we have three options. We can assign
to all observations with the same value the smallest rank, leading to the so-called min-ranks.
These are sometimes used in competitions where two competitors with equal performance
value are both assigned first place. It is also possible to assign the largest rank to them,
thus leading to max-ranks. If we take the average of min- and max-ranks, we obtain the so-
called mid-ranks which have been adopted in nonparametric statistics due to their favorable
symmetry properties. In the remainder of this paper, we will also mostly use the latter and
refer to the mid-ranks simply as ranks.
Note that both, ranks and pseudo-ranks, are invariant under strictly-monotone transforma-
tions and if Xik ≤ Xjl then we also have Rik ≤ Rjl and Rψik ≤ Rψjl. In case of equal group
sizes (i.e., n1 = · · · = na), it is obvious that ranks and pseudo-ranks are identical.
Recently, it was pointed out by Thangavelu and Brunner (2007) and Brunner et al. (2020) that
rank statistics may lead to paradoxical results. It was demonstrated in Table 1 in Section 1
that the true (theoretical) weighted relative effects depend on the group sizes. These relative
effects are estimated by p̂i =

∫
ŴdF̂i, i ∈ {1, . . . , a}, where Ŵ (x) = 1

N

∑a
i=1 niF̂i which can be

expressed in terms of the ranks of the observations. Similarly, estimators for the unweighted
relative effects q̂i can be written in terms of pseudo-ranks. Depending on the ratio ni/

∑
j nj ,

the order of the relative effects pi may change. Therefore, it has been proposed to use
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pseudo-rank-based test statistics as a solution to avoid such paradoxical results. However,
one problem of pseudo-ranks is that they are slightly more difficult to calculate, and existing
algorithms have been computationally expensive. For example, a direct implementation of
the definition in (3) would require N comparisons for each of the N observations, thus leading
to O(N2) arithmetical operations. Therefore using the above definition in (3) to calculate
pseudo-ranks is not feasible for large data sets, for tests using resampling techniques or for
simulations. We will present three different algorithms. The second and third algorithm use
the relation between ranks and pseudo-ranks. The first algorithm provides recursive formulas
for pseudo-ranks and has been shown to be the fastest among those three, see Section 6. This
algorithm is also implemented in the R package pseudorank (Happ, Zimmermann, Bathke,
and Brunner 2020) available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=pseudorank.

3. Efficient recursive calculation of pseudo-ranks
Existing efficient algorithms to compute ranks rely on very efficient sorting algorithms. For
example, in R the “radix sort” algorithm is used for sorting the data. Following the sorting,
rank 1 is assigned to the smallest observation, rank 2 to the second smallest, and so on. If
some observations have the same value, the average rank is assigned to those. This can be
calculated very fast with R. However, for pseudo-ranks, simply sorting the data is not enough
as the increments from one pseudo-rank to the next are not 1 as for ranks, but they depend
on the respective sizes of the groups to which the observations belong. Nevertheless, we
can exploit a conceptually similar approach and propose a recursive formula for calculating
pseudo-ranks.
Let us denote with X(1) ≤ · · · ≤ X(N) the order statistics and with Rψ(i) the pseudo-rank of the
order statistic X(i). The size of the sample i to which the observation X(i) belongs is denoted
by n(i). For discrete random variables, the order statistics are not uniquely defined. But this
does not matter, as only the order of the blocks with the same value is of importance.
Define m = (1/n(1), . . . , 1/n(N))> to be the vector of the inverse group sizes, and let t(i) =
(1X(i)=X(1) , . . . , 1X(i)=X(N))> denote the vector indicating all observations with the same value
as X(i). Now, the pseudo-ranks can be calculated recursively by

Rψ(i) = Rψ(i−1) + (1− t(i−1)
i ) N

2a
(
t(i) + t(i−1)

)>
m (4)

for i = 2, . . . , N where t(i)j refers to the jth component of the vector t(i). The recursion start
is given by

Rψ(1) = 1
2

(
N

a
(t(1))>m + 1

)
.

The derivation of this recursive representation is given in Appendix A. For this recursion
formula still O(N2) arithmetic operations are necessary. The recursion in (4), however, can
be written more efficiently distinguishing the two cases of no ties and of ties. This is considered
in the following two sections. Note that this is just a simplification for programming. It is
equally possible to rewrite (4) in terms of sums to avoid the vector products in (4). However,
this may be more error-prone, since several cases have to be distinguished at the same time.

https://CRAN.R-project.org/package=pseudorank
https://CRAN.R-project.org/package=pseudorank
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Xk Group Rψk X(k) Group Rψ(k)
1 1 1.5 1 1 1.5
3 2 4.33 1.5 3 2.83
3.1 2 5.33 2 3 3.5
2 3 3.5 3 2 4.33
1.5 3 2.83 3.1 2 5.33
4 3 6.17 4 3 6.17

Table 2: Example for data without ties, where ni = i for i = 1, 2, 3, that is N/(2a) = 1.

3.1. The case of no ties

In this case, we obtain (t(i))>m = 1/n(i) and t
(i−1)
i = 0 for i = 2, . . . , N . Therefore, the

recursive formula simplifies to

Rψ(i) = Rψ(i−1) + N

2a

(
1

n(i−1)
+ 1
n(i)

)
, (5)

Rψ(1) = 1
2

(
N

an(1)
+ 1

)
. (6)

Using this representation, we avoid calculating the vector products in Formula 4.
A small illustrative data example for this case is given in Table 2. Here, we have N/a = 2
and ni = i for i = 1, 2, 3. Then, for example, the pseudo-rank for the observation X6 = 4 is
calculated as Rψ6 = 5.33 + 1/n2 + 1/n3 = 6.17.

3.2. The case of ties

Let Tk ⊆ {1, 2, . . . , N} denote the set of indices for the order statistics of all equal values for
X(k) with

i = min{l ∈ Tk} and j = max{l ∈ Tk},

such that X(k) = X(l) for all l ∈ Tk and X(k) 6= X(l) for l /∈ Tk. Note that we can write
Tk = {i, i + 1, . . . , j − 1, j} because our sample and pseudo-ranks are ordered. To compute
the pseudo-ranks in this case, we still use Formula 5 for all observations to obtain so-called
“intermediate” pseudo-ranks R̃ψ(l) which can be transformed easily into pseudo-ranks Rψ(l) by

Rψ(l) = R̃ψ(l) −
N

2a

l∑
s=i

(
1
n(s)

+ 1
n(s−1)

)
+ N

2a

 1
n(i−1)

+
j∑
s=i

1
n(s)


= R̃ψ(i−1) + N

2a

 1
n(i−1)

+
j∑
s=i

1
n(s)

 (7)

for all l ∈ Tk where we define n(0) = a/N and R̃ψ(0) = 0. By doing this recursive calculation
in two steps, we only need O(N) arithmetic operations instead of O(N2). Note that for
Tk = {k}, Formula 7 simplifies to (5). Hence, R̃ψ(k) equals Rψ(k) in this case. This means,
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Xk Group X(k) Group R̃ψ(k) Rψ(k)
1 1 1 1 1.5 1.5
3 2 2 2 3.00 3.33
3 3 2 3 3.83 3.33
2 2 3 2 4.67 5.00
2 3 3 3 5.50 5.00
4 3 4 3 6.17 6.17

Table 3: Example for data with ties, where ni = i for i = 1, 2, 3, that is N/(2a) = 1.

we only need to adjust for those observations X(k) which are tied with at least one other
observation X(l) for k 6= l.

3.3. General algorithm (RECPR)

A general recursive algorithm for computing pseudo-ranks (RECPR algorithm) is obtained
by summarizing the results from Sections 3.1 and 3.2.

RECPR algorithm

Step 1: First the sample is sorted while keeping the labels of the group specifications.

Step 2: Ignoring potential ties in the data, intermediate pseudo-ranks R̃ψ(k) are computed
using Equations 5 and 6 – see Section 3.1.

Step 3: Finally, the intermediate pseudo-ranks R̃ψ(k) are replaced by the final pseudo-ranks
Rψ(k) using Equation 7.

It may be noted that for the RECPR algorithm, only O(N) arithmetic operations (without
sorting the data) are needed instead of O(N2) that are necessary when computing pseudo-
ranks based on the count function in Equation 3. If we take the sorting into consideration
then the RECPR algorithm has a time complexity of O(N logN) as the sort function from
C++11 utilizes the introsort algorithm which has time complexity O(N logN) in the worst
case, see for example Musser (1997).
This algorithm is demonstrated with the small example given in Table 3. Here, we have
X(2) = X(3) = 2 and X(4) = X(5) = 3. All other observations are distinct from each other.
For simplicity, we only state the pseudo-ranks for the sorted data. Note that the pseudo-ranks
Rψ(2) and Rψ(3) remain the same when interchanging the order statistics X(2) and X(3) with
each other as only the orders of the total blocks of ties matter. After sorting, we calculate the
intermediate pseudo-ranks, that is, we just ignore the ties and simply use Formula 5. Then,
in Step 3, we need to adjust for ties according to Formula 7. That is, we calculate

Rψ(2) = Rψ(3) = 1.5 + 1
n1

+ 1
n2

+ 1
n3

= 3.33,

Rψ(4) = Rψ(5) = 3.83 + 1
n2

+ 2
n3

= 5.00.

To obtain the set Tk for each observation X(k), the simplest solution is to check for equal
values in a while-loop during Step 3 of the algorithm. Another possibility is to use mid-ranks
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to determine the end of a block of ties for an observation X(k), that is

j = 2 R(i) − i,

where i = min{l ∈ Tk} is the start of the block of tied values for X(k). If there are many ties
in the data or the sample size is quite large then this algorithm will become slightly slower as
potentially more intermediate pseudo-ranks have to be replaced in Step 3 of the algorithm.
But overall, there are only O(N) arithmetic calculations necessary for this algorithm.
Similarly, we obtain algorithms for minimum and maximum pseudo-ranks. For minimum
pseudo-ranks, we simply replace the count function c in (3) by the function c−(x) = 0, 1
for x ≤ 0 and x > 0, thus leading to left-continuous empirical distribution functions. For
maximum pseudo-ranks, we use the function c+(x) = 0, 1 for x < 0 and x ≥ 0 which results
in right-continuous empirical distribution functions. Then maximum pseudo-ranks Rψ+

ik and
minimum pseudo-ranks Rψ−ik are defined by

Rψ+
ik = N

a

a∑
l=1

n−1
l

nl∑
m=1

c+(Xik −Xlm),

Rψ−ik = 1 + N

a

a∑
l=1

n−1
l

nl∑
m=1

c−(Xik −Xlm).

Clearly, mid pseudo-ranks are then the average of maximum and minimum pseudo-ranks. For
more details, we refer to Appendix B.
The algorithm “recursive calculation” proposed above is implemented in the R package pseu-
dorank as a S3 method. However, the recursive algorithm requires the data to be sorted.
This can be done quite efficiently in R. The recursive calculation of the pseudo-ranks itself is
implemented in C++ and integrated into the R environment using the R package Rcpp from
Eddelbuettel and François (2011). We use C++ instead of R directly because the R language
is not very suited for this type of calculation with for-loops, see, for example Morandat, Hill,
Osvald, and Vitek (2012). The function to calculate pseudo-ranks is called pseudorank. It
requires either two vectors, one denoting the data and one denoting the groups, or a formula
object and a data frame as arguments, see, for example, the following code.

R> library("pseudorank")
R> df <- data.frame(data = c(1, 2, 2, 3, 4),
+ group = as.factor(c(1, 1, 2, 2, 3)))
R> pseudorank(df$data, df$group)

[1] 0.9166667 2.1666667 2.1666667 3.4166667 4.6666667

R> pseudorank(data ~ group, df)

[1] 0.9166667 2.1666667 2.1666667 3.4166667 4.6666667

The function pseudorank calculates by default “mid” pseudo-ranks (obtained by setting the
argument ties.method = "average"). It is also possible to calculate “minimum” or “max-
imum” pseudo-ranks by using ties.method = "min" or ties.method = "max" respectively.
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Averaging the minimum and maximum pseudo-ranks yields the mid pseudo-ranks, this is the
same as with ranks.
If the data set contains missing values, then these can either be removed or kept and put at the
beginning or end of the data vector. This is the same as for the rank function from base R, and
our function pseudorank shall be considered an extension of this rank function. Therefore
we decided to provide the same functionality. However, we would strongly recommend to use
the standard argument na.last = NA to remove the missing values. If NA values are kept,
then the pseudo-ranks for those NA values are not uniquely defined if there is more than one
missing value, as the pseudo-ranks depend on the order in which they appear in the vector.
In contrast, the function rank uses na.last = TRUE as its standard argument. Even for that
base R function, we would advise to use na.last = NA unless there are special circumstances
where it is necessary to keep missing values. Note that using that function, conventional
ranks are also not uniquely defined for missing values. In particular, in the function rank, the
argument ties.method = "average" is ignored for missing values, that is, they are implicitly
assumed to be distinct. See the following R code on how missing values can be handled for
pseudo-ranks. For illustration, consider the following artificial data with one missing value.

R> df <- data.frame(data = c(NA, 2, 2, 3, 4),
+ group = as.factor(c(1, 1, 2, 2, 3)))

We showcase all three variants of handling missing values. First, we put the missing values
last.

R> pseudorank(data ~ group, data = df, na.last = TRUE)

[1] 5.083333 1.333333 1.333333 2.583333 3.833333

Another option is to put the missing values at the beginning.

R> pseudorank(data ~ group, data = df, na.last = FALSE)

[1] 0.9166667 2.1666667 2.1666667 3.4166667 4.6666667

However, our recommended variant is to remove missing values entirely from the data set.

R> pseudorank(data ~ group, data = df, na.last = NA)

[1] 1.500000 1.500000 2.833333 3.833333

To calculate minimum or maximum pseudo-ranks, the arguments ties.method = "min" and
ties.method = "max", respectively, can be used in the function pseudorank. For the usage,
see the following R code.

R> df <- data.frame(data = c(1, 7, 1, 2, 3, 3, 5.5, 6, 7),
+ group = as.factor( c(1, 1, 1, 2, 2, 3, 3, 3, 3)))
R> pseudorank(df$data, df$group, ties.method = "max")

[1] 2.00 9.00 2.00 3.50 5.75 5.75 6.50 7.25 9.00
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4. Further algorithms to calculate pseudo-ranks

4.1. Computation based on count functions

The definition of pseudo-ranks, see (3), relies on computing the count function for all pairwise
differences of the sample. That is, we need to calculate N differences for each observation
Xk, k ∈ {1, . . . , N}. This implies that O(N2) arithmetic operations are necessary when using
this method. The calculation of one pseudo-rank Rψk can be programmed in a vectorized form
with R. But we still need at least one for-loop to calculate all N pseudo-ranks.
For large samples, this algorithm can be improved by using parallelization. But for the
simulation in Section 6 we did not parallelize the code as this would be counterproductive for
small samples. Furthermore, even with parallelization, the algorithm stays highly inefficient
as O(N2) arithmetic operations are necessary. In contrast, the RECPR algorithm is not
suited for parallelization as this algorithm is recursively defined.

4.2. Computation based on pairwise ranks

Another way to calculate pseudo-ranks is by using so-called internal and pairwise ranks. This
algorithm is used in the R package rankFD. Here, we denote with R(ir)

ik the rank of Xik over
all observations from groups i and r (pairwise ranks). Accordingly for R(i)

ik , we do the ranking
over all observations from group i (internal ranks). Then, the following representation of
pseudo-ranks holds.

Rψik = 1
2 + N

a

∑
r 6=i

1
nr

(
R

(ir)
ik −R

(i)
ik

)
+ 1
ni

(
R

(i)
ik −

1
2

)
This algorithm works well for a small number of groups a but gets worse very quickly as
a increases. This can be seen in the simulation study in Section 6. In comparison, the
performance of the recursive algorithm does not depend on the number of groups.

4.3. Computation based on the AB algorithm

In Section 2 we have already seen from Formula 2 that in case of equal sample sizes, ranks
are equal to pseudo-ranks. Therefore we can calculate pseudo-ranks via ranks even though
this may be inefficient sometimes. We can use this relation to state the following algorithm
where we artificially balance the groups:

1. Calculate the least common multiple (LCM) of the sample sizes n1, . . . , na.

2. Artificially balance the groups by amplifying the data such that the new sample sizes
are given by n∗1 = · · · = n∗a = LCM(n1, . . . , na) and N∗ = an∗1. That is, each observation
Xik appears λi = n∗i /ni times in the amplified data set.

3. Calculate the ranks based on the amplified data. Note that the empirical CDFs of the
different groups are the same as for the original data because all observations within one
group are amplified by the same factor λi. Therefore, the pseudo-ranks of the original
data are a linear function of the ranks based on the amplified data. Let RAik denote the
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rank of the observation Xik based on the amplified data and Rψik the pseudo-rank based
on the original observations. Then we have the following relationship:

Rψik = N

N∗

(
RAik −

1
2

)
+ 1

2 .

4. Restrict the amplified data set to the “original” (non-amplified) observations.

This AB algorithm (artificially balancing algorithm) works well as long as the amplification
factor λi = n∗i /ni and the sample sizes are not too large, for example λi ≤ 2. In particular,
some aspects of the statistical software environment R are not very suited for large data
sets. By amplifying our data, we would lose most of the advantages of this algorithm using
a ‘data.frame’ to store the data. Hence for large data sets, the data structure ‘data.table’
from the R package with the same name should be used, see Dowle and Srinivasan (2020).
Overall the AB algorithm is more useful to show the connection between ranks and pseudo-
ranks, namely, that pseudo-ranks are merely affine transformations of ranks based on an
amplified data set. However for real applications, we recommend using the RECPR algorithm
from Section 3.

5. Application of pseudo-ranks
Many nonparametric hypothesis tests are based on the weighted relative effects. A classical
example for nonparametric trend tests is the Hettmansperger-Norton test (Hettmansperger
and Norton 1987). As previously discussed in Sections 1 and 2, ranks may lead to paradoxical
results. Therefore, we have implemented a pseudo-rank-based analog to the Hettmansperger-
Norton test in the package pseudorank for illustration. It is also possible to use ranks for
calculating the test statistic by setting the argument pseudoranks = FALSE. For the appli-
cation of pseudo-ranks, we consider an artificial data set included in the package pseudorank
where a substance was administered in three different concentrations (1, 2 and 3). The data
set is generated from a mixture of normal distributions in each group which is basically based
on an example about tricky dice (Brunner 2017). The data is given in Table 4 along with the
calculated pseudo-ranks and ranks. Other examples, where pseudo-ranks are used in context
of real data examples, can be found in Brunner et al. (2019).
First we calculate the pseudo-rank and rank for each observation and compute the weighted
and unweighted relative effects with the function summaryBy from the package doBy (Højs-
gaard and Halekoh 2020). Note that we are only interested in q̂i =

∫
ÛdF̂i and p̂i =

∫
ŴdF̂i,

hence we need to subtract 1/2 from the pseudo-ranks and divide the result by the total sample
size N = 54.

R> library("pseudorank")
R> library("doBy")
R> dat[, "ranks"] <- (rank(dat[, "score"]) - 1/2)/N
R> dat[, "pseudoranks"] <- (pseudorank(score ~ conc, data = dat) - 1/2)/N
R> summaryBy(score + ranks + pseudoranks ~ conc, data = dat, FUN = mean)

conc score.mean ranks.mean pseudoranks.mean
1 1 4.333333 0.4629630 0.5
2 2 4.330556 0.4907407 0.5
3 3 4.333333 0.5462963 0.5
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Concentration Score
1 0.5 3.8 4.1 5.6 6.2 5.8
2 1.3 1.9 1.5 6.7 7 6.9 1.9 1.8 1.1 7.2 7.5 6.6 2.1 2 1.4 6.9 7.1 7.5 1.1

1.6 1.8 7.3 7 6.7 1.7 2.1 1.4 6.8 7.6 6.6 1.4 2 1.1 7.2 7.5 6.6
3 2.3 3.1 2.7 5 4.6 8.1 2.4 3 2.9 5.3 4.4 8.2

Pseudo-ranks
1 2 23 26 35 41 38
2 5.25 10 7.25 44.50 47 46 10 9 4.25 48.50 50.25 43.25 12

11 6.25 46 47.75 50.25 4.25 7.75 9 49.25 47 44.50 8.25 12
6.25 45.25 51.25 43.25 6.25 11 4.25 48.50 50.25 43.25

3 13.25 20.75 16.25 31.25 29.75 52.25 14.75 19.25 17.75 32.75 28.25 53.75

Ranks
1 1 26 27 32 34 33
2 5 14.5 9 38.5 43.5 41.5 14.5 12.5 3 46.5 50 36 18.5 16.5 7 41.5 45 50 3

10 12.5 48 43.5 38.5 11 18.5 7 40 52 36 7 16.5 3 46.5 50 36
3 20 25 22 30 29 53 21 24 23 31 28 54

Table 4: Simulated data of three groups (n1 = 6, n2 = 36, n3 = 12) with pseudo-ranks and
ranks.

Group Mean p̂i q̂i
1 4.33 0.46 0.5
2 4.33 0.49 0.5
3 4.33 0.55 0.5

Table 5: Unweighted and weighted relative effects for the data given in Table 4.

In Table 5, the weighted and unweighted relative effects as well as the means for each group
of the data set are summarized. There is an increasing trend for the weighted relative effects.
In contrast, the unweighted effects and the means are identical.
If we use this artificial data set to draw with replacement new observations and thus generate
larger group sizes, we can apply the Hettmansperger-Norton test from the package pseudorank
in order to test for an increasing trend. If we choose n1 = 60, n2 = 360 and n3 = 120 then we
obtain a significant result using ranks and a non-significant result with pseudo-ranks. Hence,
the usage of ranks would lead to a completely different answer than by using a pseudo-rank
based (or possibly even parametric) trend test. For different ratios of group sizes it is also
possible to construct cases where we have a significant decreasing trend for the weighted
relative effects but the unweighted relative effects and group means are still identical as they
do not depend on the ratios of group sizes. Therefore, we recommend pseudo-ranks instead
of ranks to avoid possible paradoxical results in case of unequal sample sizes.

R> hettmansperger_norton_test(score ~ conc, data = dat2, pseudoranks = FALSE,
+ alternative = "increasing")

Hettmansperger-Norton Trend Test

Call:
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score ~ conc

Alternative: increasing
Test Statistic: 2.280412
Distribution of Statistic: Standard-Normal
unweighted relative Effects / Pseudo-ranks: FALSE
p-Value: 0.01129162

R> hettmansperger_norton_test(score ~ conc, data = dat2, pseudoranks = TRUE,
+ alternative = "increasing")

Hettmansperger-Norton Trend Test

Call:
score ~ conc

Alternative: increasing
Test Statistic: 0.1933954
Distribution of Statistic: Standard-Normal
unweighted relative Effects / Pseudo-ranks: TRUE
p-Value: 0.4233246

The function hettmansperger_norton_test also returns the vector q̂ or p̂ of estimated rel-
ative effects. Hence, it is not necessary to calculate the pseudo-ranks manually and to use
summaryBy to compute the mean for each group.

R> hettmansperger_norton_test(score ~ conc, data = dat,
+ pseudoranks = TRUE)$pHat

[1] 0.5 0.5 0.5

6. Benchmark study
We compared the three algorithms (RECPR, pairwise, and AB) in this paper with the function
rank from R and the direct calculation of pseudo-ranks, see the definition in Formula 3. We
will refer to the direct calculation simply as “count” algorithm. The code for the pairwise
calculation was taken from the package rankFD. For the RECPR algorithm we used the
function pseudorank from the package pseudorank and used the data and group vector as
arguments as in our case it was slightly faster than the version with ‘formula’ objects. Note
that we are comparing an S3 method with non-generic functions. But in simulations the
overhead from the S3 method dispatch has proven to be negligible in our case.
Because of the similarities between ranks and pseudo-ranks, it should not be possible to
calculate pseudo-ranks faster than ranks. Therefore the comparison with the rank function
tells us somewhat how close our algorithms are to the optimum. For all simulations, we used
R version 3.4.1 running on Windows 7 x64 (build 7601) with a 3.2 GHz CPU and 8 GB RAM.
The tables and figures for the simulation results were created with the R packages xtable
(Dahl, Scott, Roosen, Magnusson, and Swinton 2019) and ggplot2 (Wickham 2016).
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Figure 1: Simulation for three groups with ties in the data; logarithmized median computation
times in milliseconds.

We repeated each method (ranks calculation, RECPR algorithm, AB algorithm, pairwise
algorithm and count algorithm) 1000 times and measured the computation time with the
function microbenchmark from the R package microbenchmark (Mersmann 2019). These
times were noticeably right-skewed, we therefore only report the median computation time
for each method.
We first considered a design with a = 3 groups with sample sizes n1 = n2 = n and n3 = 2 · n
where n = 10, 100, 1000, 2000, 4000, 6000, 8000, 10000. This would be an optimal situation for
the AB algorithm as only the first two groups need to be amplified by the factor two. We
simulated normally distributed data and applied the round function in order to artificially
create ties in the data as this is the worst case scenario for the recursive algorithm. This means
that more “intermediate” pseudo-ranks have to be replaced by pseudo-ranks in a second for-
loop. The results for this simulation are given in Table 6, and the logarithmized computation
times are presented in Figure 1.
The AB algorithm performed quite well for the largest simulated sample size (n = 10000)
in this scenario but this algorithm was still slower than the recursive method. The recursive
algorithm was the fastest among the four pseudo-rank methods for all sample sizes. But
there is still quite a bit of a difference between the rank and the recursive calculation for
smaller sample sizes. This may be due to the fact that for pseudo-ranks we need to sort two
vectors whereas for the calculation of ranks it is sufficient to only sort the vector containing
the original observations. The pairwise algorithm did not perform well for large sample sizes
even though there were only three groups in this setting. The calculation based on count
functions took considerably longer than any of the other methods. However, this outcome
was expected as this algorithm is quite inefficient, see Section 4.1.
In a second simulation we considered sample sizes n1 = · · · = n4 = n and n5 = 2 · n for
n = 10, 100, . . . , 10000. The results are displayed in Table 7 and Figure 2. The recursive
algorithm was only barely affected by adding more groups and thus increasing the overall
sample size slightly. But the pairwise algorithm was considerably slower than in the previous
simulation for three groups. The AB algorithm was slightly slower than before but is still
faster for large sample sizes than the pairwise algorithm in this special situation where we
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n Ranks RECPR AB Pairwise Count
10 0.03 0.12 5.59 1.02 0.65

100 0.05 0.19 5.78 1.26 6.17
1000 0.37 0.62 6.46 4.66 249.66
2000 0.82 1.13 7.81 9.18 959.32
4000 1.91 2.58 11.35 20.66 3537.97
6000 2.88 3.35 14.89 30.32 8111.88
8000 3.93 4.54 17.51 38.92 13354.55

10000 5.28 5.19 20.35 51.07 21170.45

Table 6: Simulation for three groups with ties in the data; median computation times in
milliseconds.
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Figure 2: Simulation for five groups; with ties in the data; logarithmized median computation
times in milliseconds.

only need to duplicate each observation for the first four groups. We also observed that
for n ≥ 8000, the recursive calculation was as fast as the rank calculation. The differences
between both methods were negligible (≤ 0.1 ms). This was somewhat surprising as more
calculations are necessary for pseudo-ranks. But this is probably due to the fact that we use
a slightly different method for sorting the data. Namely, we use the C++ function sort from
namespace std with a custom comparator to return the order of a vector. This approach
has shown to be faster than the corresponding R function order. For n = 104, our RECPR
algorithm took about 8.70 ms using the R function order and only 7.62 ms using C++. In
comparison, the rank function took about 7.64 ms.

For the third and last simulation, we considered twelve groups where the sample sizes were
n1 = · · · = n11 = n and n12 = 2 · n with n = 10, 100, . . . , 1000. As we can see in Table 8
or Figure 3, the AB algorithm performed considerably worse as data from 11 groups needed
to be amplified. Clearly, the pairwise algorithm also took substantially longer as even more
pairwise and internal ranks had to be calculated. The recursive calculation was not affected
by increasing the number of groups.
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n Ranks RECPR AB Pairwise Count
10 0.03 0.12 7.37 1.75 0.90

100 0.06 0.19 7.40 2.44 10.31
1000 0.62 0.85 8.98 11.15 562.33
2000 1.44 1.74 12.33 23.17 2192.54
4000 2.97 3.28 15.10 47.72 8256.42
6000 4.36 4.52 19.58 69.21 18178.49
8000 5.94 5.93 23.47 90.89 32313.07

10000 7.64 7.62 27.75 116.74 50773.44

Table 7: Simulation for five groups; with ties in the data; median computation times in
milliseconds.
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Figure 3: Simulation for 12 groups; with ties in the data; logarithmized median computation
times in milliseconds.

n Ranks RECPR AB Pairwise Count
10 0.03 0.13 15.33 7.49 1.67

100 0.14 0.29 17.09 11.53 35.83
200 0.26 0.43 15.59 14.48 112.65
300 0.39 0.59 15.97 19.10 236.98
400 0.53 0.75 16.23 23.41 405.72
500 0.68 0.90 16.53 27.98 620.00
600 0.82 1.05 17.09 33.14 879.38
700 0.96 1.21 17.50 38.45 1183.33
800 1.11 1.36 17.90 44.54 1528.63
900 1.25 1.51 18.28 49.34 1921.00
1000 1.40 1.67 18.63 53.96 2355.98

Table 8: Simulation for 12 groups; with ties in the data; median computation times in
milliseconds.
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7. Conclusion
Many rank-based inference methods have the disadvantage that even when using the same
model with the same distribution functions, different allocation ratios may lead to completely
different results, also in cases where the total sample size stays the same. This is caused by
the (weighted) relative effects which are used for these rank statistics and has been pointed
out recently, for example, by Brunner et al. (2020). These effects depend on the group sizes.
This undesirable property of rank tests can be solved by using pseudo-ranks which correspond
to unweighted relative effects. But as we have seen in the simulation results, the calculation
of pseudo-ranks just by using their definition is not wise in terms of computational cost.
Other algorithms such as the pairwise algorithm which are already used by some R packages
can be quite slow if the number of groups is large. Hence, this is a problem if we want to
compute statistical tests relying on some form of resampling or if we want to perform power
simulations.
Therefore new algorithms are needed. In this paper we have presented three algorithms to
calculate pseudo-ranks. The AB algorithm mainly demonstrates the relation between ranks
and pseudo-ranks but is not very suitable for practical applications. The computation time for
the pairwise algorithm heavily depends on the number of groups, as already discussed. The
newly proposed recursive calculation (RECPR) was clearly the best among those four methods
compared in our simulations. We provide for this recursive calculation C++ code implemented
in an R package called pseudorank which is available on CRAN at https://CRAN.R-project.
org/package=pseudorank/ and on GitHub at https://github.com/happma/pseudorank.
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A. Derivation of the recursive algorithm
In order to prove Formula 4, consider again the order statistics X(1), . . . , X(n) of our sample.
For the recursion start, it is clear that the summands of Û(X(1)) are count functions of the
form 1

n(k)
c(X(1) −X(k)), and these are equal to 1/2 if and only if k ∈ T1 where T1 is the set

of all indices of order statistics which satisfy X(k) = X(1) for all k ∈ T1. Hence, we obtain

Û(X(1)) = 1
2a(t(1))>m,

where t(1) and m are defined in Section 3. Then, this shows the representation for the
recursion start

Rψ(1) = 1
2 + N

2a(t(1))>m.

Now, let us consider j > 1 and X(j) 6= X(j−1). Then, the difference Û(X(j))− Û(X(j−1)) is a
sum of non-negative count functions

1
n(k)

c(X(j) −X(k)),

where k ∈ Tj or

1
n(k)

(
c(X(j) −X(k))− c(X(j−1) −X(k))

)

for k ∈ Tj−1. In both cases, these simplify to 1
2n(k)

. Thus, the increment from Rψ(j−1) to Rψ(j)
is equal to

N

2a
(
t(j) + t(j−1)

)>
m.

But this term is only added if X(j) 6= X(j−1), or equivalently, if (1−t(j−1)
j ) = 1. This concludes

the proof for the recursive representation of pseudo-ranks.
The Formulas 5 and 7 follow directly from (4) by writing the vector products as sums and
splitting up the formula into two parts, that is we calculate first the intermediate pseudo-ranks
and then adjust for ties to obtain mid pseudo-ranks.

B. Minimum and maximum pseudo-ranks
Similarly to Formula 4, we can obtain formulas for minimum and maximum pseudo-ranks.
For minimum pseudo-ranks Rψ−(i) , we only consider the left-continuous empirical distribution
functions. This leads to

Rψ−(i) = Rψ−(i−1) + (1− t(i−1)
i ) N

a
(t(i−1))>m,

Rψ−(1) = 1
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X(k) Group Rψ−k Rψ+
k R−k R+

k

1.00 3 1.00 0.75 1 1
2.00 3 1.75 1.50 2 2
3.00 3 2.50 2.25 3 3
4.00 3 3.25 3.00 4 4
5.00 2 4.00 4.00 5 5
6.00 2 5.00 9.00 6 9
6.00 2 5.00 9.00 6 9
6.00 1 5.00 9.00 6 9
6.00 1 5.00 9.00 6 9

Table 9: Example demonstrating the relation between minimum and maximum (pseudo)-
ranks.

for i ∈ {2, . . . , N}. For maximum pseudo-ranks Rψ+
(i) (i.e., using the right-continuous empirical

distribution functions), we obtain

Rψ+
(i) = Rψ+

(i−1) + (1− t(i−1)
i ) N

a
(t(i))>m,

Rψ+
(1) = N

a
(t(i))>m

for i ∈ {2, . . . , N}. The derivation of these formulas is similar to those of mid pseudo-ranks
and is therefore omitted.
The names minimum and maximum pseudo-ranks may be a bit misleading. In general, the
inequality Rψ−(k) ≤ Rψ+

(k) is not true. However, it is correct for ranks, namely, R−(k) ≤ R+
(k).

Consider the following example in Table 9. In this situation, we have, for example, Rψ−(1) =
1 > Rψ+

(1) = 3
4 and Rψ−(4) = 13

4 > Rψ+
(4) = 3, but Rψ−(9) = 5 < Rψ+

(9) = 9. We still decided to
use the same name as for ranks because in both cases the left-continuous or right-continuous
empirical distribution functions are used. And for equal group sizes, minimum (maximum)
pseudo-ranks and minimum (maximum) ranks are identical.
The following result follows directly by using the relation between ranks and pseudo-ranks
form Section 4.3. The minimum and maximum pseudo-ranks satisfy Rψ−ik > Rψ+

ik if and only
if

RA+
ik −R

A−
ik < N∗

N − 1, (8)

where N∗ is the sample size of the amplified data set and RA+
ik , RA−ik are the maximum and

minimum ranks of Xik based on the amplified data. Note that for an observation Xik which
is not tied with any other observation, we obtain RA+

ik −R
A−
ik = λi − 1 as the amplified data

set contains λi = LCM(n1, . . . , na)/ni copies of Xik. Then the inequality (8) is true if and
only if

0 <
a∑
j=1

nj(λj − λi) = N∗ − λiN (9)

⇐⇒ 0 < a− 1
n1
N. (10)
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In general, we have RA+
ik −R

A−
ik =

a∑
s=1

bsλs−1 where bs is the number of ties for the observation

Xik within group s,= 1, . . . , a. Let cs = bs/ns denote the proportion of tied values for Xik

within the sth group and
a∑
s=1

cs = c. Then (8) or equivalently Rψ−ik > Rψ+
ik is true, if and only

if

0 < a− cN. (11)

Note that (10) is a special case of (11) with c = 1/ni if Xik is not tied with any other
observation.
For X(1) to X(4) in Table 9, the amplification factor λ3 for group 3 is the smallest one (λ1 = 6,
λ2 = 4 and λ3 = 3), hence (9) is positive. Therefore, we observe Rψ−(k) > Rψ+

(k) for k = 1, . . . , 4.
For X(5), the sum in (9) is zero, thus we obtain Rψ−(5) ≤ Rψ+

(5) . For X(k), k = 6, . . . , 9, the
condition is a− cN = 3− 5/3 N < 0, hence Rψ−(k) ≤ R

ψ+
(k) .
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