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Abstract

Testing the equality of several independent group means is a common statistical prac-
tice in the social sciences. The traditional analysis of variance (ANOVA) is one of the most
popular methods. However, the ANOVA F test is sensitive to violations of the homo-
geneity of variance assumption. Many alternative tests have been developed in response
to this problem of the F test. These tests include some modifications of the ANOVA F
test and others based on the structured means modeling technique. This paper provides
a SAS macro for testing the equality of group means using thirteen methods including
the regular ANOVA F test. In addition, this paper summarizes the results of a simula-
tion study that compares the performance of these tests in terms of their Type I error
rate under different conditions, especially under violations of the homogeneity of variance
assumption.

Keywords: analysis of variance, homogeneity of variance assumption, simulation study, ho-
moscedasticity, heteroscedasticity, SAS macro.

1. Introduction
Testing the equality of several independent means is a common statistical practice in the
social sciences and the analysis of variance (ANOVA) F test is often used by applied re-
searchers for testing the equality (Tomarken and Serlin 1986). The traditional ANOVA F
test, which uses the ordinary least squares (OLS) method, is based on several assumptions in-
cluding independence, normality, and homogeneity of variance. However, both normality and
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homogeneity assumptions are often violated in applied research in the social sciences (Fan
and Hancock 2012). It is also well known that the violation of the assumption of equal
variances affects the Type I error rate of the ANOVA F test even when the sample sizes
are equal across groups (Rogan and Keselman 1977). In response to this problem, many
alternative tests have been suggested. These parametric tests include some modifications of
the ANOVA F test while some others apply the structured means modeling (SMM) tech-
nique. Among the ANOVA-based tests, the common options for applied researchers are: the
Welch test (Welch 1951), Brown-Forsythe test (Brown and Forsythe 1974), James second-
order test (James 1951), and Alexander-Govern approximation (Alexander and Govern 1994).
Simulation studies have shown that under heterogeneous variance conditions, these tests can
control the Type I error rate when data are normal but become liberal when data are non-
normal (Fan and Hancock 2012). The other methods suggested later include: weighted least
squares (WLS) test (Montgomery and Peck 1992), Wilcox test (Wilcox 1988), and mixed
model method (Littell, Milliken, Stroup, Wolfinger, and Schabenberger 2006).
A different approach is to apply the SMM technique that does not require the assumption of
variance homogeneity. Being developed from the framework of structural equation modeling
(SEM), the SMM technique allows variances to be heterogeneous across groups by freely
estimating them. The SMM technique can be combined with various estimation methods
such as asymptotic distribution free (ADF) estimation (Browne 1982) or maximum likelihood
(ML) estimation to test the mean differences. The SMM-based tests were shown to have
better performance than ANOVA-based tests in term of power and Type I error rate (Fan
and Hancock 2012). The traditional ANOVA F test and the Welch test can be conducted
using SAS (SAS Institute Inc. 2013), but test statistics of many other alternative methods are
not provided directly in SAS.
In addition to parametric approaches, several non-parametric methods such as permutation,
randomization or bootstrap tests have been developed for one-way ANOVA models. With
the availability of advanced computing systems and the increase of big and complex data,
permutation-based statistical tests have become popular. Characteristics and applications of
several permutation methods from univariate to multivariate in the non-parametric frame-
work have been introduced in several books (Pesarin and Salmaso 2010; Basso, Pesarin,
Salmaso, and Solari 2009). While both parametric and non-parametric tests can be used
for ANOVA models, they have some differences. For example, the null hypotheses tested
are not the same. In addition, the parametric procedures are based on given assumptions
of normality and homogeneity of variance but the non-parametric tests do not require these
assumptions. Parametric tests may be used when the data is normally distributed or has a
lightly tailed distribution because of their superior power over the non-parametric counter-
parts (Conover 1999). However the parametric methods may not be robust when one or all
of these assumptions are violated, especially when sample sizes are not sufficiently large or
unbalanced. The non-parametric approaches are then often recommended when the data is
severely non-normal or sample size is small. Specifically when the data distribution is heavy-
tailed such as the lognormal distribution, exponential distribution, or when there are many
outliers, non-parametric tests should be used because these procedures have more power than
the parametric counterparts (Conover 1999).
In the current study, we focus on comparing parametric approaches that test the same null
hypothesis of equal population means. The purpose of this paper is to present a SAS macro
that provides all test statistics of the parametric methods mentioned above to examine the
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equality of independent means. It should be noted that the non-parametric tests are not
included in this macro. The results of a simulation study that compared the performance of
these parametric methods are also presented.

2. Statistical methods for testing the mean differences
It is assumed that a test for the mean differences is applied to the data of J groups where
J is the total number of groups. Let xij be the ith observed score in group j and nj is the
number of observations in the jth group. The following notations will be used in describing
these tests. N represents the total sample size which is a sum of all group sizes.

N =
∑

j

nj

X j represents the mean score of group j.

Xj =
∑

i

xij

nj

X represents the grand mean of the entire sample.

X =
∑

j

njXj

N

Sj
2 and Sj are the variance and standard deviation of group j, respectively.

Sj
2 =

∑
i(xji −Xj)2

nj − 1

2.1. ANOVA F test (also called OLS)

Researchers often use the analysis of variance (ANOVA) F test to examine the equality of
several independent group means. The statistic F is determined by the following equation:

F =
∑

j nj(Xj −X)2/(J − 1)∑
j(nj − 1)Sj

2/(N − J)
.

2.2. Alexander and Govern (AG) test

In the Alexander and Govern approximate test (Alexander and Govern 1994), a weight (wj)
for each group is calculated as (wj = 1/Sj

2∑
j

1/Sj
2 ). The variance-weighted estimate of the

common mean X+ is calculated by: (X+ = ∑
j wjXj). The t statistic for each of J groups is

determined as: tj = Xj−X+

Sj
and follows Student’s t distribution with vj(= nj − 1) degrees of

freedom. zj is achieved by a normalizing transformation of tj :
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zj = c+ (c3 + 3c)
b

− (4c7 + 33c5 + 240c3 + 855c)
(110b2 + 8bc4 + 1000b) ,

where a = vj − .5; b = 48a2; c = [a ln(1 + tj
2

vj
)]

1/2
. zj is used to calculate the A statistic by:

A =
J∑
1
zj

2.

A follows a χ2 distribution with (J − 1) degrees of freedom.

2.3. Brown-Forsythe (BF) test

The Brown and Forsythe (Browne 1982) test is a modification of the ANOVA F test. F* is
the test statistic defined as:

F ∗ =
∑

j nj(Xj −X)2∑
j (1 − nj/N)Sj

2

F ∗ has an F -distribution with (J − 1) and f degrees of freedom where f is calculated by the
Satterthwaite approximation:

1
f

=
∑

j

cj
2

(nj − 1)

and

cj = (1 − nj/N)Sj
2∑

j (1 − nj/N)Sj
2 .

2.4. James’ second order (James) test

The James’ test uses the Q statistic which is determined by:

Q =
∑

j

wj(Xj −Xw)2
,

where wj = nj/Sj
2 and Xw = ∑

j wjXj/
∑

j wj .
The obtained value of Q is compared to a carefully adjusted critical value of χ2 with (J − 1)
degrees of freedom (James 1951).

2.5. Welch test (Welch)

The Welch test (Welch 1951) is a modified version of the F test that compares mean differ-
ences among multiple groups. This test relies on only independent population and normal
distribution assumptions and relaxes the equal population variances requirement. The test
statistic is determined as:
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F
′ =

∑
j wj

(Xj−X
′
)
2

J−1

1 + 2(J−2)
J2−1

∑
j

[(
1 − wj

u

)2 (nj − 1)
] ,

where wj = nj/Sj
2;u = ∑

j wj ;X
′

= ∑
j(wjXj/u). The distribution of F ′ can be estimated

by the F distribution, using vb = J − 1, and 1
vw

= ( 3
J2−1)∑j [

(
1−

wj
u

)2

nj−1 ].

2.6. Wilcox test (Wilcox)

Wilcox (1988) introduced an approximate method which is contrasted with the James’s second
order, to deal with unequal variances. The author made an improvement of this test (Wilcox
1989) and its modification that will be used in this section includes the following setting:

Dj = nj

Sj
2 ,

Ws =
∑

j

Dj ,

Ỹ =
∑

j

Dj Ỹj

Ws
,

where Ỹj = Xnj j

nj
+
∑nj−1

i=1

(
1− 1

nj

)
Xij

nj+1 . When Hm = ∑
j Dj(Ỹj − Ỹ )2 surpasses the (1 − α)

quantile of a χ2 distribution with (J − 1) degrees of freedom, the null hypothesis is rejected.
Hsiung, Olejnik, and Huberty (1994) demonstrated poor Type I error control of the Wilcox
test if the population grand mean differs from zero. To correct this problem, the macro
transforms the data by grand mean centering prior to calculation of the Wilcox test.

2.7. Weighted least squares (WLS) test

Montgomery and Peck (1992) developed a method in which each observation is weighted by
the inverse of its variance. A weight for each observation can be obtained by computing the
reciprocal of the group variance as follows:

wj = 1
Sj

2 .

Generalized least squares (GLS) is used to minimize the weighted sum squares (WSS), which
is the sum of the weighted variation of xij from the grand mean Xj .

WSS =
J∑

j=1

nj∑
i=1

wj

(
xij −Xj

)2

.

2.8. SMM with maximum likelihood estimation (SMM with ML)

Applying the SMM approach to the between-subjects testing of mean equality for a measured
variable, the indicator x can be expressed as x = vk +δ, where vk is a p×1 vector of intercept
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values and δ is a p× 1 vector of normal errors. The null hypothesis is tested by constraining
population means to be equivalent while allowing variances of δ to be heterogeneous.
Estimation within SMM can be handled by using maximum likelihood. If FML is the ML fit
function, the test statistics TML is calculated as TML = (N − 1)FML, with degrees of freedom
equal to Jp(p+ 3)/2 − q, where p is the number of observed variables and q is the number of
parameters estimated across all groups.

2.9. SMM with asymptotic distribution free estimation (SMM with ADF)

Browne (1982) proposed using asymptotic distribution free estimation (ADF) for the co-
variance structure when variables are continuous but not multivariate normally distributed.
Muthén (1989) expanded the ADF method by including both mean and covariance structures.
The ADF fit function, using the GLS-type fit function, is defined as

FADF =
∑

j

(sj − σj)>W−1
j (sj − σj),

where for the jth group, sj is the vector consisting of p elements of the observed means (s1) and
p(p+1)/2 elements of the variance covariance matrix (s2), σj is the model implied counterpart
of sj , and W represents the ADF weight matrix as an estimator of the asymptotic covariance
matrix of s. The model parameters are estimated by minimizing the ADF fit function. When
this fit function is multiplied by 2N (where N is the total sample size), it follows the χ2

distribution with (J − 1) degrees of freedom.

2.10. SMM with Bartlett’s correction to the ML test statistics (Bartlett)

Bartlett (1950) suggested a correction to the ML test statistic using the context of explanatory
factor analysis with m latent constructs, p observed variables, and small sample sizes. The
test statistics TBC is defined as

TBC =
(
N − p

3 − 2m
3 − 11/6

)
FML,

with degrees of freedom df = Kp ∗ −q and p∗ = p(p+ 3)/2; where N is the total sample size,
p is the number of observed variables, and q is the number of parameters estimated across
all groups. Applying to the between-subject testing of mean equality, the SMM model is
simplified to no latent factor and one observed variable.

2.11. Yuan and Bentler (YB1 and YB2) tests

Yuan and Bentler (1997, 1999) suggested test statistics TYB1 and TYB2 as the corrections of
TADF for small sample sizes. The statistics TYB1 is defined as

TYB1 = TADF

1 + TADF
N

,

where TADF = (N − 1)FADF, which follows a central χ2 distribution with the same df as
TADF.
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Based on the logic of the transformation applied to Hotelling’s T 2 statistic in multivariate
analysis of variance (MANOVA), the second correction, TYB2, of TADF follows the F distri-
bution.

TYB2 = N − (Jp∗ − q)
(N − 1) (Jp∗ − q) TADF,

with numerator and denominator dfs of (Jp* – q) and (N − Jp∗ + q), respectively. In the
specific case of SMM, the numerator and denominator dfs for TYB2 reduce to (J − 1) and
(N − J + 1), respectively.

2.12. Mixed models with heterogeneous variances (Mixed)

Analysis of data from ANOVA designs with heterogeneous variances may be conducted by
fitting a mixed model with unequal residual variances (Littell et al. 2006). For a one factor
ANOVA design, the model may be written as

yij = µ+ αj + εij ,

where εij ∼ N
(
0, δ2

j

)
. That is, a separate variance is estimated for each group in the

ANOVA design. Such a model may be fit using ML or REML estimation. PROC MIXED
provides a straightforward approach for fitting such a model. This heterogeneous variance
solution is obtained with the GROUP = option on the REPEATED statement (even though a
repeated-measures design is not used). That is,

REPEATED / GROUP = IV;

where IV is the name of the independent variable. For such analyses, the Satterthwaite
degrees of freedom estimate should be used (Satterthwaite 1946). This is obtained using the
DDFM = SATTERTHWAITE option on the MODEL statement in PROC MIXED.

3. Description of the SAS macro
The SAS macro ANOVA_robust is written in base SAS and SAS/STAT. There are three input
arguments that are required by the macro.

• DATA specifying the name of the SAS data set containing the data to be analyzed;

• Y identifying the name of the dependent variable;

• GROUP indicating the name of the independent variable.

Default values are provided for each argument. Observations with missing values for either
the independent or dependent variable are deleted from the analyses.

4. Example
In this section, an example will demonstrate the use of the ANOVA_robust macro with a
particular data set. There are two SAS codes that can be downloaded in this project. One is
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Figure 1: The exemplary output of the SAS ANOVA_robust macro.

the SAS macro (named anovarobmacro.sas) and the other is an execution SAS code (named
code.sas) to execute the SAS macro. Below is the content of the execution SAS code. The
data set one contains 33 observations on an independent variable (group) and a dependent
variable (y). The user can modify the code to obtain the data. The macro is called after
the data extraction step. In this example, the SAS macro is placed in the local folder. The
dependent and independent variables are defined as y and group, respectively, in the data
extraction step.

data one;
input group y @@;
datalines;
1 5 1 1 1 2 1 6 1 1 1 3 2 13 2 13 2 6 2 11 2 4 2 14 2 12 3 12 3 16
3 9 3 18 3 7 3 14 3 13 4 17 4 13 4 16 4 23 4 27 5 22 5 30 5 27 5 32 5 32
5 43 5 29 5 26
;
run;
%include "anovarobmacro.sas";
%ANOVA_robust(data = one, y = y, group = group);
run;

The output sample of the macro is demonstrated in Figure 1. General information of the data
set is presented in the first output section while the second output section shows the results
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Figure 2: The boxplot output of the SAS ANOVA_robust macro for sample distributions across
groups.

of 13 tests for group-mean equality. The general information of the data set includes the
names of the independent and dependent variables, the number of groups as well as the total
sample size. The first section also provides statistical information for each group including
group sizes, group means, and the variances of each group. The second section presents the
obtained value, associated p value, and degrees of freedom for each ANOVA_robust test. These
tests are classified into two groups: the group of tests using an ANOVA-type approach and
the group of tests using the SMM technique. The macro also provides the boxplot of sample
distributions across groups as shown in Figure 2.

5. A simulation study

A simulation study was conducted to investigate the performance of the testing methods in
terms of Type I error control. Six simulation factors were included: (1) number of groups, (2)
group size, (3) group size pattern, (4) variance pattern, (5) maximum group variance ratio,
and (6) population distribution. In addition, the performance of each method was examined
at three nominal alpha levels: 0.01, 0.05, and 0.10. The combination of these factors created a
total of 2,736 conditions. Five thousand samples were generated for each simulated condition.
The Type I error rates were evaluated as the simulation outcome.
Three tests using the SMM technique, including ADF, YB1, and YB2 tests, did not provide
solutions with some small sample size conditions (a sample with three or fewer observations
in a group). They were treated as missing data in analyzing the simulation outcomes. The
outcomes of homogeneous and heterogeneous conditions were examined separately. The η2

analysis for effect size was conducted to explore the significant impact of the research design
factors on the variability in the estimated Type I error rates.
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Figure 3: Rejection rate distributions at the 0.05 significance level of homogeneous conditions.

5.1. Type I error rates estimates with homogeneous conditions

Figures 3 presents boxplots of the rejection rate distributions at the 0.05 significance level of
homogeneous conditions. Under the condition of equal variance, the OLS method (i.e., the
ANOVA F test) showed the best performance. Among the other approaches, BF, Bartlett,
and SMM with ML controlled Type I error adequately.

The η2 analysis revealed several design factors that substantially associated with the variabil-
ity of Type I error rates including testing method, population shape, group size and group
size pattern. The effect of the group size on the Type I error rates was found to vary by
testing methods and population shape. The variability of Type I error rates of all methods
by population shape and group size is presented in Table 1. As observed in Table 1, the
OLS and BF tests adequately controlled Type I error around 0.05 across all conditions under
homogeneity of variance. On the contrary, Type I error rates of WLS and SMM with ADF
methods were often above 0.07. The Wilcox test showed reasonable Type I error control for
all conditions under equal variances except for the small group size conditions. For the SMM
methods without ADF (i.e., Bartlett, ML, YB1, and YB2), the Type I error rates were rea-
sonably controlled even with small group size. However, when the distribution was extremely
leptokurtic (kurtosis = 25) and the group size was small, the Type I error rates were slightly
inflated. The James, Welch, AG, Wilcox, and Mixed methods failed to control for the Type I
error rates when sample size was small.
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Figure 4: Rejection rate distributions at the 0.05 significance level of heterogeneous conditions.

5.2. Type I error rates estimates with heterogeneous conditions

The η2 analysis showed that the Type I error rates were affected by the interaction of cell size
and testing method, as well as the interaction of variance pattern and testing method. The
population shape and variance pattern also had a significant effect on the Type I error rates.
Figure 4 presents the distribution of Type I error rates estimates across testing methods.
WLS and SMM with ADF had the highest Type I error rates for all simulation conditions
of heterogeneous variance as shown in Figure 4. The impact of variance pattern on the
method in terms of Type I error control is presented in Table 2. As expected, the ANOVA F
test (OLS) showed poor performance in controlling for Type I error under unequal variance
conditions. It was conservative when the large group had the large variance and was liberal
when the large group were associated with the small variance. The best performing methods
were SMM with Bartlett and SMM with ML which controlled Type I error rates around 0.05
across all variance patterns. Following SMM with Bartlett and SMM with ML, the Wilcox
and James tests controlled Type I error adequately. The Welch, AG, and the BF methods
were the next good performers in terms of controlling for Type I error.

6. Conclusion
ANOVA is a popular method used to compare the means of several groups. While there are
many statistical tests for independent group means, there is no one suitable for every research
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situation. Therefore, it is important for applied researchers to have guidelines on selecting an
appropriate approach for their research scenario. As noted in the simulation results part, the
traditional ANOVA test had the best performance with equal group variances. However, it
did not work well when the variances are heterogeneous. Among the other tests, BF, Bartlett,
and SMM with ML seem to be robust to the violation of homogeneity assumption. While SAS
and other statistical software (e.g., SPSS, IBM Corporation 2017, Stata, StataCorp 2017) do
not provide all the robust tests for independent group mean comparison, this macro provides
researchers with the ability to easily conduct these tests.
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