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Abstract

Successful management of wildlife populations requires accurate estimates of abun-
dance. Abundance estimates can be confounded by imperfect detection during wildlife
surveys. N -mixture models enable quantification of detection probability and, under ap-
propriate conditions, produce abundance estimates that are less biased. Here, we demon-
strate how to use the R-INLA package for R to analyze N -mixture models, and compare
performance of R-INLA to two other common approaches: JAGS (via the runjags pack-
age for R), which uses Markov chain Monte Carlo and allows Bayesian inference, and
the unmarked package for R, which uses maximum likelihood and allows frequentist in-
ference. We show that R-INLA is an attractive option for analyzing N -mixture models
when (i) fast computing times are necessary (R-INLA is 10 times faster than unmarked
and 500 times faster than JAGS), (ii) familiar model syntax and data format (relative
to other R packages) is desired, (iii) survey-level covariates of detection are not essential,
and (iv) Bayesian inference is preferred.
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1. Introduction

1.1. Background

Successful management of wildlife species requires accurate estimates of abundance (Yoccoz,
Nichols, and Boulinier 2001). One common method for estimating animal abundance is direct
counts (Pollock, Nichols, Simons, Farnsworth, Bailey, and Sauer 2002). Efforts to obtain
accurate abundance estimates via direct counts can be hindered by the cryptic nature of
many wildlife species, and by other factors such as observer expertise, weather, and habitat
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structure (Dénes, Silveira, and Beissinger 2015). The lack of perfect detection in wildlife
surveys is common, and can cause abundance to be greatly underestimated (Wenger and
Freeman 2008; Joseph, Elkin, Martin, and Possingham 2009).
In recent years, new survey designs and modeling approaches have enabled improved estimates
of animal abundance that are less biased by imperfect detection (Dénes et al. 2015). One
such survey design, termed a metapopulation design (Kéry and Royle 2010), involves repeat
visits in rapid succession to each of multiple study sites in a study area. If, during repeat
visits, the population is assumed to be closed (no immigration, emigration, reproduction or
mortality; i.e., static abundance), then information on detections and non-detections during
repeated counts can inform an estimate of detection probability. This detection probability
can be used to correct abundance estimates for imperfect detection (Royle 2004).
Data resulting from this survey design are often modeled using an explicitly hierarchical sta-
tistical model referred to in the quantitative wildlife ecology literature as an N -mixture model
(Royle and Nichols 2003; Dodd and Dorazio 2004; Royle 2004; Kéry, Royle, and Schmid 2005).
One form ofN -mixture model, a binomial mixture model, describes individual observed counts
y at site i during survey j as coming from a binomial distribution with parameters for abun-
dance N and detection probability p, where N per site is drawn from a Poisson distribution
with an expected value λ. Specifically,

Ni ∼ Pois(λ) and yi,j | Ni ∼ Bin(Ni, p). (1)

The quantitiy λ is commonly modeled as a log-linear function of site covariates, as log(λi) =
β0 +β1xi. Similarly, p is commonly modeled as logit(pi,j) = α0 +α1xi,j , a logit-linear function
of site-survey covariates.
This estimation approach can be extended to cover K distinct breeding or wintering sea-
sons, which correspond with distinct years for wildlife species that are resident during annual
breeding or wintering stages (Kéry, Dorazio, Soldaat, Van Strien, Zuiderwijk, and Royle
2009). In this case, population closure is assumed across J surveys within year k, but is
relaxed across years (Kéry et al. 2009). A simple specification of a multiple-year model is
Ni,k ∼ Pois(λk), yi,j,k | Ni,k ∼ Bin(Ni,k, pk). Like the single-year specification, λ is commonly
modeled using site and site-year covariates, and p using site-survey-year covariates.
There are other variations of N -mixture models that accommodate overdispersed Poisson
counts through use of a negative binomial distribution (Kéry and Royle 2010), a zero-inflated
Poisson distribution (Wenger and Freeman 2008), or survey-level random intercepts (Kéry
and Schaub 2011), or underdispersed counts using mixtures of binomial and Conway-Maxwell-
Poisson distributions (Wu, Holan, Nilon, and Wikle 2015). Yet other variations account for
non-independent detection probabilities through use of a beta-binomial distribution (Martin,
Royle, Mackenzie, Edwards, Kéry, and Gardner 2011), parse different components of detection
through the use of unique covariates (O’Donnell, Thompson, and Semlitsch 2015), or relax
assumptions of population closure (Chandler, Royle, and King 2011; Dail and Madsen 2011).
We do not discuss all of these variations here, but refer interested readers to Dénes et al.
(2015) for an overview, and to Barker, Schofield, Link, and Sauer (2018) for a discussion of
assumptions and limitations.
The development of metapopulation designs and N -mixture models represents a significant
advance in quantitative wildlife ecology. However, there are practical issues that sometimes
act as barriers to adoption. Many of the examples of N -mixture models in the wildlife litera-
ture have employed Bayesian modeling software such as WinBUGS (Spiegelhalter, Thomas,
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Best, and Lunn 2003), OpenBUGS (Thomas 2014), JAGS (Plummer 2003), or Stan (Carpen-
ter et al. 2017). These are extremely powerful and flexible platforms for analyzing hierarchical
models, but they come with a few important challenges. First, many wildlife biologists are
not accustomed to coding statistical models using the BUGS or Stan modeling syntax. While
there are several outstanding resources aimed at teaching these skills (Royle and Dorazio
2008; Kéry 2010; Kéry and Schaub 2011; Kéry and Royle 2015; Korner-Nievergelt, Roth, von
Felton, Guélat, Almasi, and Korner-Nievergelt 2015) learning them is, nonetheless, a con-
siderable commitment. Second, while Markov chain Monte Carlo (MCMC) chains converge
quickly for relatively simple N -mixture models, convergence for more complex models can
take hours to days, or may not occur at all (Kéry and Schaub 2011).
There are other tools available for analyzing N -mixture models that alleviate some of these
practical issues. The unmarked package (Fiske and Chandler 2011) for the R statistical com-
puting software (R Core Team 2020) offers several options for analyzing N -mixture models
within a maximum likelihood (ML) framework, with the capacity to accommodate overdis-
persed Poisson counts and dynamic populations. The model coding syntax used in unmarked
is a simple extension of the standard R modeling syntax. Models are analyzed using ML, so
model analysis is usually completed in a fraction of the time taken using MCMC. The familiar
model syntax and rapid model evaluation of unmarked has undoubtedly contributed to the
broader adoption of N -mixture models by wildlife biologists. However, it comes at a cost:
loss of the intuitive inferential framework associated with Bayesian analysis.
Here we demonstrate analysis of N -mixture models using the R-INLA package (Rue, Riebler,
Sørbye, Illian, Simpson, and Lindgren 2017) for R. The R-INLA package uses integrated nested
Laplace approximation (INLA) to derive posterior distributions for a large class of Bayesian
statistical models that can be formulated as latent Gaussian models (Rue, Martino, and
Chopin 2009; Lindgren, Rue, and Lindstrom 2011). INLA was developed to allow estimation
of posterior distributions in a fraction of the time taken by MCMC. Like unmarked, the
model syntax used by the R-INLA package is a straightforward extension of the modeling
syntax commonly used in R. Also, like unmarked, the computational cost of analyzing models
with R-INLA is relatively low compared to MCMC. The R-INLA approach is different from
unmarked in that inference about model parameters falls within a Bayesian framework.

1.2. Overall objectives

The purpose of this manuscript is to present a comparative analysis of N -mixture models
that is centered on the R-INLA package. In the process, we employ both simulated and real
count data sets, and analyze them using R-INLA, JAGS, via the runjags package (Denwood
2016) for R, and the unmarked package for R. In each case, we demonstrate how models
are specified, how model estimates compare to simulation inputs and to each other, and
how methods compare in terms of computational performance. When describing R-INLA
analyses, we detail the format of input data and the content of analysis code, to facilitate
readers conducting their own analyses.
We also explore a limitation of the R-INLA approach related to model specification. In
particular, while it is possible to specify survey-level covariates for detection using JAGS and
unmarked, this is not possible using R-INLA. Rather, survey-level covariates of detection
must be averaged to the site or site-year level. Using an averaged detection covariate does
allow accounting for site or site-year differences in survey conditions, should they occur.
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However, in the process of averaging, information related to detection within a site or site-
year combination is discarded, which could lead to biased detection and abundance estimates
under certain conditions.
Much of the code used to conduct the R-INLA analyses is shown in the body of this manuscript.
However, some repeated R-INLA code, code used in JAGS and unmarked analyses, and code
related to generating figures, is not shown, for brevity. All code, fully commented, is avail-
able in the replication script v95i02.R available along with this paper. Regarding code, note
that the R-INLA package is atypical among R packages in a few different ways. First, R-
INLA is not available on the Comprehensive R Archive Network (CRAN), as are many other
R packages. Second, R-INLA was initially called INLA, based on its origin as a stand-alone
C program. Over time, community reference to the packaged evolved to become R-INLA.
However, installing and loading the package still employs the original name, which may
cause some confusion. To install the package, type install.packages("INLA", repos =
"https://inla.r-inla-download.org/R/stable") into an R console. To load the package,
use the R command library("INLA"). See https://r-inla.org/ to connect with the com-
munity around the development of R-INLA, and its application to geostatistics, biostatistics,
epidemiology, and econometrics (Lindgren and Rue 2015; Blangiardo and Cameletti 2015).

2. Example data

2.1. Simulated data

The data simulated for Example I (Section 3) and Example II (Section 4) were intended to
represent a typical wildlife abundance study. To put the simulated data into context, consider
an effort to estimate the abundance of a bird species in a national park, within which are
located 72 study sites. At each site, 3 replicate surveys are conducted within 6 weeks, during
the peak of the breeding season when birds are most likely to be singing. In order to estimate
a trend in abundance over time, clusters of repeated surveys are conducted each breeding
season over a 9-year period.
In this scenario, the abundance of the species is thought to vary with two site-level covariates
(x1 and x2), which represent habitat characteristics at a site and do not change appreciably
over time, and a third covariate that indicates the year (x3). The detection probability is
believed to vary according to two covariates (x1 and x4). The first covariate for detection,
x1, is the same site-level x1 that affects abundance, although it has the opposite effect on
detection. The other detection covariate, x4, is a site-survey-year variable that could be
related to weather conditions during an individual survey. As is common, due to effects of
unknown variables, simulated counts were overdispersed relative to a Poisson distribution.
Overdispersed counts were generated and modeled using a negative binomial distribution.
Simulation data were generated using the model

Ni,k ∼ NegBin(λi,k, θ) and yi,j,k | Ni,k ∼ Bin(Ni,k, pi,j,k), (2)

where λi,j was a log-linear function of site and year covariates, as log(λi,k) = β0 + β1(x1,i) +
β2(x2,i) + β3(x3,k). Parameter pi,j,k was a logit-linear function of site and site-survey-year
covariates, as logit(pi,j,k) = α0+α1(x1,i)+α4(x4,i,j,k). Parameter values for the linear predictor
for λ were set to β0 = 2, β1 = 2, β2 = −3, β3 = 1. The overdispersion parameter was set to

https://r-inla.org/
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sim.nmix <- function(n.sites = 72, # number of study sites
n.surveys = 3, # short-term replicates
n.years = 9, # number of years
b0 = 2.0, # intercept log(lambda)
b1 = 2.0, # x1 slope log(lambda)
b2 = -3.0, # x2 slope log(lambda)
b3 = 1.0, # x3 slope log(lambda)
a0 = 1.0, # intercept logit(p)
a1 = -2.0, # x1 slope logit(p)
a4 = 1.0, # x4 slope logit(p)
th = 3.0){ # overdisperison parameter

# make empty N and Y arrays
if(n.years %% 2 == 0) {n.years <- n.years + 1}
N.tr <- array(dim = c(n.sites, n.years))
Y <- Y.m <- array(dim = c(n.sites, n.surveys, n.years))

# create abundance covariate values
x1 <- array(as.numeric(scale(runif(n = n.sites, -0.5, 0.5), scale = FALSE)),

dim = c(n.sites, n.years))
x2 <- array(as.numeric(scale(runif(n = n.sites, -0.5, 0.5), scale = FALSE)),

dim = c(n.sites, n.years))
yrs <- 1:n.years; yrs <- (yrs - mean(yrs)) / (max(yrs - mean(yrs))) / 2
x3 <- array(rep(yrs, each = n.sites), dim = c(n.sites, n.years))

# fill true N array
lam.tr <- exp(b0 + b1 * x1 + b2 * x2 + b3 * x3)
for(i in 1:n.sites){

for(k in 1:n.years){
N.tr[i, k] <- rnbinom(n = 1, mu = lam.tr[i, k], size = th)

}}

# create detection covariate values
x1.p <- array(x1[,1], dim = c(n.sites, n.surveys, n.years))
x4 <- array(as.numeric(scale(runif(n = n.sites * n.surveys * n.years,

-0.5, 0.5), scale = FALSE)), dim = c(n.sites, n.surveys, n.years))

# average x4 per site-year for example 1
x4.m <- apply(x4, c(1, 3), mean, na.rm = FALSE)
out1 <- c()
for(k in 1:n.years){

chunk1 <- x4.m[ , k]
chunk2 <- rep(chunk1, n.surveys)
out1 <- c(out1, chunk2)

}
x4.m.arr <- array(out1, dim = c(n.sites, n.surveys, n.years))

# fill Y.m count array using x4.m for example 1
p.tr1 <- plogis(a0 + a1 * x1.p + a4 * x4.m.arr)
for (i in 1:n.sites){

for (k in 1:n.years){
for (j in 1:n.surveys){

Y.m[i, j, k] <- rbinom(1, size = N.tr[i, k],
prob = p.tr1[i, j, k])

}}}

Continued on next page.
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# fill Y count array using x4 for example 2
p.tr2 <- plogis(a0 + a1 * x1.p + a4 * x4)
for (i in 1:n.sites){

for (k in 1:n.years){
for (j in 1:n.surveys){

Y[i, j, k] <- rbinom(1, size = N.tr[i, k], prob = p.tr2[i, j, k])
}}}

# format Y.m for data frame output for inla and unmarked
Y.m.df <- Y.m[ , , 1]
for(i in 2:n.years){

y.chunk <- Y.m[ , , i]
Y.m.df <- rbind(Y.m.df, y.chunk)

}

# format covariates for data frame output for inla and unmarked
x1.df <- rep(x1[ , 1], n.years)
x2.df <- rep(x2[ , 1], n.years)
x3.df <- rep(x3[1, ], each = n.sites)
x1.p.df <- rep(x1.p[ , 1, 1], n.years)
x4.df <- c(x4.m)

# put together data frames for inla and unmarked
inla.df <- unmk.df <- data.frame(y1 = Y.m.df[ , 1], y2 = Y.m.df[ , 2],

y3 = Y.m.df[ , 3], x1 = x1.df, x2 = x2.df, x3 = x3.df,
x1.p = x1.p.df, x4.m = x4.df)

# return all necessary data for examples 1 and 2
return(list(inla.df = inla.df, unmk.df = unmk.df, n.sites = n.sites,

n.surveys = n.surveys, n.years = n.years, x1 = x1[ , 1],
x2 = x2[ , 1], x3 = x3[1, ], x4 = x4, x4.m = x4.m, x4.m.arr =
x4.m.arr, Y = Y, Y.m = Y.m, lam.tr = lam.tr, N.tr = N.tr, x1.p =

x1.p[ , 1, 1]
))

}

Table 1: Source code for the sim.nmix() simulation function for Examples I and II.

θ = 3. Parameter values for the linear predictor for p were set to α0 = 1, α1 = −2, α4 = 1.0.
All independent variables in the simulation were centered at zero to reduce computational
difficulties and to make model intercepts more easily interpreted.
We simulated data for Examples I and II using the sim.nmix() function, shown in Table 1,
with which we encourage readers to experiment. Parameter and variable names in the function
code are similar to those given in the model description, above. Note that the function
produces two versions of detection covariate x4 (x4 and x4.m) and two versions of the count
matrix (Y and Y.m). Covariate x4 is the same as the site-survey-year variable x4, described
above. It is used to generate Y, which is used in Example II. Covariate x4.m is derived from
x4, where values are unique to site and year, but are averaged and duplicated over surveys.
It is used to generate Y.m, which is employed in Example I. Running sim.nmix() results in
a list containing data frames for use with R-INLA and unmarked, and values and vectors for
use with JAGS. Before running the function, we install and load libraries, and set the seed
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for the random number generator so that the results are reproducible.

R> install.packages("INLA", repos =
+ "https://inla.r-inla-download.org/R/stable")
R> library("INLA")
R> install.packages(c("runjags", "unmarked"))
R> library("runjags")
R> library("unmarked")
R> set.seed(12345)
R> sim.data <- sim.nmix()

2.2. Real data

In addition to simulated data, we also demonstrate the use of R-INLA and unmarked with a
real data set in Example III in Section 5. This data set comes from a study by Kéry et al.
(2005) and is publicly available as part of the unmarked package. The data set includes
mallard duck (Anas platyrhynchos) counts conducted at 239 sites on 2 or 3 occasions during
the summer of 2002, as part of a Swiss program that monitors breeding bird abundance
(Monitoring Häufige Brutvögel or Swiss Breeding Bird Survey). In addition to counts, the
data set also includes 2 site-survey covariates related to detection (survey effort and survey
date) and 3 site-level covariates related to abundance (route length, route elevation, and forest
cover). Full data set details are given in Kéry et al. (2005).

3. Example I

3.1. Goals

In Example I, we demonstrate the use of R-INLA and compare use and performance to similar
analyses using JAGS and unmarked. In this first example, the functional forms of R-INLA,
JAGS, and unmarked models match the data generating process. Specifically, we used the
covariate x4.m to generate the count matrix Y.m, and analyzed the data with models that use
x4.m as a covariate. This example was intended to demonstrate the differences and similarities
in use, computation time, and estimation results across the three methods when the specified
models were the same as the data generating process.

3.2. Analysis with R-INLA
We first analyze the simulated data using the R-INLA package. The list returned from
the sim.nmix() function includes an object called inla.df. This object has the following
structure.

R> str(sim.data$inla.df, digits.d = 2)

'data.frame': 648 obs. of 8 variables:
$ y1 : int 2 12 25 3 0 3 1 7 2 8 ...
$ y2 : int 2 22 25 4 1 3 1 11 2 4 ...
$ y3 : int 4 11 28 2 1 2 0 10 2 3 ...
$ x1 : num 0.198 0.353 0.238 0.364 -0.066 ...
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$ x2 : num -0.159 -0.197 -0.484 0.087 0.429 ...
$ x3 : num -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 ...
$ x1.p : num 0.198 0.353 0.238 0.364 -0.066 ...
$ x4.m : num 0.148 -0.07 0.206 -0.261 -0.046 ...

R> round(head(sim.data$inla.df), 3)

y1 y2 y3 x1 x2 x3 x1.p x4.m
1 2 2 4 0.198 -0.159 -0.5 0.198 0.148
2 12 22 11 0.353 -0.197 -0.5 0.353 -0.070
3 25 25 28 0.238 -0.484 -0.5 0.238 0.206
4 3 4 2 0.364 0.087 -0.5 0.364 -0.261
5 0 1 1 -0.066 0.429 -0.5 -0.066 -0.046
6 3 3 2 -0.356 0.123 -0.5 -0.356 -0.036

This data frame representation of the simulated data has 72 sites × 9 years = 648 rows. Had
there only been one year of data, then the data frame would have 72 rows, one per site. The
data frame has three columns (y1, y2, and y3) with count data from the count matrix Y.m,
one for each of the three replicate surveys within a given year. Had there been six surveys per
year, then there would have been six count columns. The three variables thought to affect
abundance are represented in columns 4 through 6. Note that, in this scenario, the first two
abundance variables are static across years, so there are 72 unique values in a vector that
is stacked 9 times. The third abundance variable, the indicator for year, is a sequence of
9 values, where each value is repeated 72 times. It is centered and scaled in this example.
The two variables thought to affect detection probability are represented in columns 7 and 8.
The first of these variables has the same values as in column 4, so column 7 is a simple copy
of column 4. The second of the two detection variables, shown in column 8, varies per site
and year in Example I, so there are 648 unique values in this column. Note that any of the
covariates for abundance or detection could have varied by site and year, like x4.m.
We made small modifications to this data frame to prepare data for analysis with R-INLA.
In the code that follows, we use the inla.mdata() function to create an object called
counts.and.count.covs. The counts.and.count.covs object is essentially a bundle of
information related to the abundance component of the model. Calling the str() function
shows that this object is an R-INLA list that includes the three count vectors, passed to the
function as a matrix, one vector containing the value of 1, which specifies a global intercept
for λ, and three vectors corresponding to the covariates for λ. Note that the variable names
are standardized by inla.mdata() for computational reasons.

R> inla.data <- sim.data$inla.df
R> y.mat <- as.matrix(inla.data[,c("y1", "y2", "y3")])
R> counts.and.count.covs <- inla.mdata(y.mat, 1, inla.data$x1,
+ inla.data$x2, inla.data$x3)
R> str(counts.and.count.covs)

List of 7
$ Y1: int [1:648] 2 12 25 3 0 3 1 7 2 8 ...
$ Y2: int [1:648] 2 22 25 4 1 3 1 11 2 4 ...
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$ Y3: int [1:648] 4 11 28 2 1 2 0 10 2 3 ...
$ X1: num [1:648] 1 1 1 1 1 1 1 1 1 1 ...
$ X2: num [1:648] 0.1983 0.3532 0.2384 0.3636 -0.0661 ...
$ X3: num [1:648] -0.1595 -0.1966 -0.4842 0.0865 0.429 ...
$ X4: num [1:648] -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 ...

- attr(*, "class")= chr "inla.mdata"

Analysis of N -mixture models with R-INLA is accomplished with a call to the inla() func-
tion. The first argument in the inla() call, shown below, is the model formula. On the
left side of the formula is the counts.and.count.covs object, which includes the vectors of
counts, the global intercept for λ, and the covariates related to λ. On the right side of the
formula is a 1, to specify a global intercept for p, and the two covariates for p. Note that a
wide range of random effects (exchangeable, spatially or temporally structured) for p could
be added to the right side of the formula using the f() syntax (Rue et al. 2017).
The second argument to inla() describes the data, provided here as a list that corresponds
with the model formula. Third is the likelihood family, which can take values of "nmix" for a
Poisson-binomial mixture and "nmixnb" for a negative binomial-binomial mixture. Run the
command inla.doc("nmix") for more information on these likelihood families. The fourth
(control.fixed, for detection parameters) and fifth (control.family, for abundance and
overdispersion parameters) arguments specify the priors for the two model components. Here,
the priors for both abundance and detection parameters are vague normal distributions cen-
tered at zero with precision equal to 0.01. The prior for the overdispersion parameter is
specified as uniform. Note that a wide variety of other prior distributions are available in
R-INLA. At the end of the call are arguments to print the progress of model fitting, and to
save information that will enable computation of fitted values. Several other characteristics
of the analysis can be modified in a call to inla(), such as whether or not deviance informa-
tion criterion (DIC), widely applicable information criterion (WAIC), conditional predictive
ordinate (CPO), or probability integral transform (PIT) are computed. See Rue et al. (2017)
for details.

R> out.inla.1 <- inla(counts.and.count.covs ~ 1 + x1.p + x4.m,
+ data = list(counts.and.count.covs = counts.and.count.covs,
+ x1.p = inla.data$x1.p, x4.m = inla.data$x4.m),
+ family = "nmixnb",
+ control.fixed = list(mean = 0, mean.intercept = 0, prec = 0.01,
+ prec.intercept = 0.01),
+ control.family = list(hyper = list(theta1 = list(param = c(0, 0.01)),
+ theta2 = list(param = c(0, 0.01)), theta3 = list(param = c(0, 0.01)),
+ theta4 = list(param = c(0, 0.01)), theta5 = list(prior = "flat",
+ param = numeric()))),
+ verbose = TRUE,
+ control.compute=list(config = TRUE))
R> summary(out.inla.1, digits = 3)

Time used (seconds):
Pre-processing Running inla Post-processing Total
0.421 5.081 0.342 5.844
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Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant

(Intercept) 1.053 0.058 0.938 1.054 1.165
x1.p -1.996 0.197 -2.385 -1.995 -1.611
x4.m 1.056 0.313 0.440 1.056 1.668

The model has no random effects.

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

beta[1] 2.022 0.034 1.956 2.022 2.090
beta[2] 2.070 0.116 1.839 2.071 2.295
beta[3] -2.951 0.099 -3.142 -2.953 -2.755
beta[4] 1.142 0.088 0.969 1.142 1.316
overdisp 0.349 0.028 0.296 0.349 0.407

Partial output from the summary() function, run on the out.inla.1 object, returned from
the inla() function, is shown above. The analysis of the model took approximately 6 seconds.
Information on the intercept and covariates related to detection are found under the fixed
effects section. Note that the posterior median parameter estimates related to the detection
intercept (α0 labeled as (Intercept)) and covariates (α1 as x1.p and α4 as x4.m) are very
close to, and not significantly different from, input parameter values (Figure 1). Information
on abundance and overdispersion parameters are given in the model hyperparameters sec-
tion. Posterior median estimates for β0 (labeled as beta[1]), β1 (beta[2]), β2 (beta[3]),
β3 (beta[4]), and θ (1 / overdisp = 2.87) are also very close to, and not significantly dif-
ferent from, input parameter values (Figure 1). Density plots of the full marginal posterior
distributions for model parameters (Figure 1) can be viewed using plot(out.inla.1).
The quantity λi,k for each site-year combination in the data set can be computed using covari-
ate values given in the counts.and.count.covs object, combined with posterior distributions
of parameters in the linear predictor of λi,k. Posterior distributions for computed λi,k values
can be estimated by repeated sampling from the posteriors of hyperparameters, using the
inla.hyperpar.sample() function, and repeated solving of the linear predictor. The helper
function, inla.nmix.lambda.fitted() produces fitted lambda values as described, using the
information contained in the model result object. A call to this function, specifying the model
result, posterior sample size, and summary output, is as follows.

R> out.inla.1.lambda.fits <- inla.nmix.lambda.fitted(result = out.inla.1,
+ sample.size = 5000, return.posteriors = FALSE)$fitted.summary
R> head(out.inla.1.lambda.fits)

index mean.lambda sd.lambda q025.lambda median.lambda q975.lambda
1 1 10.3329 0.6623 9.0980 10.3109 11.6683
2 2 15.9003 1.1895 13.6760 15.8649 18.3523
3 3 29.2742 2.2882 25.0410 29.2043 34.0370
4 4 7.0490 0.5250 6.0663 7.0270 8.1227
5 5 1.0547 0.0810 0.9072 1.0509 1.2194
6 6 1.4272 0.1031 1.2389 1.4255 1.6353
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The output from this function call is a summary of estimated posteriors for fitted λi,k values.
In this example, there are 648 rows. Comparisons of posterior median fitted λi,k with true
simulated λi,k and Ni,k values are shown below.

R> summary(out.inla.1.lambda.fits$median.lambda)
R> summary(c(sim.data$lam.tr))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6538 3.4020 7.0070 13.5200 16.0300 123.2000

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6834 3.3050 6.8190 13.0300 15.9500 111.3000

R> cor(out.inla.1.lambda.fits$median.lambda, c(sim.data$lam.tr))

[1] 0.9986

R> sum(out.inla.1.lambda.fits$median.lambda)
R> sum(c(sim.data$lam.tr))
R> sum(c(sim.data$N.tr))

[1] 8758.542
[1] 8444.975
[1] 8960

3.3. Analysis with JAGS
Next, we analyzed the same simulated data set using JAGS, via the runjags package. As
for the R-INLA analysis, we specified a negative binomial distribution for abundance, vague
normal priors for the intercepts and the global effects of the covariates of λ and p, and a flat
prior for the overdispersion parameter. The JAGS model statement, where the distributions
and likelihood function are specified, is shown below for comparison with the arguments to
inla().

R> jags.model.string <- "
+ model {
+ a0 ~ dnorm(0, 0.01)
+ a1 ~ dnorm(0, 0.01)
+ a4 ~ dnorm(0, 0.01)
+ b0 ~ dnorm(0, 0.01)
+ b1 ~ dnorm(0, 0.01)
+ b2 ~ dnorm(0, 0.01)
+ b3 ~ dnorm(0, 0.01)
+ th ~ dunif(0, 5)
+ for (k in 1:n.years){
+ for (i in 1:n.sites){
+ N[i, k] ~ dnegbin(prob[i, k], th)
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Figure 1: Marginal posteriors of model parameters from R-INLA (dashed black lines) and
JAGS (solid gray lines), along with Maximum Likelihood estimates (black circles) and 95%
confidence intervals (horizontal black lines) from unmarked. True input values are represented
by vertical black lines.

+ prob[i, k] <- th / (th + lambda[i, k])
+ log(lambda[i, k]) <- b0 + (b1 * x1[i]) + (b2 * x2[i]) + (b3 * x3[k])
+ for (j in 1:n.surveys){
+ Y.m[i, j, k] ~ dbin(p[i, j, k], N[i, k])
+ p[i, j, k] <- exp(lp[i, j, k]) / (1 + exp(lp[i, j, k]))
+ lp[i, j, k] <- a0 + (a1 * x1.p[i]) + (a4 * x4.m[i, k])
+ }}}}
+ "

After specifying the JAGS model, we define the parameters to be monitored during the MCMC
simulations, bundle numerous values and vectors from the sim.data object, and create a
function for drawing random initial values for the model parameters. These steps are included
in the code supplement, but are not shown here. Finally, we set the run parameters, such
as the number of chains and iterations, and start the MCMC process. Run parameters were
chosen such that MCMC diagnostics indicated converged chains (potential scale reduction
factors < 1.05) and reasonably robust posterior distributions (effective sample sizes > 3, 000).
Note that the recommended number of effective samples for particularly robust inference
is closer to 6,000 (Gong and Flegal 2016). Thus, MCMC processing times reported here
could be considered optimistic estimates. The MCMC simulation is initiated with a call to
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run.jags(). Partial output from the simulation, related to parameter estimates, is shown
below.

R> out.jags.1 <- run.jags(model = jags.model.string, data = jags.data,
+ monitor = params, n.chains = 3, inits = inits, burnin = 3000,
+ adapt = 3000, sample = 6000, thin = 10, modules = "glm on",
+ method = "parallel")
R> round(summary(out.jags.1), 3)[ , c(1:5, 9, 11)]

Lower95 Median Upper95 Mean SD SSeff psrf
a0 0.941 1.053 1.161 1.053 0.057 3155 1
a1 -2.380 -1.990 -1.618 -1.994 0.195 2954 1
a4 0.434 1.053 1.661 1.052 0.314 5695 1
b0 1.956 2.024 2.089 2.024 0.034 7065 1
b1 1.851 2.070 2.301 2.071 0.115 6028 1
b2 -3.142 -2.946 -2.755 -2.947 0.099 17539 1
b3 0.969 1.142 1.315 1.142 0.089 18000 1
th 2.401 2.840 3.295 2.850 0.230 18000 1

Similar to the R-INLA analysis, median parameter estimates from the JAGS model were close
to, and not significantly different from, the input values used to generate the data (Figure 1).
The potential scale reduction factor for all variables was < 1.05, and the effective sample
size for all variables was approximately 3, 000 or greater. The simulation ran in parallel on 3
virtual cores, 1 MCMC chain per core, and took approximately 2, 960 seconds.

3.4. Analysis with unmarked

Lastly, we prepared the simulated data for the unmarked analysis, which involved slight
modification of the unmk.df object created using the sim.nmix() function. As with the
JAGS analysis, these steps are included in the code supplement, but are not illustrated here.
The unmarked analysis was run by a call to the pcount() function. The first argument in
the call to pcount() is the model formula, which specifies the covariates for detection and
then the covariates for abundance. This is followed by an argument identifying the unmarked
data object and the form of the mixture model, negative binomial-binomial in this case.

R> out.unmk.1 <- pcount(~ 1 + x1.p + x4.m ~ 1 + x1 + x2 + x3,
+ data = unmk.data, mixture = "NB")
R> summary(out.unmk.1)

Abundance (log-scale):
Estimate SE z P(>|z|)

(Intercept) 2.02 0.0321 62.9 0.00e+00
x1 2.04 0.1071 19.0 1.69e-80
x2 -2.94 0.0982 -29.9 5.36e-20
x3 1.14 0.0882 13.0 2.26e-38

Detection (logit-scale):
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Estimate SE z P(>|z|)
(Intercept) 1.08 0.0507 21.27 2.29e-100
x1.p -1.90 0.1576 -12.08 1.30e-33
x4.m 1.04 0.3102 3.35 8.02e-04

Dispersion (log-scale):
Estimate SE z P(>|z|)
1.05 0.0804 13.1 4.91e-39

Maximum likelihood estimates for model parameters from unmarked were also close to, and
not significantly different from, input values (Figure 1). Note that the dispersion estimate,
after exponentiation, was 2.86. The unmarked estimates were produced in approximately
86 seconds.

3.5. Example I summary
Example I demonstrated basic use of R-INLA to analyze N -mixture models and highlighted
similarities and differences between it and two other commonly used approaches. In demon-
strating the use of R-INLA, we showed that the input data format is not too complicated, and
that the formatting process can be accomplished with a few lines of code. Similarly, model
specification uses a straightforward extension of the standard syntax in R, where the counts
and covariates for λ are specified through an R-INLA object included on the left side of the
formula, and fixed covariates and random effects for p are specified on the right side of the
formula. The data format and model specification syntax of R-INLA is not too different from
unmarked, whereas those of both packages are considerably different from JAGS and other
MCMC software, such as OpenBUGS, WinBUGS, and Stan.
Regarding performance, R-INLA, JAGS, and unmarked all successfully extracted simulation
input values. Figure 1 shows marginal posterior distributions produced by R-INLA and
JAGS, and estimates and 95% confidence intervals from unmarked. These results derive
from data from one random manifestation of the input values. Thus, we do not expect the
posterior distributions for the estimates to be centered at the input values, which would be
expected if the simulation was repeated many times. However, we do expect the input values
to fall somewhere within the posterior distributions and 95% confidence limits, which is what
occurred here. Figure 1 shows that, for similarly specified models, R-INLA (dashed black
lines) and JAGS (solid gray lines) yielded practically identical marginal posterior distributions
for model parameters. Figure 1 also illustrates the general agreement between the credible
intervals associated with R-INLA and JAGS and the confidence intervals associated with
unmarked.
Where R-INLA, JAGS, and unmarked differed substantially was in computing time. In this
example, R-INLA took 6 seconds, JAGS took 2, 960 seconds, and unmarked took 86 seconds
to produce results. Thus, R-INLA was approximately 500 times faster than JAGS and 10
times faster than unmarked. This was the case despite the fact that unmarked produced
ML estimates and the JAGS analysis was run in parallel with each of three MCMC chains
simulated on a separate virtual computing core. If parallel computing had not been used with
JAGS, processing the JAGS model would have taken approximately twice as long. If MCMC
simulations were run until effective sample sizes of 6, 000 were reached, processing time would
have doubled again.
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In sum, when compared to other tools, R-INLA is relatively easy to implement and produces
accurate estimates of Bayesian posteriors very quickly. Its utility depends on the degree to
which the data generating process can be captured accurately in model specification. However,
as mentioned above, certain N -mixture models cannot be specified using R-INLA. For the
data in Example I, the count matrix was produced using a detection covariate that was
averaged to the site-year level. This averaged covariate was subsequently specified in the
model. But what happens when the site-survey-year covariate is an important component
of the data generating process, and it can’t be entered into the analysis model in this form?
This is the question explored in Example II.

4. Example II

4.1. Goals

In Example II, we show the consequences of not being able to specify a site-survey-year
covariate for detection, under a range of conditions. We conducted a Monte Carlo exper-
iment where, for each iteration, the count matrix for the analysis, Y, was generated with
the sim.nmix() function using the site-survey-year covariate x4. The count data were then
analyzed with two JAGS models. The first model incorporated the site-survey-year x4 covari-
ate. The second model incorporated the averaged site-year x4.m, instead. For each iteration,
we randomly varied the size of α4 when generating the simulated data. We expected that
the simpler model, with x4.m, would yield biased estimates when the magnitude of α4 was
relatively large, and unbiased estimates when the magnitude of α4 was relatively small. All
computing code related to Example II is given in the supplemental code file.

4.2. Analysis with JAGS

Parameter values entered into sim.nmix(), other than those for α4, were the same as those
used in Example I. Similarly, the JAGS model specification, other than parts associated with
α4, was the same as that used in Example I. Given the long processing time associated with
JAGS models in Example I, we only ran and saved 1000 MCMC simulations (no thinning,
after 500 adaptive and 100 burn-in iterations) during each of the 50 Monte Carlo runs in
Example II. This number is not sufficient for drawing inference from marginal posteriors, but
was sufficient for looking at qualitative patterns in posterior medians. For each of these runs,
a value for α4 was drawn from a uniform distribution that ranged from −3 to 3. Parameter
bias was represented for each model parameter as the difference between the simulation input
and the posterior median estimated value. The results of the simulations are depicted in
Figure 2.

4.3. Example II summary

Even with as few as 50 Monte Carlo runs, it was apparent that biases in parameter estimates
increased with the magnitude of α4 (Figure 2). When the magnitude of α4 was small, with an
absolute value less than 1, the bias was negligible. When the magnitude of α4 was large, with
an absolute value greater than 2, the bias was considerable (Figure 2). When interpreting
the effect size, bear in mind that x4 ranged from −0.5 to 0.5.
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Figure 2: Differences between posterior median parameter values and true input parameter
values as a function of the α4 value used to simulate data. Black circles and lines are from the
model with the site-survey-year covariate, x4, and gray circles and lines are from the model
with an averaged site-year covariate, x4.m. Parameter name is given in the strip across the
top of each panel.

5. Example III

5.1. Goals

In Example III, we explore the performance of R-INLA using real data, a publicly available
data set of mallard duck counts from Switzerland during 2002. By employing real data, we
hoped to evaluate (i) the performance of R-INLA using data that were not predictable by
design and (ii) the practical consequences of not being able to specify site-survey covariates in
R-INLA. The data set is available as a demonstration data set in unmarked, so we compared
the performance of R-INLA with that of unmarked using the analysis settings and model
structure described in unmarked documentation.

5.2. Analysis with R-INLA
The mallard data are provided in the unmarked package as a list with three components: a
matrix of counts (mallard.y), a list of matrices of detection covariates (mallard.obs), and
a data frame of abundance covariates (mallard.site). Data in unmarked are organized in
structures called unmarked frames, which are viewed as a data frame when printed.
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R> data("mallard")
R> mallard.umf <- unmarkedFramePCount(y = mallard.y, siteCovs =
+ mallard.site, obsCovs = mallard.obs)
R> mallard.umf[1:6, ]

Data frame representation of unmarkedFrame object.
y1 y2 y3 elev length forest ivel1 ivel2 ivel3

1 0 0 0 -1.173 0.801 -1.156 -0.506 -0.506 -0.506
2 0 0 0 -1.127 0.115 -0.501 -0.934 -0.991 -1.162
3 3 2 1 -0.198 -0.479 -0.101 -1.136 -1.339 -1.610
4 0 0 0 -0.105 0.315 0.008 -0.819 -0.927 -1.197
5 3 0 3 -1.034 -1.102 -1.193 0.638 0.880 1.042
6 0 0 0 -0.848 0.741 0.917 -1.329 -1.042 -0.899
...

date1 date2 date3
1 -1.761 0.310 1.381
2 -2.904 -1.047 0.596
3 -1.690 -0.476 1.453
4 -2.190 -0.690 1.239
5 -1.833 0.167 1.381
6 -2.619 0.167 1.381

As discussed above, it is not possible to take advantage of survey-level covariates when an-
alyzing N -mixture models with R-INLA. So, before analysis with R-INLA, we averaged the
survey-level variables, ivel and date, per site using the rowMeans() function.

R> length <- mallard.site[ , "length"]
R> elev <- mallard.site[ , "elev"]
R> forest <- mallard.site[ , "forest"]
R> mean.ivel <- rowMeans(mallard.obs$ivel, na.rm = TRUE)
R> mean.ivel[is.na(mallard.ivel)] <- mean(mallard.ivel, na.rm = TRUE)
R> mean.date <- rowMeans(mallard.obs$date, na.rm = TRUE)
R> mean.date.sq <- mean.date^2
R> mallard.inla.df <- data.frame(y1 = mallard.y[ , "y.1"],
+ y2 = mallard.y[ , "y.2"], y3 = mallard.y[ , "y.3"],
+ length, elev, forest, mean.ivel, mean.date, mean.date.sq)
R> round(head(mallard.inla.df), 3)

y1 y2 y3 length elev forest mean.ivel mean.date mean.date.sq
1 0 0 0 0.801 -1.173 -1.156 -0.506 -0.023 0.001
2 0 0 0 0.115 -1.127 -0.501 -1.029 -1.118 1.251
3 3 2 1 -0.479 -0.198 -0.101 -1.362 -0.238 0.056
4 0 0 0 0.315 -0.105 0.008 -0.981 -0.547 0.299
5 3 0 3 -1.102 -1.034 -1.193 0.853 -0.095 0.009
6 0 0 0 0.741 -0.848 0.917 -1.090 -0.357 0.127

The data are now in a format that can be analyzed readily using R-INLA. The data frame
representation has 239 sites × 1 year = 239 rows, one column for each replicate count, and
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one column for each detection and abundance covariate. Once in this form, it is easy to
create an inla.mdata() object and run the analysis. In preparing counts.and.count.covs,
we specify an intercept and effects of transect length (length), elevation (elev), and forest
cover (forest) on abundance. In the model argument to inla(), we specify an intercept and
effects of survey intensity (ivel) and survey date (date) on detection. As before, the data
argument is a list that corresponds with the model formula. The family argument specifies a
negative binomial-binomial mixture. The prior for each intercept and covariate was specified
as vague normal distributions, and that for the overdispersion parameter was specified as a
uniform distribution.

R> counts.and.count.covs <- inla.mdata(mallard.y, 1, length, elev, forest)
R> out.inla.2 <- inla(counts.and.count.covs ~ 1 + mean.ivel +
+ mean.date + mean.date.sq,
+ data = list(counts.and.count.covs = counts.and.count.covs,
+ mean.ivel = mean.ivel, mean.date = mean.date, mean.date.sq =
+ mean.date.sq),
+ family = "nmixnb",
+ control.family = list(hyper = list(theta5 = list(prior = "flat",
+ param = numeric()))))
R> summary(out.inla.2, digits = 3)

A portion of the summary for out.inla.2 is shown below. Note that posterior summaries
described in the fixed effects section pertain to the intercept and covariates of logit(p). In
the hyperparameters section, beta[1], beta[2], beta[3], and beta[4] identify posterior
summaries for the log(λ) intercept, and transect length, elevation, and forest cover effects.

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant

(Intercept) -0.397 0.383 -1.170 -0.389 0.335
mean.ivel 0.039 0.212 -0.378 0.039 0.455
mean.date -1.044 0.433 -1.923 -1.036 -0.195
mean.date.sq -0.318 0.304 -0.962 -0.301 0.233

The model has no random effects.

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

beta[1] -1.412 0.296 -1.966 -1.424 -0.801
beta[2] -0.290 0.190 -0.664 -0.291 0.086
beta[3] -0.998 0.318 -1.595 -1.011 -0.341
beta[4] -0.771 0.203 -1.178 -0.767 -0.382
overdisp 1.228 0.264 0.799 1.194 1.837

5.3. Analysis with unmarked
The unmarked frame, mallard.umf, created above, can be used directly by the pcount()
function in unmarked. The data and model structure described in the pcount() function
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below is similar to that used above in the R-INLA analysis, except for one key difference:
here, ivel and date are site-survey level variables instead of the site-level means used in the
R-INLA analysis.

R> out.unmk.2 <- pcount(~ ivel + date + I(date^2) ~ length + elev + forest,
+ mixture = "NB", data = mallard.umf)
R> summary(out.unmk.2)

Abundance (log-scale):
Estimate SE z P(>|z|)

(Intercept) -1.786 0.281 -6.350 2.15e-10
length -0.186 0.214 -0.868 3.86e-01
elev -1.372 0.293 -4.690 2.73e-06
forest -0.685 0.216 -3.166 1.54e-03

Detection (logit-scale):
Estimate SE z P(>|z|)

(Intercept) -0.028 0.285 -0.099 0.921
ivel 0.174 0.227 0.766 0.444
date -0.313 0.147 -2.132 0.033
I(date^2) -0.005 0.081 -0.059 0.953

Dispersion (log-scale):
Estimate SE z P(>|z|)
-0.695 0.364 -1.91 0.056

5.4. Example III summary
Comparing the results, we see that the 95% credible intervals for parameter estimates from
the R-INLA analysis overlapped broadly with the 95% confidence intervals from the un-
marked analysis, so parameter estimates were not significantly different from one another
(Figure 3). Regardless of technique, the same set of parameters had estimates significantly
different from zero (Figure 3), and significant effects were of the same magnitude and direc-
tion in both analyses. Using both techniques, detection decreased as the season progressed,
and abundance decreased with increasing forest cover and elevation. Parameter estimates and
biological conclusions were similar despite the fact that site-survey detection covariates were
used for unmarked and site-averaged detection covariates were used for R-INLA. Note that
unmarked estimated moderate effects of detection covariates which, according to the results in
Example II, would indicate that parameter estimates from the R-INLA analysis were not sub-
stantially biased. These conclusions may have been different given a different data set, where
detection covariates had very strong effects or were not otherwise controlled by survey design.

6. Discussion
The purpose of this work was to detail the use of the R-INLA package (Rue et al. 2017) to
analyze N -mixture models and to compare analyses using R-INLA to two other common ap-
proaches: JAGS (Plummer 2003; Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012), via
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Figure 3: Parameter estimates and 95% confidence intervals from unmarked (gray circles
and lines) and posterior medians and 95% credible intervals from R-INLA (black circles and
lines) from an N -mixture model analysis of mallard duck abundance. Model parameters are
identified by their associated variable names listed on the vertical axis. The unmarked model
included site-survey covariates for survey intensity and survey date, while the R-INLA model
included site-averaged versions. A value of zero (no effect) is depicted by the vertical dashed
gray line.

the runjags package (Denwood 2016), which employs MCMC methods and allows Bayesian
inference, and the unmarked package (Fiske and Chandler 2011), which uses maximum likeli-
hood and allows frequentist inference. While we selected JAGS as the representative MCMC
approach, we expect that our conclusions would be qualitatively similar for other MCMC
software, such as OpenBUGS, WinBUGS, or Stan. We are not aware of other commonly-
used software for analyzing N -mixture models in a maximum likelihood framework, besides
unmarked.
Comparisons showed that R-INLA can be a complementary tool in the wildlife biologist’s
analytical tool kit. Strengths of R-INLA include Bayesian inference, based on highly accurate
approximations of posterior distributions, which were derived roughly 500 times faster than
MCMC methods, where models are specified using a syntax that should be familiar to R users,
and where data are formatted in a straightforward way with relatively few lines of code. The
straightforward model syntax and data format could help lower barriers to adoption of N -
mixture models for biologists who are not committed to learning BUGS or Stan syntax. The
substantial decrease in computation time should facilitate use of a wider variety of model and
variable selection techniques (e.g., cross validation and model averaging), ones that are not
commonly used in an MCMC context due to practical issues related to computing time (Kéry
and Schaub 2011).
Limitations of R-INLA are mainly related to the more restricted set of N -mixture models that
can be specified. Of the approaches described here, ones that use MCMC allow users ultimate
flexibility in specifying models. For example, with JAGS, site-survey covariates for detection
are possible, multiple types of mixed distributions are available (Joseph et al. 2009; Martin
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et al. 2011), and a variety of random effects can be specified for both λ and p (Kéry and Schaub
2011). In comparison, the current version of R-INLA does not handle site-survey covariates,
employs only Poisson-binomial and negative binomial-binomial mixtures, and handles random
effects for p only. A practical consequence of the random effects limitation is that, while site
and site-year posteriors for λ can be estimated using R-INLA, site and site-year posteriors for
N are not currently available (but see Appendix). In cases where site-survey covariates are
particularly important, and not otherwise controlled by survey design, where different mixed
distributions are required, or where random effects associated with λ are needed, an MCMC
approach appears to be most appropriate (Figure 2).
When compared to unmarked, the R-INLA approach is similar in regards to familiar model
syntax and data format. The approaches are also similar in that both yield results much
faster than MCMC, enabling a richer set of options in terms of model and variable selection.
The two approaches differ in that R-INLA is approximately 10 times faster than unmarked,
likely due to the different method used to compute model likelihoods (see Appendix). They
also differ in that unmarked can accommodate site-survey covariates, whereas R-INLA does
not, and that R-INLA can accommodate random effects for p, whereas unmarked does not.
In cases where both computing speed and specification of site-survey covariates are critical,
unnmarked appears to be an appropriate tool.
In conclusion, R-INLA, JAGS (and WinBUGS, OpenBUGS, and Stan), and unmarked all
allow users to analyze N -mixture models for estimating wildlife abundance while accounting
for imperfect detection. Each method has its strengths and limitations. R-INLA appears to be
an attractive option when survey-level covariates are not essential, familiar model syntax and
data format are desired, Bayesian inference is preferred, and fast computing time is required.
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A. Posterior probability for N

Currently, it is not possible to extract posteriors for N when analyzing N -mixture models us-
ing R-INLA. This functionality, which would utilize output from the inla.posterior.sample()
function, could be available in future versions based on the following logic. Assume the Pois-
son for N , such that P(N | λ) = p0(N ;λ), and

P(y1, . . . , ym | N) =
∑[ m∏

i=1
Bin(yi;N, p)

]
p0(N ;λ), (3)

where y1, . . . , ym = Υ, and N ≥ max(y1, . . . , ym). If we have samples from the posterior of
(p, λ) | Υ, we can compute the posterior marginal of N | Υ as follows. If (p, λ) is fixed, then

P(N | Υ) ∝
[ m∏
i=1

Bin(yi;N, p)
]
p0(N ;λ), (4)

and this expression is evaluated for N = max(y1, . . . , ym), and renormalized. We can integrate
out (p, λ) | Υ using samples from the posteriors, as

P(N | Υ) = 1
M

M∑
j=1

1
Z(pj , λj)

[ M∏
i=1

Bin(yi;N, pj)
]
p0(N ;λj), (5)

for M samples (p1, λ1), . . . , (pM , λM ) from the posterior of (p, λ) | Υ. That is, we average the
probability for each N , renormalize, and normalize for each sample by computing Z(p, λ).

B. Recursive computations of the ‘nmix’ likelihood
The likelihood for the simplest case is

Prob(y) =
∞∑
N=y

Pois(N ;λ) × Bin(y;N, p) (6)

where Pois(N ;λ) is the density for the Poisson distribution with mean λ, λN exp(−λ)/N !,
and Bin(y;N, p) is the density for the binomial distribution with N trials and probability
p,
(N
y

)
py(1 − p)N−p. Although the likelihood can be computed directly when replacing the

infinite limit with a finite value, we will demonstrate here that we can easily evaluate it using
a recursive algorithm that is both faster and more numerically stable. The same idea is also
applicable to the negative binomial case, and the case where we have replicated observations
of the same N . We leave it to the reader to derive these straight forward extensions.
The key observation is that both the Poisson and the binomial distribution can be evaluated
recursively in N ,

Pois(N ;λ) = Pois(N − 1;λ) λ
N

(7)

and
Bin(y;N, p) = Bin(y;N − 1, p) N

N − y
(1− p), (8)
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and then also for the Poisson-binomial product

Pois(N ;λ) Bin(y;N, p) = Pois(N − 1;λ) Bin(y;N − 1, p) λ

N − y
(1− p). (9)

If we define fi = λ(1− p)/i for i = 1, 2, . . ., we can make use of this recursive form to express
the likelihood with a finite upper limit as

Prob(y) =
Nmax∑
N=y

Pois(N ;λ) Bin(y;N, p)

= Pois(y;λ) Bin(y; y, p)
{

1 + f1 + f1f2 + . . .+ f1 . . . fNmax

}
= Pois(y;λ) Bin(y; y, p)

{
1 + f1(1 + f2(1 + f3(1 + . . . )))

}
The log-likelihood can then be evaluated using the following simple R code.

R> fac <- 1; ff <- lambda * (1-p)
R> for(i in (N.max - y):1) fac <- 1 + fac * ff / i
R> log.L <- dpois(y, lambda, log = TRUE) +
+ dbinom(y, y, p, log = TRUE) + log(fac)

Since this evaluation is recursive in decreasing N , we have to choose the upper limit Nmax in
advance, for example as an integer larger than y so that λ(1−p)

Nmax−y is small. Note that we are
computing fac starting with the smallest contributions, which are more numerically stable.
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