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Abstract

We describe the features and implementation of the R package zenplots (zigzag ex-
panded navigation plots) for displaying high-dimensional data according to the recently
proposed zenplots.

By default, zenplots lay out alternating one- and two-dimensional plots in a zigzag-like
pattern where adjacent axes share the same variate. Zenplots are especially useful when
subsets of pairs can be identified as of particular interest by some measure, or as not
meaningfully comparable, or when pairs of variates can be ordered in terms of potential
interest to view, or the number of pairs is too large for more traditional layouts such as
a scatterplot matrix. They also allow an essentially arbitrary layout of plots. A high-
dimensional space can be explored in a zenplot (zenplot()) by navigating through lower
dimensional subspaces along a zenpath (zenpath()) which orders the dimensions (i.e.,
variates) visited according to some measure of interestingness; see Hofert and Oldford
(2018) for an application to S&P 500 constituent data.

The R package zenplots provides compact displays for high-dimensional data via the
notion of zenplots, grouping of variates, and customizable displays of zigzag layouts. It
accommodates different graphical systems including the base graphics package of R Core
Team (2020Db), the package grid of R Core Team (2020a) (and hence packages like ggplot2
of Wickham et al. 2020), and the interactive graphical package loon of Waddell and
Oldford (2020). zenplots handles groups of variates, partial and fully missing data, and
more. One important feature is that zenplot() and its auxiliary functions in zenplots
distinguish layout from plotting which allows one to freely choose and create one- and two-
dimensional plot functions; predefined functions are exported for all graphical systems.

All R plots in this paper are reproducible with the vignette "selected_features"
(available in zenplots > 0.0-2).
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1. Introduction

Upper triangle scatterplot matrices for visualizing high-dimensional data through pairwise
projections first appeared in Hartigan (1975). Tukey and Tukey (1981b) called them “gen-
eralized draftsman’s views”, the name “scatterplot matrix” (or, in short, “splom”) is in-
troduced in Tukey and Tukey (1983). The inherent limitations of scatterplot matrices for
high-dimensional data were recognized soon thereafter:

“For data in several dimensions we can make triangular arrays of two-coordinates-
at-a-time scatter plots. However, as the dimensionality of the data increases, two
problems arise, one minor, the other more serious. First, the plots must be made
smaller and smaller if they are to fit on a single page; second, and more impor-
tantly, they become less and less representative of the totality of all possible views.
With increasing dimensionality the need for good methods of selection becomes
ever more pressing.”

(Tukey and Tukey 1981b, p. 210)

In Tukey and Tukey (1981b, Table 10.2, p. 195), “several dimensions” meant six to ten;
“many” meant 11-20, “lots of” meant 21-40, and “high-dimensional” was reserved for d > 41
dimensions. The scatterplot matrix works well for “data in several dimensions”.

In our experience, beyond d = 30 to d = 50 dimensions, each cell in the scatterplot matrix
becomes so small that, even after employing such tricks as sampling and alpha transparency,
it can be challenging to extract useful information from this display; see, e.g., Hofert and
Michler (2014) or Hofert and Oldford (2018, Figure 3) (the latter only being able to show
(222) = 231 out of (425) = 107, 880 different pairs under consideration, so about 0.2%). In the
extreme case, each cell might even be reduced to the size of a single pixel essentially rendering
the scatterplot matrix as a pixel array. This as well as other limitations of scatterplot matrices
have recently motivated the use of zenplots, see Hofert and Oldford (2018), for investigating
high-dimensional data.

The R package zenplots (Hofert and Oldford 2020) presented here provides an implementa-
tion of zenplots (and accompanying tools) to help address both problems raised by Tukey and
Tukey (1981b); see the quotation above. Package zenplots is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=zenplots.

First, by providing a more compact layout, a zenplot will either accommodate many more
(different) “two-coordinates-at-a-time”, or “2d”, plots in the same space, or, equivalently, give
each individual 2d plot more relative space within any fixed size layout. Unlike scatterplot
matrices, zenplots can also be easily broken over pages.

A zenplot accomplishes this by relaxing the common coordinate feature across columns (and
rows) forced by the square (or triangular) layout of a scatterplot matrix (or generalized
draftsman’s display). With a zenplot, comparisons across a common coordinate are still
available between any two 2d plots in the layout provided they have a single coordinate, or
“1d”, plot appearing between them. To effect this, a zenplot follows a rectilinear “zigzag”
path over the display region alternating between 1d and 2d plots, all the while ensuring that
neighbors along this (zen)path share a one-coordinate-at-a-time boundary.

When the objective is to visually search for plots that contain interesting patterns, the zenplot
thus accommodates many more (or larger) plots and, by following the zenpath through the
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display, still preserves plot to plot comparisons. Moreover, the zenpath can be constrained to
include only those pairs, or plot to plot comparisons, that are of interest.

The second problem raised by Tukey and Tukey (1981b) is that there are many more possible
views of a high-dimensional data cloud than simply those chosen from all possible pairs of co-
ordinates. For example, any two randomly chosen direction vectors on the (d—1)-dimensional
unit sphere in R? define a projection plane which might reveal interesting structure in the
data and that structure might be hidden from every one of the (g) 2d plots defined by any
two original coordinates. Moreover, there are exponentially many more of these planes than
those defined only by pairs of coordinates (see Tukey and Tukey 1981a).

Zenplots address this problem in two important ways.

First, it is surprising how many “two-coordinates-at-a-time” plots can now actually be exam-
ined with modern computer displays. As a proof of concept, in a visual analysis of pairwise
dependence for d = 465 dimensional data as defined by constituents of the S&P 500 stock
prices, Hofert and Oldford (2018) examined all (435) =107,880 distinct 2d scatterplots via 164
zenplots (one per page) as a single PDF document in only 30 minutes.

Second, and more importantly, zenpaths may be constructed so that only the most interesting,
or meaningful, plots are produced. Following Hurley and Oldford (2010, 2011b), imagine a
graph G = (V,E) whose vertex set V is the set of all coordinates (variates) in the data
and whose edge set E is the set of all meaningfully paired coordinates (variates) — typically
this is a complete graph, but need not be. Weights could be attached to each edge which
measure the “interestingness” of the respective two coordinates. For example, such measures
were proposed as “cognostics” (for computer guided diagnostics) or “scagnostics” (scatterplot
diagnostics) by Tukey and Tukey (1985) and formalized more recently by Wilkinson, Anand,
and Grossman (2005). No matter how each node determines a coordinate (e.g., an original
variate, some randomly or purposely chosen linear combination of original variates, or any
other real-valued function of the variates), and however the weights on the edges between
pairs of coordinates might be determined (e.g., statistical or scagnostic measures on that
pair), a zenpath is any path on G, often it is one selected according to the weights along its
edges.

In this way, following a selected zenpath provides a means to construct an interesting sequence
of coordinates to be displayed within the corresponding zenplot. For example, a path of
maximum (minimum) total weight would correspond to a solution to the “traveling salesman
problem”; following the resulting path would display all coordinates exactly once while for
each yet showing the most interesting 2d displays. The idea of a zenpath is to find those
paths whose zenplot display reveals interesting structure via its coordinate sequence.

Finally, as in the original Hartigan (1975), there is no reason to restrict the 2d plots to be only
scatterplots, or for the 1d plots to be, say, histograms. The pairs(...) function in R, e.g.,
has arguments (e.g., panel, lower.panel, diag.panel, ...) which allow the user to create
essentially any display of the variates in that panel (or cell) of the scatterplot matrix. More
recent authors such as Friendly (1999), Emerson et al. (2013), or Im, McGuffin, and Leung
(2013) have undertaken generalizations of the scatterplot matrix to accommodate different
pairwise and marginal displays depending on the variates in that panel of the scatterplot
matrix.

Zenplots also accommodate any 1d or 2d plot. And the plot can be written in either of the
R graphics packages graphics, see R Core Team (2020b), grid, see R Core Team (2020a) or
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Murrell (2012) and hence ggplot2, see Wickham et al. (2020) or Wickham (2016), as well as
in the more recent interactive visualization package loon, see Waddell and Oldford (2020).

The R package zenplots provides an implementation of zenplots and zenpaths with the func-
tions zenplot () and zenpath (), respectively, as well as several other functions for exploratory
data analysis and visualization. In this paper we focus on describing the functionality of the
zenplots package, intentionally confining our illustrations to data only of “several dimensions”,
in the sense of Tukey and Tukey (1981b). A fuller appreciation of the package’s functionality
and value in visual data analysis for “high-dimensional” data is more readily had from Hofert
and Oldford (2018) where the package is applied to a data example in d = 465 dimensions.

The paper is organized as follows. In Section 2 we present the structure, technical aspects
and selected features of zenplot () as well as the related basic notion of a zenpath. Section 3
then focuses on zenpaths and describes how visual search can be conducted with the function
zenpath (). Section 4 addresses the construction of customized zenplots and Section 5 presents
more advanced features.

Some remarks concerning the history of high-dimensional data visualization are in order at this
point. For several decades now, people have visualized high-dimensional space by connecting
displays of low-dimensional projections. The connections are often made temporally so that
one low-dimensional view dynamically and smoothly morphs into the next. The earliest
versions of these would have been 3d point cloud rotations which date back to at least Ball
and Hall (1970). The more general “tour” methods date to Asimov (1985) whereby arbitrary
planes connected along geodesic paths are displayed over time. The earliest implementation
of this was Buja, Hurley, and McDonald (1986). A series of re-implementations of these
methods followed (namely XGobi of Swayne, Cook, and Buja 1998, GGobi of Swayne et al.
2008, and rggobi of Temple Lang, Swayne, Wickham, and Lawrence 2018), the most recent
incarnations of which appear as tourr and tourrGui; see Huang, Cook, and Wickham (2012).
Hurley and Oldford (2011b) constrained the planes to the orthogonal axes of the coordinate
system defined in advance and proposed exploring high-dimensional spaces by sequences of
planes temporally following navigation graphs. The first publicly available implementation
of this strategy was RnavGraph of Waddell and Oldford (2011); it has most recently been
implemented in the interactive and extensible data visualization package loon (see Waddell
and Oldford 2020), which zenplots can also utilize if required. By default, zenplots accomplish
the layout spatially (rather than temporally) and are therefore a novel contribution to high-
dimensional data visualization.

2. Zenplots

We start by considering the olive data set of Forina, Armanino, Lanteri, and Tiscornia (1983);
see also Azzalini and Torelli (2007). For convenience, this data set is available in the R package
zenplots. It consists of n = 572 measurements of d = 10 variates (the geographical area and
the region of origin of the olive oil, and measurements of eight fatty acid components in each of
the oil specimens, namely palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic and
eicosenoic). As with scatterplot matrices, by default a zenplot will produce a two-dimensional
point cloud (scatterplot without axes) for each variate pair and the variate’s name for each
one-dimensional plot. Unlike a scatterplot matrix, not all pairs of variates are displayed by
default. Instead, variates are paired only if they appear next to one another in the column
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Figure 1: Zenplot of the olive data set (default, left) and again using "layout" (right).

order of the data; following column order allows variate pair sequences to be identified via
column indices in the ‘data.frame’. To keep the number of variate pairs low and the layout
discussion simple, we consider only the nine pairs of variates as they appear in column order
in the olive data; in Section 4.5, we discuss how sequences of “interesting” variate pairs
might be determined and laid out for these data.

For (column ordered) variate pairs of the olive data, the zenplot is constructed as follows:

R> library("zenplots")
R> data("olive", package = "zenplots")
R> zenplot (olive)

and appears as the left-hand side of Figure 1.

The result is an alternating sequence of one-dimensional (1d) and two-dimensional (2d) plots
laid out in a zigzag-like structure so that each consecutive pair of 2d plots has one of its
variates (or coordinates) in common with that of the 1d plot appearing between them.

The right-hand side of Figure 1 is also a zenplot of these data but one constructed by choosing
the value "layout" for arguments plotild and plot2d:

R> zenplot(olive, plotld = "layout", plot2d = "layout")

Now only a box containing the labels of the variates in the 1d and 2d plots is shown. This
should help identify the variates that are available to construct each plot as well as the zigzag
pattern of alternating plots in the display. Note also that in either display of Figure 1, the
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labels of vertical 1d plots (e.g., “region”, “palmitoleic” or “oleic”) are oriented to reflect the
left or right direction of the layout but that for horizontal 1d plots (e.g., “area”, “palmitic”

)

or “stearic”) the natural reading direction is preserved for both up or down directions.

The entire set of arguments of zenplot () are seen by printing its structure:

R> str(zenplot)

function (x, turms = NULL, firstld = TRUE, lastid = TRUE,
n2dcols = c("letter", "square", "A4", "golden", "legal"),
n2dplots = NULL,
plotid = c("label", "points", "jitter", "density", "boxplot", "hist",

"rug", "arrow", "rect", "lines", "layout"),
plot2d = c("points", "density", "axes", "label", "arrow", "rect",
"layout"),

zargs = c(x = TRUE, turns = TRUE, orientations TRUE, vars = TRUE,
num = TRUE, lim = TRUE, labs = TRUE, widthld TRUE,
width2d = TRUE, ispace = match.arg(pkg) !'= "graphics"),

lim = c("individual", "groupwise", "global"),

labs = list(group = "G", var = "V", sep = ", ", group2d = FALSE),

pkg = c("graphics", "grid", "loomn"),

method = c("tidy", "double.zigzag", "single.zigzag"),

widthild = if (is.null(plotld)) 0.5 else 1, width2d = 10,

ospace = if (pkg == "loon") 0 else 0.02,

ispace = if (pkg == "graphics") 0 else 0.037, draw

TRUE, ...)

This seemingly imposing number and variety of arguments group naturally as related to:
¢ Data: x.

* Plots: plotld, plot2d, zargs, pkg, 1lim, labs, draw, ....

e Layout: turns, method, n2dplots, n2dcols, firstid, lastld, widthld, width2d.

* Spacing: ospace, ispace.

Each of these arguments will be discussed in some detail and illustrated in sections to come,
but for now it is their grouping which merits attention because it helps answer the question:
What is a zenplot?

A zenplot is first and foremost a navigation plot. By this we mean it is a sequence of low-
dimensional plots which follow some trajectory through a higher dimensional data space for
the purpose of revealing structure. Different trajectories and different 1d and 2d displays may
reveal different features of the data. Choosing which trajectories and which displays amounts
to navigating through the high-dimensional data space.

The trajectory is determined entirely by the data x. This single argument, x, provides the
data and the order in which the data dimensions will be traversed in the low-dimensional
trajectory. For example, in Figure 1 plots are laid out in the same numerical order in which
the variates appear in the data frame. That is, for a d-dimensional data frame, with variates
numbered 1,...,d, the variate pairs appear as (1,2),(2,3),...,(d — 1,d); 2d plots would be
constructed for each variate pair and 1d plots interspersed between them for the variate
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they have in common. In this way, the determination of the trajectory is separated from its
visualization. The code respects this separation in that the function zenplot () assumes the
order given by the data x. Another function, zenpath(), is available to provide a variety of
different orders which might be used to arrange that the data x produce a given trajectory.

The second grouping of arguments, the plots, determine the 1d and 2d plots that will be used
to display the lower dimensional spaces along the trajectory. A number of plot types are built
in as specific values of these arguments and, by using the information bundled as zargs, the
user may also write their own display functions using any one of the R graphics packages
given by pkg. Together with the trajectory, this specification of plots define the nature of the
navigation through the high-dimensional space.

One could, as in Hurley and Oldford (2011b), Oldford and Waddell (2011) and Waddell and
Oldford (2011, 2014, 2020) use dynamic graphics to move from one display to another thus
linking the displays in time. Motion graphics very powerfully connect one low-dimensional
display to the next, visually reinforcing the notion of navigation through high-dimensional
space along low-dimensional trajectories. However, such temporal linking becomes increas-
ingly burdensome on our short-term memory as the time over which the displays are tran-
siently presented grows. And the presentation time can indeed grow quickly given that the
number of variate pairs can grow quadratically with dimensionality d.

In contrast, zenplot () spatially links the displays along the trajectory by laying them out
following a zigzag path pattern (hence the name “zigzag expanded navigation plot” or zen-
plot). Thus, it is in the third grouping of arguments, the layout arguments, which effectively
define a zenplot and which distinguish it from other displays of high-dimensional data. The
last grouping, spacing, is arguably also part of the layout but is not peculiar to the definition
of a zenplot layout and so can be regarded as separate, more generic, layout arguments.

The next few sections deal with each of these groupings of arguments in some detail beginning
with the layout arguments, being those which most distinguish a zenplot. Standard features
are treated separately from those which are more customized so that the reader may skip the
more advanced at first reading. Because of their simplicity, the spacing arguments will be
mentioned and illustrated in the following section on the layout.

2.1. Layout

Nearly all arguments of zenplot () are concerned with the physical layout of the plots. In this
section, only those basic layouts (zigzag patterns) which conceptually distinguish a zenplot
from other layouts are treated.

Zigzagqging layout methods

Argument method provides a choice between the zigzag patterns "tidy", "double.zigzag",
"single.zigzag" or "rectangular"; the default value is "tidy". To clearly contrast these
options for method, more plots than those which appeared in Figure 1 are required. To this
end, we simply double the number of columns in the olive data set so that there are now
d = 20 variates to plot:

R> olive2 <- cbind(olive, olive)

Using olive2 as the data x, the layout for the first three of the method values appears in
Figure 2 produced as follows:
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Figure 2: Zenplots of the layout of the doubled olive data set with method =
"single.zigzag" (left), method = "double.zigzag" (middle), method = "tidy" (right)
and n2dcols = 6.

R> zenplot(olive2, n2dcols = 6, plotld
+ method = "single.zigzag")

R> zenplot(olive2, n2dcols = 6, plotld = "layout", plot2d = "layout",
+ method = "double.zigzag")

R> zenplot(olive2, n2dcols = 6, plotld = "layout", plot2d = "layout",
+ method = "tidy")

"layout", plotad "layout",

Both plotid and plot2d have value "layout", and n2dcols = 6 so as to exaggerate the
effect; the argument n2dcols determines the number of columns of 2d plots and is further
explained in the next section. The leftmost layout is the "single.zigzag" method which
follows the simplest pattern, zigzagging downwards left to right alternating 1d and 2d plots
down and right as it goes. At most n2dcols columns can be used for 2d plots. Once this
limit is reached, the right-hand side is reached, and the pattern then reverses to be from right
to left, continuing downwards until ultimately it reaches the corresponding left side of the
display area. Were there more plots to lay out, the pattern would continue repeating itself,
reversing horizontal directions as each edge of the display is reached.

Note that when the display edge is reached on the right in Figure 2, the rightmost plot is a
2d plot and the change in direction is effected by moving down through a 1d plot followed
by moving out left from the 2d plot below it. It is not possible to have a vertical 1d plot
as the rightmost plot (unless it were the last plot of all). Minimally, the "single.zigzag"
method must be able to tell that the edge has been reached and the layout must turn down
and reverse directions horizontally.

The "single.zigzag" layout is easy to follow but wastes a considerable amount of display
space. Had there been only ten 2d plots to display, the plots would move diagonally down
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the display leaving the large areas on either side of the diagonal unused.

The "double.zigzag" method tries to make better use of this space by zigzagging up and
down horizontally across the display, exhausting a double row of 2d plots before reaching the
edge of the display, where it then moves down enough to reverse horizontal directions and
continue as before.

The main challenge for the "double.zigzag" method is to not get “cornered” before it
reverses horizontal direction. The middle display of Figure 2 shows a "double.zigzag"
layout. Clearly there would be room at the top-right corner of this display for three more 2d
plots to appear but using this space would trap the layout in that corner; there would be no
room to turn and reverse horizontal direction. This is what we mean by getting “cornered”.
By the time the position of the rightmost 2d plot in the second row (from the top) is reached,
the zenplot must determine that it is time to turn down and effect its horizontal reversal.
This requires looking ahead a little farther than was done for reversal of the "single.zigzag"
method.

While the "double.zigzag" layout is much more space efficient than is the "single.zigzag"
one, there is still room for some improvement. For example, in the middle display of Figure 2,
the blank space at the left of the row containing only two 2d plots seems wasted. This unused
space was generated by the turning of the corner at the right of the display. Similarly, the
very last 2d plot at the bottom seems to be poorly placed. This too is a consequence of
changing horizontal directions, this time entirely due to anticipating the horizontal reversal.
To effect the turn (on the left this time), the "double.zigzag" rule is to drop down so as to
not get “cornered”. However, the method will only get cornered if there are more than three
2d plots left to display. In the present case there is only one 2d plot left which could be easily
accommodated by moving up instead of down.

The "tidy" method tries to make the most efficient use of the space. This requires looking
ahead a little more before each turn. The rightmost display of Figure 2 shows a "tidy" layout.
The first two rows are identical to that of the "double.zigzag"; so too are the rightmost two
in row three, the rightmost three in row four, and the rightmost two in row five. Only the
last three 2d plots are positioned in different places. For the "double.zigzag" method these
are directed down and left anticipating the next possible reversal, whereas for the "tidy"
method they are directed up and left to fill the empty space. Note that although there were
only three 2d plots left, the "tidy" method was not in danger of being “cornered”. As the
position of the very last 1d plot shows, there is room for another 2d plot and for the corner
to be turned.

The "tidy" method clearly has the most sophisticated look ahead and consequently compact
display of the three methods. This becomes more important when there are a great many
variates (dimensions) to display.

Finally, method = "rectangular" (see the vignette "selected_features") produces a rect-
angular layout filled from left to right (then right to left, etc.) before moving downwards.
This is an example of a method which leaves the zigzagging zenplot paradigm but can be
useful for laying out 2d plots which are not necessarily connected through a variable; see
zenplots for more details.

The number of columns containing 2d plots

As seen in the previous section, the layout of a zenplot (whichever the method) depends on
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the width of the display area available. In zenplot () this width is essentially determined by
the number of columns there are for 2d plots. This is specified by the value of the argument
n2dcols. In Figure 2, we specified that this be n2dcols = 6 for illustrative purposes.

The default value of n2dcol is the string "letter" and was used, e.g., in Figure 1. The idea
here is that the user imagines that the zenplot will be laid out to fit on a North American
standard “letter” size display. Other possibilities corresponding to other standard formats are
the strings "square", "A4", "golden" and "legal"; "golden" stands for the golden ratio,
namely (1 ++/5)/2 (interpreted as height /width).

Provided the total number of 2d plots, say naqp, is known, the number of columns and rows
containing 2d plots can be determined to (approximately) respect the aspect ratio of any
format. This approximation is based on the following reasoning. Let nsgq, and nog. denote
the number of rows and columns of 2d plots. Since there is typically an empty 2d plot space at
the end of a row in a zenplot, the total number of 2d plots displayed is about (nsgc —1)nogr. A
standard format suggests that the ratio of the number of rows to columns (i.e., height /width)
be fixed at some specified scale s = naqg;/n2gc. This gives nagr = snage and hence, for known
Nadp and s, nagc is the solution to

. 2
nadp = (N2de — 1)Snade  or equivalently nsg, — nage — Nadp/s = 0.

14+4/14+4n24p /s
2

Solving the latter equation gives nog. =
numerical value

. For n2dcols we essentially use the

1+ \/1 +47’L2dp/8
Node = maX{S, round( )}, (1)

2

where nagp is the number of 2d plots and s is the scaling factor (height/width) given by the
relevant standard. Furthermore, if necessary, nogc is increased by 1 to obtain an odd number
of 2d columns in order to have a slightly more compact layout.

Alternatively, the user may supply any positive integer as the value of n2dcols.

The number of 2d plots displayed

In determining the layout, particularly the value of n2dcols, the total number of 2d plots to
be displayed needs to be determined. This can be determined (by default) directly from the
number of variates in the data given by the argument x. Alternatively, the user may wish
to specify a specific number of plots to be displayed only. This number must be less than or
equal to d — 1 where d is the number of variates appearing in x.

This, and the remaining basic features of a zenplot layout are illustrated by the pair of zenplots
displayed in Figure 3: The right-hand side plot shows the effect of the argument n2dplots
of zenplot (). It allows to adjust the number of 2d plots displayed along the zenpath (with
the obvious default to show all plots). Due to our choice n2dplots = 8, the right-hand side
of Figure 3 shows only eight instead of all nine plots.

Omitting first or last 1d plots

Sometimes, the first or last of the 1d plots might be preferred to be omitted from the zenplot
display. Examples are if there is no 2d plot after the last one (see Hofert and Oldford 2018,
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Figure 3: Zenplots of the layout of the olive data set with method = "double.zigzag",
lastild = FALSE and ispace = 0.1 (left) and n2dcol = 4, n2dplots = 8, widthld = 2,
and width2d = 4 (right).

Figure 9 for such an example) or to save space to provide a more compact plot. This is
effected by the logical-valued arguments firsti1d and lasti1d. For example, the right-hand
side of Figure 1 shows the last 1d plot, the left-hand side of Figure 3 does not.

Relative widths of 1d and 2d plots

The arguments width1ld and width2d are non-negative integers whose ratio determines the
relative space given to 1d and 2d plots. If a 2d plot occupies a square of side width2d, then
every horizontal 1d plot will occupy a rectangle of width width2d and height widthid, and
every vertical 1d plot will occupy a rectangle of width widthi1d and height width2d. See the
right-hand side of Figure 3.

Spacings between 1d or 2d plots and around whole zenplots

Users will also want to sometimes control the spacing around the individual 1d and 2d plots
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as well as the spacing around the whole zenplot layout. To illustrate this, as well as some
of the arguments of the previous sections, consider the two zenplots produced as follows and
displayed as Figure 3:

R> zenplot(olive, plotld = "layout", plot2d = "layout",

+ method = "double.zigzag", lastld = FALSE, ispace = 0.1)

R> zenplot(olive, plotld = "layout", plot2d = "layout", n2dcol = 4,
+ n2dplots = 8, widthld = 2, width2d = 4)

The left-hand side of Figure 3 shows the same layout as the right-hand side of Figure 1, except
for the changes described in the preceding sections and below.

The left-hand side of Figure 3 has a larger gap between all plots. This follows from ispace
= 0.1, which sets the inner space (ispace to a number in [0, 1]). For graphics (the default;
more on that later), ispace defaults to 0, otherwise to some small positive fraction. This
difference in behavior is because other graphics systems (like grid or loon) may not have a
default extension of the plot region and so would lead to clipping of plot symbols near the
margins of the plot region. Note that ispace can also be a vector of length four, in which
case it provides the bottom, left, top and right inner space. To adjust the space around the
whole zenplot, an analogous argument ospace is used to determine the zenplot’s outer space
(ospace).

Note that for graphics plots, ispace and ospace are internally set with the par arguments
plt and omd, respectively; for grid-based zenplots they are set with respective viewports.

2.2. Plots

A large number of plot functions for each of the arguments plotid and plot2d can be specified
via character strings. For 1d plots, these include:

"label": To show the label of the current plot variable.
"points": Scatterplots (of the data against their index).
"jitter": Jittered version of "points".

"density": Density plot based on density().

"boxplot": Box plots.

"hist": Histograms.

"rug": Rug plots.

"arrow": An arrow head indicating the direction of the zenpath.
"rect": A rectangle indicating the plot region.

"lines": Line spanning the plot region.

"layout": Showing the current plot variable and a box around it.

For 2d plots, the following are available:

"points": Scatterplots (of the two data columns under consideration).

"density": Density plot based on MASS’s kde2d () (see Venables and Ripley 2002; Ripley
2020).
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"axes": Coordinate axes.

"label": To show the labels of the two current plot variables.
"arrow": As for 1d plots (see above).

"rect": As for 1d plots (see above).

"layout": Showing the pair of current plot variables and a box around it.

It is also possible for the user to supply their own plot functions; this will be covered in more
detail in Section 4.

Enforcing common plot limits

By construction, neighboring plots along a trajectory share a variate (on their common di-
mension/axis) and hence have common data limits on that variate. This allows the viewer to
visually track the same location across adjacent plots that share that variate. By default, the
limits of these shared dimensions are determined individually for each variate; this is effected
by the 1lim argument’s default value "individual".

Should the viewer wish that all dimensions have the same extent across all plots, then 1im
= "global" should be used. Alternatively, when the data argument x is a list (indicating
groups of data and variates; see Section 2.3 and 4) setting 1im = "groupwise" ensures that
within each group all plots have identical data limit extents.

The graphical system

By default, the R package graphics is used for drawing zenplots; see pkg = "graphics".
The underlying rectangular layout with rows and columns containing the 1d and 2d plots is
constructed internally with layout() based on widthld and width2d; the same applies to
pkg = "loon". For pkg = "grid", the layout is implemented with the more sophisticated
grid.layout (). The 1d and 2d plots are placed (with placeGrob()) in a frame grob (with
frameGrob()) which is returned invisibly. This grid object can further be modified, if re-
quired. The support of pkg = "grid" opens the door for other grid-based graphics systems;
see, e.g., Figure 5 which shows a zenplot based on ggplot2 (the special layout will be discussed
in Section 4.3). If pkg = "loon", then an interactive zenplot (e.g., with brushing, zooming,
panning, and so on) is constructed via the R package loon. The resulting zenplot can then
be linked to any other interactive plot in loon.

Note that plotting is done if draw = TRUE (the default). Either way, information about the
underlying zenpath and layout is returned; more on this later.

Ellipsis arguments

All plots produced using the basic argument values described above for plot1d and plot2d are
implemented using standard plot functions from the relevant package. The ellipsis arguments
are passed on as extra arguments to these standard plot functions. So, e.g., if a zenplot
is using pkg = "graphics" (the default), then plot arguments such as col, cex, pch and
so on could reasonably be given to zenplot() whenever plotld = "points" or plot2d =
"points" were given as well; the extra arguments and their values would be passed on.

13



14 zenplots: Zigzag Expanded Navigation Plots in R

2.3. Data

The data argument x of zenplot () is typically a ‘matrix’ or a ‘data.frame’ In either case,
each column/variate of x is taken to be a dimension and the trajectory moves through these
dimensions in order as described earlier.

However, the value of x can also be a ‘list’ of objects of these types. Then each element
of the list is interpreted as a group of variables which belong together. As such, each group
should be visually separated from one another in the resulting zenplot. This case is covered
in more detail in Section 4.

3. Zenpaths

Suppose the zenplot () argument x is a matrix named dataMat having d = 5 columns. By
default, the zenplot will follow the trajectory through the data given by the path 1,2,3,4,5
as in

R> (path <- 1:5)
[1] 1 2 345

and the sequence of dimension pairs (1,2),(2,3), (3,4), (4,5) would determine the order and
dimensions of the 2d plots.

This default sequence is not perhaps the best one to reveal interesting structure in the data.
We might, e.g., wish to look at all pairs of dimensions at once in the zenplot. This could be
the sequence

R> zenpath(5)
[11 51231425345

for example since every number appears beside every other number once. Or, if we had some
way to measure the interestingness of any pair of dimensions, we might choose a path which
visited only the most interesting pairs.

In any case, if path were a vector which contained the desired sequence then
R> zenplot(x = dataMat[, path])

would produce the zenplot that followed the navigation path of interest. We call such a
navigation path a zenpath.

To construct zenpaths, R package zenplots provides a function of the same name, zenpath (),
which takes a variety of arguments and returns a sequence of dimensions which can be used
for the path.

R> str(zenpath)

function (x, pairs = NULL, method = c("front.loaded", "back.loaded",
"balanced", "eulerian.cross", "greedy.weighted", "strictly.weighted"),
decreasing = TRUE)
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Some of the methods to construct zenpaths simply depend upon the number of dimensions
that are involved and ensure that all possible pairs of dimensions occur in the sequence. Since
there are a great many possible sequences a few approaches are offered:

* "front.loaded": If x is an integer and method = "front.loaded" (the default), function
zenpath () provides a sequence of numbers which, considering two consecutive numbers at
a time, contains all pairs of the variables 1 to x sorted in such a way that the first variables
appear the most frequently early in the sequence. Note that this sequence of numbers is
typically not exactly of length (‘21) as the pairs have to be “connected” along a zenpath in
the sense of consecutive numbers building pairs along the zenpath.

R> zenpath(5, method = "front.loaded")
(11 51231425345

® '"back.loaded": Similar to method = "front.loaded" but with later variables appearing
the most frequently later in the sequence.

R> zenpath(5, method = "back.loaded")
[1] 12314253451

® ‘"balanced": Similar to method = "front.loaded" but with variables appearing in bal-
anced blocks throughout the sequence (a so-called Hamiltonian decomposition, see Hurley
and Oldford 2011b).

R> zenpath (5, method = "balanced")
[1] 12354134251

® ‘"eulerian.cross": For this method, two integers representing the sizes of two groups of
variables must be passed to zenpath(). zenpath() returns a sequence of numbers, which,
when interpreting two consecutive numbers at a time, sorts all pairs of variables such that
each pair is formed with one variable from each group.

R> zenpath(c(3, 5), method = "eulerian.cross")
[111425162718343673582

As an example, Figure 4 displays a zenplot of all pairs of olive acids only (no "region" or
"area") based on an Eulerian zenpath showing the (default "front.loaded") ordering of
all pairs of variables. Such a display would be of particular interest for very large data sets
where simple scatterplots would have so many points overstriking one another as to obfuscate
patterns in the density easily seen via contour plots. The code to generate the figure is as
follows:

R> oliveAcids <- olive[, !names(olive) 7inJ, c("area", "region")]
R> zpath <- zenpath(ncol(oliveAcids))
R> zenplot (oliveAcids[, zpath], plotld = "hist", plot2d = "density")
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o

Figure 4: Zenplot of an Eulerian zenpath showing histograms (as 1d plots) and densities (as
2d plots) of all pairs of the acids of the olive data set.
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The histograms point in the direction of the zigzag layout. Since plotid = "hist" by default
only shows histograms, the labeling of the variates known from the default plotid = "label"
is lost; a more sophisticated version of this plot using pkg = "grid" will be given in Section 4.1
to illustrate how more complex displays via simple plotld and plot2d functions can be
written.

Although it is possible to lay out hundreds of thousands of plots with a zenplot, see Hofert and
Oldford (2018), one is often not interested in all of them. For example, Hofert and Oldford
(2018, Figure 6) shows a zenplot containing only those 10 pairs of variables with largest and
those 10 pairs with smallest pairwise tail dependence among all (435) =107,880 pairs of stocks
in the S&P 500. Given a (numerical) measure of “interestingness” (such as correlation, tail
dependence, etc.) assigned to all pairs of variables, one can sort all pairs according to this
measure and plot the most (or also the least) interesting ones.

The zenpath() methods "greedy.weighted" and "strictly.weighted" provide the means
for doing this, given that x is a numeric vector or matrix or distance matrix of weights
which encodes the interestingness of each pair. The argument pairs of zenpath() contains
a two-column matrix, that, row-wise, contains the connected pairs of variables to be sorted
according to the weights x; if pairs = NULL, a default is constructed in lexicographical order.
For method = "greedy.weighted", zenpath() returns a sequence of numbers which sorts all
pairs according to a greedy (heuristic) Euler path visiting each edge at least once (some edges
may be visited twice since when the graph is not even, some number of edges will be duplicated
to make it so and an Eulerian visiting each edge on the new graph precisely once will be
constructed, see Hurley and Oldford 2011a); note that this method internally uses the function
ftM2graphNEL () from the R package graph of Gentleman, Whalen, Huber, and Falcon (2020),
available from Bioconductor. For method = "strictly.weighted", zenpath() returns a
sequence of numbers strictly respecting the order given by the weights, so the first, second,
third, etc. adjacent pair of numbers of the output of zenpath() corresponds to the pair with
largest, second-largest, third-largest, etc. weight; should there be a disjunction in the path
then plots will be grouped by contiguous sub-paths (see Section 4.5 for an example). If the
argument decreasing of zenpath() is TRUE (the default), then the sorting by weight is done
in decreasing order.

4. Build your own zenplots

The zenplot() arguments plotld, plot2d and method provide sufficient functionality to
satisfy a variety of common uses. Spacing arguments provide some simple aesthetic control
over the layout and the use of zenpath () allows the analyst to select a trajectory through the
high-dimensional data space. In this section, we describe some extended features of zenplot ()
which allow the user to begin to tailor a zenplot() to their particular analysis needs. This
will require some familiarity with one of the graphics packages allowed by zenplot ().

4.1. Custom plot functions

Each named value of either argument plotid or plot2d is implemented by calling a zenplots
package function whose name has that argument value as prefix and the drawing package
name as suffix. Between prefix and suffix the plot type 1d or 2d appears. For example, for
arguments plotld = "hist", plotld = "points" and pkg = "grid", 1d plots are drawn
by the function hist_1d_grid() and 2d plots by the function points_2d_grid().

17
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That is, the plotting functions called within zenplot() are of the form *_1d_graphics(),
*_2d_graphics() (for pkg = "graphics"), *_1d_grid(), *_2d_grid() (for pkg = "grid")
and *_1d_loon(), *_2d_loon() for pkg = "loon"; here the * stands for the respective string
as given above. All these functions are exported from the zenplots package and so are also
available to the user for direct use.

This means, e.g., that the effect of the call

R> zenplot (oliveAcids, plotld = "hist", plot2d = "density",
+ pkg = "graphics")

would be identically produced by

R> zenplot(oliveAcids, plotld = hist_1d_graphics,
+ plot2d = density_2d_graphics, pkg = "graphics")

Note that hist_1d_graphics and density_2d_graphics each end in “_graphics” indicating
that all of their drawing is done using only functions from the graphics package.

As the second case suggests, the user may also provide their own plot function using func-
tionality exclusively from the named package (e.g., pkg = "graphics"). However, because
it will be called within zenplot (), any user supplied plot function must also accept zargs
as its first argument, the value of which will be constructed by zenplot (). The built-in plot
functions named above may be helpful as templates and can also be called within any other
function provided it passes on the zargs argument.

The zargs argument consists of a ‘1ist’ of further named arguments; which of these named
arguments must appear in this list is determined by the zenplot() call and in particular
by the value given to its argument zargs. For zenplot (), the zargs argument is merely a
logical vector indicating which of the named set of arguments are to be passed to every 1d
and 2d plot function as argument zargs.

For example, the default value of zargs (in the call to zenplot() is c(x = TRUE, turns =
TRUE, orientations = TRUE, vars = TRUE, num = TRUE, lim = TRUE, labs = TRUE,
widthld = TRUE, width2d = TRUE, ispace = match.arg(pkg) != "graphics"). If TRUE,
the value of each argument (constructed within zenplot () itself), is passed to every 1d and
2d plot functions (in a named ‘list’) as the value of the plot function’s argument zargs.
The value and meaning of each argument contained in this zargs is as follows:

x: The original data object x as provided by the user. Virtually any object can thus be
passed to the underlying 1d and 2d plot functions as long as the latter two take care of
appropriate plotting. As such, zenplot() completely distinguishes between layout and
plotting, which provides great flexibility for data visualization. Although certainly a rare
use case, setting x = FALSE in zargs avoids x being passed on. With appropriate plotid
and plot2d arguments, one can then even plot independently of the provided data object.

turns: The character vector of turns (either computed or user-provided). This has the ad-
vantage of each 1d and 2d plot knowing all turns before plotting is done and thus the
layout of the zenplot. Typically most helpful are the turns into and out of the current plot
position. For example, one could have all plots colored blue (red) which turn down (up)
out of the current position along the zenpath.
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orientations: The character vector consisting of the plot orientations (“s” for square (so
2d) plots, “h” for horizontal and “v” for vertical plots) as determined internally based on
the turns. This information can be used, e.g., to determine the orientation of plot labels
in a zenplot.

vars: A two-column matrix containing, for each 1d and 2d plot (so each row), the (pairs of)
variable(s) which is (are) to be plotted in the current plot; for 1d plots, the respective row
simply shows the same variable twice.

num: The current plot number among all 1d or 2d plots along the zenpath. This is especially
helpful for indexing, say, a row in vars to find out which variable(s) was/is (were/are) to
be plotted previously, currently and next.

lim, labs, widthld, width2d, ispace: (Already discussed) arguments of zenplots() that
are passed on to the underlying 1d and 2d plot functions.

Any user defined 1d or 2d plot function can then access any of these values from its zargs
argument provided they were marked for use by the logical values of the argument zargs of
the zenplots() call. This gives the user access to all of the functionality used by the built-in
plotting functions.

Furthermore, plotld or plot2d can also be NULL, in which case an “empty plot” is generated,
so no visible plotting is done.

Besides zargs, the ellipsis arguments (“...”) are also passed to the underlying 1d and 2d
plot functions. If only one of the two functions shall obtain additional graphical parameters,
say, one can proceed as already seen in the code for the right-hand side of Figure 6, namely
by providing a corresponding 1d or 2d plot function.

4.2. Custom layouts — as the plot turns

The defining layout of a zenplot is the “zigzag” pattern determined by the value of the
zenplot () argument method. The various choices were described and illustrated in Section 2.1
and all zenplots so far considered have followed one of these zigzag layout methods. The
attentive reader may have noticed, however, that one of the layout arguments mentioned
in Section 2, namely the turns argument, did not appear in the basic layout discussion
of Section 2.1. This is because the turns argument, if specified, will override the method
argument and so can be used to produce a zenplot which need not follow a zigzag pattern;
normally, the argument turns is not given but is determined within zenplot () based on the
value of its method argument.

What is meant by turns? These are directional instructions “d”, “1”, “u” and “r”, being short
for the directions “down”, “left”, “up” and “right”, which describe the next direction that
the layout path follows upon completion of that plot. Each 1d or 2d plot has a directional
instruction associated with it which describes the direction to be taken from that plot to
the next. In this way, the entire layout path can be thought of as a sequence of directional
instructions; this sequence is the value of turns.

For example, consider the most recent zenplot given in Figure 4. The zenplot begins with the
histogram (a 1d plot) in the top-left corner. The next plot in the layout is immediately below
the histogram so that the directional instruction from the histogram is “d”, meaning move
down. Moving down leads to the 2d density contour plot. From this plot the layout moves
right to the next histogram so this first density contour has exiting directional instruction “r”.

19
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This leads to the next histogram from which again we move “right” to the next density plot
from which we move down to the next histogram, and so on. The value of turns associated
with this plot is the sequence "4", "r", "r", "4", "4", "r", "r", "u", "u", "r", "r",
"q", "4", "r", "r", "4", "4", "1, "1", "q", "4", "1", "1, "u", "u", ..., "4a", "d",
"1". Note that there is no turn associated with the last histogram at the lower-left of the
Figure 4 because no plot follows this histogram in the layout.

Note the zigzag pattern apparent in both these turns and in the display layout. In the next
section, we consider a layout which does not follow any of the zigzag patterns considered so
far, though it is a zigzag spiral. In general, turns need not follow a zigzag of any sort.

4.3. Custom layout and plots — a spiral of ggplots2 example

For most applications, the sequence of turns provided by zenplot () via the method argument
will be all that is needed for a compact layout. The value of the turns argument is that it
provides the user a means to construct new layouts which may be more appropriate to their
analysis.

To illustrate this, and to also show how plots from ggplot2 can be incorporated, we consider
how plots might be laid out in a spiral. Though perhaps a somewhat fanciful layout, it
will serve to show how much control the user has over layout should they desire it or their
application warrant it. Even over-plotting of one plot on top of another could be possible
(e.g., via the grid package), though would not be generally recommended.

Because the zenpath is laid out according to the given turns, the length of turns must match
that of the zenpath. For the oliveAcids data we might therefore choose the following path
and sequence of turns:

R> path <- ¢(1, 2, 3, 1, 4, 2, 5, 1, 6, 2, 7, 1, 8, 2, 3, 4, 5, 3, 6, 4, 7,
+ 3,8, 4, 5,6, 7,5,8, 6,7, 8)
R> turns <- c (Hl n IIdH "dll Hr n Hr " Hdll Hd n Hr n III.H Hull Hu " III.H

+ Ilr H, ”ull, "u”, Hr "’ ”r II, "u”, Hu "’ Ill H, "l ”’ Hu "’ llu H, "l II’ Hl "’ llu H,
+ IIu H’ Ill II’ Hl II’ Ild H, lldll’ Hl ll’ Ill H, Ilu II’ Hull’ Ill H, Ill II’ Hdll’ Hd H, Ill II,
+ Hl "’ ”d”, "d”’ Hl "’ Ill H, "d”’ Hd"’ llrll, "r”, Hd"’ lld”, "rll, Hr"’ lld”,
+ IIdH, llrll’ Hrll’ IIdH, Ildll’ "rll’ IIrH, Ildll’ Hdll)

which already begins in a different way in that the layout moves “left” out from the first plot.
The resulting layout starts at the center of the display area and moves in a zigzag pattern
but now in a (counter-clockwise) spiral instead of any of the row-filling patterns seen earlier.

Note that there is no restriction on turns so that the layout is limited only to following a
continuous path of alternating 1d and 2d plots. This flexibility allows analysts to tailor the
layout to the needs of the problem.

As an example, we might prefer to use the plotting paradigm given by the R package ggplot2.
In this case, we need to write custom 1d and 2d plotting functions. Here, we write a custom
2d plot function.

R> library("ggplot2")
R> stopifnot (packageVersion("ggplot2") >= "2.2.1")
R> ggplot2d <- function(zargs) {
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+ r <- extract_2d(zargs)

+ num2d <- zargs$num/2

+ df <- data.frame(x = unlist(r$x), y = unlist(r$y))

+ p <- ggplot() + geom_point(data = df, aes(x = x, y = y), cex = 0.1) +
+ theme (axis.line = element_blank(), axis.ticks = element_blank(),
+ axis.text.x = element_blank(), axis.text.y = element_blank(),

+ axis.title.x = element_blank(), axis.title.y = element_blank())
+ if (num2d == 1) p <- p +

+ theme (panel.background = element_rect(fill = "royalblue3"))

+ if (num2d == (length(zargs$turns)-1)/2) p <- p +

+ theme (panel.background = element_rect(fill = "maroon3"))

+ ggplot_gtable(ggplot_build(p))

+

}

Note the use of extract_2d(zargs) to get the x and y coordinates. The principal additions
to ggplot () are the removal of several default plot elements. Note also the use of num2d
<- zargs$num/2 to get the total number of 2d plots in the zenplot so that the first and last
ones can be distinguished by background color (respectively, "royalblue3" and "maroon3").
Finally, because ggplot () is written using the grid package, a suitable grid object must be
returned.

The spiral zenplot, beginning at the center ("royalblue3") and zigzagging counter-clockwise
to end at the bottom-right ("maroon3") and using ggplot (), is now simply constructed as

R> zenplot (oliveAcids[,path], turns = turns, pkg = "grid",
+ plot2d = function(zargs) ggplot2d(zargs))

See Figure 5.

4.4. Data groups

In Section 2.3 it was noted that the data argument x might also be a list. In such cases,
zenplot () assumes that each element of the list is itself a data set comprised of its own set
of variates (dimensions).

The Italian growing region (e.g., "Umbria", "Sicily") is known for each row (i.e., oil) of the
olive data and these regions have been grouped into three broad geographic areas: "South",
"Sardinia", and "Centre.North". It would be of interest then to study the relationships
between the variates for olive oils within each area and also to see how these relationships
might differ between areas. Zenplots provides a layout for observing relationships by group.

To this end, we take the oliveAcids data and split it into groups according to geographic
area as follows:

R> oliveAcids.by.area <- split(oliveAcids, f = olive$area)
R> names(oliveAcids.by.area) [3] <- gsub("\\.", " ",

+ names (oliveAcids.by.area) [3])

R> names(oliveAcids.by.area)

[1] "South" "Sardinia" "Centre North"
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Figure 5: A zenplot displaying all pairs of acid components of the olive data at least once. In
particular, this zenplot shows that one can use one’s own turns (provided by the argument
turns) and that plotting can also be done with ggplot2.

The object oliveAcids.by.area is a list having three components, the first, second and third
containing 323, 98 and 151 measurements of the eight acid components, respectively. Zenplots
of these data groups can now be produced as

R> zenplot(oliveAcids.by.area, labs = list(group = NULL))

R> zenplot (oliveAcids.by.area, lim = "groupwise", labs = list(sep = " - "),
+ plotid = function(zargs) label_1d_graphics(zargs, cex = 0.8),

+ plot2d = function(zargs)

+ points_2d_graphics(zargs, group... = list(sep = "\n - \n")))

which appear as the left- and right-hand sides of Figure 6.

Following the zigzag in the left zenplot of Figure 6, we can see the groups separate first at the
2d plot containing only the geographic area names "South" and "Sardinia" and then farther
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Figure 6: Zenplots showing the grouping feature (both left and right) and label feature (left:
no group labels in 1d plots; right: groupwise scaling, label separators, downsizing labels).

on at the 2d plot containing only area names "Sardinia" and "Centre North". These two 2d
plots mark the boundaries between the groups, which in order are "South", "Sardinia", and
"Centre North". At a glance, we can see the greater number of observations in the "South"
area, and the coarse granularity of the measurements apparent in much of the data from the
"Centre North" (suggesting rounding or some other source of measurement error). Com-
paring relationships, one can also see for example that the acids palmitic and palmitoleic
appear positively correlated in the "South" but possibly uncorrelated in "Sardinia" and even
"Centre North". Other similarities and differences (e.g., measures on eicosenoic) between
groups can also be readily observed.

In both zenplots of Figure 6, the displays follow the zigzag pattern for the variates that appear
within each data group (each of which can have its own number of observations); the zigzag
pattern continues on from one group to the next with a visually separating 2d plot showing
the names of the groups to either side. This visual separator plot is constructed as a 2d plot
function, group_2d_graphics() (and, for the other graphical systems, group_2d_grid () and
group_2d_loon(), following the naming convention of Section 4.1), that simply displays the
group labels in the order in which they appear indicating the transition from one group to
the other (see “South” and “Sardinia” as well as “Sardinia” and “Centre North”; the first/top
label indicates the preceding group along the zenpath, the second/bottom label indicates the
next group). In the right-hand side zenplot, we use a more sophisticated option, namely the
possibility to pass arguments to group_2d_graphics() with the argument group.... We
use this to visually separate the group labels a bit better in this case. To this end, note that
we need to provide a user-defined function (which just calls points_2d_graphics() with one
argument different from the default).
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In the right-hand side zenplot, every 1d plot has the group name appear before that vari-
ate name (separated by a hyphen). This was effected by specifying the argument labs =
list(sep = " - "). In contrast, the left-hand side zenplot omitted the group labels from its
1d plots by specifying labs = list(group = NULL). Typically, 1abs is a list containing the
components group (group label basename or labels for the groups; can be NULL in which case
group labels are omitted), var (variable label basename or labels for the variables; can be
NULL in which case variable labels are omitted), sep (separator between group and variable
labels) and group2d (a logical indicating whether the group_2d_*() functions should still
plot group labels even if group = NULL).

Also note that because the resulting 1d plot labels would be too large when the group name
was prepended, a user-defined function was provided as the argument of plotid so that the
size of this label could be reduced via the (ellipsis) argument cex = 0.8 passed on to the
built-in plotting function label_1d_graphics() (see Section 4.1 for more complex examples).

Each displayed 2d plot also has its own limits (1im = "individual", the default) as seen in
the left-hand zenplot of Figure 6. In the right-hand zenplot, common limits are used within
each group (lim = "groupwise"). The effect is that for these data the relationships between
acid concentrations within any group have been obscured by the common scale across variates
within groups (especially compared to when 1im = "individual" as in the leftmost zenplot).
Even though all proportions of olive acids must sum to 1 for each oil (or to 10,000 on the
100 x % recorded values in the data), the oils are seen to contain far more oleic than any
other fatty acid in the data. In all areas, oleic has so much higher concentration than the
rest that on a common scale the others are compressed into the lower end of their axes. A
third choice for the 1im argument would be to have identical limits across all plots regardless
of groups (1im = "global"). For the olive data, the effect would be nearly identical to that
of 1im = "groupwise".

4.5. Custom zenpaths

The R package zenplots provides auxiliary functions for connecting and extracting pairs along
a zenpath or for obtaining a list of matrices for plotting a zenplot with grouping feature. We
will now briefly present these functions.

Say our measure of “interestingness” is “convexity” according to scatterplot diagnostics
(scagnostics) and we are interested in the zenpath containing the six most convex pairs.
We could proceed as follows. In a first step, we build a (d, d)-matrix, which, in the (7, j)th
entry, contains the convexity measurement of the pair (i, 7); this is the matrix M below.

R> library("scagnostics")

R> Y <- scagnostics(oliveAcids)

R> X <- Y["Convex", ]

R> d <- ncol(oliveAcids)

R> M <- matrix(, nrow = d, ncol = d)

R> M[upper.tri(M)] <- X

R> M[lower.tri(M)] <- t(M) [lower.tri(M)]
R> round (M, 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] NA 0.48952 0.46343 0.45887 0.43914 0.34583 0.31259 0.28413
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[2,] 0.48952 NA 0.42276 0.50499 0.44591 0.35855 0.35846 0.31729
[3,] 0.46343 0.42276 NA 0.39700 0.36394 0.31316 0.29534 0.33709
[4,] 0.45887 0.50499 0.39700 NA 0.46454 0.36616 0.29451 0.34888
[5,] 0.43914 0.44591 0.36394 0.46454 NA 0.31977 0.31443 0.36750
[6,] 0.34583 0.35855 0.31316 0.36616 0.31977 NA 0.53726 0.34001
[7,] 0.31259 0.35846 0.29534 0.29451 0.31443 0.53726 NA 0.22231
[8,] 0.28413 0.31729 0.33709 0.34888 0.36750 0.34001 0.22231 NA

Next, we use the entries in M to determine the zenpath of strictly ordered pairs (according
to the ordering with respect to “convexity”); this can be done with zenpath(, method =
"strictly.weighted") as described in Section 3.

R> zpath <- zenpath(M, method = "strictly.weighted")
R> head(M[do.call(rbind, zpath)])

[1] 0.5372599 0.5049945 0.4895179 0.4645377 0.4634277 0.4588675

Note that method = "strictly.weighted" returns a list of vectors of length two since there
is no guarantee to obtain connected pairs when given weights have to be strictly respected.
To obtain connected pairs along this list, we provide the function connect_pairs(); see the
last part of this section.

We can now conveniently use the function extract_pairs() as follows to extract the pairs
we are most interested in, namely the first six along the zenpath.

R> (ezpath <- extract_pairs(zpath, n = c(6, 0)))

[[1]1]
[1] 7 6

[[2]1]
[1] 4 2

[[3]]
(11 2 1

[[4]]
[1] 5 4

[[5]1]
[1]1 31

[[6]]
[1]1 4 1

The function graph_pairs() (also depending on ftM2graphNEL () from the R package graph
on Bioconductor) can be used to depict these six pairs in a graph, where an edge indicates
that the adjacent nodes build a pair; see Figure 7.
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Figure 7: Graph representing those six pairs along the zenpath which exhibit largest convexity;
an edge corresponds to a pair between the adjacent variables.

R> library("graph")
R> plot(graph_pairs(ezpath))

As we can see, some of the pairs are naturally connected: For example, the pairs with second-
and third-largest convexity measure share the variable 2 and thus could be (zen)plotted in the
same group of variables (4, 2, 1) (so plotting the pairs (4,2) and (2, 1) with the variable 2 along
the joint axis). How can we find connected pairs along a zenpath which still strictly respect
the order given by “convexity”? This can be achieved with the function connect_pairs(),
which provides us with a “compactified” zenpath which then also leads to a more compact
zenplot.

R> (cezpath <- connect_pairs(ezpath))

[[1]1]
(1] 7 6

[[21]
[11 4 2 1

[[3]]
(1] 5 4

[[4]]
[1] 314

We can use the function groupData() to group our data into the groups determined by
cezpath.

R> oliveAcids.grouped <- groupData(oliveAcids, indices = cezpath)
Lastly, we can plot the corresponding (grouped) zenplot, see Figure 8.

R> zenplot (oliveAcids.grouped)
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Figure 8: Zenplot showing the six pairs of acids which exhibit largest convexity; also note the
U-turn at the end.



28 zenplots: Zigzag Expanded Navigation Plots in R

5. Advanced features

In the previous section, a variety of ways in which zenplots might be customized to suit the
analysis were described and illustrated. There could be many more such illustrations given.
In fact, an immense amount of control over the zenplot display is available to the user. This
can be used to construct nearly arbitrary displays beyond any we have imagined here. To
facilitate such creativity, a number of auxiliary software tools are provided in the zenplots
package. This section provides detail on these tools so that the user can create their own
novel layouts.

Section 5.1 describes the structure of a zenplot and highlights some of its important ele-
ments. In particular, the occupancy matrix is introduced which provides a potentially useful
rectangular array description of the positions occupied by every plot in the display.

In Section 5.2 several important functions useful to create plots are described. Particularly
important are those functions which extract the data so that it can be accessed by the
plot functions. These include the function extract_2d() seen earlier, its 1d counterpart
extract_1d(), as well as all of the components which each function returns. Two important
working functions are burst() and unfold(). The first, as its name suggests, takes any of
the data structures acceptable to zenplot() and “bursts” these data into an easy to use
common form. The second, unfold(), is the major function underpinning zenplot (). This
name is intended to suggest its functionality which is to take a high-dimensional hypercube
(all coordinate pairs of the high-dimensional space) and “unfold” it so that it may be laid
flat in the two-dimensional plane. The unfolding determines the layout of the 2d plots. The
algorithmic details of this layout (and other functions on which it depends) are described in
Appendix A. In that appendix, the entire top down structure of zenplot () and the functions
on which it depends are given. The greatest detail, however, will be found in the source code
itself.

5.1. The structure of a zenplot

As mentioned before, zenplot (), besides plotting, invisibly returns a list containing infor-
mation about the zenpath and layout. For Figure 1, e.g., we obtain:

R> res <- zenplot(olive, plotld = "layout", plot2d = "layout", draw = FALSE)
R> str(res)

List of 2
$ path :List of 3
..$ turns : chr [1:19] "d" "r" "r" "q"

..$ positions: num [1:19, 1:2] 1 222344456 ...
..— attr(x, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:2] "x" "y"
..$ occupancy: chr [1:8, 1:6] "m "m nn nnw
$ layout:List of 6
..$ orientations : chr [1:19] "h" "s" "v" "s" ...
..$ dimensions :num [1:19] 1 212121212 ...
..$ vars : num [1:19, 1:2] 11 233345655 ...
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..— attr(x, "dimnames")=List of 2
..$ : NULL
e «. ..$ : chr [1:2] "x" "y"
..$ layoutWidth : num 33
..$ layoutHeight : num 44
..$ boundingBoxes: num [1:19, 1:4] 0 0 10 11 11 11 21 22 22 22 ...
..— attr(x, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:4] "left" "right" "bottom" "top"

Besides the components already discussed before (such as turns, orientations and vars),
the return object of zenplot(), a list of length two, also contains the plot dimensions (as
part of the layout component). Furthermore, it contains occupancy and positions:

R> res[["path"]][["occupancy"]]

(.11 [,2]1 [,3] [,4] [,5] [,6]

[1,] " ondeme e e
[2,] "» peoompmoonge v
[3,] mvmwownowge we
[4,] "» v weoompnowpe g
[5,] "* v wwoowwww g
[6,] "1 »"1® v ongr oen el
[7,] "0 mgnoowwooage own
[8,] "» u® eav vl v

R> head(res[["path"]][["positions"]])

Xy
[1,] 12
[2,] 22
(3,1 23
(4,1 24
[5,] 34

4 4

(6,1]

The occupancy matrix (component occupancy) is a matrix which reflects the layout contain-
ing all 1d and 2d plots underlying a zenplot. Its elements are "" (for positions not occupied
by a 1d or 2d plot), "1", "r", "d" or "u" for left, right, downward or upward turns out of
the current position in the occupancy matrix, respectively. For example, the entry (2,3) in
the occupancy matrix is "r", so the turn out of the position (2,3) is to the right. Note that
zenplots also provides the auxiliary function convert_occupancy() which allows to convert
the occupancy matrix to contain different characters for the five possible states (with a default
resembling arrow heads to easily spot the zenpath).

The ith row in the 2-column matrix positions provides the position of the ith plot in the
occupancy matrix. For example, the fifth row is (3,4), meaning that the fifth plot will be
plotted in the position (3,4) of the layout corresponding to the occupancy matrix.
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Finally, let us remark that for specific graphical systems, more information might be returned.
For example, for pkg = "grid", the whole plot as a grid object is also returned.

5.2. Tools for writing 1d and 2d plot functions

We now present selected tools which help writing user-specific 1d and 2d plots. We also go
into some more detail concerning the main underlying paradigm behind zenplots.

Bursting the data and extracting the current plot variables

As mentioned before, the data argument x of zenplot() is typically a ‘vector’, ‘matrix’,
‘data.frame’ or a ‘list’ of such. The auxiliary function burst () obtains the arguments x
and labs (a list of length four as described in Section 4.4) and returns a list with the following
components:

xcols: A list containing the columns of x (so x “burst” into its columns). These columns are
named and the names contain, by default, the combined group and variable labels.

groups: The (group) number the respective column belongs to; all equal to 1 if x does not
consist of different groups.

vars: The (variable) number the respective column belongs to within its group.
glabs: The group labels (NULL if x does not consist of different groups).
vlabs: The variable labels.

See ?burst for various examples showing how burst () works.

The functions extract_1d() and extract_2d() obtain the single argument zargs and ex-
tract (hence the name) useful information for most 1d and 2d plots, respectively. These are
widely used in the exported *_1d_*() and *_2d_x*() functions, respectively, and make use
of burst (). In particular, extract_1d() checks whether zargs contains x, orientations,
vars, num, 1im and labs (all discussed before) and returns a list with components:

x: The (named) data column to be plotted in the current 1d plot.

xcols, groups, vars, glabs, vlabs: These are the components as returned by burst ().
horizontal: A logical indicating whether the current 1d plot is horizontal or not (so vertical).
xlim: The axis limits for the current 1d plot.

Similarly, extract_2d() checks whether zargs contains x, vars, num, 1im and labs and
returns:

x: The (named) data column to be plotted as x variable in the current 2d plot.

y: The (named) data column to be plotted as y variable in the current 2d plot.

xcols, groups, vars, glabs, vlabs: These are the components as returned by burst ().
xlim: The x axis limits for the current 2d plot.

ylim: The y axis limits for the current 2d plot.

same.group: A logical indicating whether the two data columns x and y belong to the same
group or not.
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Simply passing zargs to the 1d and 2d plot functions *_1d_x*() and *_2d_x() is very con-
venient. It also allows one to easily write new 1d and 2d plot functions without the need
of having to deal with a lot of different arguments; we have already seen the short func-
tion function(zargs) label_1d_graphics(zargs, cex = 0.8) as plotld in the code for
producing the right-hand side of Figure 6. It is thus natural to have the extractor func-
tions extract_1d() and extract_2d() available to extract the actual information to be
used for plotting by most 1d and 2d plot functions. For example, here is the definition of
points_2d_graphics():

R> points_2d_graphics

function (zargs, cex = 0.4, box = FALSE, add = FALSE, group... = NULL,
plot... = NULL, ...)
{
r <- extract_2d(zargs)
x1lim <- r$xlim
ylim <- r$ylim
x <- as.matrix(r$x)
y <- as.matrix(r$y)
same.group <- r$same.group
if (same.group) {

if (ladd)
plot_region(xlim = xlim, ylim = ylim, plot... = plot...)
points(x = x, y =y, cex = cex, ...)
if (box)
box(...)
}
else {
args <- c(list(zargs = zargs, add = add), group...)
do.call(group_2d_graphics, args)
}
}

<bytecode: 0x7£93230634c8>
<environment: namespace:zenplots>

As we can see, extract_2d() is used to extract all the plotting information used for the
current 2d plot. The component same.group is then used to determine whether a normal
2d scatterplot is produced via points() or whether a group-specific 2d plot is produced (via
group_2d_graphics()) to indicate the change of groups.

Bursting x in every 1d and 2d plot involved in a zenplot is quite time-consuming and becomes
prohibitive in larger zenplots. The extractor functions extract_1d() and extract_2d()
nicely address this problem by setting up an environment containing the burst x the first
time this needs to be done (which is by the first call of extract_1d4() if firstld = TRUE and
by the first call of extract_2d() if firstld = FALSE). Subsequent calls of extract_1d() or
extract_2d () can simply perform a look-up.
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Setting up the plot region and determining the plot indices

When writing 1d or 2d plot functions, one frequently needs to set up the plot region (of
the 1d or 2d plots). To this end, zenplots provides the function plot_region() in case the
graphical system is graphics; see the exported functions *_*_graphics() such as the above
points_2d_graphics() where plot_region() is used.

R> plot_region

function (xlim, ylim, plot... = NULL)
{
if (is.null(plot...)) {
plot(NA, x1im = x1lim, ylim = ylim, type = "n", ann = FALSE,

axes = FALSE, log = "")
}
else {
fun <- function(...) plot(NA, x1lim = x1lim, ylim = ylim,
ce)
do.call(fun, plot...)
}
}

<bytecode: 0x7£93231292c0>
<environment: namespace:zenplots>

Similarly for grid, where one often needs an auxiliary function for constructing the correct
viewport, zenplots provides vport (); see the exported functions *_*_grid() for how to use
it.

A short but useful helper function is plot_indices(), which allows one to determine, based
on zargs, the indices of the two variables to be plotted in the current 1d or 2d plot (as
mentioned before, for 1d plots, the two are the same); see ?zenplot() for how to use
plot_indices() in constructing 1d and 2d plots.

R> plot_indices

function (zargs)

zargs$vars [zargs$num, ]
<bytecode: 0x7£93263d4cb0>
<environment: namespace:zenplots>

Unfolding the cube

The major helper function which zenplot () calls is unfold (). Although unfold() is proba-
bly rather rarely used directly by a user, it provides insight into how zenplots are constructed.

Suppose, for example, we have only d = 3 variates, and hence dimensions. Then each 2d
plot can be thought of as defining a face of a three-dimensional cube as shown in Figure 9.
To arrive at all two-dimensional plots, we imagine beginning with the bottom most face of
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Figure 9: Three-dimensional (folded) hypercube with faces (1,2), (1,3) and (2,3) (left) and
unfolded faces after cutting along the blue line (right).

the cube, ‘(1,2)’, and placing it in the display at the right of Figure 9. Now roll the cube
forward about the edge marked ‘1’, so that its ‘(1,3)’ face is down; this face now appears in
the right-hand display below ‘(1,2)‘ with the connecting edge ‘1’ between them. With the
cube face ‘(1,3)’ now at the bottom, the cube is finally rolled left to right over the ‘3’ edge to
land on the ‘(2, 3)’ face; the ‘3’ edge and the ‘(2,3)’ face now appear in the display at right,
reflecting that movement. It is in this sense that we imagine we are “unfolding the cube”. In
principle this could continue until all six faces appeared (though three would be redundant).
Instead we have unfolded only nfaces = 3 of the faces from the cube.

With some abuse of language, when the number of dimensions is d > 3 we still call the process
unfolding (of the “cube”) though really the rolling is now from one two-dimensional space
to another about a shared axis (variate). It is this common axis that suggests continuing to
use the “unfolding cube” metaphor. With d dimensions there are (g) distinct pairs of d plot
variables and hence distinct two-dimensional spaces that might be visited, as ordered by the
unfolding about shared axes.

The unfold () function takes, as first argument, nfaces, the number of 2d plots/spaces to be
“unfolded” and produces the zenpath and zenplot layout required for the function zenplot ().
Laying out these pairs with a zenplot means “unfolding” (at least a part of) the d-dimensional
space. This is what unfold () does. It first constructs the zenpath (either based on given turns
or based on the given method for constructing turns) with the (non-exported) helper function
get_path() and then, given the zenpath, determines the layout with the (non-exported)
helper function get_layout(). Both of these functions are described in more detail in the
appendix.

Note that the (invisible) return value of zenplot() actually equals the return value of
unfold(), which we can easily check:

R> n2dcols <- ncol(olive) - 1
R> stopifnot(identical(res, unfold(nfaces = n2dcols)))

33
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6. Conclusion

We introduced the R package zenplots for visualization of high- (but also low-)dimensional
data with the notion of zenplots and zenpaths. A zenpath provides an order of “interesting-
ness” according to which the data can be sorted and then laid out and plotted with a zenplot.
The package’s main functions zenpath() and zenplot() achieve this task as presented in
Sections 2 and 3, respectively.

Zenplots can be thought of as a variation on scatterplot matrices, where one sacrifices the
(row, column) array look up and the row-wise or column-wise comparisons of a scatterplot
matrix in exchange for having an arrangement of more and/or larger two-dimensional displays.
With zenplots, comparisons along a common aligned scale are now restricted to a single
pair of plots at a time. More importantly, however, unlike scatterplot matrices, zenplots
directly address the problem of presenting possibly hundreds of plots, pre-selected for their
importance or interesting structure, in a single layout. By accommodating up to a thousand
or two plots in a single display, zenplots enable the analyst to consider the most interesting
two-dimensional plots even from data having hundreds of dimensions (see Hofert and Oldford
2018 for an example). This means only those two-dimensional plots of greatest interest need
to be considered by the analyst for further study, and these can be served up automatically.

With zenpaths, measures of interest, and groupings of variables, the R package zenplots adds
a powerful new tool to the data analyst’s arsenal when data dimensionality becomes high.
As future work, we identify the need for developing and exporting more 1d and 2d plots
specialized for particular analytic purposes such as dependence analysis for mixed categorical
and continuous variates, or model selection and analysis in regression. More generally, an
adaptation of zenplots to handle conditioning (analogous to but substantively different from
coplots; Cleveland 1994) could provide new tools for multivariate data including multivariate
time series.
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A. Algorithms

In a “top-down” (top layer to bottom layer) manner, we now describe in terms of pseudo-
algorithms how zenplots and zenpaths are constructed “under the hood”. The presented
algorithms only capture the main purpose, essential inputs (important for the algorithm
overall, not necessarily required to be provided), optional inputs, the return value and the
major steps; for more details (including more or more general features than captured here),
consider the actual source code of zenplots. The reason these pieces of information are
presented is to convey the intellectual challenge and contribution in constructing zenplots
and zenpaths. The algorithms refer to functions which are used by zenplots (not all exported
and thus visible to the user) but assume a more compact, mathematical notation.

The following algorithm describes the main structure of zenplot () as already discussed be-
fore. It mainly calls unfold() to determine the zenpath in the form of a list containing
the vector of turns (denoted by t), a 2-column matrix of positions in the occupancy matrix
(denoted by p) and the occupancy matrix itself (denoted by O). The function unfold() also
determines the corresponding layout of the zenplot.

Algorithm A.1 (Main plot function; zenplot())

Purpose:  Compute the zenplot and, invisibly, return the path and layout.

Essential: An (n,d)-matrix or data frame (or list of such) X containing the n d-dimensional
data vectors, the turns ¢ (if not provided, they will be computed from the given
number ngy > 2 of columns of 2d plots and the method (“tidy” (the default),
“double zigzag”, “single zigzag” or “rectangular”) used for constructing the path,

functions for creating the 1d and 2d plots, and an argument indicating the graph-
ical system used for plotting.

Optional: Logicals indicating whether the first or last 1d plot are to be plotted, the number
of 2d plots along the zenpath, a vector of logicals indicating which pieces of
information are passed to the 1d and 2d plot functions, how group and variable
labels are determined, parameters for adjusting spaces in a zenplot and further
parameters such as an ellipsis argument passed to the underlying 1d and 2d plot
functions.

Return: Nothing (R’s invisible()) unless assigned to a variable in which case a list
containing the path and layout is returned.

Major steps:

(1) Call unfold() to compute the path and corresponding layout; see Algorithm A.2.

(2) Determine the argument lists passed to the 1d and 2d plot functions, respectively.

(3) Setting up the overall layout.

(4) Loop over all plots and call the 1d and 2d plot functions with the respective arguments.

The following algorithm unfolds the hypercube along a (provided or determined) set of edges

and returns the corresponding zenpath and a layout of 1d and 2d plots along it.

Algorithm A.2 (Unfolding the hypercube; unfold())

Purpose:  Computes the path and corresponding layout by unfolding a cube (the sides of
which are interpreted as the pairs of variables to be plotted in the 2d plots of a
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zenplot).

Essential: The number of faces of the hypercube (which equals the number naqp, of 2d plots
in a zenplot, so typically the number of columns d of X minus one), the number
nage of columns containing 2d plots and the method (see Algorithm A.1).

Optional: The turns ¢, logicals indicating whether the first or last 1d plot are to be plotted
and widths of 1d and 2d plots in the layout.

Return: Returns the path (¢, p, O) and corresponding layout (a list with orientations,
plot dimensions, plot variables (2-column matrix), layout width and height and
bounding boxes); see the output for Figure 1 we discussed earlier in the paper.

Major steps:
(1) Construct the path via get_path(); see Algorithm A.3.
(2) Determine the layout (corresponding to the turns) via get_layout (); see Algorithm A.6.

We now turn to determining the path. This is done via get_path() (Algorithm A.3)
which is an auxiliary function of unfold() (Algorithm A.2) and which itself has two more
auxiliary functions discussed below; these are get_zigzag_turns() (Algorithm A.4) and
next_move_tidy() (Algorithm A.5).

Algorithm A.3 (Determining the path; get_path())

Purpose:  Determine the path (turns ¢, positions p and occupancy matrix O).

Essential: The turns ¢, the number nyq. of columns containing 2d plots, the number noq, of
2d plots and the method (see Algorithm A.1).

Optional: Logicals indicating whether the first or last 1d plot are to be plotted.
Returns:  The path in the form of a list.

Major steps:

(1) If the turns t are provided, say, ni-many, proceed as follows.

(1.1) Initialize the (n,2)-matrix p of positions with zeros, set the current location pey,
to (0,0) and the horizontal and vertical limits of the number of plots to (0,0) each;
the latter determine the extend of the occupancy matrix in horizontal and vertical
direction.

(1.2) If ny > 1, loop over i € {2,...,n}, set the current position peyy to the position
obtained by moving in the direction of turn ¢—1 (the turn into the current position)
and set the ith row of p to peyr. Then check whether the horizontal or vertical limits
have to be extended and extend them if necessary.

(1.3) To obtain the final matrix of positions, “shift” all coordinates appropriately (by
subtracting the minimum of each column of p from the respective column and
adding 1 to each value).

(1.4) Initialize the occupancy matrix O with zeros (no position occupied); note that the
maximum of the first and second column of p determine the dimensions of O. Then
loop over all rows of p and set the respective entry in O to 1, 2, 3 or 4, depending on

[l

whether the turn out of the current position pcy, is “17, “r”, “d” or “u”, respectively.
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(2) If the turns t are not provided, proceed as follows. Let npjots denote the number of all
plots (1d or 2d).

(2.1) For method “rectangular”, proceed as follows.

Set Nplots = 2712dp +1- (1 - Ilﬁrstld) - (1 - IllaLstld)7 where Lgist14 (]llastld) is the
indicator of the event that the first (last) 1d plot is to be displayed.

Set the number ngq, of rows with 2d plots to nadqr = [n2dp/n2dc |-

Determine the turns to fill the rectangular layout (determined by noq, and naqc),
remove the first turn or append the last (depending on whether the first and
last 1d are to be displayed) and extract the npjots-many turns required for the
zenplot.

Loop over the turns to determine the positions p and from there the occupancy
matrix O.

Return the path (list of turns ¢, positions p and the occupancy matrix O).

(2.2) For all other methods, set nplots = 2n24p + 1 and proceed as follows.

If nplots = 1, set turns ¢ = (“d”), positions p = (1, 1), occupancy matrix O = (3).

11
If nplots = 2, set turns ¢ = (“d”, “r”), positions p = (2 1), occupancy matrix

3
0=(5)
If npiots = 3, set turns t = (“d”, “r”, “r”),

11
positions p = (2 1 ), occupancy matrix O = (g g)
2 2

If npiots > 4, proceed as follows.

(2.2.1) For method “double zigzag” or “single zigzag”, the idea is to build all
turns right away (the positions and the occupancy matrix can then be
determined from the turns):

» Compute the turns via get_zigzag_turns(); see Algorithm A.4.

» Initialize the occupancy matrix O as an (1, 2n9g—1)-matrix containing
zeros and the positions p as an (nplots, 2)-matrix containing zeros.

» Encode the turns “17, “r”, “d”, “u” as the numeric values 1-4, respec-
tively.

» Set peur = (1,1) and the first row of p to pey,. Furthermore, set O at
Peur 10 the numeric value of the first turn.

» Loop over i € {2,...,nplots}, set the next position ppext to the value
obtained by moving from pc,- in the direction of turn ¢ — 1 and set
the ith row of p to peyr. Then update peyr t0 Pnext- If peur’s first entry
exceeds the maximal row number of O append another row of zeros
to O. Then set O at ppext to the numeric value of the ith turn.

» Trim off the last columns of zeros (if any) from O.

(2.2.2) For method “tidy”:
» Initialize the npjots-vector turns ¢, and the (1,2n24 + 1) occupancy

matrix O with zeros and the positions p as an (npjts, 2)-matrix con-
taining zeros. Furthermore, set the first turn to d, the first row of
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p to (1,2) and the occupancy matrix O at (1,2) to 3 (numeric value
corresponding to a turn “d”).

» Loop over i € {2,...,nplots}, determine the next position ppext and
the turn thext out of phext via next_move_tidy (), see Algorithm A.5,
set the ith turn to tyext and the ith row of p to ppext. If the first entry
of ppext exceeds the maximal row number of O append another row
to O. Then set O at ppext to the numeric value of the ith turn.

If it exists, trim off the last column of zeros from O.

If it exists, trim off the first column of zeros from O and subtract 1
from the second column of p (as all positions relative to the occupancy
matrix changed).

¢ Depending on whether the first and last 1d plot are to be displayed, trim the

path accordingly.
* Return the path (list of turns ¢, positions p and the occupancy matrix O).

Algorithm A.4 (Compute the turns for zenplots with method “double zigzag” or “single
zigzag”; get_zigzag_turns())

Purpose:  Compute the vector of turns for zenplots with method “double zigzag” or “single

zigzag”.

Essential: The number of plots nplets, the number ngg > 2 of columns of 2d plots, the

method used for constructing the path (“double zigzag” or “single zigzag”).

Returns:  The turns ¢.

Major steps:

(1)

(2)

Define the horizontal 2d pattern (“r”, ..., “r” “1”..., “1”) (each of “r”, “1” appears 2(ngq —
1) times). So far this only contains horizontal movements, vertical movements will be

added in Step (4) below.

Define the vertical 2d subpattern corresponding to the first part (“r”,...,“r”) of the

horizontal 2d pattern in the following way:

e For method “single zigzag”, the vertical 2d subpattern is (“d”,...,“d”) (of length
Noq — 1).

¢ For method “double zigzag”, the vertical 2d subpattern can be constructed as follows:
If nog = 2, it is (“d”). If nog > 2, take nyg — 3 elements from the alternating sequence
“d”’ “u7’7 Céd”’ “u”’ L. and append tWO “d”?s (SO, (“d??’ “d”) for n2d — 3’ (“d?’7 “d??, “d”)
for nog =4, (“d”, “u”,“d”, “d”) for nog = 5, etc.).

Define the vertical 2d pattern corresponding to the horizontal 2d pattern from Step (1)
by repeating the vertical 2d subpattern from Step (2) twice (i.e., vertical 2d subpattern,
vertical 2d subpattern).

Set components of the horizontal 2d pattern from Step (1) with even indices to the values
of the vertical 2d pattern from Step (3). With this merge, we obtain the 2d pattern which
repeats itself until we run out of plots.

Repeat each element of this 2d pattern twice to obtain the overall pattern; this is to
account for 1d plots, so the pattern now contains turns for both 1d plots and 2d plots.

41
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(6) The vector of turns can now be obtained by taking “d” as first component (since the first
turn is always “d”) and then taking the first nplots elements of an imaginary sequence
consisting of the overall pattern repeated after each other; recall that np).ts denotes the
total number of 1d and 2d plots.

Algorithm A.5 (Determine the next position and turn out of there; next_move_tidy())

Purpose:  Determine, for the method “tidy”, the next position ppext to move to and the
turn thext out of this next position.

Essential: The current plot number n,, the total number of plots npets and the current
path that has been determined up to and including n,. Note that this function
assumes that the zenplot starts with a 1d plot; get_path() trims off the first 1d
plot if necessary.

Returns: A list containing the next position ppext (i.e., the position of plot numbered n,+1)
and the turn ¢,ext out of this next position.

Major steps:

(1) Let niefy = Nplots — Np denote the number of remaining plots.

[139e)

o Ifny, =1, return ppext = (2,2) and tyext = “r
e If np = 2, return ppext = (27 3) and thext = “17.
o Ifny =3, set tnext = u if njegy < 2 and set thexy = “d” otherwise. Return ppext = (2,4)

and tnext~

(2) Determine the current position peyr (corresponding to row ny, in the positions matrix p),
the turn ¢, into peyr (element (n, — 1) in the vector of turns t), the turn tou out of peyr
(element n}, of t) and the next position ppexy when moving from pey, in the direction given
by tout-

(3) If np is even (i.e., the current plot is a 2d plot according to the above assumption), return
Prext and Loyt

(4) Now the current plot numbered ny, is a 1d plot. We proceed by determining the horizontal
moving direction out of this plot. To this end, consider the turns at n, —2 and n, — 1. If
“r” is among any of these two turns, the horizontal moving direction is “r”, otherwise it
is “1”. Furthermore, determine the distance to the margin of the occupancy matrix O in
the horizontal moving direction; if the latter is “r”, the distance is the number of columns
in O minus the second component of pe,, (distance to the right end of O); otherwise it is
the second component of pe,; minus 1 (distance to the left end of O).

(5) We now determine the turn tyexy out of ppext. To this end, we distinguish two cases:

(5.1) If oyt is “d” or “u” (i.e., the current 1d plot is horizontal), proceed as follows.

(5.1.1) If myey < 2, check the location of the 2d plot which comes after the next 2d
plot in opposite horizontal moving direction.

e If this location does not exist in O (which can only happen if tou = “d”
in which case O is missing a new row), proceed as follows. Put the
last 1d plot in opposite horizontal moving direction if we are near the
margin (i.e., set tpext = “1” if the horizontal moving direction is “r” and

[139e)]

thext = “r” otherwise; we follow this strategy here since we occupy an



(5.2)

Journal of Statistical Software 43

additional column otherwise). Otherwise, put it in horizontal moving
direction (i.e., set tpext to the horizontal moving direction; this can be
done since we are away from the margin, i.e., “inside” O).

e If this location exists, check the occupancy matrix at this location to see
whether it is occupied. If it is not occupied, set tnext to the opposite
horizontal moving direction (“1” if the horizontal moving direction is “r”
and vice versa). Otherwise, set tpext to the current horizontal moving

direction.

(5.1.2) If niee > 3 (so there are at least two more 2d plots left), change the hori-
zontal moving direction if and only if the distance to the margin is less than
or equal to two.

If tout is “17 or “r” (i.e., the current 1d plot is vertical and the distance to the margin
is at least two in this case), proceed as follows. Ideally, we would like to go up (in
order to save space in the plotting region), but if there are too many plots left, we
can only go up if we have the space to go down again. To explain this part of the
algorithm, we utilize the concept of a U-turn (going up and back down again).

(5.2.1) Given peyr, the horizontal moving direction and the occupancy matrix O
so far, determine the number of plots which fit in the U-turn starting from
Peur, 1-€., the length ly_gym of the U-turn. This can be done as follows.

® Let pcheck denote the position obtained from pe, by going up two rows
and then one column in the horizontal moving direction. If pcpeci exists
in the occupancy matrix O and is occupied, return ly.tum = 1 (as only
one additional plot fits in along this U-turn). If it does not exist in O,
return ly_tum = 2.

e Update pcheck by going two columns further in the horizontal moving
direction. If peheck does not exist in O or if it exists but is occupied,
return ly_tym = 4-

e Update pcheck by going two rows down. If peheqc does not exist in O or if
it exists but is occupied, return ly_turn = 6.

e Update peheck by going two columns further in the horizontal moving
direction. If peheck does not exist in O or if it exists but is occupied,
return ly_tym = 8. Otherwise return ly_ gy = 10 (which means that at
least 10 plots fit in the U-turn and we can do a complete U-turn by going
up and back down again).

(5.2.2) If the first component of the current position pey, is less than or equal to two
(i.e., we are in the second row of O and thus cannot go up) or if ly_tum < 9

(i.e., at most 9 plots fit in the U-turn starting from peyr) but njeg > (U-turn
(i.e., there are more plots left than fit in the U-turn), set tpexy = “d”.

(1))

Otherwise, set tpext = “u

(6) Return ppext and tpext-

Finally, we describe how the layout can be constructed.

Algorithm A.6 (Determining the layout; get_layout())

Purpose:

Determine the layout (1d and 2d plot orientations, plot dimensions, plot variables,
total width and height of the layout and bounding boxes).
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Essential: The turns ¢ and number naq;, of 2d plots.

Optional: Logicals indicating whether the first or last 1d plot are to be plotted and widths
of 1d and 2d plots in the layout.

Returns:  The layout (a list with orientations of 1d and 2d plots, their dimensions (either
1d or 2d), which variables are plotted in each 1d and 2d plot, layout widths and
heights, and bounding boxes; see Section 5.1).

Major steps:

(1) Set up an empty 4-column matrix containing the left, right, bottom and top coordinates
(in units of the widths of 1d and 2d plots) of the bounding box of each plot. Furthermore,
set up a 2-column matrix containing the variables of each 1d or 2d plot.

(2) Loop over all 1d and 2d plots and determine, for each, its orientation, plot variables
involved and coordinates of the bounding box. In particular, this loop requires as input
the number of plots, the current and the last plot variable. Some more details about this
loop:

¢ Determining the current plot variables: For 1d plots, this is the current plot variable
repeated twice. For 2d plots which turn left or right out of the current position in
O, this is the last and current plot variable; for 2d plots turning down or up out of
the current position in O, this is the current and the last plot variable (notice the
difference in order).

* Determining the current bounding box: This is a function of the last turn (i.e., the
turn into the current plot position), the last bounding box and the width and height of
the bounding box. The latter two are easy to determine based on the provided widths
of the 1d and 2d plots. And the location of the bounding box for the current plot
equals the bounding box of the previous plot shifted in the direction of the last turn
(so the turn into the current plot position).
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