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Abstract

Large networks of queueing systems model important real-world systems such as
MapReduce clusters, web-servers, hospitals, call centers and airport passenger terminals.
To model such systems accurately, we must infer queueing parameters from data. Unfor-
tunately, for many queueing networks there is no clear way to proceed with parameter
inference from data. Approximate Bayesian computation could offer a straightforward
way to infer parameters for such networks if we could simulate data quickly enough.

We present a computationally efficient method for simulating from a very general set
of queueing networks with the R package queuecomputer. Remarkable speedups of more
than 2 orders of magnitude are observed relative to the popular DES packages simmer
and simpy. We replicate output from these packages to validate the package.

The package is modular and integrates well with the popular R package dplyr. Com-
plex queueing networks with tandem, parallel and fork/join topologies can easily be built
with these two packages together. We show how to use this package with two examples:
a call center and an airport terminal.

Keywords: queues, queueing theory, discrete event simulation, operations research, approxi-
mate Bayesian computation, R.

1. Introduction
The queues we encounter in our everyday experience, where customers wait in line to be served
by a server, are a useful analogy for many other processes. We say analogy because the word
customers could represent: MapReduce jobs (Lin, Zhang, Wierman, and Tan 2013); patients
in a hospital (Takagi, Kanai, and Misue 2017); items in a manufacturing system (Dallery
and Gershwin 1992); calls to a call center (Gans, Koole, and Mandelbaum 2003); shipping
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containers in a seaport (Kozan 1997) or even cognitive tasks (Cao 2013). Similarly, server
could represent: a compute cluster; medical staff; machinery or a customer service represen-
tative at a call center. Queueing systems can also be networked together to form queueing
networks. We can use queueing networks to build models of processes such as provision of in-
ternet services (Sutton and Jordan 2011), passenger facilitation at international airports (Wu
and Mengersen 2013) and emergency evacuations (Van Woensel and Vandaele 2007). Clearly
queueing systems and queueing networks are useful for understanding important real-world
systems.
Performance measures for a given queueing system can often only be derived through simula-
tion. Queues are usually simulated with discrete event simulation (DES; Rios Insua, Ruggeri,
and Wiper 2012, p. 226). In DES changes in state are discontinuous. The state is acted upon
by a countable list of events at certain times which cause the discontinuities. If the occurrence
of an event is independent of everything except simulation time it is determined; otherwise,
it is contingent (Nance 1981).
Popular DES software packages are available in many programming languages including: the
R (R Core Team 2020) package simmer (Ucar, Smeets, and Azcorra 2018), the Python (Rossum
et al. 2011) package simpy (Lünsdorf and Scherfke 2013) and the Java (Gosling 2000) package
JMT (Bertoli, Casale, and Serazzi 2009). DES packages are often so expressive that they can
be considered languages in their own right, indeed the programming language SIMULA (Dahl
and Nygaard 1966) is a literal example of this.
The R package queuecomputer (Ebert 2020), which is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=queuecomputer, im-
plements an algorithm that can easily be applied to a wide range of queueing systems and
networks of queueing systems. It is vastly more computationally efficient than existing ap-
proaches to DES. We term this new computationally efficient algorithm queue departure
computation (QDC). Computational efficiency is important because if we can simulate from
queues quickly, then we can embed a queue simulation within an approximate Bayesian com-
putation (ABC) algorithm (Sunnåker, Busetto, Numminen, Corander, Foll, and Dessimoz
2013) and estimate queue parameters for very complicated queueing models in a straightfor-
ward manner.
In Section 2 we review the literature on queueing theory and develop notation used through-
out this paper. In Section 3 we present the QDC algorithm and compare it to DES. We
demonstrate usage of the package in Section 4. Details of implementation and usage are
discussed in Section 5. The package is validated in Section 6 by replicating results from DES
packages simpy and simmer. We compare computed performance measures from the out-
put of a queuecomputer simulation to theoretical results for M/M/2 queueing systems. We
benchmark the package in Section 7 and compare computation time with simpy and simmer.
Examples in Section 8 are used to demonstrate how the package can be used to simulate a
call center and an international airport terminal.

2. Queueing theory
Queueing theory is the study of queueing systems and originated from the work of Agner
Krarup Erlang in 1909 to plan infrastructure requirements for the Danish telephone system
(Thomopoulos 2012, p. 2). An overview of the notation and definitions used in this paper is
given in Table 1.

https://CRAN.R-project.org/package=queuecomputer
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A queueing system is defined as follows. Each customer i = 1, 2, . . . has an arrival time ai (or
equivalently an inter-arrival time δi = ai − ai−1, a0 = 0) and an amount of time they require
with a server, called the service time si. Typically a server can serve only one customer at
a time. A server which is currently serving another customer is said to be unavailable, a
server without a customer is available. If all servers are unavailable when a customer arrives
then customers must wait in the queue until a server is available. Detailed introductions to
queueing systems can be found in standard texts such as Bhat (2015).
The characteristics of a queueing system are expressed with the notation of Kendall (1953).
This notation has since been extended to six characteristics:

• fδ, inter-arrival distribution;

• fs, service distribution;

• K, number of servers ∈ N;

• C, capacity of system ∈ N;

• n, customer population ∈ N; and

• R, service discipline.

Choices for inter-arrival and service distributions are denoted by “M” for exponential and
independently distributed, “GI” for general and independently distributed and “G” for general
without the independence assumption. The capacity of the system C refers to the maximum
number of customers within the system at any one time1. Customers are within the system if
they are being served or waiting in the queue. The customer population n is the total number
of customers including those outside of the system (yet to arrive or already departed). The
service discipline R defines how customers in the queue are allocated to available servers.
The most common service discipline is first come first serve (FCFS). To specify a queueing
system, these characteristics are placed in the order given above and separated by a forward
slash “/”.

The simplest queueing system is exponential in distribution for both the inter-arrival δi iid∼
exp(λ) ∀i ∈ 1 : n and service processes si iid∼ exp(µ) ∀i ∈ 1 : n, where λ and µ are exponential
rate parameters. Additionally, K is set to 1, C and n are infinite, and R is FCFS. It is
denoted by M/M/1/∞/∞/FCFS , which is shortened to M/M/1.
Parameter inference for this system was considered first by Clarke (1957), estimators were
derived from the likelihood function. This likelihood is later used by Muddapur (1972) to
derive the joint posterior distribution. Bayesian inference for queueing systems is summarized
in detail by Rios Insua et al. (2012).
Managers and planners are less interested in parameter inference and more interested in
performance measures such as: N(t), the number of customers in system at time t; B̄, the
average number of busy servers; ρ, the resource utilization; and w̄, the average waiting time for
customers. If λ < Kµ the queueing system will eventually reach equilibrium and distributions
of performance measures become independent of time.

1If the system is at full capacity and new customers arrive, new customers leave the system immediately
without being served.
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In the case of a M/M/K system, these performance measures have equilibrium distributions
which can be derived analytically. These derivations are found in standard queueing the-
ory textbooks (Lipsky 2008; Thomopoulos 2012). For instance, the limit probability of N
customers in the system P(N) is

P(0) =
[

(Kρ)K
K!(1− ρ) + 1 +

K−1∑
i=1

(Kρ)i
i!

]−1

,

P(N) =
{

P(0) (Kρ)n

N ! N ≤ K,
P(0) (Kρ)n

K!KN−K otherwise,
(1)

where ρ, the resource utilization, is defined as λ
Kµ . For an M/M/K system this is equal to

the expected number of busy servers divided by the total number of servers E(B)
K (Cassandras

and Lafortune 2009, p. 451). The expected number of customers in the system is (Bhat 2015)

E(N) = Kρ+ ρ(Kρ)KP (0)
K!(1− ρ)2 , (2)

and the expected waiting time is

E(w) = (Kρ)KP (0)
K!Kµ(1− ρ)2 . (3)

If the parameters of fδ and fs are uncertain, then we must turn to predictive distributions
for estimates of performance measures, which are computed analytically for M/M/K queues
(Equations 2 and 3). Predictive distributions of performance measures using Bayesian poste-
rior distributions are derived by Armero (1994); Armero and Bayarri (1999).
Jackson (1957) was one of the first to consider networks of queueing systems. In a Jackson
network, there is a set of J queueing systems. After a customer is served by queueing system
j, they arrive at another queueing system with fixed probability pj,k. Customers leave the
system with probability 1 − ∑J

k=1 pj,k. Other examples of queueing networks include the
tandem (Glynn and Whitt 1991), parallel (Hunt and Foote 1995) and the fork/join (Kim and
Agrawala 1989) topologies.
In a tandem queueing network, customers traverse an ordered series of queues before departing
the system. Real examples of such systems include airport terminals, internet services and
manufacturing systems. In a parallel network, the set of customers is partitioned into different
queueing systems, with their own two vectors a and s. In a fork/join network each task
(another term for customer) is split into a number of subtasks which are to be completed by
distinct parallel servers. The task is only complete once all its associated subtasks arrive at
the join point. One example of this situation is that of arriving passengers and their bags at
an airport.
Most models of queueing systems assume time-invariant inter-arrival and service processes.
In practice, many real-world queues have inter-arrival processes which are strongly time-
dependent, such as: call centers (Weinberg, Brown, and Stroud 2007; Brown, Gans, Mandel-
baum, Sakov, Shen, Zeltyn, and Zhao 2005), airport runways (Koopman 1972) and hospitals
(Brahimi and Worthington 1991). In the case of the M/M/1 queue, we can adapt the no-
tation to M(t)/M(t)/1 to represent exponential processes where parameters λ(t) and µ(t)
change with time. Such queueing systems are referred to as dynamic queueing systems.
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In general, analytic solutions do not exist for dynamic queueing systems (Malone 1995; Wor-
thington 2009). Green, Kolesar, and Svoronos (1991) showed that using stationary queueing
systems to model dynamic queueing systems leads to serious error even if deviation from
stationarity is slight. The problem is compounded once we consider queueing networks.
Understanding long-term and transient behavior of such queues can only be achieved with
approximation methods or simulation. We now detail the QDC algorithm, a computationally
efficient method for simulating queueing systems.

3. Queue departure computation

3.1. Fixed number of servers

QDC can be considered as a multiserver extension to an algorithm presented by Lindley
(1952). For a single server queueing system, the departure time of the ith customer is:
di = max (ai, di−1) + si, since the customer either waits for a server or the server waits for
a customer. The algorithm (not the paper) was, surprisingly, not extended to multiserver
systems until Krivulin (1994). However with each new customer i the algorithm must search
a growing i + 1 length vector. This algorithm, therefore, scales poorly, with computational
complexity O(n2), where n is the number of customers. Kin and Chan (2010) adapted the
original algorithm of Kiefer and Wolfowitz (1955) to an O(nK) algorithm for multiserver
tandem queues with blocking, that is G/G/K/C queueing systems where C is the maximum
capacity number of customers in the queueing systems.
QDC can also be viewed as a computationally efficient solution to the set of equations pre-
sented in Sutton and Jordan (2011, p. 259) for FCFS queueing systems. There is a single
queue served by a fixed number of K servers. The ith customer observes a set of times
bi = {bik|k ∈ 1 : K} which represents the times when each server will next be available. The
customer i selects the earliest available server pi = argmin(bi) from bi. The departure time
for the ith customer is, therefore, di = max(ai, bpi) + si, since the server must wait for the
customer or the customer must wait for the server. The QDC algorithm for a fixed number of
servers (Algorithm 1) pre-sorts the arrival times. Rather than assigning a bi for each customer
i to form the matrix b ∈Mn×K , QDC considers b as a continually updated K length vector
representing the state of the system.
This algorithm is simple and computationally efficient. At each iteration of the loop, we need
only search b, a K length vector for the minimum element in code line 8. In the language
of DES, we consider b as the system state and a as the event list, which are all determined
events. This differs from conventional DES approaches to modeling queueing systems where
the queue length is the system state, and both a and d constitute the event list, where
the events of a are determined and the events of d are continually updated and therefore
contingent.
Algorithm 1 can simulate any queue of the form G(t)/G(t)/K/∞/n/FCFS where K and n
can be made arbitrarily large. Furthermore, the inter-arrival and service distributions can be
of completely general form and even have a dependency structure between them. Since the
arrival and service times are supplied by the user rather than sampled in-situ, the algorithm
“decouples” statistical sampling from queue computation. This frees the user to simulate
queues of arbitrarily complex fδ,s, where K is fixed.
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Algorithm 1 QDC for fixed K.
1: function QDC_numeric(a ∈ Rn+, s ∈ Rn+,K ∈ N)
2: Sort (a, s) in terms of a (ascending).
3: Create vector p ∈ Nn.
4: Create vector b ∈ RK+ .
5: Create vector d ∈ Rn+.
6: bk ← 0 ∀k ∈ 1 : K
7: for i ∈ 1 : n do
8: pi ← arg min(b)
9: bpi ← max(ai, bpi) + si

10: di ← bpi

11: end for
12: Put (a,d,p) back to original (input) ordering of a.
13: return (d,p)
14: end function

3.2. Changing the number of servers

Conditional case

Suppose that the number of servers that customers can use changes throughout the day. This
reflects realistic situations where more servers are rostered on for busier times of the day. We
say that for a certain time t, the customers have a choice of K(t) open servers from K. This
means that there are K(t) servers rostered-on for time t. We define the term closed as the
opposite of open.
We represent the number of open servers throughout the day as a step function. Time is on
the positive real number line and is partitioned by L knot locations x = (x1, . . . , xL) ∈ RL+
into L + 1 epochs (0, x1], (x1, x2], . . . , (xL,∞). The number of open servers in each epoch is
represented by a L + 1 length vector y = (y1, . . . , yL+1) ∈ NL+1

0 . If we assume that none of
the service times s span the length of more than one epoch (xl, xl+1], formally

∀i [si < min(xl+1 − xl|l ∈ 1 : L)] , (4)

then we need to consider a change in state over at most 1 knot location. This step function
is determined input by the user. Like the arrival and service times (a, s), it is changeable by
the user before the simulation but not during the simulation.
We close server k by writing an ∞ symbol to bk ensuring that no customer can use that
server. If the server needs to be open again at time t, we write t to bk allowing customers to
use that server. Since x now corresponds to changes in b, it is part of the event list along
with a. The entire event list is still determined and need not be updated mid-simulation.
This algorithm can simulate queues of form G(t)/G(t)/K(t)/∞/n/FCFS , where K(t) refers
to the number of open servers changing with time. As mentioned previously this algorithm is
subject to Condition 4. This condition is not overly restrictive if we consider realistic systems
with few changes in K. The recorded server allocations p = (p1, . . . , pn) may not reflect the
real system since Algorithm 2 does not allow the user to specify exactly which servers are
open in each epoch, only how many are open and closed. If this output is needed or in cases
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Algorithm 2 QDC for K(t) (conditional).
1: function QDC_server.stepfun(a ∈ Rn+, s ∈ Rn+,x ∈ RL+,y ∈ NL+1

0 )
2: Sort (a, s) in terms of a (ascending).
3: xL+1 ←∞
4: yL+2 ← 1
5: K ← max(y)
6: Create vector b ∈ RK+ .
7: bk ←∞ ∀k ∈ 1 : K
8: bk ← 0 ∀k ∈ 1 : y0
9: Create vector p ∈ Nn.

10: Create vector d ∈ Rn+.
11: l← 1
12: p1 ← 1
13: for i ∈ 1 : n do
14:
15: // Adjustments to b with change in epoch.
16: if ∀k ∈ 1 : K [bk ≥ xl+1] OR ai ≥ xl+1 then
17: if yl+1 − yl > 0 then
18: for k ∈ (yl + 1 : yl+1) do
19: bk ← xl+1
20: end for
21: end if
22: if yl+1 − yl < 0 then
23: for k ∈ (yl+1 + 1 : yl) do
24: bk ←∞
25: end for
26: end if
27: l← l + 1
28: end if
29: // End of adjustments to b with change in epoch.
30:
31: pi ← arg min(b)
32: bpi ← max(ai, bpi) + si
33: di ← bpi

34: // Extra loop if current size is zero so that customer i can be processed in next
35: // epoch.
36: if yl = 0 then
37: i← i− 1
38: end if
39:
40: end for
41: Put (a,d,p) back to original (input) ordering of a.
42: return (d,p)
43: end function
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Algorithm 3 Next function.
function next_fun(t,x ∈ RL+,y)

Find l such that xl < t ≤ xl+1.
if yl+1 = 0 then

return xl+1
else

return t
end if

end function

Algorithm 4 QDC for K(t) (unconditional).
1: function QDC_server.list(a ∈ Rn+, s ∈ Rn+,x = (x1, . . . ,xK),y = (y1, . . . ,yK))
2: Sort (a, s) in terms of a (ascending).
3: ∀k ∈ 1 : K xk,Lk+1 ←∞
4: ∀k ∈ 1 : K yk,Lk+2 ← 1
5: K ← length(x)
6: Create vector c ∈ RK+ .
7: Create vector b ∈ RK+ .
8: bk ← 0 ∀k ∈ 1 : K
9: Create vector p ∈ Nn.

10: Create vector d ∈ Rn+.
11: for i ∈ 1 : n do
12: for k ∈ 1 : K do
13: ck ← next_fun(max(bk, ai),xk,yk)
14: end for
15: pi ← arg min(b)
16: bpi ← cpi + si
17: di ← bpi

18: end for
19: Put (a,d,p) back to original (input) ordering of a.
20: return (d,p)
21: end function

where Condition 4 does not hold, we must use the less computationally efficient but more
general unconditional algorithm below.

Unconditional case

If Condition 4 does not hold or if, otherwise, we wish to control exactly which servers are
open at what time then we must use a less computationally efficient algorithm (Algorithm 4).
Each server k has its own partition of Lk knot locations xk = (xk,1, . . . , xk,Lk

) ∈ RLk
+ and

each yk = (yk,1, . . . , yk,Lk+1) is an alternating sequence of 0 and 1s of length Lk+1 indicating
whether the server is open or closed respectively for the associated epoch. The vector c is
used slightly differently to how it is used in Sutton and Jordan (2011). We use it to represent
the time at which each server is next available for the current customer i, given the current
system state b. It is the output of the next_fun function.
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This algorithm can simulate queueing systems of form G(t)/G(t)/K(t)/∞/n/FCFS , where
K(t) refers to the number of open servers changing with time. In addition, we can specify
which particular servers are available when, not just how many and we are not bound by
Condition 4. Once again we note that b can be considered as the system state and the
event list is formed by a and x1, . . . ,xK , where K in this context is the total number of
distinct servers. This function can be called with the queue_step function in queuecomputer
by supplying a ‘server.list’ object to the servers argument. For the rest of this paper
we focus on Algorithms 1 and 2 for their relative conceptual simplicity and computational
efficiency.

3.3. Discussion

With the algorithms so far presented, we can simulate from a very general set of queueing
systems G(t)/G(t)/K(t)/∞/n/FCFS in a computationally efficient manner. In contrast to
the algorithm of Kin and Chan (2010), the state vector b is written over in each iteration.
The memory usage for QDC, therefore, scales with O(n) rather than O(nK).
Tandem queueing networks can be simulated by using the output of one queueing system
as the input to the next queueing system. We demonstrate this idea with the international
airport terminal example in Section 8.2. Fork/join queueing networks are addressed in the
next section where we explain the implementation details of queuecomputer with regards to
the QDC algorithm.

4. Usage
The purpose of the package queuecomputer is to compute, deterministically, the output of a
queueing system given the arrival and service times for all customers. The most important
function is queue_step. The first argument to queue_step is a vector of arrival times, the
second argument is a vector of service times and the third argument specifies the servers
available.

R> library("queuecomputer")
R> arrivals <- cumsum(rexp(100))
R> head(arrivals)

[1] 0.7551818 1.9368246 2.0825313 2.2223266 2.6583952 5.5533638

R> service <- rexp(100)
R> departures <- queue_step(arrivals, service = service, servers = 2)
R> departures$departures_df

# A tibble: 100 x 6
arrivals service departures waiting system_time server

<dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 0.755 1.90 2.66 -2.22e-16 1.90 1
2 1.94 0.516 2.45 0. 0.516 2
3 2.08 0.449 2.90 3.70e- 1 0.819 2
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4 2.22 0.380 3.03 4.33e- 1 0.812 1
5 2.66 1.25 4.15 2.44e- 1 1.49 2
6 5.55 2.69 8.25 4.44e-16 2.69 1
7 6.78 0.196 6.98 -2.50e-16 0.196 2
8 7.32 2.30 9.62 0. 2.30 2
9 8.28 0.566 8.84 0. 0.566 1

10 8.43 0.763 9.61 4.19e- 1 1.18 1
# ... with 90 more rows

The output of a queue_step function is a ‘queue_list’ object. We built a summary method
for objects of class ‘queue_list’, which we now demonstrate.

R> summary(departures)

Total customers:
100
Missed customers:
0
Mean waiting time:
0.18
Mean response time:
1.15
Utilization factor:
0.466341252182172
Mean queue length:
0.174
Mean number of customers in system:
1.11

If the last element of y is zero, it is possible that some customers will never be served, this is
the “Missed customers” output. The performance measures that follow are the mean waiting
time w̄, the mean response time r̄ = d − a, the observed utilization factor B̄/K, the mean
queue length and the mean number of customers in the system respectively. The utilization
factor B̄/K takes into account the changing number of open servers K(t) where Algorithm 2
is used. We now explain the implementation details of the package.

5. Implementation
The for loops within Algorithms 1 and 2 are written in C++ with the Armadillo library
(Sanderson and Curtin 2016). The C++ for loops are called using the R packages Rcpp
(Eddelbuettel and François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014).
We use R to provide wrapper functions for the C++ code.
The queue_step calls the more primitive queue function which is a wrapper for S3 methods
which implement Algorithms 1, 2 or 4 depending on the class of the object supplied to
the server argument of queue_step. If server inherits from numeric, then queue runs
Algorithm 1, if it is a ‘server.stepfun’ object then queue runs Algorithm 2, and if it is a
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‘server.list’ object then queue runs Algorithm 4. The queue function computes departure
times d and server allocations p and the queue_step function adds additional output such
as waiting times and queue lengths which are used in summary and plot methods.
To simulate fork/join networks, the queuecomputer function wait_step provides a simple
wrapper to the base function pmax.int, this function computes the maximum of each row
for a set of two equal length numeric vectors. The vectors represent the departure times for
each subjob and the departure time for the entire job is the maximum of each subjob.
In simmer and simpy users supply generator functions for simulating δ and service times s,
the user enters the set of input parameters θI for these generator functions and starts the
simulation. The inter-arrival time is re-sampled after each arrival and the service time is
sampled when the server begins with a new customer. This makes it difficult to model queues
where distributions for inter-arrival times do not make sense: like the immigration counter
for an airport, where multiple flights generate customers; or when arrival times and service
times are not independent. In queuecomputer sampling is “decoupled” from computation,
the user samples a and service times s using any method. The outputs d and p are then
computed deterministically.
We now demonstrate the validity of queuecomputer’s output by replicating results from the
DES packages simmer and simpy. We then replicate equilibrium analytic results of perfor-
mance measures for the M/M/2 queue.

6. Validation

6.1. Comparison with simmer and simpy
To demonstrate the validity of the algorithm we consider a M/M/2/∞/1000/FCFS queue.
If QDC is valid for any M/M/K queueing system, then it is valid for any G(t)/G(t)/K
queueing system. This is because any non-zero (a, s) could conceivably come from two expo-
nential distributions, even if the probability of the particular realization is vanishingly small.
We replicate exact departure times computed with the simmer and simpy packages using
queuecomputer. First, we generate a and s to be used as input to all three packages.

R> set.seed(1)
R> n_customers <- 10^4
R> lambda_a <- 1/1
R> lambda_s <- 1/0.9
R> interarrivals <- rexp(n_customers, lambda_a)
R> arrivals <- cumsum(interarrivals)
R> service <- rexp(n_customers, lambda_s)

We now input these objects into the three scripts using queuecomputer, simmer, or simpy.
First, we run the queuecomputer script. The queuecomputer_output object is sorted in
ascending order so that the departure times can be compared to the DES packages.

R> queuecomputer_output <- queue_step(arrivals = arrivals,
+ service = service, servers = 2)
R> head(sort(depart(queuecomputer_output)))

[1] 1.340151 2.288112 2.639976 2.796572 3.249794 5.714967
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The DES packages simmer and simpy are not built to allow users to input (a, s) directly.
Rather, the user supplies parameters for fδ and fs so that inter-arrival and service times can
be sampled at each step when needed. To allow simmer and simpy to accept pre-sampled
input (a, s) we use generator functions instead of rexp(rate) or random.expovariate(rate)
calls in R and Python respectively, details of this work can be found in the supplementary
material. We create an interface to simmer so that it can be called in the same way as
queuecomputer.

R> simmer_output <- simmer_step(arrivals = arrivals,
+ service = service, servers = 2)
R> head(simmer_output)

[1] 1.340151 2.288112 2.639976 2.796572 3.249794 5.714967

The same departure times are observed. Similarly in Python we create an interface to simpy
so that it can be called in a similar way to queuecomputer.

>>> simpy_step(interarrivals, service)[0:6]

array([ 1.34015149, 2.28811237, 2.63997568, 2.79657232, 3.24979406,
5.7149671 ])

A check of all three sorted vectors of d from each package revealed that all were equal to
within 5 significant figures for every di, i = 1 : 1000.

6.2. Replicate theoretical results for M/M/3
We use a M/M/3/∞/5 × 106/FCFS simulation in queuecomputer to replicate theoretical
equilibrium results for key performance indicators for a M/M/2/∞/∞/FCFS queueing sys-
tem. We set λ to 1 and set µ to 2.

Theoretical results

We first note that the traffic intensity is ρ of 2/3 = 0.6̇, which should correspond to the
average number of busy servers. The probability of N customers in the system is given by
Equation 1. We perform this computation up to N = 20 and display the results in Figure 1.
The expected waiting time E(w) is 0.4̇ and the expected number of customers in the system
E(N) is 2.8̇.

Simulation results

The inputs a and s must first be generated.

R> set.seed(1)
R> n_customers <- 5e6
R> lambda <- 2
R> mu <- 1
R> interarrivals <- rexp(n_customers, lambda)
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Figure 1: Comparison of the theoretical equilibrium P(N) and the observed proportions from
simulation. Observation N = 1 is obscured by N = 2.

R> arrivals <- cumsum(interarrivals)
R> service <- rexp(n_customers, mu)
R> K <- 3

We now use the queue_step function and the summary method for ‘queue_list’ objects to
return observed key performance measures.

R> MM3 <- queue_step(arrivals = arrivals, service = service, servers = K)
R> summary(MM3)

Total customers:
5000000

Missed customers:
0

Mean waiting time:
0.445

Mean response time:
1.44

Utilization factor:
0.666140156160826



Journal of Statistical Software 15

Mean queue length:
0.889

Mean number of customers in system:
2.89

We see that the observed time average number of busy servers is 0.6661402 which is close to
0.6̇ the value for ρ. We can see that the observed mean waiting time is close to the expected
mean waiting time. The expected number of customers in the system, from the distribution
P(N) is close to the observed number of customers in the system. The entire distribution of
P(N) is replicated in Figure 1.

7. Benchmark

7.1. Method

The compare the computational efficiency of each package we compute the departure times
from a M/M/2/∞/n/FCFS queueing system, with λ = 1 and µ = 1.1̇. To understand how
n affects computation time we repeat the experiment 100 times for n = 102, 103, 105 and 106.
We also repeat the experiment at n = 107 for queuecomputer. We compare the median time
taken for each combination of package and n.
The simulation was conducted on a system with Intel Core i7-6700 CPU @ 3.40GHz running
Debian GNU/Linux. The version of R is 4.0.2 “Taking Off Again” with simmer version 4.4.2
and queuecomputer version 1.0.0. The version of Python is 3.8.2 with simpy module version
4.0.1.
To assess the computation time for queuecomputer and simmer we use the microbenchmark
function from the microbenchmark package (Mersmann 2019) with time = 100 and compute
the median. Full details can be found in the supplementary material.

7.2. Results and discussion

The median computation time for each package and for varying numbers of customers from
100 to 106 customers (up to 107 customers for queuecomputer) is shown in Figure 2. We
observe phenomenal speedups for queuecomputer compared to both packages: compared to
simpy speedups of 35 (at 100 customers) to 1000 (at 106 customers) are observed, and for
simmer speedups of 50 (at 100 customers) to 300 (at 106 customers) are observed. The
speedup is lower for smaller n since queuecomputer approaches a minimum computation
time.
Simulating 10 million customers takes less than 1 second for queuecomputer. We see no reason
why queues of different arrival and service distributions should not have similar speedups. This
is because, as mentioned earlier, any non-negative (a, s) could come from two exponential
distributions.
Clearly, QDC and its implementation queuecomputer are a more computationally efficient
way to simulate queueing systems of the form G(t)/G(t)/K/∞/M/FCFS than conventional
DES algorithms implemented by simpy and simmer.
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DES/queueing package. Each package returns exactly the same set of departure times since
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8. Examples

8.1. Call center
We demonstrate queuecomputer by simulating a call center. The arrival time for each cus-
tomer is the time that they called, and the service time is how long it takes for their problem
to be resolved once they reach an available customer service representative. Let us assume
that the customers arrive by a homogeneous Poisson process over the course of the day.

R> library("queuecomputer")
R> library("randomNames")
R> library("ggplot2")
R> set.seed(1)
R> interarrivals <- rexp(20, 1)
R> arrivals <- cumsum(interarrivals)
R> customers <- randomNames(20, name.order = "first.last")

We also need a vector of service times for every customer.
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R> service <- rexp(20, 0.5)
R> head(service)

[1] 2.6669670 1.2434810 0.4197332 0.6188957 2.2118725 1.5483755

We put the arrival and service times into the queue_step function to compute the departure
times. Here we have set the number of customer service representatives to two. The servers
argument is used for this input.

R> queue_obj <- queue_step(arrivals, service, servers = 2,
+ labels = customers)
R> head(queue_obj$departures_df)

# A tibble: 6 x 7
labels arrivals service departures waiting system_time server
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>

1 Johatam 0.755 2.67 3.42 0. 2.67 1
2 Beatriz 1.94 1.24 3.18 0. 1.24 2
3 Devante 2.08 0.420 3.60 1.10e+ 0 1.52 2
4 Shaahira 2.22 0.619 4.04 1.20e+ 0 1.82 1
5 Ilea 2.66 2.21 5.81 9.42e- 1 3.15 2
6 Brianna 5.55 1.55 7.10 2.22e-16 1.55 1

We can see that Johatam arrives first but leaves after Beatriz. This is possible because there
are two servers. Johatam’s service took so long that the next two customers were served by
the other server. It is easy to see how the departure times were computed in this simple
example. Johatam and Beatriz were the first customers for each server so we can compute
their departure time by just adding their service times to their arrival times.

R> firstcustomers <- arrivals[1:2] + service[1:2]
R> firstcustomers

[1] 3.422149 3.180306

Devante, however, had to wait for an available server, since he arrived after the first two
customers arrived but before the first two customers departed. He must wait until one of
these customers departs before he can be served. We add the departure time of the first
customer of server 2 (Beatriz) to his service time to compute his departure time.

R> firstcustomers[2] + service[3]

[1] 3.600039

So the first two customers had no waiting time, but Devante had to wait for an available
server. We can compute the waiting times for all three customers in this manner:

R> depart(queue_obj)[1:3] - arrivals[1:3] - service[1:3]
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[1] 0.000000 0.000000 1.097774

The depart function is a convenience function for retrieving the departure times from a
‘queue_list’ object. The queue_step function returns a ‘queue_list’ object. There is a
summary method for this class within the queuecomputer package, which can be accessed by
calling summary(departures).

R> summary(queue_obj)

Total customers:
20

Missed customers:
0

Mean waiting time:
1.15

Mean response time:
3.69

Utilization factor:
0.834333359602573

Mean queue length:
0.858

Mean number of customers in system:
2.42

The plot method in queuecomputer for ‘queue_list’ objects uses the plotting package gg-
plot2 (Wickham 2009) to return a list of plots. We produce four plots: a histogram of the
arrival and departure times (Figure 3); a plot of the queue length and number of customers
in the system over time (Figure 4); a plot of the waiting and service times for each customer
(Figure 5); and a plot of the empirical cumulative distribution function for arrival and depar-
ture times (Figure 6). These plots correspond to selections 2, 5 and 6 in the which argument,
a similar API to the plot method for ‘lm’ objects in the stats package (R Core Team 2020).

R> plot(queue_obj, which = c(2, 4, 5, 6))

Notice that in Figure 5, if we draw a horizontal line anywhere on the plot it will never pass
through more than one green bar or more than one blue bar. This must be the case otherwise
a server would be serving more than one customer at a time.

8.2. International airport terminal

The package integrates naturally with the popular data manipulation R package dplyr (Wick-
ham, François, Henry, and Müller 2020). We demonstrate how to integrate queuecomputer
and dplyr with a more complex airport terminal example than before (Figure 7). Passengers
from a set of 120 flights disembark at the arrivals concourse and proceed through immigration
using either the “smart gate” or the “manual gate” route, we therefore have two queues in
parallel. The route taken (smart gate or manual gate) by each passenger is predetermined,
but the server used by the passenger within these separate queueing systems is not.
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Figure 7: Diagram of larger airport scenario, there are 120 flights in total and two multiserver
queueing systems operate in parallel. Passengers are pre-assigned to travel through either the
“manual” or “smart gate” route through immigration. The passengers and bags are “forked”
when each aircraft arrives and then “joined” at the baggage hall.

Their bags are unloaded from the flights and proceed to the baggage hall with a delay, the
division of passengers and bags is a fork/join network. The bags and passengers are forked
at the arrival concourse and joined at the baggage hall. After immigration, the passengers
proceed on to the baggage hall where they pick up their bags.
We have a synthetic dataset of passengers ID from 120 flights FlightNo, with an average of
103.8 passengers per flight for a total of 20,758 passengers. The dataset includes (for each
passenger ID): their flight number FlightNo, the arrival time of that flight arrival, the
route taken (smart/manual gate) by that passenger route_imm, the arrival times to immigra-
tion after they walk through the terminal arrival_imm and the service time needed by the
passenger at their immigration queueing system service_imm.

R> Passenger_df

# A tibble: 25,012 x 7
ID FlightNo arrival route_imm arrive_imm service_imm bag_time
<chr> <fct> <dbl> <fct> <dbl> <dbl> <dbl>

1 al-Akhtar, F ABI481 565. manual 567. 0.291 574.
2 Mcknight, De ABI481 565. manual 567. 0.159 574.
3 Fountain, Na ABI481 565. manual 567. 0.225 574.
4 Woods, Tyrel ABI481 565. smart ga 567. 0.182 575.
5 Peterson, Ch ABI481 565. smart ga 566. 0.0903 575.
6 Ruiz, Arlen ABI481 565. smart ga 567. 0.439 575.
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7 Quick Bear, ABI481 565. manual 568. 0.129 575.
8 Harmon, Bren ABI481 565. smart ga 566. 0.306 575.
9 Caldwell, De ABI481 565. smart ga 567. 0.320 575.

10 Hood, Colen ABI481 565. smart ga 567. 0.339 575.
# ... with 25,002 more rows

Immigration processing is split into two routes with the route_imm variable. The "smart
gate" route has 5 servers, whereas the "manual" route has 10 servers before time 600, 12
servers between time 600 and time 780 and 8 servers from time 780 onwards. We store this
information in a new data frame called server_df.

R> server_df <- data.frame(immigration_route = c("smart gate", "manual"))
R> server_df$servers <-
+ list(5, as.server.stepfun(x = c(600, 780), y = c(10, 12, 8)))

To compute the departure times from the parallel servers we use the dplyr function group_by.
The dataset is then processed as if it has been split in two.

R> Passenger_df <- left_join(Passenger_df, server_df, by = "route_imm")
R> Passenger_df <- Passenger_df %>% group_by(route_imm) %>%
+ mutate(departures_imm =
+ queue(arrive_imm, service_imm, servers = servers[[1]])) %>%
+ ungroup() %>%
+ mutate(departures_bc = pmax.int(departures_imm, bag_time))
R> Passenger_df %>%
+ select(FlightNo, arrive_imm, departures_imm, departures_bc)

# A tibble: 25,012 x 4
FlightNo arrive_imm departures_imm departures_bc
<fct> <dbl> <dbl> <dbl>

1 ABI481 567. 579. 579.
2 ABI481 567. 579. 579.
3 ABI481 567. 580. 580.
4 ABI481 567. 572. 575.
5 ABI481 566. 570. 575.
6 ABI481 567. 572. 575.
7 ABI481 568. 580. 580.
8 ABI481 566. 571. 575.
9 ABI481 567. 573. 575.

10 ABI481 567. 573. 575.
# ... with 25,002 more rows

The column departures_imm represents the times at which passengers depart immigration
after having been served either through the manual counter or smart gate. The column
departures_bc represents the times that customers leave with their bags from the baggage
hall. Waiting times can be summarized with the summarise function from dplyr, here we
compute summaries of waiting times for each FlightNo and immigration route route_imm
and a summary of waiting times only by route_imm.
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Figure 8: Queue lengths over the course of the day for “manual” and “smart gate” immigration
routes.

R> Passenger_df %>% group_by(FlightNo, route_imm) %>%
+ summarise(
+ waiting_imm = mean(departures_imm - service_imm - arrive_imm),
+ waiting_bc = mean(departures_bc - departures_imm))

# A tibble: 240 x 4
# Groups: FlightNo [?]

FlightNo route_imm waiting_imm waiting_bc
<fct> <fct> <dbl> <dbl>

1 ABI481 manual 11.3 6.29
2 ABI481 smart gate 4.96 12.3
3 AEB843 manual 0.850 16.6
4 AEB843 smart gate 1.01 16.4
5 ARH364 manual 12.5 3.80
6 ARH364 smart gate 7.36 8.17
7 BCH445 manual 1.80 13.7
8 BCH445 smart gate 1.44 15.1
9 BJN726 manual 19.5 2.06

10 BJN726 smart gate 7.21 9.75
# ... with 230 more rows
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Figure 9: Box plot of waiting times for each stage of passenger processing within the inter-
national airport terminal.

R> Passenger_df %>% group_by(route_imm) %>%
+ summarise(
+ waiting_imm = mean(departures_imm - service_imm - arrive_imm),
+ waiting_bc = mean(departures_bc - departures_imm))

# A tibble: 2 x 3
route_imm waiting_imm waiting_bc
<fct> <dbl> <dbl>

1 manual 8.25 9.56
2 smart gate 4.49 12.8

We can quickly build a complex dynamic queueing model involving tandem, parallel and
fork/join topologies. The model is efficient to compute, modular and easily extended. This
was achieved by combining the queuecomputer and dplyr packages.

9. Conclusion
The R package queuecomputer implements QDC. It can be used to simulate any queueing
systems or tandem network of queueing systems of general form G(t)/G(t)/K(t)/∞/n/FCFS .
Fast algorithms for multiserver queueing systems have been proposed in the past (Krivulin
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1994; Sutton and Jordan 2010; Kin and Chan 2010). These algorithms have generated little
notice, even in the cases where their computational efficiency is demonstrated (Kin and Chan
2010). QDC is conceptually simpler, more efficient memory-wise and modular.
We validated QDC with analytic results and by replicating output generated by existing DES
packages simpy and simmer. We observe speedups of up to 3 orders of magnitude. The speed
of the package will allow queue simulations to be embedded within ABC algorithms, which
will be addressed in future work. Unlike existing DES packages, sampling and departure
time computation are clearly “decoupled” and therefore allow the user to simulate queueing
systems with arrival and service time distributions of arbitrary complexity. The package
integrates well with the data manipulation package dplyr and these two packages together
allow the user to quickly and easily simulate queueing networks with parallel, tandem and
fork/join topologies.

Acknowledgments
This work is supported by the Australian Research Council Centre of Excellence for Math-
ematical and Statistical Frontiers (ACEMS). This work was funded through the Australian
Research Council (ARC) linkage grant “Improving the Productivity and Efficiency of Aus-
tralian Airports” (LP140100282).

References

Armero C (1994). “Bayesian Inference in Markovian Queues.” Queueing Systems, 15(1–4),
419–426. doi:10.1007/bf01189249.

Armero C, Bayarri MJ (1999). “Dealing with Uncertainties in Queues and Networks of
Queues: A Bayesian Approach.” In S Ghosh (ed.), Multivariate Analysis, Design of Exper-
iments, and Survey Sampling, pp. 579–608. CRC Press. doi:10.1201/9781482289824.

Bertoli M, Casale G, Serazzi G (2009). “JMT: Performance Engineering Tools for System
Modeling.” ACM SIGMETRICS Performance Evaluation Review, 36(4), 10–15. doi:
10.1145/1530873.1530877.

Bhat UN (2015). An Introduction to Queueing Theory: Modeling and Analysis in Applications.
Birkhäuser.

Brahimi M, Worthington DJ (1991). “Queueing Models for Out-Patient Appointment Systems
– A Case Study.” Journal of the Operational Research Society, 42(9), 733–746. doi:
10.1057/jors.1991.144.

Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao L (2005). “Statistical
Analysis of a Telephone Call Center: A Queueing-Science Perspective.” Journal of the
American Statistical Association, 100(469), 36–50. doi:10.1198/016214504000001808.

Cao S (2013). Queueing Network Modeling of Human Performance in Complex Cognitive
Multi-Task Scenarios. Ph.D. thesis, University of Michigan. URL https://deepblue.
lib.umich.edu/bitstream/handle/2027.42/102477/shicao_1.pdf?sequence=1.

https://doi.org/10.1007/bf01189249
https://doi.org/10.1201/9781482289824
https://doi.org/10.1145/1530873.1530877
https://doi.org/10.1145/1530873.1530877
https://doi.org/10.1057/jors.1991.144
https://doi.org/10.1057/jors.1991.144
https://doi.org/10.1198/016214504000001808
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/102477/shicao_1.pdf?sequence=1
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/102477/shicao_1.pdf?sequence=1


26 queuecomputer: Computationally Efficient Simulation of Queues in R

Cassandras CG, Lafortune S (2009). Introduction to Discrete Event Systems. Springer-Verlag.
doi:10.1007/978-0-387-68612-7.

Clarke AB (1957). “Maximum Likelihood Estimates in a Simple Queue.” The Annals of
Mathematical Statistics, 28(4), 1036–1040. doi:10.1214/aoms/1177706808.

Dahl OJ, Nygaard K (1966). “SIMULA: An ALGOL-Based Simulation Language.” Communi-
cations of the ACM, 9(9), 671–678. doi:10.1145/365813.365819.

Dallery Y, Gershwin SB (1992). “Manufacturing Flow Line Systems: A Review of Models
and Analytical Results.” Queueing Systems, 12(1–2), 3–94. doi:10.1007/bf01158636.

Ebert A (2020). queuecomputer: Computationally Efficient Queue Simulation. R package
version 1.0.0, URL https://CRAN.R-project.org/package=queuecomputer.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Gans N, Koole G, Mandelbaum A (2003). “Telephone Call Centers: Tutorial, Review, and
Research Prospects.” Manufacturing & Service Operations Management, 5(2), 79–141.
doi:10.1287/msom.5.2.79.16071.

Glynn PW, Whitt W (1991). “Departures from Many Queues in Series.” The Annals of
Applied Probability, 1(4), 546–572. doi:10.1214/aoap/1177005838.

Gosling J (2000). The Java Language Specification. Addison-Wesley Professional.

Green L, Kolesar P, Svoronos A (1991). “Some Effects of Nonstationarity on Multiserver
Markovian Queueing Systems.” Operations Research, 39(3), 502–511. doi:10.1287/opre.
39.3.502.

Hunt CS, Foote BL (1995). “Fast Simulation of Open Queueing Systems.” Simulation, 65(3),
183–190. doi:10.1177/003754979506500305.

Jackson JR (1957). “Networks of Waiting Lines.” Operations Research, 5(4), 518–521. doi:
10.1287/opre.5.4.518.

Kendall DG (1953). “Stochastic Processes Occurring in the Theory of Queues and Their
Analysis by the Method of the Imbedded Markov Chain.” The Annals of Mathematical
Statistics, 24(3), 338–354. doi:10.1214/aoms/1177728975.

Kiefer J, Wolfowitz J (1955). “On the Theory of Queues with Many Servers.”
Transactions of the American Mathematical Society, 78(1), 1–18. doi:10.1090/
s0002-9947-1955-0066587-3.

Kim C, Agrawala AK (1989). “Analysis of the Fork-Join Queue.” IEEE Transactions on
Computers, 38(2), 250–255. doi:10.1109/12.16501.

https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1214/aoms/1177706808
https://doi.org/10.1145/365813.365819
https://doi.org/10.1007/bf01158636
https://CRAN.R-project.org/package=queuecomputer
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1287/msom.5.2.79.16071
https://doi.org/10.1214/aoap/1177005838
https://doi.org/10.1287/opre.39.3.502
https://doi.org/10.1287/opre.39.3.502
https://doi.org/10.1177/003754979506500305
https://doi.org/10.1287/opre.5.4.518
https://doi.org/10.1287/opre.5.4.518
https://doi.org/10.1214/aoms/1177728975
https://doi.org/10.1090/s0002-9947-1955-0066587-3
https://doi.org/10.1090/s0002-9947-1955-0066587-3
https://doi.org/10.1109/12.16501


Journal of Statistical Software 27

Kin W, Chan V (2010). “Generalized Lindley-Type Recursive Representations for Multiserver
Tandem Queues with Blocking.” ACM Transactions on Modeling and Computer Simulation,
20(4), 21. doi:10.1145/1842722.1842726.

Koopman BO (1972). “Air-Terminal Queues under Time-Dependent Conditions.” Operations
Research, 20(6), 1089–1114. doi:10.1287/opre.20.6.1089.

Kozan E (1997). “Comparison of Analytical and Simulation Planning Models of Seaport
Container Terminals.” Transportation Planning and Technology, 20(3), 235–248. doi:
10.1080/03081069708717591.

Krivulin NK (1994). “A Recursive Equations Based Representation for the G/G/m Queue.”
Applied Mathematics Letters, 7(3), 73–77. doi:10.1016/0893-9659(94)90116-3.

Lin M, Zhang L, Wierman A, Tan J (2013). “Joint Optimization of Overlapping Phases in
MapReduce.” Performance Evaluation, 70(10), 720–735. doi:10.1016/j.peva.2013.08.
013.

Lindley DV (1952). “The Theory of Queues with a Single Server.” Mathematical Proceedings of
the Cambridge Philosophical Society, 48(2), 277–289. doi:10.1017/S0305004100027638.

Lipsky L (2008). Queueing Theory: A Linear Algebraic Approach. Springer-Verlag.

Lünsdorf O, Scherfke S (2013). simpy: Discrete Event Simulation for Python. Python module
version 3.0.11, URL https://simpy.readthedocs.io/en/latest/.

Malone KM (1995). Dynamic Queueing Systems: Behavior and Approximations for Individual
Queues and for Networks. Ph.D. thesis, Massachusetts Institute of Technology.

Mersmann O (2019). microbenchmark: Accurate Timing Functions. R package version 1.4-7,
URL https://CRAN.R-project.org/package=microbenchmark.

Muddapur M (1972). “Bayesian Estimates of Parameters in Some Queueing Models.” The An-
nals of the Institute of Statistical Mathematics, 24(1), 327–331. doi:10.1007/bf02479762.

Nance RE (1981). “The Time and State Relationships in Simulation Modeling.” Communi-
cations of the ACM, 24(4), 173–179. doi:10.1145/358598.358601.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rios Insua D, Ruggeri F, Wiper M (2012). Bayesian Analysis of Stochastic Process Models,
volume 978. John Wiley & Sons.

Rossum GV, et al. (2011). “Python Programming Language.” URL https://www.python.
org/.

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for Linear
Algebra.” Journal of Open Source Software, 1(2), 26–32. doi:10.21105/joss.00026.

Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013). “Ap-
proximate Bayesian Computation.” PLoS Computational Biology, 9(1), e1002803. doi:
10.1371/journal.pcbi.1002803.

https://doi.org/10.1145/1842722.1842726
https://doi.org/10.1287/opre.20.6.1089
https://doi.org/10.1080/03081069708717591
https://doi.org/10.1080/03081069708717591
https://doi.org/10.1016/0893-9659(94)90116-3
https://doi.org/10.1016/j.peva.2013.08.013
https://doi.org/10.1016/j.peva.2013.08.013
https://doi.org/10.1017/S0305004100027638
https://simpy.readthedocs.io/en/latest/
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.1007/bf02479762
https://doi.org/10.1145/358598.358601
https://www.R-project.org/
https://www.python.org/
https://www.python.org/
https://doi.org/10.21105/joss.00026
https://doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1371/journal.pcbi.1002803


28 queuecomputer: Computationally Efficient Simulation of Queues in R

Sutton C, Jordan MI (2011). “Bayesian Inference for Queueing Networks and Modeling
of Internet Services.” The Annals of Applied Statistics, 5(1), 254–282. doi:10.1214/
10-aoas392.

Sutton CA, Jordan MI (2010). “Inference and Learning in Networks of Queues.” In AIS-
TATS, pp. 796–803. URL http://www.jmlr.org/proceedings/papers/v9/sutton10a/
sutton10a.pdf.

Takagi H, Kanai Y, Misue K (2017). “Queueing Network Model for Obstetric Patient
Flow in a Hospital.” Health Care Management Science, 20(3), 433–451. doi:10.1007/
s10729-016-9363-5.

Thomopoulos NT (2012). Fundamentals of Queuing Systems: Statistical Methods for Analyz-
ing Queuing Models. Springer-Verlag. doi:10.1007/978-1-4614-3713-0.

Ucar I, Smeets B, Azcorra A (2018). “simmer: Discrete-Event Simulation for R.” Journal of
Statistical Software, 90(2), 1–30. doi:10.18637/jss.v090.i02.

Van Woensel T, Vandaele N (2007). “Modeling Traffic Flows with Queueing Models: A
Review.” Asia-Pacific Journal of Operational Research, 24(4), 435–461. doi:10.1142/
s0217595907001383.

Weinberg J, Brown LD, Stroud JR (2007). “Bayesian Forecasting of an Inhomogeneous
Poisson Process with Applications to Call Center Data.” Journal of the American Statistical
Association, 102(480), 1185–1198. doi:10.1198/016214506000001455.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. doi:
10.1007/978-3-319-24277-4.

Wickham H, François R, Henry L, Müller K (2020). dplyr: A Grammar of Data Manipulation.
R package version 1.0.2, URL https://CRAN.R-project.org/package=dplyr.

Worthington D (2009). “Reflections on Queue Modelling from the Last 50 Years.” Journal of
the Operational Research Society, 60(1), S83–S92. doi:10.1057/jors.2008.178.

Wu PPY, Mengersen K (2013). “A Review of Models and Model Usage Scenarios for an
Airport Complex System.” Transportation Research Part A: Policy and Practice, 47, 124–
140. doi:10.1016/j.tra.2012.10.015.

https://doi.org/10.1214/10-aoas392
https://doi.org/10.1214/10-aoas392
http://www.jmlr.org/proceedings/papers/v9/sutton10a/sutton10a.pdf
http://www.jmlr.org/proceedings/papers/v9/sutton10a/sutton10a.pdf
https://doi.org/10.1007/s10729-016-9363-5
https://doi.org/10.1007/s10729-016-9363-5
https://doi.org/10.1007/978-1-4614-3713-0
https://doi.org/10.18637/jss.v090.i02
https://doi.org/10.1142/s0217595907001383
https://doi.org/10.1142/s0217595907001383
https://doi.org/10.1198/016214506000001455
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1057/jors.2008.178
https://doi.org/10.1016/j.tra.2012.10.015


Journal of Statistical Software 29

Affiliation:
Anthony Ebert
School of Mathematical Sciences
Science and Engineering Faculty
Queensland University of Technology
Brisbane Queensland 4000, Australia
E-mail: anthonyebert@gmail.com
URL: https://anthonyebert.github.io/resume/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

October 2020, Volume 95, Issue 5 Submitted: 2017-02-28
doi:10.18637/jss.v095.i05 Accepted: 2018-11-11

mailto:anthonyebert@gmail.com
https://anthonyebert.github.io/resume/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v095.i05

	Introduction
	Queueing theory
	Queue departure computation
	Fixed number of servers
	Changing the number of servers
	Conditional case
	Unconditional case

	Discussion

	Usage
	Implementation
	Validation
	Comparison with simmer and simpy
	Replicate theoretical results for M/M/3
	Theoretical results
	Simulation results


	Benchmark
	Method
	Results and discussion

	Examples
	Call center
	International airport terminal

	Conclusion

