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Abstract

The phonics package provides several functions for indexing words by their English
language pronunciation. Over nearly one hundred years, many different algorithms have
been developed to support word and name indexing. From Soundex, developed in the
early 20th century and predating the digital computer, through to modern digital pho-
netic algorithms like Phonex, the phonics package provides support for more than a dozen
methods. Together, these provide phonetic algorithms appropriate for use in name index-
ing and name matching across a variety of English language use cases.
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1. Introduction
The phonics package (Howard, II 2018, 2020) for R (R Core Team 2020) is designed to provide
a variety of phonetic indexing algorithms in common and not-so-common use today. The
algorithms generally reduce a string to a symbolic representation approximating the sound
made by pronouncing the string (Zobel and Dart 1996). They can be used to match names,
words, and as a proxy for assorted string distance algorithms.
The general form of a phonetic spelling algorithm is to remove all of the nonletter characters,
so that numbers, spaces, hyphens, and other punctuation characters are removed from the
subject string. Then, the string is transformed into a single case, typically upper case. These
basic operations are so common that several of the implementations within this package share
the same opening lines to preprocess a string.
After these initial steps, a variety of processes are used to phonetically reduce the string based
on the algorithm. For instance, some remove vowels, while others reduce all vowels to a single
symbolic representation. Some, like the Soundex algorithm, use numbers to represent a core
set of distinctive sound types, while others like Caverphone, use a more diverse alphabetical
symbol array to represent more complex sounds.
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R> library("phonics")
R> turtles <- c("Leonardo", "Donatello", "Michelangelo", "Raphael")
R> turtles.soundex <- soundex(turtles)
R> turtles.cvphone <- caverphone(turtles)

A string array like Leonardo, Donatello, Michelangelo, Raphael in combination with
the Soundex algorithm becomes L563, D534, M245, R140 whereas using Caverphone, the
array becomes LNT111, TNTL11, MKLNKL, RF1111. Together, closely related names can be
matched to account for spelling errors, spelling changes associated with language evolution,
and related names such as “Steven” and “Stephen.”
Some of the algorithms, especially Soundex, are relatively common and implemented in other
packages (for instance, RecordLinkage by Borg and Sariyar 2020). Others, such as RogerRoot,
are not commonly available or are only rarely implemented. The overriding goal off this pack-
age is to provide a single interface allowing for each algorithm to be used as a drop-in replace-
ment for the others. Except for the match rating approach, detailed later, this goal is met.
This paper will explain the phonics package and some of the implementation details. First, we
will explain how to install the package, give a brief overview of the history of the algorithms,
along with sources. Each algorithm discussion closes with examples and output samples.
Next, we will discuss high-level design choices as well as the unit testing regime. We will then
provide notes on the relative performance of the given algorithms. Finally, we will conclude
this paper.

2. Description, usage, and examples
The R package phonics is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=phonics and can be installed using:

R> install.packages("phonics")

The phonics package has several dependencies, but the most notable is the Rcpp package
(Eddelbuettel and François 2011). Therefore, a C++ compiler is necessary to install the
package from source. After installation, the phonics package is loaded in the usual way with
library(). There are no global options that are required or optional. Once loaded, the
package’s functions are directly usable.

R> library("phonics")

2.1. Soundex

Soundex is probably the oldest and most well-known system for creating phonetic indices
(Wright 1960; Newcombe and Kennedy 1962). Soundex was originally patented in 1918 and
1922, well before the use of digital computers (Knuth 1998, pp. 394–395), and is sometimes
known as Russell Soundex. The purpose of Soundex was to provide an index that worked
from the sound of a name. Soundex is used by the United States National Archives and
Records Administration (NARA) to provide indexing over United States Census Records.
In addition, Soundex is available in many database management systems, such as Oracle,
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MySQL, and others. Due to its precomputer invention, the algorithm itself is quite simple
and easy to implement. However, variants on the implementation are also common. This
package implements the Knuth description of Soundex.
The final form of a Soundex-encoded index is a letter followed by three digits. Except for the
first letter, vowels and vowel sounds are not encoded. If a code were to be longer than four
characters, the first letter plus three digits, the code is normally truncated. However, this is
the normal operation of the algorithm and not required.
In addition to the traditional Soundex method, this package implements the Refined Soundex
algorithm. The Refined Soundex algorithm changes the letter bins from Soundex, allowing
for closer sounding groupings, and also removes the truncation step, allowing for full-length
encodings. The Refined Soundex algorithm seems to have originated with the implementation
of phonetic algorithms included with the Apache Commons library (Fossati and Eugenio
2008), though the underlying ideas of rebinning and lengthening the Soundex encodings goes
back to at least Zobel and Dart (1995).
The Soundex algorithm is implemented as the soundex function and the Refined Soundex
method is given in the refinedSoundex function, and we can observe them in the following
examples.

R> soundex("Catherine")

[1] "C365"

R> soundex("Kathryn")

[1] "K365"

R> soundex(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "C365" "K365" "K365" "W450"

R> refinedSoundex("Catherine")

[1] "C30609080"

R> refinedSoundex("Kathryn")

[1] "K3060908"

Both functions accept a maxCodeLen that limits the length of the returned code. Except
where noted, all the algorithms support the maxCodeLen option to change the maximum or
expected code length returned, as appropriate.

R> refinedSoundex(c("Catherine", "Kathryn", "Katrina", "William"),
+ maxCodeLen = 5)

[1] "C3060" "K3060" "K3069" "W0708"
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2.2. Metaphone

Metaphone is a family of loosely related phonetic spelling algorithms created by Lawrence
Philips (Philips 1990, 2000, 2007). The original algorithm, usually just called Metaphone,
is implemented in this package. Metaphone captures 16 core consonant sounds in multiple
languages and represents them in the final phonetic spelling. In addition to source language
flexibility, Metaphone is also adept at encoding ordinary words, not just names like the
Soundex family.
The second and third algorithms, Double Metaphone and Metaphone 3 are not implemented
in this package. Double Metaphone was created by Philips to address perceived limitations
of Metaphone. In particular, Double Metaphone can provide two results, allowing for more
potential avenues to index. Metaphone 3 is patent-encumbered and is unlikely to be provided
in short term.
The original Metaphone algorithm can be accessed via the metaphone function.

R> metaphone(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "K0RN" "K0RN" "KTRN" "WLM"

2.3. New York State identification and intelligence system

The New York State identification and intelligence system (NYSIIS) method, named for the
New York State agency that developed it (Silbert 1970), has become a commonly used name
indexing algorithm. This is largely due to its relative simplicity, good documentation from
multiple sources, and ease of use. The NYSIIS, in contrast to Soundex, tries to capture
fine differentiations in pronunciation in different names (Taft 1970). Therefore, “knight” and
“night” both observe the “n”-sound at the start, and while the NYSIIS method captures this,
it does draw distinctions between roughly similar sounds. Therefore, NYSIIS does not merge,
for instance, the b-sound and p-sound into one. In addition to this algorithm, a modified
version was documented by Lynch and Arends (1977).
The algorithm is available via the nysiis function and the modified version of NYSIIS is
accessed via the option modified.

R> nysiis(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "CATARA" "CATRYN" "CATRAN" "WALAN"

R> nysiis(c("Catherine", "Kathryn", "Katrina", "William"), modified = TRUE)

[1] "CATARA" "CATRAN" "CATRAN" "WALAN"

2.4. Oxford name compression algorithm

Despite its name, the Oxford name compression algorithm (ONCA) is not a compression
algorithm in the traditional sense (Sayood 2012) that the original text can be restored from
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the output of the algorithm. Instead, ONCA is a phonetic spelling algorithm. ONCA was
developed for use in linking medical records across the British National Health Service (Gill
1997).
The ONCA method is unique among those phonetic spelling algorithms presented here in that
it is a two-step method where each step is another method. First, a string is phonetically
reduced using the NYSIIS algorithm. Second, the result of the NYSIIS process is then run
through Soundex. The result of the second step is the final result of the ONCA method.
Gill (1997) notably claims the first step of NYSIIS reduces occurrences of some edge cases
better than Soundex alone, while still retaining the characteristic four-character index that
Soundex produces. He also notes that the algorithm has been successfully used to index and
link ten million records in the Oxford Record Linkage Study.
The ONCA algorithm is provided in the onca function.

R> onca(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "C365" "C365" "C365" "W450"

It is important to note that the output of the ONCA function is, at first glance, indistin-
guishable from the output of Russell Soundex over a similar input string. As a result, visual
inspection cannot be used to discern what algorithm was used on such an output.

2.5. Caverphone

Caverphone is a family of two phonetic algorithms first documented by Hood (2002). Caver-
phone was created as part of the Caversham project at the University of Otago, documenting
social mobility in late 19th and early 20th century in New Zealand. Accordingly, Caver-
phone was developed to provide efficient matching of names on electoral rolls. In practice,
the Caversham project applied Caverphone after exact matches were identified. This reduced
the likelihood of false positives by removing potential targets from the index pool.
Caverphone was not meant for general use. While openly documented, the algorithm was
developed specifically for the data at hand in the Caversham project. The Caverphone 2
algorithm was updated by Hood (2004) to provide a more generalized approach to a phonetic
algorithm based on the experiences of Caversham and the original Caverphone. While gener-
alized, both are based on local pronunciation in and around Dunedin, Otago, New Zealand.
The Caverphone family works by addressing more complex sounds. For instance, the sound
“tch”, such as at the start of “Tchaikovsky,” is encoded with a sound of “ch” like it is pro-
nounced. In contrast, an algorithm like Soundex would encode Tchaikovsky as starting with
a T, pulling it out of the class of names starting with the “ch” sound. Other complex sounds
such as “ough,” “gn,” and “dg” are included and coded like their English-language pronunci-
ation.
The original Caverphone function returns a six-character code for the name. If a name
encoding is under six characters, it is padded with 1s to reach six characters. Caverphone 2
works similarly, but with a 10-character output code, padded with 1s.
The Caverphone algorithm is provided by the caverphone functions. The Caverphone 2
algorithm is provided by setting the modified option to TRUE.
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R> caverphone(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "KTRN11" "KTRN11" "KTRN11" "WLM111"

R> caverphone(c("Catherine", "Kathryn", "Katrina", "William"),
+ modified = TRUE)

[1] "KTRN111111" "KTRN111111" "KTRNA11111" "WLM1111111"

2.6. Cologne
The Cologne phonetic algorithm was developed by Postel (1969) at IBM to provide Soundex-
like functionality for German language names. German names often include additional dia-
critics (as demonstrated by the German name for Cologne, “Köln”) and more variant spellings
for common names, due to later orthographic standardization. Accordingly, Soundex was not
suitable for German names and Cologne was meant to fill that void.
Due to orthographic conventions of German, additional characters, such as vowels with um-
lauts (“ä,” “ö,” and “ü,”), and the eszett (“ß”) are included. The examples below include four
samples including these characters. However, even if these characters are included, other un-
known characters will return a warning if encountered. As shown below, names with hyphens
or spaces will produce a warning unless the clean parameter is set to FALSE.
Cologne, unlike many of the other algorithms in this package, does not produce a fixed-length
or maximum-length output, under normal operations. The algorithm will continue encoding
a string until there are no characters left to encode. The code itself will include digits from
1 to 9.

R> cologne(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "4276" "4276" "4276" "356"

R> cologne(c("Müller", "Schluß"))

[1] "657" "858"

2.7. Lein
The origins of the Lein name coding algorithm are unclear, though it seems probable Lein is an
acronym standing for “law enforcement information network,” a name used by several states
for centralized law enforcement databases. We do know that Lein was documented by Lynch
and Arends (1977) as early as 1977 as part of a United States Department of Agriculture
(USDA) project to analyze the use of several name coding algorithms.
The algorithm itself retains the first character, eliminates vowels and duplicate sounds, then
codes the remaining letters as numbers. Each letter is coded to a number from 1 to 5.
The output codes are limited to maxCodeLen characters, a letter followed by digits, where
maxCodeLen defaults to four. If the resultant code is fewer than maxCodeLen characters, the
output is padded with 0 characters to reach the correct length.
The Lein algorithm is provided in the lein function.
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R> lein(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "C132" "K132" "K132" "W320"

2.8. Census-modified Statistics Canada

Like Lein, the census-modified Statistics Canada method is documented by Lynch and Arends
(1977). Given the name, the provenience is almost certainly a modification of an approach
developed by Statistics Canada. Fair (2004) has more recent information on methods for
record-linkage used by Statistics Canada.
The algorithm is also simple like Lein. Vowel sounds are eliminated and duplicate sounds are
reduced. Individual letters are not recoded making this an extremely fast algorithm.
The census-modified Statistics Canada algorithm is provided in the statcan function.

R> statcan(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "CTHR" "KTHR" "KTRN" "WLM"

2.9. RogerRoot

Like Lein, the RogerRoot method is documented by Lynch and Arends (1977). There seems
to be no other documentation that provides any details about the origin or purpose of the
algorithm beyond the obvious application to phonetic spelling and indexing. The algorithm is
also simple like Lein. Vowel sounds are eliminated and duplicate sounds are reduced, leading
to a five-digit numerical code. Because of the narrow field of options (the digits 0–9), the
RogerRoot method is more likely to lead to a larger number of collisions for different names
than algorithms with a larger output space, like Metaphone.
The RogerRoot algorithm is provided in the rogerroot function.

R> rogerroot(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "07142" "07142" "07142" "45300"

2.10. Phonex

Phonex was created by Lait and Randell (1996) after a detailed analysis of several other
algorithms with three specific goals in mind: improved accuracy, faster runtime, and overall
simplicity. The creators note that by starting with Soundex as a baseline and making im-
provements from there, Phonex was likely to be well-suited to English language names and
not well suited to other languages or general-purpose word matching.
The specific problems Lait and Randell (1996) observed with some algorithms was that
identically-sounding names such as “Filip” and “Philip” would map to different output codes,
names starting with an H followed by a vowel are often phonetically the same as the same
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name without an H, and several sound-equivalent single-character pairs are ignored. By cre-
ating an output algorithm and changing it slightly over a defined test input, the authors were
able to search for a viable replacement.
The Phonex algorithm is provided via the phonex function. Like Soundex, Phonex encodings
are a single letter followed by three digits encoding the first four sounds of the name.

R> phonex(c("Catherine", "Kathryn", "Katrina", "William"))

[1] "C365" "C365" "C365" "W450"

2.11. Match rating approach

The match rating approach (MRA) was developed by Western Airlines to match names within
their reservation system (Moore, Kuhns, Trefftzs, and Montgomery 1977). Unlike other algo-
rithms described here, MRA is a two-stage algorithm with separate encoding and comparison
routines. For instance, the results of Soundex on two different strings can be directly com-
pared to test for equality:

R> soundex("Catherine") == soundex("Kathryn")

[1] FALSE

R> soundex("Kathryn") == soundex("Katrina")

[1] TRUE

The MRA encoding algorithm may return different encodings for similar strings that should
match. So a second stage is used to compare to MRA-encoded strings. There, an algorithm
that measures the amount of similarity between two encoded strings, similar to a string
distance algorithm (Van der Loo 2014), is used. The encoding algorithm is provided by
mra_encode and the comparison algorithm is provided by mra_compare.

R> (Katherine <- mra_encode("Katherine"))

[1] "KTHRN"

R> (Katarina <- mra_encode("Katarina"))

[1] "KTRN"

R> mra_compare(Katherine, Katarina)

[1] TRUE

The threshold necessary to establish similarity gets smaller as the encoded strings get larger.
This leads to some interesting results. For instance, Catherine and William match as names.
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R> mra_compare(mra_encode("Catherine"), mra_encode("William"))

[1] TRUE

On the other hand, Kate and Will do not match, though Will and Bill do successfully match.

R> mra_compare(mra_encode("Kate"), mra_encode("Will"))

[1] FALSE

R> mra_compare(mra_encode("Bill"), mra_encode("Will"))

[1] TRUE

Fully understanding the implications of the MRA comparison algorithm is advised before
adopting MRA for production use.

2.12. The phonics command

The phonics function provides a unified interface to all of the included algorithms, except
MRA. The phonics function requires two parameters. The first is word, which is a character
string or vector of character strings to be processed.
The method is a vector containing one or more of:

• "caverphone",
• "caverphone.modified",
• "cologne",
• "lein",
• "metaphone",
• "nysiis",
• "nysiis.modified",
• "onca",
• "onca.modified",
• "onca.refined",
• "onca.modified.refined",
• "phonex",
• "rogerroot",
• "soundex",
• "soundex.refined", or
• "statcan".

The method names including “modified” use the underlying method with the modified pa-
rameter set to TRUE. The method names including “refined” replace the Soundex method with
the Refined Soundex method.
The phonics function returns a data frame with a column names "word" containing the word
vector. The remaining columns are the results for each phonetic algorithm included in the
method option.
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3. Implementation
The implementations of the functions in the phonics package follow one of two outlines, de-
pending on the nature of the function. The majority of these functions are implemented as se-
quential processes of search and replace runs over the subject string. Others are implemented
by processing the string character by character into a final form; these are implemented in
Rcpp to provide greater speed. The implementation chosen for each function flows naturally
from the string processing rules given by the algorithm.

3.1. Rcpp-based implementations

Three of the algorithms contained in the phonics package are implemented in C++ and
bridged into R using Rcpp. These are Soundex (soundex), Refined Soundex (refinedSoundex),
and Metaphone (metaphone).

3.2. Regular expression implementations

All other algorithms included in this package are implemented in pure R, usually through the
extensive use of regular expressions for string replacement (Teetor 2011; Thompson 1968).
As many phonetic algorithms rely on common themes, such as replacing leading “KN” (as in
“knight”) with an “N” to reflect pronunciation, regular expressions provide a convenient way
to implement these translations.
The simplest case is most likely the census-modified Statistics Canada algorithm (statcan).
It consists of the following steps, other than boilerplate nonalphabetical character removal
and truncation for length:

1. Capture the first letter and remove it.
2. Remove all vowels and the letter “Y.”
3. Add the first letter back to the start of the encoded string.
4. Remove all duplicated letters.

Steps 1 and 3 are accomplished using R’s internal string splitting and reassembly routines.
Steps 2 and 4 are easily implemented via regular expressions. Other regular expression based
algorithms may include more steps, but are not substantively more complex and follow the
same basic pattern.

3.3. Oxford name compression algorithm

Due to the unique method used by ONCA, the implementation is also slightly different. The
onca function accepts a vector of strings and will first process the vector with the nysiis
function and then reprocess the vector with soundex. We do not separately implement ONCA.

3.4. Unknown character handling

Each of these algorithms operates in a similar way and because of that, they have some
common features. These features are expressed in a standard opening at the start of each.
This example is taken from the nysiis function, but similar code exists in each function.



Journal of Statistical Software 11

These algorithms are not case sensitive and the first step each of these take is to transform
all of the strings into a single case. Generally, this is upper case, but some algorithms use
lower case, depending on implementation details.

word <- toupper(word)

Further, we want to ensure special cases are handled appropriately. The input parameter
word might be a single character string or vector of character strings. The next two lines first
test for NULL, which can only be passed as a single NULL. We treat that as NA and convert it
into an NA. Then we record a list of all entries in the vector which contain NA. This will be
used later.

word[is.null(word)] <- NA
listNAs <- is.na(word)

The next three lines handle unknown characters. For instance, we test for any characters not
in the range of A–Z (a–z if the algorithm used tolower() earlier), and record their position.
If there are any and the parameter clean is TRUE, the default, then we post a warning and
continue processing. Finally, we remove all characters that are not in the range of A–Z (again,
a–z if the strings were converted to lower case).

if (any(nonalpha <- grepl("[^A-Z]", word, perl = TRUE)) && clean) {
warning("unknown characters found, results may not be consistent")

}
word <- gsub("[^A-Z]*", "", word, perl = TRUE)

If the parameter clean is FALSE, no warning is posted. Either way, the algorithm continues
processing the same way. This works for any phonetic algorithm operating over the standard
English alphabet. For those functions operating over the German or French languages, special
characters like "a or "o are converted to a or o, or other characters as the algorithm requires,
before the standard opening.
Similarly, these implementations share a common closing. First, any entry in the vector which
contained NA initially is set to NA. Depending on the internal operation of the algorithm, any
NA may not be preserved through the entire operation. Therefore, this ensures a return of NA
for any input NA or NULL.

word[listNAs] <- NA
if (clean) {

word[nonalpha] <- NA
}

Any element of the original vector which was marked as including nonalphabetical characters
is marked as NA if clean is TRUE. Through this, nonconforming inputs are marked as NA.
Regardless of the value of clean, the algorithm tried to process the element. Accordingly, if
clean is FALSE, the function returns whatever was processed. This may or may not conform
with any expected outputs and is not consistent across different platforms or even versions
of R.
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3.5. Maximum return length

The final common option is the argument maxCodeLen. Some of the algorithms have a fixed
output length; for instance, Soundex values are one letter followed by three numbers. Each
of the algorithms included allows with maxCodeLen for truncation at a different length. If
the algorithm has a fixed output length, there is a defined padding value; for instance, if a
Soundex value would only be two characters long, two zeros are appended.
If maxCodeLen is greater than the default, the padding is extended to meet the length of
maxCodeLen. If an algorithm does not use padding normally, none is used, and the returned
value may be shorter than maxCodeLen. Function phonics() and the MRA functions do not
include a maxCodeLen parameter.

3.6. Unit testing

The phonics package includes a complete test suite for regression using the testthat package
(Wickham 2011). For each phonetic algorithm, and major variant, there is a comma-separated
values (CSV) file containing sample strings and correct sample outputs for the algorithm
(Shafranovich 2005, pp. 2–4; Raymond 2003, pp. 112–122). The CSV file is processed twice
for each algorithm. First, each element of the vector is tested individually to ensure the
algorithm is implemented correctly. Second, the vector is tested again in one step, to ensure
the vectorized implementation is correct.
Each set of samples has been separately generated, therefore, we are regressing against an
independent data source. These data sources include documentation, examples from indepen-
dent literature, independent implementations of the algorithm, or independently-generated
test suites. Accordingly, we have some level of assurance that the results generated are correct
and not just correct compared to our own self-generated outputs.

4. Performance metrics
In order to better understand the algorithms and when to use which one, we provide a set
of key performance metrics for evaluating the algorithms. We provide a measure of the
amount of time necessary to use each algorithm. This will obviously vary from system to
system, however, the relative performance timings would remain approximately consistent
across computer systems and architectures.
We also provide metrics for the collision space of each algorithm. Reducing the chance of
collision in the outputs of phonetic spelling algorithms for nonsimilar inputs is a critical
performance measurement. Like Lynch and Arends (1977), we provide three important mea-
surements of the collision space that can be used to evaluate suitability of each algorithm for
a given task.

4.1. Relative timings

Using the Comet supercomputer system (Moore et al. 2014; Strande et al. 2017) at the San
Diego Supercomputer Center (SDSC), each algorithm was benchmarked with the microbench-
mark package (Mersmann 2019).
We use a list of all surnames appearing 100 or more times in the 2010 United States Census
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Figure 1: Absolute timings of different phonetic algorithms.

as provided by the United States Census Bureau (USCB; United States Census Bureau 2016).
This dataset consists of 162,253 different surnames in the United States. This dataset also
includes relative rank and frequency of appearance. We remove all entries with rank zero, to
eliminate an “other” category, representing all names appearing fewer than 100 times. The
names were resampled into a random dataset of 2000 names with replacement and weighted
by the frequency of appearance.
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Each phonetic spelling algorithm is run over the random datasets 100 times and timed using
the microbenchmark function. Using the mclapply function from the parallel package, the
resampling process and benchmarking were executed 10,000 times. There were a total of
1,000,000 timed executions made for each of 13 phonetic spelling algorithms included in
this package. The MRA algorithm is excluded from this benchmark due to its operational
requirements. Since the MRA algorithm functions by calculating a distance between two
encoded character strings, this would not be comparable to the straightforward encoding
used by all of the other included algorithms.
The mean of each microbenchmark execution was collected and the boxplot of those 10,000
means for each algorithm is provided in Figure 1.
As we would expect, the three phonetic spelling functions implemented using Rcpp (soundex,
refinedSoundex, and metaphone) outperform those implemented in pure R. In addition, the
Rcpp implementations provide more consistent results. We also note that lein provides the
best performance of those implementations in pure R. This is because lein consists of only
seven regular expression replacements and does not require complex bookkeeping to manage
out-of-band replacements.

4.2. Collision space analysis
In addition to timing metrics, we also include an analysis of the collision space for each
algorithm. Again, using the Comet supercomputer system, the collection of phonetic spelling
algorithms was evaluated against the USCB name list. We remove all entries with a rank of
zero, to eliminate an “other” category. The names were resampled into a random dataset of
100,000 names with replacement and weighted by the frequency of appearance. Sampling with
replacement was chosen to model actual populations that the algorithms may be applied to.
The suite of 13 algorithms, not including MRA, were applied to each name and the resultant
collisions measured. The process was repeated as a job of 10,000 repetitions, and the job was
repeated 100 times on the Comet system. The job was completed using 6457 compute hours.
Using 2400 cores, this simulation required less than three wall-clock hours to complete.
The collision space analysis is predicated on the idea that a good name coding operation has
two properties. First, variations on a name should produce the same code. Second, the size of
the codes should be minimized. Over a random sample of 100,000 names, with replacement,
there are likely to be some names that repeat across the list. There will also be some names
that are variants of each other appearing on the list, and these can possibly produce the same
phonetic spelling. Finally, there will be some names that are unrelated to each other on the
list, that produce the same encoding.
The first metric we consider is how many unique codes are produced by the chosen algorithm
on a simulated dataset. This metric feeds additional analysis about the collision space. The
five-number summary, mean, and standard deviation for each algorithm are given in Table 1.
For instance, we are interested in understanding what the potential output space of the
encoding algorithms are. Soundex has a potential output space of 6734 codes and of those,
the most any simulation required was 3679. Lein is simpler, with a potential output space
of only 4056 codes. Of those, at most 2642 are required in any simulation. Phonex, like
Soundex, has a potential outputspace of 6734 codes but only required at most 1905 codes in
the simulation. At the other end of the spectrum, the Refined Soundex algorithm can produce
more than 109 potential codes, though the most required was only 13,996 for any simulation,
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Algorithm Min. 1st Qtr Median 3rd Qrt Max. Mean SD
soundex 3475 3564 3578 3592 3679 3577.87 20.52
refinedSoundex 13304 13590 13635 13681 13996 13635.38 67.89
nysiis 11992 12254 12295 12337 12581 12295.27 61.16
nysiis (m) 10931 11154 11192 11231 11486 11192.33 57.24
lein 2482 2551 2561 2572 2642 2561.45 15.48
caverphone 6370 6555 6585 6615 6790 6585.00 45.10
caverphone (m) 7153 7362 7395 7427 7665 7394.65 47.93
cologne 6770 6951 6981 7012 7238 6981.51 45.24
metaphone 11348 11603 11646 11688 11992 11645.81 62.88
onca 3297 3383 3396 3410 3494 3396.34 20.30
phonex 1789 1838 1846 1854 1905 1845.85 11.85
rogerroot 5015 5163 5186 5209 5372 5185.72 33.87
statcan 10309 10508 10544 10581 10795 10544.32 53.73

Table 1: Summary statistics for the number of surname codes by algorithm.

Algorithm Min. 1st Qtr Median 3rd Qrt Max. Mean SD
soundex 7.92 8.12 8.16 8.19 8.40 8.16 0.05
refinedSoundex 2.10 2.13 2.14 2.15 2.18 2.14 0.01
nysiis 2.33 2.37 2.37 2.38 2.43 2.37 0.01
nysiis (m) 2.56 2.60 2.61 2.62 2.67 2.61 0.01
lein 11.04 11.34 11.39 11.44 11.75 11.39 0.08
caverphone 4.29 4.41 4.43 4.45 4.57 4.43 0.03
caverphone (m) 3.84 3.93 3.95 3.96 4.06 3.95 0.02
cologne 4.06 4.16 4.18 4.20 4.30 4.18 0.03
metaphone 2.45 2.50 2.51 2.51 2.56 2.51 0.01
onca 8.34 8.56 8.59 8.63 8.87 8.59 0.06
phonex 15.27 15.74 15.81 15.89 16.35 15.81 0.11
rogerroot 5.44 5.60 5.63 5.65 5.80 5.63 0.04
statcan 2.70 2.76 2.77 2.78 2.83 2.77 0.01

Table 2: Summary statistics for the number of unique surnames per code by algorithm.

the largest of any phonetic algorithm we included here.
The second metric included is the number of unique surnames per code generated. As we
have already noted, a single name may appear multiple times in each simulated dataset
due to sampling with replacement. In particular, high frequency names are more likely to
appear multiple times in each simulation. Accordingly, we want to know how many unique
surnames, on average, map to each code. This performance metric captures that answer. The
five-number summary, mean, and standard deviation for each algorithm are given in Table 2.
The number of unique surnames per code tells us how the algorithm will behave with respect
to different names. For instance, while we may prefer that similar names should map to the
same phonetic code, we cannot guarantee that with any of these algorithms. So the fewer
number of unique names per code suggests that names that are less different from each other
are more likely to map to different codes.
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In the case of the Phonex algorithm, we can see that more than 15 unique names are assigned
for each unique code. This suggests a high rate of collisions for only moderately close names.
This is the highest collision rate of any of the provided algorithms. The next highest rate
is the Lein algorithm with more than 11 unique names per code; both Soundex and ONCA
transform more than 8 unique names per unique code. The higher this metric is, the more
unique names are assigned to each code and this might imply that some clearly differentiated
names are matched. There are extensive examples for Soundex, in particular, where this
applies. For instance, the name Washington has several matches:

R> soundex(c("Washington", "Wiggins", "Wozniak"))

[1] "W252" "W252" "W252"

Neither Wiggins nor Wozniak are similar enough to Washington to justify a match. These
are clearly not alternative forms of the same name and are not misspellings. Further, there
are a total of 78 names in the USCB name list with a Soundex value of W252. These sorts
of accidental matches are more common when there are more unique names per encoding.
At the other end of the spectrum, several algorithms produce fewer than three unique names
per code. Those algorithms, i.e., the Refined Soundex, NYSIIS, the modified NYSIIS, Meta-
phone, and the census-modified Statistics Canada algorithms, have very broad output spaces
reducing the number of collisions that occur. We can see the advantages with the previous
example:

R> nysiis(c("Washington", "Wiggins", "Wozniak"))

[1] "WASANG" "WAGAN" "WASNAC"

R> statcan(c("Washington", "Wiggins", "Wozniak"))

[1] "WSHN" "WGNS" "WZNK"

For comparison, there are only 11 names in the USCB name list with an NYSIIS value of
WASANG. Of these, all but Washington are variant forms of the name Weissinger. Similarly,
the census-modified Statistics Canada algorithm provides only 9 entries in the name list with
a value of WSHN, the census-modified Statistics Canada value of Washington.
The final metric we consider is how many surnames from the simulated dataset map to each
code. This is slightly different from the last metric because it allows for a surname to appear
multiple times in the simulated dataset. For instance, consider the last name Smith, the
most common last name in the United States. We would expect any reasonable sample to
include more than one Smith (compare to McKinney 1966). This metric, therefore, provides a
measurement of how many times a code will appear in a real world dataset, and an associated
picture of how well a phonetic spelling algorithm would fit as an indexing algorithm. The
five-number summary, mean, and standard deviation for each algorithm are given in Table 3.
The results of this metric are not surprising given the results of the second metric. The Lein
and Phonex algorithms match a larger number of names to a smaller number of output codes.
As we already know, Lein has a very small output space, and this is completely expected.
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Algorithm Min. 1st Qtr Median 3rd Qrt Max. Mean SD
soundex 27.18 27.84 27.95 28.06 28.78 27.95 0.16
refinedSoundex 7.14 7.31 7.33 7.36 7.52 7.33 0.04
nysiis 7.95 8.11 8.13 8.16 8.34 8.13 0.04
nysiis (m) 8.71 8.90 8.93 8.97 9.15 8.93 0.05
lein 37.85 38.88 39.05 39.20 40.29 39.04 0.24
caverphone 14.73 15.12 15.19 15.26 15.70 15.19 0.10
caverphone (m) 13.05 13.46 13.52 13.58 13.98 13.52 0.09
cologne 13.82 14.26 14.32 14.39 14.77 14.32 0.09
metaphone 8.34 8.56 8.59 8.62 8.81 8.59 0.05
onca 28.62 29.33 29.45 29.56 30.33 29.44 0.18
phonex 52.49 53.94 54.17 54.41 55.90 54.18 0.35
rogerroot 18.62 19.20 19.28 19.37 19.94 19.28 0.13
statcan 9.26 9.45 9.48 9.52 9.70 9.48 0.05

Table 3: Summary statistics for the number of non-unique surnames per code by algorithm.

At the other end, we can see the effects of the output space width on the Refined Soundex
algorithm, as it produced the lowest mean number of surnames to output codes. Similarly,
the NYSIIS, the modified NYSIIS, Metaphone, and the census-modified Statistics Canada
algorithms all produce roughly comparable collision frequencies over the sample datasets.
Unfortunately, there is no good decision rule to use when selecting a phonetic spelling algo-
rithm for a project. Excepting some obviously divergent solutions, such as the Lein algorithm,
the different phonetic spelling algorithms behave roughly equivalently on the sample datasets.
There are, however, rules of thumb available to support the selection process. One should
clearly select an algorithm that supports the language they are coding, quite possibly with
accent restrictions. The Caverphone algorithms were designed with a New Zealand English-
speaker in mind, for instance. Or the Cologne algorithm was designed with the German
language in mind.
Beyond the rules of thumb, it is also important to understand the application the algorithm
will be used for. If the purpose is to create an index of the name, the Lein algorithm may
be a good answer, since the narrow output space can be advantageous. If the purpose is to
help catch spelling errors in names from a data entry source, then something at the lower end
of the middle ground is likely best. The application will match some errors, but not more
extreme errors. Some testing is probably necessary to find the best fit for a given application.
Much of this analysis, however, may not be helpful. Often when working with an algorithm
like this, the issue of compatibility with some other system may be necessary. In that case,
the selection is likely already made when the other system dictates the algorithm to use. If
some other system is using Soundex to index a dataset, then using Soundex is a requirement.
Finally, when selecting a phonetic spelling algorithm without external constraints, it is rea-
sonable to consider the actual application, including example cases. In the unlikely event
your dataset is composed of every person in the United States, this analysis presented is
likely sufficient. However, like some of these algorithms’ creators, your application may have
a highly constrained or particular dataset. For instance, it might only be dominated by names
originating from a specific language. In this case, it is reasonable to sample the list of names
and perform an ad hoc collision space analysis to better understand what algorithm performs
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best on the data. In that case, regardless of the analysis presented here, there is strong
justification for adopting that algorithm for that application.

5. Summary
In this paper, we have outlined the phonics package for R, and some key performance charac-
teristics of the algorithms provided. Included in this package are several English-, German-,
and French-language suitable algorithms for phonetically reducing names and strings. These
can be used for comparison and indexing, as well as later record-linkage. In addition to pro-
viding suitable implementations of many different phonetic algorithms, this package provides
a suite of test values for each algorithm allowing us to test the veracity of output in unit
testing, or by other implementations in other languages. Finally, this document has pro-
vided a sketch outline of the history of all included algorithms. This includes, where possible,
authoritative sources and earliest available sources for all of the algorithms.
Additional work is required to better understand the performance of these algorithms. Modern
data scientists have adopted performance metrics based on the percentage of hits that are
true-positives and true-negatives. We usually measure this as the area under the curve (AUC)
under the receiver operating characteristic (ROC) curve (Hanley and McNeil 1982; Bradley
1997). However, the field producing phonetic algorithms does not have a standard dataset of
“correctly” and “incorrectly” spelled names to provide a common baseline of analysis. Further
work to create that list would be beneficial. With such a baseline, these algorithms could
undergo a series of refinements to optimize their performance.
Finally, we are forced to accept that different algorithms are written to support different
languages and pronunciation rules. Rapidly diversifying populations globally (e.g., Kabisch
and Haase 2011), will place some pressure on the use of these algorithms. Some names are
not transliterated well and others adhere to pronouncing rules and sounds not available in
the native host language. A new set of algorithms will be necessary as time goes on that can
allow for broad source language diversity and complex evolving rules in the host language.
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