
JSS Journal of Statistical Software
October 2020, Volume 95, Issue 9. doi: 10.18637/jss.v095.i09

The R Package hmi: A Convenient Tool for
Hierarchical Multiple Imputation and Beyond

Matthias Speidel
Institute for Employment

Research

Jörg Drechsler
Institute for Employment

Research

Shahab Jolani
Maastricht University

Abstract

Applications of multiple imputation have long outgrown the traditional context of
dealing with item nonresponse in cross-sectional data sets. Nowadays multiple imputa-
tion is also applied to impute missing values in hierarchical data sets, address confiden-
tiality concerns, combine data from different sources, or correct measurement errors in
surveys. However, software developments did not keep up with these recent extensions.
Most imputation software can only deal with item nonresponse in cross-sectional set-
tings and extensions for hierarchical data – if available at all – are typically limited in
scope. Furthermore, to our knowledge no software is currently available for dealing with
measurement error using multiple imputation approaches.

The R package hmi tries to close some of these gaps. It offers multiple imputation
routines in hierarchical settings for many variable types (for example, nominal, ordinal, or
continuous variables). It also provides imputation routines for interval data and handles
a common measurement error problem in survey data: biased inferences due to implicit
rounding of the reported values. The user-friendly setup which only requires the data and
optionally the specification of the analysis model of interest makes the package especially
attractive for users less familiar with the peculiarities of multiple imputation. The com-
patibility with the popular mice package (Van Buuren and Groothuis-Oudshoorn 2011)
ensures that the rich set of analysis and diagnostic tools and post-imputation functions
available in mice can be used easily, once the data have been imputed.

Keywords: hierarchical data, multiple imputation, multilevel models, measurement error,
heaping, R.

1. Introduction

Forty years after Donald Rubin’s seminal paper (Rubin 1978) which introduced the concept
of multiple imputation, the approach has been shown to be useful in many contexts going far

https://doi.org/10.18637/jss.v095.i09

2 hmi: Hierarchical Multiple Imputation in R

beyond the classical item nonresponse in cross-sectional surveys for which it was originally
proposed (Reiter and Raghunathan 2007). Today, multiple imputation is used to address
confidentiality concerns by disseminating synthetic data instead of the original data (Drechsler
2011), concatenate files from different data sources (Rubin 1986; Rässler 2003; Reiter 2012),
address measurement error in self-reported health information (Schenker, Raghunathan, and
Bondarenko 2010), handle changes in the coding of variables in longitudinal studies (Clogg,
Rubin, Schenker, Schultz, and Weidman 1991; Schenker 2003), or impute plausible values
for coarse data (Taylor, Schwartz, and Detels 1986; Heitjan and Rubin 1990; Raghunathan,
Lepkowski, Van Hoewyk, and Solenberger 2001). As discussed in Heitjan and Rubin (1991)
coarse data are data for which the true values are not observed in a precise way. This
includes missing data as a special case, but also rounding, grouping, censoring and interval
data. Examples of applications of multiple imputation for coarse data include Gartner and
Rässler (2005); Jenkins, Burkhauser, Feng, and Larrimore (2011), and Drechsler, Kiesl, and
Speidel (2015). Another prominent extension of classical multiple imputation approaches,
which we also address in this paper, is dealing with nonresponse in hierarchical data sets (see,
for example, Carpenter and Kenward 2013, Chapter 9), that is, data sets in which individual
records are nested within groups, for example, students in the same class or repeated measures
of the same individual.
While classical imputation methodology as discussed for example in Rubin (1987) or Van
Buuren (2018) is sufficient for some of these applications, adjusted methodology is required
for others. However, although all major statistical software packages such as SPSS (IBM
Corp 2017), Stata (StataCorp 2017), SAS (SAS Institute Inc 2013), or R (R Core Team 2020)
offer multiple imputation routines today, the available methodology is typically limited to
the classical methodology for cross-sectional surveys. Some software also provides methods
for dealing with hierarchical data structures, but as we will illustrate in Section 2.6, current
implementations are limited in scope. With the exception of the recently implemented soft-
ware package synthpop (Nowok, Raab, and Dibben 2016) which was specifically developed for
generating synthetic data sets for disclosure protection, no software exists to our knowledge
for applications such as the coarse data problem discussed above, which require modifications
of the traditional multiple imputation framework.
The R package hmi (Speidel, Drechsler, and Jolani 2020) closes some of the gaps of currently
available software by offering four important contributions:

1. It offers imputation routines for hierarchical data using multilevel (mixed-effects) models
for all variable types based on the sequential regression approach, which unlike the joint
modeling approach can also handle item nonresponse if random slope models need to
be estimated (see Section 2.4 for details).

2. It provides routines for dealing with rounding in reported values based on the method-
ology proposed in Heitjan and Rubin (1991).

3. It offers routines for imputing plausible values if it is only known (for some of the
observations) that the exact value lies in certain intervals, for example if the data are
censored. Currently, such imputation routines are only available in Stata.

4. It allows to deal with item nonresponse, interval information and rounding within the
same variable simultaneously following the approach described in Drechsler et al. (2015).

Journal of Statistical Software 3

Imputation routines for R Stata SAS
Continuous variables in hierarchical settings X X
Count variables in hierarchical settings X
Binary variables in hierarchical settings X
Unordered categorical variables in hierarchical settings
Ordered categorical variables in hierarchical settings (X)a

Semi-continuous variables in cross-sectional settings X
Semi-continuous variables in hierarchical settings
Interval data X
Dealing with rounding

Table 1: Imputation routines offered in the package hmi and availability in other software.
aOrdered categorical variables can be imputed in miceadds (Robitzsch et al. 2020) using
predictive mean matching based on a hierarchical linear model.

The package also offers imputation tools for “classical” missing data problems by calling im-
putation routines available in the popular multiple imputation package mice (Van Buuren
and Groothuis-Oudshoorn 2011). Since the objects generated using hmi are structured sim-
ilar to objects generated using mice (both are ‘mids’ objects), the rich set of analysis and
diagnostic tools and post-imputation functions available in mice can be used easily once the
data have been imputed. Furthermore, the package provides imputation routines for semi-
continuous variables, that is, variables which have a spike at one value (typically zero), but
can be considered continuous otherwise. These imputation routines are available in several
software packages, but are currently not offered in mice. Table 1 summarizes the different
imputation routines offered in hmi in addition to the classical routines also available in mice
and indicates whether these routines are available in other commonly used software (SPSS
is excluded from the list, as it currently does not offer any of these routines). Note that the
different routines which are already available in R are distributed across different packages
which are not always compatible to each other.
To facilitate the use of the package for less experienced users, the selection of suitable im-
putation models is highly automated, that is, the user only needs to provide the data. The
package will identify the most appropriate imputation models for each variable with missing
values using decision rules described in Section 5 of this paper. Additionally, users can specify
the substantive model they want to run on the imputed data set. In this case hmi will use the
same set of predictors and the same functional form as the substantive model for all imputa-
tion models in an effort to make the congeniality assumption more plausible. As discussed in
Meng (1994), congeniality between the imputation model and the substantive model is impor-
tant to avoid biased inferences based on the imputed data. We illustrate in Section 2.3 that
specifying the substantive model is especially important if multilevel models will be fitted at
the analysis stage since this will ensure that the hierarchical structure of the data will also be
taken into account at the imputation stage. The package is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=hmi.
The remainder of the paper discusses the main contributions of the package and provides
detailed illustrations on how the package can be used. Specifically, Sections 2 to 4 address
multiple imputation for hierarchical, interval and rounded data. Each section starts by il-

https://CRAN.R-project.org/package=hmi

4 hmi: Hierarchical Multiple Imputation in R

lustrating the inferential problems caused by the various data deficiencies followed by a brief
review of the required multiple imputation methodology for addressing the said problem.
Limitations of currently available software and our contributions are also discussed. Section 5
describes the hmi package in detail: all mandatory and optional arguments, the internal
checks, the handling of the model formula, the types of supported variables, and the imple-
mented convergence checks will be presented. In Section 6 we provide real data applications
to illustrate the implementation of the different features of the package. We end with a
conclusion.

2. Multiple imputation for hierarchical data sets
In hierarchical settings, the assumption of independent observations, needed for the classical
linear regression model, does not hold since records belonging to the same group tend to be
more homogeneous than records belonging to different groups. To account for these cluster
effects, multilevel models (also referred to as random effects or mixed effects models depending
on the field of study) are often employed. In the following, we provide a brief summary of the
methodology behind multilevel modeling starting with multilevel linear models for continuous
variables. Then, we discuss extensions to multilevel generalized linear models for any variable
type from the exponential family. A more detailed introduction can be found in any textbook
on multilevel modeling, for example, in Raudenbush and Bryk (2002). The brief overview will
form the basis for our discussion of appropriate imputation strategies for hierarchical data
and details about their implementation and available software in Sections 2.3 to 2.7.

2.1. Multilevel linear models

Paraphrasing from Speidel, Drechsler, and Sakshaug (2018), multilevel linear models assume
a linear relationship between the continuous target variable Y and some covariates X and Z.
The effect of X on Y is governed by some global fixed effects β; the effect of Z on Y by some
cluster specific random effects γ. Often Z is a subset of X, meaning that variables that are
assumed to have a random effect are also included as fixed effect variables in the model.
The standard multilevel model has the form

yij = xijβ + zijγj + εij ,

γj ∼ N(0, Σ),
εij ∼ N(0, σ2),

(1)

with j = 1, . . . , J being the index for the clusters, i = 1, . . . , nj being the index for the
units belonging to cluster j, and nj being the number of observations in cluster j. The
parameter β contains the global fixed effects, similar to the regression coefficients in classical
linear regression models. The parameters γj are the cluster specific random effects, which are
assumed to follow a normal distribution with zero mean vector and variance matrix Σ. These
random effects and the normality assumption for them is a key difference to the classical
linear regression model. The parameter εij is the error term which is normally distributed
with zero mean and variance σ2, which is constant for all clusters.
Multilevel linear models can be generalized to more than two levels and residual variances
being heteroscedastic across the clusters. Since hmi can only handle two levels of hierarchy

Journal of Statistical Software 5

and homoscedastic residuals at the moment, we do not cover these extensions here. The
interested reader is referred to Raudenbush and Bryk (2002) or Snijders and Bosker (2011)
for more details on these topics.

2.2. Multilevel generalized linear models

The step from multilevel linear models to multilevel generalized linear models (mglm) is
analogous to the step from classical linear models to generalized linear models (glm). Both
enable model estimation for variables from the exponential family using a linear predictor l
and a link function f such that E(Y) = µ = f−1(l). The major difference between mglm and
glm is that the linear predictor in mglm also has random effect variables Z with regression
coefficients γ = {γ1, . . . , γJ} leading to l = Xβ + Zγ + ε. These random effects and their
covariance matrix Σ also have to be considered when estimating the model.
The link function is defined according to the type of variable that is modeled. For example
for continuous variables the identity link is used and for count data the log-link. In general
no closed form solution for the parameter estimates exist, so Markov chain Monte Carlo
(MCMC) methods or other iterative procedures are required for estimation (Gelman and Hill
2006; Hadfield 2010).

2.3. Dealing with missing values in hierarchical data

Hierarchical data are not spared from nonresponse and multiple imputation can be a con-
venient strategy to address this problem. Several researchers have shown that ignoring the
hierarchical structure at the imputation stage will lead to biased inferences when analyzing the
data (Reiter, Raghunathan, and Kinney 2006; Van Buuren 2011; Enders, Mistler, and Keller
2016; Zhou, Elliott, and Raghunathan 2016; Lüdtke, Robitzsch, and Grund 2017). Further-
more, accounting for the clustering by adding indicator variables for the clusters (fixed effects
modeling) will still introduce bias if the analysis is based on a multilevel model (Taljaard,
Donner, and Klar 2008; Andridge 2011; Drechsler 2015; Speidel et al. 2018). To avoid this
bias due to uncongeniality between the imputation and the analysis model, all manuscripts
suggest using multilevel models also at the imputation stage.

2.4. Multiple imputation using multilevel models

With multiple imputation missing values are imputed multiple times (M ≥ 2 times) to be able
to take the uncertainty from imputation into account. The imputed values are random draws
from the distribution of the missing data given the observed data. Let D = {Dobs, Dmis}
denote the data D separated into an observed part (Dobs) and a missing part (Dmis) and let
θ contain the parameters which govern the distribution of D. To obtain approximate draws
from f(Dmis | Dobs) multiple imputation repeatedly applies the following two steps:

1. Draw a new set of parameters θ? from their posterior distribution given the observed
data: f(θ | Dobs).

2. Draw replacements for the missing values from the predictive distribution of the miss-
ing data given the observed data and the drawn parameters from the previous step:
f(Dmis | θ?, Dobs).

6 hmi: Hierarchical Multiple Imputation in R

Valid point and variance estimates based on the imputed data can be obtained using the
generic inferential procedures first described in Rubin (1978). For further details regarding
the general properties of multiple imputation we refer to any textbook on multiple imputation,
for example, Rubin (1987), Van Buuren (2018), or Carpenter and Kenward (2013).
As pointed out above, if the model to be estimated on the imputed data is a multilevel model, a
similar model specification should be used at the imputation stage to ensure unbiased results.
Thus, for continuous variables the imputation model should follow the model specification
given in Equation 1 and the two generic multiple imputation steps described above consist of
the following two steps:

1. Draw a new set of parameters θ? = {β?, γ?, Σ?, (σ?)2} from their posterior distribution.

2. Generate imputed values by drawing from

yimp
ij = ximp

ij β? + zimp
ij γ?

j + εij
? ε?

ij ∼ N(0, (σ?)2),
where the superscript imp identifies all records for which Y is imputed. Unlike in the classical
linear regression case, no closed form solutions exist for the posterior distribution of the
parameters. Thus, Markov chain Monte Carlo methods or other approximations (Jolani 2018)
are generally required to update the parameters. We refrain from providing the details of the
iterative procedure here for brevity. The interested reader is referred to Goldstein (2011) for
a detailed description of Gibbs sampling methods for hierarchical data and to Carpenter and
Kenward (2013, Chapter 9) and Drechsler (2015) for applications in the missing data context.

2.5. Joint modeling vs. sequential regression for multilevel imputation

Two general strategies exist for imputing missing values if more than one variable is affected
by nonresponse: joint modeling and sequential regression. The joint modeling approach
specifies a joint distribution for all variables with missing data (potentially conditioning on
fully observed variables) and draws imputed values based on this distribution. For example,
if all variables to be imputed are continuous, a multivariate normal distribution is typically
specified for those variables affected by nonresponse. The joint modeling approach can also
be extended to account for hierarchical data structures (see Carpenter and Kenward 2013,
Chapter 9 for details). A major drawback of the approach in the multilevel context is that
it cannot be used if missingness also occurs in the random slope variable(s) (Carpenter and
Kenward 2013; Enders et al. 2016). Furthermore, the specification of a joint distribution can
be difficult, if different variable types need to be modeled.
The sequential regression approach (also known as chained equations or fully conditional
specification) does not require modeling the joint distribution directly. Instead, conditional
distributions are specified for each variable to be imputed. The variables are imputed sequen-
tially, conditioning on the other variables in the data set. However, some of the predictors in
the imputation model might themselves contain imputed values. Thus, the model estimates
will change if these imputed values are updated. To account for this, the procedure of se-
quentially imputing each variable has to be repeated several times, until the draws from the
conditional distribution converge to draws from the implicitly specified joint distribution (see
Raghunathan et al. 2001 for further details on the sequential regression approach).
A downside of the approach is that convergence is only guaranteed if this joint distribution
exists. However, Liu, Gelman, Hill, Su, and Kropko (2014) and Zhu and Raghunathan (2015)

Journal of Statistical Software 7

show that the joint distribution will exist under rather general conditions and even if this
is not the case, inferences based on the imputed data will still be consistent as long as the
conditional distributions are correctly specified.

2.6. Existing imputation routines for multilevel data and their limitations

To our knowledge the only R packages allowing hierarchical multiple imputation are jomo
(Quartagno and Carpenter 2020), mice (Van Buuren and Groothuis-Oudshoorn 2011), micemd
(Audigier and Resche-Rigon 2019), miceadds (Robitzsch et al. 2020) and pan (Schafer 2018).
Currently, mice is limited to continuous variables for hierarchical settings and cannot impute
other variable types using a multilevel model. micemd also provides multilevel imputation
functions for binary and integer variables, but not for categorical variables with more than
two categories. Similar to micemd, miceadds offers parametric hierarchical imputation rou-
tines for continuous and binary variables. In addition, ordered categorical variables can be
imputed using predictive mean matching in a hierarchical context. Again, no imputation
routines are offered for unordered categorical variables with more than two categories. A
downside of jomo and pan is the fact that they rely on the joint modeling approach, with the
drawbacks mentioned in the previous section.
Imputation routines based on multilevel models have also been developed for other statistical
software packages: For SAS the external macro MMI_IMPUTE (Mistler 2013) can be used.
Mplus (Asparouhov and Muthén 2010) and the standalone software REALCOM-IMPUTE
(Carpenter, Goldstein, and Kenward 2011) also offer some multilevel multiple imputation
routines. All of these imputation routines also use the joint modeling approach. To our
knowledge, the only other software allowing multilevel imputation based on the more flexible
sequential regression approach is the recently released standalone software blimp (Enders,
Keller, and Levy 2018).

2.7. Our contribution for the imputation of hierarchical data

As mentioned in the introduction, hmi is designed to provide multilevel imputation routines
for many relevant variable types, including semi-continuous variables based on the flexible
sequential regression approach. Furthermore, it also offers single level models for all types of
variables, for situations where a multilevel model is not applicable.
If an analysis model is specified, the package will automatically use the same set of predictors
and the same functional form as the substantive model for all imputation models to avoid
introducing bias in the analysis, because relationships which are important to the analyst are
not reflected in the imputation models. If no analysis model is given, all variables are imputed
using single level models by default. However, if desired, the user can manually specify which
imputation models should be used for each variable.
For single level imputation, the package relies on the imputation routines implemented in
mice. Own code is used for all multilevel imputation routines. The draws from the posterior
distribution of the parameters of the multilevel models are obtained using MCMC methods
implemented in the MCMCglmm package (Hadfield 2010).
If multilevel imputations are employed, the package also stores the model parameters at
each iteration of the MCMC chains, to enable the users to monitor the convergence of the
chains. Users can either extract this information to run their own convergence diagnostics

8 hmi: Hierarchical Multiple Imputation in R

or they can rely on the checks implemented in the package. Per default the package runs
Geweke’s stationarity test (Geweke 1992) on each chain, plots those chains that failed the
test and provides some summary information on the number of chains which failed the test
(see Section 5.8 for details).

3. Multiple imputation for interval data
Interval data (sometimes called bracketed response) comprise all data for which an interval
covering the true value is given instead of the exact value. According to this definition both,
grouped and censored data can be treated as interval data. With grouped data, a set of
precise observations is grouped into a single response group. For example in cancer research
the number of positive lymph nodes might only be collected in categories 0, 1–3, 4–9 and
10+ (Royston 2007) or age might only be reported in five year intervals for confidentiality
reasons. Grouped data can also arise if surveys aim to maximize response rates for sensitive
or difficult questions. For example, in the Survey of Consumer Finances range cards are
shown to respondents who refuse to provide information regarding their exact income, asking
them to pick one of the ranges depicted (e.g., 0–5,000 $) or to pick a category following a
decision tree (Kennickell 1991). A similar procedure is implemented in the National Health
Interview Survey, where initial nonresponders to the question regarding the yearly income
are asked whether their income is above or below 20, 000 dollar and in a next step a range
card with 44 income categories is shown (Schenker, Raghunathan, Chiu, Makuc, Zhang,
and Cohen 2006). The German panel study Labor Market and Social Security (PASS) also
asks initial nonresponders consecutive questions about intervals covering the true income
(Trappmann, Gundert, Wenzig, and Gebhardt 2010). These approaches help to collect at
least some information for respondents initially refusing to provide an answer (Drechsler
et al. 2015) or selecting “don’t know” for the exact income question (Kennickell 1996).
Censoring refers to the situation in which values above (or below) a given threshold are not
observed. The only information available is that the true value must be above (or below)
the known threshold. Censoring from the left typically arises in situations in which technical
equipment will not detect the measure of interest if its concentration is below a certain limit.
For example, in the study presented in Pilcher et al. (2007), the concentration of human
immunodeficiency viruses (HIV) in human blood is only measurable once it is above a given
threshold of detection. Censoring from the right often occurs in public use files, in which
top coding is applied to reduce the risk of re-identification. This is for example done in the
US-American Current Population Survey (Larrimore, Burkhauser, Feng, and Zayatz 2008).
An example of right censoring in biology is the time to seed germination as the time it takes
for a seed to germinate can be longer than the duration of the study (Scott and Jones 1990).

3.1. Analyzing interval data

Obtaining valid point and variance estimates can be complex, if only interval information is
available for (parts of) some of the variables. The most common strategy is to adjust the
likelihood accordingly. For example, in linear regression models, the well known tobit model
(Tobin 1958) can be used to account for censoring in the dependent variable. This approach
can easily be extended to other forms of interval data but iterative procedures are typically
required to find the maximum likelihood estimates in this case. Since most software packages

Journal of Statistical Software 9

do not offer routines for dealing with interval data beyond the tobit model, some applied
researchers rely on naïve approaches for analyzing the interval data: A common approach is
to ignore the interval information completely, using only those observations for which exact
information is observed. This approach is always inefficient, since available information is not
used. It can also introduce bias, if those units that only provide interval information differ
form those units which provide exact information. In fact, Heeringa, Little, and Raghunathan
(1997) showed that the tendency to only report intervals for income increases with income.
Thus, results solely based on the exact reports are likely to be biased.
To simplify the analysis for applied researchers, imputation approaches can be used to generate
plausible values given the interval information. This offers the advantage that the analysts
no longer need to find appropriate ways for incorporating the interval information. They can
rely on standard analysis models using the plausible values for inference. However, just like
in the standard nonresponse context, care needs to be taken to ensure that unbiased results
can be obtained from the imputed data.
For example, a naïve imputation approach which is sometimes applied in practice uses the
midpoint or the upper bound of each reported interval as the imputed value (Law and Brook-
meyer 1992; Dorey, Little, and Schenker 1993). The data are then analyzed treating the
imputed values as the true exact values. These approaches will yield valid standard errors
in very limited settings since they will generally underestimate the variance in the imputed
data (Law and Brookmeyer 1992; Kim and Xue 2002).
To fully account for the uncertainty resulting from the fact that only intervals instead of exact
values are observed initially, multiple imputation approaches are required which generate
imputations by drawing from the conditional distribution of the exact values given the interval
information (and additional information from other variables available in the data set).
Imputation approaches have been used for several data sets to facilitate the analysis for the
user. For example, since 1995 the Survey of Consumer Finances generates imputed income
values by drawing from truncated normal distributions using the bounds of the reported
intervals as truncation points.
An application of the joint modeling approach for imputation of interval data is discussed in
Heeringa (1993). The author imputed interval and missing data in the Health and Retirement
Survey using the general location model. One major disadvantage of the general location
model is that the multivariate normal distribution needs to be estimated for each cell of the
table spanned by cross-classifying all categorical variables. Thus, the approach can only be
used if the number of categorical variables is very limited to ensure a sufficient number of
observations for estimating the normal distribution within each cell. A second problem can
be sparse cells in the interval variable, making the imputation model unreliable. The author
noticed this problem especially for the largest income category which typically included only
few, very wealthy individuals. The true income distribution in this category also might be
very skewed, violating the normality assumption.
For settings with ordered income categories affected by item nonresponse, Bhat (1994) pro-
posed an imputation method modeling the income distribution and the response probabilities
jointly using a selection modeling approach.
Raghunathan et al. (2001) described a general sequential regression approach for interval data.
Plausible values are generated by drawing from truncated normal distributions. The parame-
ters for the model are estimated using those observations for which an exact value is available.

10 hmi: Hierarchical Multiple Imputation in R

New parameters for the truncated normal model are drawn using sampling/importance re-
sampling (SIR, Rubin 1988). This approach is also implemented in the multiple imputation
software IVEware (Raghunathan, Solenberger, Berglund, and Van Hoewyk 2016). The soft-
ware was also used to impute plausible values for interval answers in the National Health
Interview Survey (Schenker et al. 2006).
Royston (2007) implemented an imputation model for interval data for Stata. He extended
the approach of Raghunathan et al. (2001) by also using the information from the respondents
that only provided an interval when estimating the parameters of the imputation model. To
obtain parameter estimates the joint likelihood of the income of the exact reporters and
the income of the interval reporters is maximized under the implicit assumption that the
conditional distribution of the true income given the covariates in the model is the same for
both groups. Instead of using SIR, draws from the posterior distribution of the parameters are
only approximated by drawing from a multivariate normal distribution centered around the
maximum likelihood estimates of the parameters. Compared to the approach of Raghunathan
et al. (2001) this strategy offers the advantage that it uses all available information and that
it can also be used if only interval information is available.
A similar approach was later used by Drechsler et al. (2015) for simultaneous imputation
of interval, rounded, and missing data. For interval data without rounding, the approach
simplifies to the method described by Royston (2007) and is separately implemented in hmi.
Several (multiple) imputation approaches have also been proposed for the special case of
survival data (Taylor et al. 1986; Muñoz et al. 1989; Taylor, Muñoz, Bass, Saah, Chmiel, and
Kingsley 1990; Dorey et al. 1993). In survival analysis censoring is a common problem since
for those units that entered a certain state of interest (for example unemployment) previous
to the start of the study or are still in that state at the time the study is terminated, the true
time of entry or exit is unknown. Imputation routines for survival data differ systematically
from the imputation routines for interval data in other data sets since survival models need to
be used for imputation to ensure congeniality between the imputation and the analysis model.
Multiple imputation routines for this special type of data are implemented in the R package
icenReg (Anderson-Bergman 2017). Imputations in icenReg can be based on proportional
hazards, proportional odds or accelerated failure time models. Since icenReg already provides
a convenient tool for dealing with survival data, we did not implement these routines in hmi
and we limit the description of the imputation methodology in the next section to applications
outside the survival analysis context. The interested reader is referred to Grover and Gupta
(2015) or Anderson-Bergman (2017) for details regarding imputation routines for survival
data.

3.2. Multiple imputation methodology for interval data

Let y = {y1, . . . , yn} be the realizations of the variable of interest – possibly transformed to
fulfill the normality assumption of linear regression models – for which only interval informa-
tion is available for some or all of the n observations in the data. Let x = {x1, . . . , xn} be the
realizations of any other variables X available in the data set which might help to predict the
values of y. We assume that

Y |X ∼ N(Xβ, σ2).

If exact values would be observed for all records, the likelihood of the model parameters would

Journal of Statistical Software 11

be
L(β, σ2|y, x) =

n∏
i=1

f
(
yi|µi = x>i β, σ

2
)

with f being the density of a normal distribution.
If only interval information is available for some of the respondents, we need to introduce some
additional notation. Let Ii be an indicator function that equals zero if exact information is
available and equals one if only interval information is available for individual i (the interval
information includes missing data as a special case with interval bounds −∞ and +∞). Let
yi and yi be the lower and upper bound of the interval for unit i. The extended likelihood
that also takes the interval information into account is given by

L(β, σ2|y, x) =
n∏

i=1

(
(1− Ii)f(yi|x>i β, σ2) + Ii

[
F (yi|x>i β, σ2)− F (yi|x>i β, σ2)

])
,

with F being the cumulative distribution function of the normal distribution. Maximizing this
likelihood will provide estimates for the parameters θ = {β, σ2}. To approximate a draw from
the posterior distribution of f(θ|y, x) under the assumption of flat priors for all parameters,
we can draw from

θ? ∼ MVN (θ̂, I(θ̂)),

where θ̂ contains the maximum likelihood estimates of θ, and I(θ̂) is the negative inverse of
the Hessian matrix of the log-likelihood with θ̂ plugged in.
Plausible values for interval respondents can be imputed by drawing from a truncated normal
distribution Nt(µ, σ2) with µ = x>β?, σ2 = (σ?)2, where β? and (σ?)2 are the parameters
drawn form the approximate posterior distribution as described above. The truncation points
are given by the bounds of the reported interval. Imputations for those respondents that
refused to provide any information are obtained by drawing from a normal distribution with
parameters µ = x>β? and σ2 = (σ?)2.

3.3. Our contribution for the imputation of interval data

To our knowledge, imputation routines for interval data following the procedures described
above are currently only available in Stata. For the special case of survival data imputation
routines following a completely different methodology are available in the R package icenReg
by Anderson-Bergman (2017). The hmi package is the first R package to offer general impu-
tation routines for interval data beyond the survival data context. The package also provides
a new solution for storing information on lower and upper bounds of the interval information
in one variable together with a set of functions for handling interval data.
The idea is to store the bounds in a character variable separated by a semicolon. Such an
interval object can be generated using generate_interval or split into its lower and upper
bounds by split_interval. See Section 5.5 for details and Section 6.2 for examples.

4. Multiple imputation for data affected by heaping
Another form of coarse data are data for which the reported values are implicitly rounded.
The rounding can either be identical for all individuals (for example if individuals round

12 hmi: Hierarchical Multiple Imputation in R

Income divisible by 1,000 500 100 50 10 5
Relative frequency (%) 13.97 23.94 61.57 69.58 80.71 84.13

Table 2: Percentage of reported monthly household income values that are divisible by a
given round number in the PASS survey for the year 2008/2009.

off their age), or subject to different rounding degrees. Many individuals rounding to the
same value lead to heaps in the empirical distribution of the data. Therefore, this form of
rounding with unknown rounding degrees is often referred to as heaping in the literature. It
typically occurs, if the respondent is unwilling or unable to provide an exact value and instead
reports a value which is a multiple of some common rounding base to implicitly express their
uncertainty regarding the estimate. In many cases, multiples of 10, 100, or 1,000 are used. In
other situations, the respondent uses a higher level of aggregation (such as years instead of
months or weeks instead of days) for the estimate. For example, Heitjan and Rubin (1990)
studied reported ages for young children in Tanzania and noted several heaps at certain
values, such as 6 or 12 months. Huttenlocher, Hedges, and Bradburn (1990) found heaps at
multiples of seven for questions which asked how many days ago an event took place. Wang
and Heitjan (2008) identified several heaps at multiples of 20 in questions regarding cigarette
consumption because the common pack of cigarettes contains 20 cigarettes.
Table 2 taken from Drechsler et al. (2015) illustrates the problem using reported monthly
household income in the German panel study Labor Market and Social Security (PASS;
Trappmann et al. 2010) for the year 2008/2009. The table provides the percentage of the re-
ported monthly income values that are divisible by a given round number. It seems that most
respondents tend to round their income. More than 60% of the reported values are divisible
by 100 and less than 16% of the values are not divisible by 5. Czajka and Denmead (2008)
report similar problems for the American Community Survey and the Current Population
Survey.
The major problem with heaping is that inferences will be biased if the reported values are
treated as face value (Hanisch 2005). For example, Drechsler and Kiesl (2016) illustrate that
important policy measures such as the poverty rate can be substantially biased if heaping in
the reported income is not taken into account.

4.1. Analyzing rounded data

Starting with Sheppard (1898) several methods have been proposed to account for rounding
at the analysis stage (see for example Hanisch 2005 or Schneeweiss, Komlos, and Ahmad 2010
for a review). However, most of the rounding literature assumes symmetric rounding intervals
that can be derived directly from the reported value. For example, if distance is reported in
kilometers, it is assumed that the true distance must be in the interval “reported distance
± 500 meters”. However, this does not generally hold for heaping. As illustrated below, the
rounding interval can not be inferred directly with data affected by heaping.
Instead of accounting for the rounding at the analysis stage multiple imputation methodology
can be used to account for the rounding at the data processing stage. A multiple imputation
strategy to obtain plausible values for the true values based on the reported values accounting
for the uncertainty from rounding was first proposed by Heitjan and Rubin (1990) for age
data affected by heaping. Related approaches were later used for self-reported cigarette counts

Journal of Statistical Software 13

(Wang and Heitjan 2008), rounded unemployment durations (Van der Laan and Kuijvenhoven
2011) and self-reported income (Drechsler et al. 2015; Drechsler and Kiesl 2016; Zinn and
Würbach 2016).

4.2. Multiple imputation methodology for data affected by heaping

There is an important difference between interval observations treated in Section 3 and
rounded observations: With interval observations the interval in which the true value must
lie is known. This is not the case for rounded observations. For example, if the reported
income is 1,800, we do not know whether this is the exact true value, or if the true value has
been rounded to the closest 5, 10, 50, or 100. To account for this uncertainty, we also need
to model the rounding process.
The methodology presented in this section is based on the ideas first discussed in Heitjan and
Rubin (1990). We summarize the main ideas of the approach here borrowing heavily from
Drechsler and Kiesl (2016). We refer to this paper or Heitjan and Rubin (1990) for further
details.
To be able to account for the heaping in a variable, two models need to be specified: one
model for the variable of interest and one model for the rounding behavior. Let Y be the
variable of interest. Similar to Section 3 we assume that the conditional distribution of Y
given some covariates X is given as

Y |X ∼ N(Xβ, σ2).

To model the rounding behavior, an ordered probit model can be specified, i.e., a normally dis-
tributed latent variable G is assumed which may (linearly) depend on Y and some covariates
Z (where some or all components of Z might be in X and vice versa):

G|Y,Z ∼ N(γ0 + Y γ1 + Zγ2, τ
2). (2)

The thresholds of the ordered probit model separate the different degrees of rounding. For
example, if the assumed possible degrees of rounding are 1, 10, 50, and 100, an ordered probit
model with four categories would be estimated.
Based on these model assumptions, the joint distribution of Y and G can be specified. The set
of parameters to be estimated is given by Ψ = (β, σ2, γ1, γ2, k1, . . . , kp−1), where k1, . . . , kp−1
denote the thresholds of the probit model assuming p possible degrees of rounding (note
that γ0 is fixed at 0 and τ2 at 1 to make the ordered probit model identifiable). For each
individual i, i = 1, . . . , n, with n being the sample size, let si denote the rounded value which
is observed instead of the true yi, and s = (s1, . . . , sn). The likelihood function for Ψ given
si and covariates xi, zi (assuming independent observations) may then be written as

L(Ψ|s, x, z) =
n∏

i=1
f(si|xi, zi,Ψ)

∝
n∏

i=1

∫∫
A(si)

f(g, y|xi, zi,Ψ)dydg,
(3)

where A(si) is the set of (g, y) that are consistent with an observed si. The parameter vector
Ψ can be estimated by maximizing L(Ψ|s, x, z) using numerical methods.

14 hmi: Hierarchical Multiple Imputation in R

To generate imputations of Y , the first imputation step (drawing a new set of parameters
from their joint posterior distribution) can again be approximated by drawing from

Ψ? ∼ MVN (Ψ̂, I(Ψ̂)), (4)

where Ψ̂ contains the maximum likelihood estimates of Ψ, and I(Ψ̂) is the negative inverse
of the Hessian matrix of the log-likelihood with Ψ̂ plugged in.
For the second imputation step (generating imputed values for Y) a simple rejection sampling
approach is implemented:

1. Draw candidate values for (yimp
i , gi) from a truncated bivariate normal distribution using

parameters from Ψ?, where the truncation points are given by the maximal possible
degree of rounding given the observed value si (for example, for an observed income
value 850 with possible degrees of rounding 1, 10, 50, 100, and 1,000, yi is bounded by
825 and 875 and gi has to be in]−∞, k?

3[).

2. Accept the drawn values for yi as imputation value if they are consistent with the
observed rounded value, i.e., when rounding the drawn value for yi according to the
drawn rounding indicator gi gives the observed value si.

3. Otherwise draw again.

4.3. Our contribution for the imputation of data affected by heaping

The R package simPop (Templ, Meindl, Kowarik, and Dupriez 2017) provides a function for
generating plausible values if heaps only occur at multiples of 5 or 10. However, no other
rounding degrees can be considered and no covariates can be incorporated into the imputation
model. hmi provides a more general imputation routine for variables affected by heaping
following the methodology presented above. With hmi flexible degrees of rounding can be
specified and covariates can be incorporated in both, the model for the rounding process and
the imputation model. The package will declare variables to be affected by heaping if certain
criteria are met, but it is also possible for the user to manually decide, which variables are
affected. For details how to register variables accordingly see Section 5.1 and the Rounded
continuous variables paragraph in Section 5.5.
It is also possible to use hmi for dealing with situations in which missing observations, interval
observations and rounded observations occur simultaneously. This will typically be the case
for surveys asking for income or other sensitive questions. Since nonresponse to the income
question tends to be high, it is common practice to ask respondents whether their income
lies in certain intervals if they are unwilling or unable to provide exact income values. In this
situation three potential outcomes are possible: The respondent remains unwilling to provide
any information at all and thus the income value is missing. Alternatively, the respondent
might not provide an exact value but might be willing to indicate an interval in which their
income lies. Finally, the respondent might report a supposedly exact value, which considering
Table 2 will still be a rounded estimate of the true income in many cases. To deal with such
a situation the likelihood function in Equation 3 needs to be extended to also account for the

Journal of Statistical Software 15

interval information:

L(Ψ|s, x, z) ∝
n∏

i=1

{
(1− Ii)

∫∫
A(si)

f(g, y|xi, zi,Ψ)dydg+

Ii

[
F (yi|µi = x>i β, σ

2)− F (y
i
|µi = x>i β, σ

2)
]}
.

(5)

Imputed values for the interval data can be obtained by drawing from a truncated distribution
as described in Section 3. See Drechsler et al. (2015) for an application and for further details
regarding the imputation procedure. To our knowledge, hmi is the only imputation routine
which is able to simultaneously impute rounded, missing and interval observations.

5. Software
The main function of the package hmi is the wrapper function called hmi. It performs all
input checks, data preparations, and calls of different imputation functions depending on the
type of variable to be imputed. It also generates the output. In the simplest case the user just
passes their data to hmi. In this case all variables with missing values are imputed based on a
single level imputation model including all other variables in data as predictors. Under this
scenario, the package works similar to other multiple imputation packages in R such as mice
or mi (Su, Gelman, Hill, and Yajima 2011). The full flexibility of the package is unleashed,
if the user additionally passes their (multilevel) analysis model to hmi and/or makes further
specifications.

5.1. Input

These are the arguments which can be specified with hmi:

• data: The (partially observed/rounded) data set specified as a ‘data.frame’. Data in
matrix format are converted into a ‘data.frame’. For multilevel imputation the data
have to be in the long format, meaning that observations belonging to the same cluster
have to be stacked in rows and a cluster indicator needs to be available. Data in the
wide format have to be converted to the long format using for example the packages
reshape2 (Wickham 2007) or tidyr (Wickham and Henry 2020) or the reshape function
available in base R.

• model_formula: This argument requires a formula representing the desired analysis
model which should be run once the data have been imputed. If model_formula is
specified, hmi will try to set up imputation models which are in line with this model. In
the multilevel case model_formula is used to identify fixed effects and random effects
covariates and the cluster indicator. See Section 5.3 for details.

• family: A ‘family’ object supported by glm (resp. glmer). This argument is not
needed during the imputation process, it only facilitates the automated calculation of
the final point and variance estimates (see Section 5.9) when the dependent variable
in model_formula is not continuous. For example, for count data the appropriate
call would be family = "poisson". Setting the family argument will ensure that

16 hmi: Hierarchical Multiple Imputation in R

the correct model is used when hmi calculates the appropriate multiple imputation
inferences for the specified analysis model.

• additional_variables: With this argument the user can specify variables (separated
by +, e.g., x8 + x9) which should be included in the imputation models beyond those
variables already included in the analysis model as specified in model_formula. Instead
of using additional_variables the user might extend the model_formula and run a
reduced analysis model with hmi_pool (or use the analysis tools provided by mice).

• list_of_types: If users are not satisfied with the automatic classification of the vari-
able types by hmi (see Section 5.5), they can specify a list containing their own classi-
fications. For example a user might want to treat a variable as continuous although it
was automatically identified to be count data (imputations would be based on a linear
regression model in this case instead of the Poisson model which is the default for count
data). The explicit specifications in list_of_types are binding for hmi and overrule
all other implicit specifications in any other argument. For example, only missing val-
ues will be imputed in a variable specified to be continuous even if rounding degrees
and/or a rounding formula are specified for this variable. To change this, the variable
would need to be explicitly specified as rounded continuous in list_of_types. The list
contains elements, named like the variables. Each element is a character containing one
keyword (e.g., list_of_types = list(x1 = "cont", x2 = "categorical")) to de-
note the imputation routine that should be used for this variable. See Section 5.5 for all
supported keywords and Section 5.6 for more explanations regarding the pre-definition
of the variable types and Section 6.1 for a real data example.

• m: The number of imputed data sets that should be generated. The default value is 5.

• maxit: Similar to mice, maxit defines the number of cycles of the sequential regression
imputation procedure that should be run before one imputed data set is stored (see also
Section 2.5). The default value is 10, unless only one variable needs to be imputed.
In this case the number of iterations is set to 1 as no updating of other variables is
required.

• nitt: An integer defining the number of iterations that should be used for the Gibbs
sampler whenever a variable is imputed using multilevel models based on the MCMC
routines implemented in the package MCMCglmm (Section 2.4). Higher values imply
a higher chance of convergence, but also increase the runtime of the imputation pro-
cess. Convergence can be checked after imputation using the function chaincheck (see
Section 5.8 for details). By default 22,000 iterations are run.

• burnin: An integer defining the number of MCMC draws of the MCMCglmm routines
to be discarded as burn-in. Higher values increase the chance of drawing values from a
chain that has converged, but burnin has to be strictly lower than nitt. Furthermore,
a sufficient number of draws (say 1,000) should remain after discarding the burn-in, in
order to be able to effectively test convergence of the chain after the imputation run.
The default value is 2,000.

• pvalue: By default hmi tries to include all variables as predictors in the imputation
model. This can lead to unstable parameter estimates if the number of predictors is

Journal of Statistical Software 17

large. As a consequence imputations can vary erratically, generating implausible im-
puted values way outside the observed range of values. A strategy to limit this problem
is to exclude insignificant variables from the imputation model via a variable selection
procedure (this strategy is also implemented in the multiple imputation software IVE-
ware). If specified, package hmi uses a backward selection procedure to identify the
final imputation model: In the first step a (multilevel generalized) linear model is es-
timated using all variables as predictors. In the next step a new regression model is
estimated such that the variable with the highest p value above pvalue is removed.
This is repeated until each variable included in the model has a p value smaller or equal
to pvalue or until only one variable remains in the model. Excluding insignificant vari-
ables stabilizes the imputation process in most situations, but will typically bias the
(conditional) correlation between imputed and excluded variables towards zero in any
analysis performed on the imputed data. Therefore we advise to use this option con-
servatively, that is, we recommend generating imputations using the default value (i.e.,
pvalue = 1, which means no variables are removed). Lower values – say, 0.5 or 0.2
– can be specified, if the imputations based on the default setting show unacceptably
large variances. We also note that variables are automatically removed if their effect
cannot be estimated, that is, if the estimated coefficient is NA.

• mn: Estimating cluster specific parameters based on very few observations can lead to
unstable estimates. As an ad hoc approach the user can specify a minimum number
(mn) of observations a cluster should contain. The smallest cluster with less than mn
observations will then be collapsed with the second smallest cluster until all clusters
have at least mn observations. As this approach violates the assumption of independent
normally distributed cluster effects and the individual effects of the collapsed clusters
will no longer be reflected in the imputed data, this approach should be used with
caution. The default value is 1, leading to no collapsing.

• k: Categorical variables with many categories can lead to unstable estimates since a large
number of dummy variables needs to be included in the imputation model and some
categories might be sparsely populated. To avoid such problems, k gives the maximum
number of categories a categorical variables is allowed to have when used as covariate in
an imputation model. Variables with more than k categories will be excluded from all
imputation models. By default the number is∞, leading to no removal. A less restrictive
solution to avoid unstable estimates is to prevent the inclusion of insignificant dummy
variables in the imputation model by setting an appropriate values for pvalue. In some
situation it could be acceptable to classify ordinal variables with many categories as
continuous in list_of_types.

• spike: This argument accepts a single numeric value or a list for which the names of
the list entries match the names of semi-continuous variables (variables which have a
spike at one value of the distribution but can be considered continuous otherwise). By
setting spike to be an integer, the user can specify at which value the spike(s) might
be found in the variable(s). In many cases, semi-continuous variables will have a spike
at zero, for example if a household survey asks for the taxes payed or a business survey
asks for the number of employees hired in the previous year. However, there could be
situations in which a spike occurs at a different value. For example, responses regard-
ing the monthly net income will typically have a spike at the social security transfer

18 hmi: Hierarchical Multiple Imputation in R

level. In cases of different spikes for different variables, the argument spike should be
a list. For example, if x2 has a spike at 0 and x7 has a spike at 416 (which is the mini-
mum amount of social security payments in Germany), the argument would need to be
specified as spike = list(x2 = 0, x7 = 416). The function list_of_spikes_maker
can be used to generate such a list with suggested spikes (returning the mode for all
variables for which more than 10% of the values are equal to the mode). This list can
be adopted according to the needs of the user and then passed to hmi via the spike
argument. If spike contains a list, the names in the list implicitly define which variables
should be treated as semi-continuous, that is, there is no need to additionally register
the variables as "semicont" in list_of_types. However, if a different variable type is
explicitly provided in list_of_types for a variable, the variable is treated according to
this type since explicit specifications in list_of_types dominate any implicit specifica-
tions through any of the other arguments. The Semi-continuous variables paragraph in
Section 5.5 describes the heuristic used to decide whether a variable should be treated
as semi-continuous if neither a numeric value nor a list is specified. It also provides
details how semi-continuous variables are imputed.

• rounding_degrees: If users want to generate plausible values for variables affected by
heaping following the methodology described in Section 4, they can specify the rounding
degrees which should be included in the model. The argument can either be a single nu-
meric vector or a list for which the names of the list entries match the names of the vari-
ables affected by heaping. In this case each element of the list contains a numeric vector
specifying the various rounding degrees. For example if the age of children is reported in
months, heaps might occur at multiples of 1, 6, or 12 while the monthly income might be
rounded to multiples of 1, 10, 100, or 1,000. To generate plausible values for both vari-
ables, the user would need to specify rounding_degrees = list(age = c(1, 6, 12),
income = c(1, 10, 100, 1000)). Function list_of_rounding_degrees_maker gen-
erates such a list with individually suggested rounding degrees for each variable found
to be affected by heaping. This list can be adapted by the user according to their
needs. See the Rounded continuous variables paragraph in Section 5.5 for details re-
garding when a variable is considered to be heaped and what rounding degrees are used
in which scenarios. In Section 6.3 a data example on imputing variables affected by
heaping is given.

• rounding_formula: For heaped continuous variables users can specify a formula for the
rounding process, that is, they can specify, which predictor variables should be included
in Equation 2. The standard formula notation should be used but no dependent variable
needs to be specified. To give an example, the formula specification could be ~ y + x2
+ x15, where y represents the variable affected by rounding and x2 and x15 are two
other variables from the data set. Again, the argument can either be a formula or a
list with element names identical to the names of the heaped variables. In the latter
case each list element must contain a formula for the rounding process. The function
list_of_rounding_formulas_maker generates such a list. This list can be adapted by
the user according to their needs. The default formula is ~ ., meaning that all variables
are included as main effects in the model for rounding. We note that maximizing the
likelihood in Equation 3 is tricky since the boundaries of the integrals also need to
be estimated. If the rounding model is too complex or if too many rounding degrees

Journal of Statistical Software 19

are specified, the iterative procedure for maximizing the likelihood might not converge.
The function hmi will issue a warning whenever the optimizer did not converge or when
the Hessian matrix of the maximum likelihood procedure cannot be inverted (which is
typically a strong indication of numerical problems of the estimation procedure). In such
cases, we generally recommend to either drop predictors from the rounding_formula
or discard some of the specified rounding_degrees.

• pool_with_mice: As long as pool_with_mice is set to be TRUE, which is the default, hmi
internally uses the functions from mice to obtain the final results for the analysis model
specified in model_formula (note that mice uses the term pooling whenever Rubin’s
combining rules are applied and we adopt this terminology here). The results are
returned as an additional attribute called pooling within the output object. The output
object generated by hmi differs from the output generated by mice in this case. This can
be avoided if pool_with_mice is set to FALSE. Currently, mice supports the automatic
calculation of the final inferences whenever the selected analysis routine provides the
attributes coef and vcov as part of the returned object (which is the case for many
standard regression function in R). A more flexible, but somewhat inconvenient function
for obtaining the final estimates is hmi_pool, which is delivered with the hmi package
(see Section 5.7 for details).

5.2. Checks and preparations

The package hmi runs several initial checks before starting with the actual imputation:

• All inputs are checked to ensure correct formatting (e.g., data should be set up as a
‘data.frame’, many other arguments must either contain a list or a vector of numeric
values, etc.). See ?hmi or the previous section for details on the argument specifications.

• If any of the variables included in data has more than 90% missing values, the program
asks the user whether they want to keep this variable or to quit the program to adjust
the data accordingly. In batch mode, the variable is kept and a warning is given.

• Variables which are completely missing will cause a warning; they do not contain any
information and will not be imputed.

• Observations with missing values for all variables will also cause a warning for the same
reasons.

• When observations have missing values in the cluster identifier (ID), the user is asked
whether the corresponding observations should be removed from the data set (recom-
mended), imputed using a categorical imputation routine, or whether the user wants to
exit the program. In batch mode, the records for which the cluster ID is missing are
removed and a warning is given.

• Variables included in model_formula which are not in data will cause an error. Note
that hmi currently only supports two levels of hierarchy in the multilevel imputation
models. Thus, only one cluster ID can be specified in model_formula.

20 hmi: Hierarchical Multiple Imputation in R

• If a multilevel model is specified in model_formula but less than three clusters are
found, the user is asked to run a single level imputation or to process the data in a
different manner. If R is run in batch mode, a warning is given and a single level
imputation is run.

• If nm is specified, clusters with less than nm observations are collapsed (see Section 5.1
for details).

The following additional preparation steps are taken for each imputation model during the
imputation process:

• If more than one constant variable is included in the imputation model, only one is kept
to avoid multicollinearity. For the same reason one variable is dropped from multilevel
imputation models of unordered categorical variables, whenever two predictor variables
are highly correlated (ρ > 0.99).

• If a value for k is specified, categorical variables with more than k categories are removed
from the current imputation model (see Section 5.1 for details).

• If a value for pvalue is specified, variables with p values larger than pvalue are removed
from the current imputation model in an iterative procedure (see Section 5.1 for details).

• During the first imputation cycle, interval variables are treated as factors whenever they
appear as covariates in one of the imputation models, until they have been imputed
themselves: Once they have been imputed, the plausible values are used as predictors
instead of the interval information. If there are many unique intervals in an interval
variable, the user may consider setting a limit for the maximum number of allowed
factors using the argument k.

5.3. Specifying the model_formula

In the single level case, the model specified in model_formula has to follow standard formula
conventions for lm in R (see ?formula). For multilevel models the notation used by lmer
(lme4 package by Bates, Mächler, Bolker, and Walker 2015) must be used. The notation for
multilevel models as implemented in lme4 closely follows the notation for single level models
with the main difference that random effect variables are added in parentheses. The cluster
identifier is also included within the parentheses separated from the random effect variables(s)
by a vertical bar. To illustrate, a possible model specification might be y ~ x1 + x2 + x3 *
x4 + (1 + x2 | ID). In this model an intercept, four main effects and one interaction are
specified as fixed effects. The intercept and x2 also have random effects. The variable ID
contains the cluster identifier.
If interactions are specified in model_formula, they are also used as predictors in the impu-
tation models of all other variables in an effort to achieve congeniality. Note that the package
currently does not follow the sophisticated approach suggested by Carpenter et al. (2011) for
dealing with interactions in the analysis model. Instead it uses passive imputation meaning
that after each iteration the interaction term is updated by multiplying the current imputed
versions of the main effects (Seaman, Bartlett, and White 2012).

Journal of Statistical Software 21

5.4. Imputation cycles

In the first cycle of the sequential regression imputation routine, the variables are sorted
and imputed by increasing number of missing observations following the approach of Raghu-
nathan et al. (2001). In this cycle only those variables with no missing values or variables
that have been previously imputed are used as predictors in the imputation model. If all
variables have missing values, the variable with the lowest missing rate will be imputed by
taking random samples from the observed cases of this variable. In all other imputation
cycles, all variables are included as main effects in the imputation model, unless pvalue is
specified. If model_formula is specified, the imputation model follows this model as closely as
possible. This implies that the imputation and analysis model coincide when the dependent
variable in the analysis model needs to be imputed. If, on the other hand, a covariate in the
analysis model needs imputation, this variable takes the place of the dependent variable in
the imputation model and the actual dependent variable in the analysis model becomes an
independent variable in the imputation model. For example, if the analysis model is y ~ 1
+ x1 + x2 + (1 + x1 | ID) and the covariate x1 needs imputation, the imputation model
becomes x1 ~ 1 + y + x2 + (1 + y | ID).
Depending on the situation, the imputation model can either be a single or multilevel model.
If model_formula contains a single level model, or when no analysis model is specified, the
imputation model always will be a single level model. However, specifying a multilevel model
in model_formula generally implies that a multilevel model will also be used for all imputation
models. In the first cycle it can happen that the random effect covariate(s) have missing values.
In such cases single level models are estimated until the random effect covariates have been
imputed. If the cluster ID has missing values, we recommend to remove the missing cases
from the data set. In case the user opts to keep these cases, the missing values are imputed
using a single level model for categorical variables.
The number of cycles is defined by maxit unless only one variable contains missing values.
In this situation, imputed values will be drawn from the correct distribution in the very first
iteration (because all predictor variables are fully observed), and thus the number of iterations
can be set to 1. The default number of imputation cycles for situations with more than one
missing variable is 10. For a more cautious approach the user might set maxit to a larger
value. After maxit cycles, the imputed values are stored, building a completed (imputed)
data set. Then the process starts again, until m (default value: 5) imputed data sets have
been generated.

5.5. The different supported types of variables

Different variable types (continuous, binary, etc.) require different imputation routines. For
example, for binary variables it is not desirable in most cases to get imputed values different
from 0 or 1. And factor variables with levels "A", "B" and "C" need an imputation routine
different from the routines for binary and continuous variables.
The package hmi distinguishes nine different types of variables. The following section de-
scribes the internal strategies to assign a type to each variable and how the imputation model
works for that type. Users not satisfied with these default choices can specify the types of
variables in advance by setting up a list_of_types. Such explicit definitions by the user are
binding. Section 5.6 explains how this is done.

22 hmi: Hierarchical Multiple Imputation in R

Binary variables (keyword "binary")

Variables are considered to be binary if there are only two unique values in the observed
data. This includes for example 0 and 1 or "m" and "f". This default classification might
fail for small data sets or if a third possible category is unobserved. For example, in a small
health survey it could happen that non of the respondents reported to have had two (or more)
Bypass surgeries. So here a count variable would falsely be classified as binary. (Multilevel)
logistic regression models are used to impute binary variables.

Continuous variables (keyword "cont")

Any numeric vector that is not one of the other types is considered to be continuous. Note
however, that integer variables with less than twenty integer values are treated as count
variables, if no other type is explicitly specified. Imputation models for continuous variables
are based on (multilevel) linear regression models.

Semi-continuous variables (keyword "semicont")

There are three different paths that lead to a variable being identified as semi-continuous.
In the first case, the user explicitly defines (via list_of_types) the variable to be semi-
continuous. In the second case, the user specifies an entry specifically for this variable in
spike. The package identifies this implicit definition of a semi-continuous variable and auto-
matically changes its type to semi-continuous. Finally, if neither spike nor list_of_types
are specified, a variable is also identified to be semi-continuous by hmi, if more than 10%
of the observations share the same value (this value is then registered as a spike), but the
remainder of the observations can be considered continuous.
If a variable is explicitly defined to be semi-continuous, but no value is provided in spike,
hmi uses the mode (most frequent observation) of the variable as the spike, even if less than
10% of the records share the value of the mode. If a specific value is provided in spike for this
variable (see spike for details), hmi will use that value when modeling the variable. The 10%
threshold is only relevant if the variable is neither explicitly nor implicitly specified as semi-
continuous. In this case, the mode, or spike if it is a numeric value (that is, if the spike value
is applicable to all variables and not only for a specific variable), is used to check whether the
10% threshold is exceeded. If this is the case, the variable is treated as semi-continuous.
The approach for imputing semi-continuous variables implemented in hmi follows the ideas
presented in Rubin (1987) and Raghunathan et al. (2001). The variable is imputed in two
steps. In the first step a temporary indicator variable is generated that equals 0 if the observed
value is equal to the spike and 1 otherwise. Missing values in this indicator variable are then
imputed using (multilevel) logit models. In the second step, missing observations with an
imputed value of 1 for the temporary indicator variable are imputed based on a (multilevel)
linear regression imputation model, using only those observed cases of the semi-continuous
variable that are not equal to the spike. The missing observations with an imputed value of
0 for the temporary indicator variable are replaced by the value of the spike.

Interval variables (keyword "interval")

Variables for which some observations contain only interval information (e.g., [2000; 3000])
are called interval variables. The technical implementation requires a specification for interval

Journal of Statistical Software 23

data. To our knowledge there is no general technical standard for handling interval data in R.
The packages survival (Therneau 2020) and linLIR (Wiencierz 2012) provide functionalities
to handle interval data. Both packages generate auxiliary objects in which the information
for the lower and upper bound are stored separately. We did not follow this approach for our
package since it would require an inconvenient workflow to link both interval bounds (for all
interval variables) appropriately. Instead we define a new class ‘interval’ for interval vari-
ables. Technically each observation in such an interval variable is coded as "l;u" with l and
u denoting the lower and upper bound of the interval. Both bounds can either be numerical
values, NA, -Inf or Inf. Two examples would be "1234.56;3000" and "-1234.56;Inf".
We also implemented functions to run basic calculations on interval data (+, -, *, /, %%,
exp, log, ˆ, sqrt, floor, ceiling, and round), to generate interval data based on one
(as.interval) or two vectors (generate_interval), or to split interval data into their lower
and upper bounds (split_interval). How to use these functions is illustrated in Section 6.2.
For interval variables, the imputation routine described in Section 3 is used. As mentioned
in Section 5.2, interval variables are treated as factor variables during the first imputation
cycle – until the variable itself has been imputed. Once plausible values have been generated
for this variable, these imputed values will be used instead of the interval information in the
following cycles whenever the (former) interval variable is used as a predictor in one of the
other imputation models.

Rounded continuous variables (keyword "roundedcont")

Whether a variable is treated as “rounded continuous”, (meaning that the variable is af-
fected by heaping), depends on the information contained in the arguments list_of_types,
rounding_degrees and rounding_formula.

• list_of_types is always binding. If there is an entry in list_of_types for the vari-
able, it will be imputed using imputation routines appropriate for the specified type
irrespective of the information provided in any of the other arguments. Thus, if the
variable is registered as "roundedcont" in list_of_types, it will be treated as af-
fected by heaping irrespective whether potential degrees of rounding are specified in
rounding_degrees or not. Vice versa, if the variable is registered to be of any other
type, its missing values will be imputed using imputation methods appropriate for this
variable type, but the heaping in this variable will be ignored even if rounding degrees
are specified for this variable.

• If no explicit method is specified for the variable in list_of_types, hmi checks whether
rounding_degrees or a rounding_formula are specified for it, implying that the vari-
able should be treated as rounded continuous.

• If no explicit or implicit classification is found, hmi classifies the variable internally.
The classification tests for rounding degrees 1, 10, 100, 1, 000 or, if given, the general
vector in rounding_degrees. A variable is classified as “rounded continuous” if more
than 50% of the values in this variable are divisible by the specified rounding degrees
(ignoring rounding to the nearest integer).

Variables classified to be rounded continuous (including variables having heaps, missing values
and intervals at the same time) are imputed following the methodology described in Section 4.

24 hmi: Hierarchical Multiple Imputation in R

Which rounding degrees are used for generating plausible values depends on the provided
specifications:

• For variables explicitly or implicitly specified to be rounded continuous, the information
provided in rounding_degrees is decisive. If rounding_degrees contains a vector, the
values of this vector are used for all variables specified to be affected by heaping. If
it contains a list and this list has an element for the variable under consideration,
the rounding degrees specified in this list element are used. If the list element or
rounding_degrees is NULL, the heuristic explained in Appendix A is used for suggesting
rounding degrees.

• For variables classified by hmi as rounded continuous, the rounding degrees 1, 10, 100,
1, 000 or, if given, the general vector in rounding_degrees is used.

A variable with heaps might also contain interval information. In this case, the imputation
model is based on Equation 5.

Count variables (keyword "count")

If no variable type has been specified explicitly by the user, a variable will be treated as
a count variable if it contains up to twenty different integers (unless hmi identifies it to be
semi-continuous). Variables with more than twenty integers are considered to be continuous
to avoid treating continuous variables for which only integers are reported in the data as
count data. The user can override these rules by simply specifying a variable with more than
twenty different integers to be "count" or a variable with less than twenty integers to be
"cont" in the list_of_types.
Imputations are generated based on a Poisson model for this variable type. MCMCglmm is
used to obtain the required draws of the model parameters from their respective posterior
distributions for both, single and multilevel models.

Categorical variables (keyword "categorical")

Unordered factor variables (or variables with more than two categories – if they are not one
of the previous types) are considered to be categorical variables.
To impute these variables in a single level setting hmi uses the "cart" approach implemented
in mice. The approach constructs a classification tree based on the observed data and then
samples imputed values from suitable leaves of this tree for individuals for which the variable
is missing.
In the multilevel setting, we use the "categorical" specification in MCMCglmm to obtain
draws of the model parameters from their posterior distribution based on a multilevel multi-
nomial regression model. Imputations for the missing values are generated using own routines
implemented in hmi.

Ordered categorical variables (keyword "ordered_categorical")

If a factor variable is ordered, hmi treats it as "ordered_categorical". Missing values in
this variable are imputed based on an ordered logistic (for single level models) or ordered
probit regression (for multilevel models). For single level models mice is used to generate the

Journal of Statistical Software 25

imputations. For multilevel models MCMCglmm is used to obtain the required draws of the
model parameters from their posterior distribution and imputations are generated using own
routines implemented in hmi.

Intercept variable (keyword "intercept")

A variable for which all observed records share the same value is considered a constant variable
and thus registered as an intercept variable. Missing values in this variable are replaced by
the value observed for the other records.
If the user defines a model_formula containing an intercept variable (even if it is only implicit
like in y ~ x1 + x2) and there is no intercept variable in the data set, hmi temporarily
includes such a variable for the imputation process. This can be suppressed by using y ~ 0
+ x1 + x2 or y ~ -1 + x1 + x2. Vice versa, as mentioned in Section 5.2, if model_formula
contains constant variables in addition to the intercept, these variables are automatically
removed from the imputation model to keep the model identified.

5.6. Pre-definition of the variable types

The package hmi tries to make an educated guess, which imputation model is most suitable
for which variable. Still, we encourage users to explicitly specify which imputation model
should be used for each variable or at least to check whether the imputation models suggested
by the package are reasonable. Imputation models for each variable can be specified using
list_of_types. This argument expects a ‘list’ in which each element has the name of
a variable in the data frame. The named element has to contain a single character string
denoting the type of the variable (the keywords from the previous section). Users can pass
their data to the function list_of_types_maker to see which imputation model would be
suggested by hmi for which variable. Calling this function can also be useful to obtain an
object which already contains a list with entries for all variables in the data set. This object
can then be modified as required. Examples for generating and modifying this list are shown
in Section 6.1.
We emphasize again that the specifications provided in list_of_types will dominate any
other specifications. For example, if the argument rounding_degrees contains specific de-
grees of rounding for variable x11, but this variable is specified in list_of_types as con-
tinuous, the variable will be treated like any other continuous variables, meaning that only
the missing values in this variable will be imputed based on a (multilevel) linear regression
model. No adjustments will be performed to deal with the heaps in the data.

5.7. Output of hmi

The package is built to allow a seamless integration into mice. Most importantly, the output
generated by hmi can be treated like a multiply imputed data set generated with mice, that
is, all the tools available in mice for analyzing and modifying the imputed data sets can be
applied directly. The technical details regarding the structure of the hmi output are described
here, practical examples are shown in the Monitoring convergence and Analyzing the imputed
data paragraphs of Section 6.1.
Similar to mice, hmi returns a so called ‘mids’ object (multiply imputed data sets). These
objects contain the original data set, the imputed values, the chain means and variance of the

26 hmi: Hierarchical Multiple Imputation in R

imputed values, and several additional elements (see Van Buuren and Groothuis-Oudshoorn
2011). The fact that hmi returns a ‘mids’ object enables users familiar with mice to use
functions designed for mice outputs without switching barriers. For example, running the
generic plot() function on a ‘mids’ object calls the S3 plotmethod for ‘mids’ objects showing
the means and standard deviations of the imputed values for all variables over the different
imputations and cycles, regardless whether the ‘mids’ object came from mice or hmi. Another
example is the complete function delivered by mice which returns the imputed data set.
The function hmi returns two additional elements within the ‘mids’ object which are not
available from mice: gibbs and pooling. The former allows checking the convergence of the
Gibbs sampler chains generated by MCMCglmm (a convenient tool for checking convergence
is available through the function chaincheck, see Section 5.8 for details). The later gives the
pooled results (that is the final inferences based on the combining rules for multiply imputed
data) from passing the model_formula to the pooling functions from mice (see Section 5.9
for details).

5.8. Convergence checks

For every imputed variable, the plot method for ‘mids’ objects (delivered by mice) shows
the mean and standard deviation of the imputed values across the maxit iterations and m
imputation cycles. See Figure 1 in Section 6.1 as an example. This tool helps to evaluate
whether draws based on the sequential regression approach converged to draws from the
underlying joint distribution of the missing data given the observed data (see Van Buuren
and Groothuis-Oudshoorn 2011 for more details on this convergence measure).
If multilevel models are used for imputation (or if a Poisson model is used in general) addi-
tional convergence tests are necessary since the posterior draws of the model parameters are
obtained using a Gibbs sampler in these cases. Thus, we need to ensure that the Gibbs sam-
pler actually converged before the parameters were drawn. Detailed information about all the
MCMC chains from all models is available through the element gibbs. This is a multidimen-
sional list. The first dimension distinguishes the different imputation runs. The elements in
this layer are therefore called "imputation1", "imputation2", . . ., "imputation[m]". The
second layer is for the cycles with names "cycle1", . . ., "cycle[maxit]". The next layer
is for the variable that has been imputed. For example, an element named "x1" stands for
the imputation of "x1". The last layer distinguishes between "Sol" and "VCV". The names
are adopted from MCMCglmm where the elements "Sol" and "VCV" in the output repre-
sent the point estimates (of the fixed effects and cluster specific effects) and the variance
parameter estimates (the elements of the random effects covariance matrix and the residual
variance), respectively. hmi only exports the fixed effects point estimates from "Sol" due
to workspace considerations: MCMCglmm estimates nitt cluster specific effects for every
random effects variable in every cluster. This would imply that if the user wants to run nitt
= 5000 iterations for a random intercept and random slopes model with only one fixed effects
variable on a data set with 60 clusters, the dimension of the resulting matrix would already
be 5000 · (2 + 2 · 60). If such a matrix would be saved for two variables and the imputation
procedure is based on maxit = 10 iterations and m = 20 imputations, the final output would
already contain 20 · 10 · 2 · 5000 · (2 + 2 · 60) ≈ 2 million elements. Thus, to keep the size of
the generated output manageable even if several variables are imputed based on multilevel
models and/or the number of clusters is large, convergence can only be monitored for the
fixed effects and the variance components.

Journal of Statistical Software 27

To facilitate the convergence evaluations, the user can apply the function chaincheck to the
output provided by hmi. The function implements the stationarity test proposed by Geweke
(1992) and plots the results. The null hypothesis of the stationary test is that the expected
values behind the means x̄A and x̄B of the first 10% and last 50% of the chain (after discarding
the burn-in) are equal. The test statistic for this test is T = (x̄A − x̄B)/

√
σ̂(x̄A)2 + σ̂(x̄B)2,

where σ̂(x̄A)2 and σ̂(x̄B)2 are the estimated variances of the arithmetic means of the first 10%
and last 50% of the chain after discarding the burn-in. T asymptotically follows a standard
normal distribution. So if |T | exceeds the 1−α/2 quantile of the standard normal distribution,
the null hypothesis can be rejected. The test is implemented in the function geweke.diag
from the R package coda (Plummer, Best, Cowles, and Vines 2006) and chaincheck calls
this function. Beyond the ‘mids’ object generated by hmi the user can also pass the desired
significance level alpha for the test statistic and the desired burnin (expressed as a percent-
age of the total length of the chain) to the chaincheck function. By default (plot = TRUE),
chaincheck will plot all chains for which the null hypothesis was rejected. Each plot con-
tains the information which parameter and which variable, in which cycle and imputation is
depicted. Furthermore, the test statistic T is shown. Note that no adjustments are made for
the multiple testing problem and thus a certain number of tests will show significant results
(“chain did not converge”) by chance (type I error). For example in a setting with maxit =
5, m = 5, two variables to impute, and an imputation model with two fixed effects and two
random effects variables and a significance level of alpha = 0.01, the number of expected
false positives is 5 · 5 · 2 · (2 + 4 + 1) · α = 3.5. The function chaincheck will print the actual
and expected number of failed test. Note that the test is only meant to highlight potential
convergence problems. The provided plots can then be used to decide, whether the identified
chains really indicate problems of the Gibbs sampler.
For large numbers of chains and thus larger numbers of expected false positives, it might be
more convenient not to plot the chains failing the convergence test. This can be done by
setting the function parameter plot = FALSE. We note that users are free to use their own
convergence diagnostics since results from all the chains are available in the gibbs attribute
of the ‘mids’ object generated by hmi.
Note that the Geweke test implicitly assumes that the values of the chain are independent.
High autocorrelation can increase the number of false positives since the estimated variances
in the denominator will be too small. To circumvent this problem, the argument thin allows
thinning the chains to reduce the autocorrelation (the default value is 1). In the MCMC
literature, thinning means that only a subset of records is used. For example, thin = 10
would imply that only every tenth record of the chain is kept. When using the thin argument,
we advise the user to ensure that a sufficient number of observations remains after thinning
the chain. As a rule of thumb, we suggest that the number of values used for the Geweke
test should not fall below 1, 000. To guarantee that this is the case, the user can set thin =
NULL. This will ensure that approximately 1, 000 values will remain after thinning. Note that
setting a value for thin will not affect the imputation procedures. The parameters will only
affect which chain values are used when computing Geweke’s test.
If the Gibbs sampler apparently did not converge, a new call of hmi has to be initiated with
an increased number of iterations for the Gibbs sampler (parameter nitt).

5.9. Application of the multiple imputation combining rules (pooling)

The functions with and pool from mice are flexible tools for analyzing multiply imputed

28 hmi: Hierarchical Multiple Imputation in R

data sets. hmi uses these functions to obtain the final results for the analysis model specified
by model_formula and family. The results can be accessed in the ‘mids’ object through
its element pooling. Currently, mice only provides the final estimates of global fixed effects
for multilevel regression model. In some situations, other parameters such as the variance
components from the different levels of the hierarchical model might be relevant for the user.
Therefore hmi delivers the function hmi_pool as a flexible alternative to the functionality
available in mice. The function needs two inputs:

1. the multiply imputed data set (the ‘mids’ object created with hmi or mice) and

2. a predefined analysis function which takes a completed data set as input, and returns
a vector with the desired complete data statistics (e.g., the regression coefficients or
random effects variance estimates).

hmi_pool calculates the parameters defined in the analysis function on each of the completed
data sets in the ‘mids’ object and averages them, that is hmi_pool will only provide point
estimates but not their associated estimated variances. Calculating multiple imputation point
estimates is only valid when averaging is reasonable. For example it would be invalid to
average factor loadings from factor analysis where the signs of loadings have no meaning
(comparable to whether "m" or "f" is the reference category in a regression model). Examples
how to use hmi_pool are given in the Analyzing the imputed data paragraph in Section 6.1
and on the help page ?hmi_pool.

6. Application examples
To illustrate the generation of plausible values for multilevel data, interval data and variables
affected by heaping three step-by-step examples using three real data sets are given in this
section.

6.1. Multilevel data

To illustrate the main functionality of the package hmi, we use the data set Gcsemv containing
information on the General Certificate of Secondary Education (GSCE) in the United King-
dom. The data set, which was collected in 1989 and contains 1905 students in 73 schools,
is one of the data sets used in Goldstein (2011). It is freely available on the website of
the Centre for Multilevel Modelling (CMM) at the University of Bristol under the following
URL http://www.bristol.ac.uk/cmm/media/team/hg/msm-3rd-ed/gcsemv.xls. It is also
included in the package hmi to allow users to replicate the examples given in this section. We
thank Harvey Goldstein and the CMM for allowing us to incorporate the data into the hmi
package. The variables contained in the data set are described in Table 3. A more detailed
description of the data can be found in Creswell (1991).

Before starting the imputation

If the package has not been installed previously, the very first step is to install the hmi package
via install.packages("hmi"). Once the package has been installed, it can be attached to
the current session, and the Gcsemv data can be loaded. The code for these two steps is:

http://www.bristol.ac.uk/cmm/media/team/hg/msm-3rd-ed/gcsemv.xls

Journal of Statistical Software 29

Variable Description
school School ID
student Student ID within this school
gender Gender (0 = boy, 1 = girl)
written (Numeric) score on written paper
coursework (Numeric) score on coursework paper

Table 3: Variables included in the Gcsemv data. The student ID is only unique within a given
school.

R> library("hmi")
R> data("Gcsemv", package = "hmi")

A short summary of the data shows (among other information) that the data set has 202
missing values in the written exam covariate and 180 missing values in the coursework covari-
ate. Thus, the missing rate in those variables is 10.6% and 9.4% respectively. There are no
rows with missing values in both variables, so the number of incomplete observations in total
is 382 or 20.0%.

R> summary(Gcsemv)

school student gender written coursework
68137 : 104 77 : 14 0: 777 Min. : 0.625 Min. : 9.259
68411 : 84 83 : 14 1:1128 1st Qu.:37.500 1st Qu.: 62.963
68107 : 79 53 : 13 Median :46.875 Median : 75.926
68809 : 73 66 : 13 Mean :46.798 Mean : 73.435
22520 : 65 27 : 12 3rd Qu.:55.625 3rd Qu.: 86.111
60457 : 54 110 : 12 Max. :90.000 Max. :100.000
(Other):1446 (Other):1827 NA's :202 NA's :180

A list containing the suggested variable types for each variable in the data set can be obtained
by:

R> list_of_types_maker(Gcsemv)

$school
[1] "categorical"

$student
[1] "categorical"

$gender
[1] "binary"

$written
[1] "cont"

$coursework
[1] "cont"

30 hmi: Hierarchical Multiple Imputation in R

If the user is not satisfied with the suggested types, they might save the list, modify it, and
pass the modified list to hmi. For example, if coursework contained the average grade of
every student and the user prefers to treat that variable as ordered categorical, they can
type:

R> modified_list <- list_of_types_maker(Gcsemv)
R> modified_list$coursework <- "ordered_categorical"

The modified list would then be passed to hmi by setting the argument list_of_types =
modified_list.

Running the imputation

The next (optional) step is to set up the model_formula, that is, the final model of interest
which should be estimated based on the multiply imputed data (see Section 5.3). In the
example given below, interest lies in the influence of gender and performance in previous
coursework on the written exam. The intercept and the effect of gender are allowed to vary
across the schools. They are added as random effects in the model_formula.

R> model_formula <- written ~ 1 + gender + coursework + (1 + gender | school)

Now the data and model_formula can be passed to the wrapper function hmi. The results
are saved in an object called dat_imputed. Note that for full reproducibility a seed for the
pseudo-random number generator is specified. Since no value is specified for the number
of imputations, the default number of m = 5 imputed data sets will be generated. hmi will
provide a progress bar during the imputation process.

R> set.seed(123)
R> dat_imputed <- hmi(data = Gcsemv, model_formula = model_formula)

Imputation progress:
0% 20% 40% 60% 80% 100%
|----|----|----|----|

Monitoring convergence

Before running any analysis models on the newly generated ‘mids’ object, it is always a good
idea to check the convergence of all imputation routines. Some examples of how to do this
based on the output generated by hmi are presented in this section.
Diagnostic plots regarding the convergence of the sequential regression procedure can be
obtained for example by plot(dat_imputed). The function will plot the arithmetic mean
and standard deviation of the imputed values for each imputed variable across the maxit cycles
separately for each of the m imputations. In the given example calling the plot function will
produce graphs for the variables "written" and "coursework" since these are the only two
variables which have been imputed previously. Each graph contains five different lines for
each of the m = 5 imputations. Each line consists of ten points for each of the maxit = 10
iterations.

Journal of Statistical Software 31

Iteration

45
46

47

mean written

12
.0

12
.5

13
.0

13
.5

14
.0

14
.5

sd written

69
70

71
72

73

2 4 6 8 10

mean coursework

15
16

17
18

2 4 6 8 10

sd coursework

Figure 1: Mean (left) and standard deviation (right) for the imputed variables in the Gcsemv
data across 10 iterations for 5 imputations.

R> plot(dat_imputed, layout = c(2, 2))

Convergence (potentially after some burn-in iterations) can be assumed, if the following two
conditions are fulfilled:

1. There is no inherent trend in any of the lines.

2. The lines from the different imputations mix well, that is, there is sufficient overlap
between the different lines.

Examining the plots in Figure 1, both requirements seem to be met.
Given that the model specified in model_formula is a hierarchical model, multilevel models
have also been used as imputation models. Since these models can only be estimated using
MCMC methods, formal checks regarding the convergence of these models are also required.
The function chaincheck runs convergence tests using the Geweke statistic for each chain of
the MCMC method and plots traceplots for all those parameters for which the test indicates
a failure of convergence (see Section 5.8 for details on the test). The function also provides
the information how often the null hypothesis is rejected and compares this number to the
expected number of false rejections due to type I error.

R> chaincheck(dat_imputed, thin = NULL)

17 out of 695 chains (2.45%) did not pass the convergence test.
For alpha = 0.01, the expected number is 6.95.

32 hmi: Hierarchical Multiple Imputation in R

0 200 400 600 800 1000

0.
42

0.
48

0.
54

imputation2; cycle5;
Imp. of variable coursework;

 fix parameter 1; z−value: −2.702

Iterations

Figure 2: Traceplot of one fixed effects parameter which formally did not pass the stationarity
test.

0 200 400 600 800 1000

0.
00

0.
10

imputation5; cycle5;
Imp. of variable written;

 variance parameter 4; z−value: 2.69

Iterations

Figure 3: Traceplot of a variance parameter showing signs of high autocorrelation.

For the given example the traceplots for the fixed effects in the models which did not pass
the stationarity test show no problematic pattern (one traceplot is shown in Figure 2 the
others are omitted for brevity). But the plots for the variance parameters show signs of
autocorrelation (one chain is shown in Figure 3). For highly autocorrelated chains it is more
likely that the mean of the first 10% of the chain differs from the mean of the last 50% of the
chain and thus the null hypothesis of the Geweke test (which basically assumes equivalence
of the two means) is rejected. Note however, that autocorrelation would only be a problem,
if multiple draws from the same chain would be used. Since only one value from a chain is
used for each imputation in hmi, autocorrelation within a chain is generally irrelevant for
hmi. Thus, for the purposes of the package all parameters in all imputation models show
good convergence properties.

Analyzing the imputed data

In this section different possibilities for obtaining point and variance estimates based on the
imputed data are shown. In general, these estimates can be obtained by analyzing each
completed data set separately and combining the results according to Rubin’s combining
rules (Rubin 1987).
The package mice offers the functions with and pool to obtain final inferences based on the
imputed data sets for a broad class of analyses. These functions can also be used with objects
generated by hmi since they only require a ‘mids’ object as input. We refer to Van Buuren and
Groothuis-Oudshoorn (2011) for more details how to use these functions. Note that hmi also

Journal of Statistical Software 33

calls these functions internally if a model is specified in model_formula and pool_with_mice
= TRUE (which is the default). The regression results are directly available through the element
pooling from the ‘mids’ object. This element is not available in ‘mids’ objects generated by
mice; it is a special feature of hmi. It will not be included if pool_with_mice = FALSE.

R> summary(dat_imputed$pooling)

estimate std.error statistic df p.value
(Intercept) 21.3798939 1.55113002 13.783431 161.09228 0
gender1 -5.3163407 0.55886141 -9.512807 1041.33649 0
coursework 0.4036685 0.01873357 21.547865 85.56451 0

However, pool can only be used with estimation functions that return a list of coefficients and
their variance matrix. Thus, for example, no information is returned regarding the variance
components on the different levels if pool is used to provide the results of a multilevel analysis.
However, the estimated variances on the different levels can be of interest in some applications.
For this reason hmi offers the option to pass an analysis function setup by the user to the
function hmi_pool which will run the specified analyses on each imputed data set and return
the final point estimates but not their variances. Thus, this function can be used in situations
in which the variance of the point estimates cannot be estimated (or is not of interest to the
analyst), but averaging the point estimates from the different data sets is still a valid approach.
In the following example, the user is interested in the global fixed effects and the elements of
the random effects covariance matrix of the multilevel model from the running example. To
obtain the final results, they would first need to specify the analysis function: The input of
the function is a complete data set (which will be provided by hmi_pool later). An empty
list for storing the results of interest is generated, before the analysis model of interest is
specified. From the estimated model, the fixed effects and random effects covariance matrix
is extracted. To simplify the labeling, the list is turned into a vector and labeled afterwards.

R> analysis_function <- function(complete_data) {
+ parameters_of_interest <- list()
+ my_model <- lmer(written ~ 1 + gender + coursework +
+ (1 + gender | school), data = complete_data)
+ parameters_of_interest[[1]] <- fixef(my_model)
+ parameters_of_interest[[2]] <- VarCorr(my_model)[[1]][,]
+ ret <- unlist(parameters_of_interest)
+ names(ret) <- c("intercept", "gender", "coursework",
+ "sigma0", "sigma01", "sigma10", "sigma1")
+ return(ret)
+ }

This function can then be passed to hmi_pool to obtain the final point estimates for the
specified parameters.

R> hmi_pool(mids = dat_imputed, analysis_function = analysis_function)

intercept gender coursework sigma0 sigma01 sigma10 sigma1
21.3798939 -5.3163407 0.4036685 39.1087648 -1.9721657 -1.9721657 3.2751991

34 hmi: Hierarchical Multiple Imputation in R

Variable Description
inq020 Income from wages/salaries (1 = Yes, 2 = No)
inq012 Income from self employment (1 = Yes, 2 = No)
inq030 Income from Social Security or Railroad Retirement (1 = Yes, 2 = No)
inq060 Income from other disability pension (1 = Yes, 2 = No)
inq080 Income from retirement/survivor pension (1 = Yes, 2 = No)
inq090 Income from Supplemental Security Income (1 = Yes, 2 = No)
inq132 Income from state/county cash assistance (1 = Yes, 2 = No)
inq140 Income from interest/dividends or rental (1 = Yes, 2 = No)
inq150 Income from other sources (1 = Yes, 2 = No)
ind235 Monthly family income (13 categories/an interval object)
ind310 Total savings/cash assets for the family (8 categories/an interval object)
inq320 How do you get to the grocery store? (10 categories)

Table 4: Variables included in the nhanes_* data sets.

The final results for the global fixed effects are identical to the results obtained with mice,
but the output now also contains the final point estimates of the covariance matrix of the
random effects.

6.2. Interval data

To illustrate the usage of the provided functions for ‘interval’ objects and the imputation of
interval data, hmi includes three versions of a subset of the 2015–2016 Income File of the Na-
tional Health and Nutrition Examination Survey (NHANES; Centers for Disease Control and
Prevention (CDC) and National Center for Health Statistics (NCHS) 2015–2016). The data
set nhanes_sub (accessible by typing data("nhanes_sub", package = "hmi")) contains the
data in their original format (compared to the version available on the NCHS website the data
have been slightly modified, for example by coding some variables as factors or collapsing sev-
eral nonresponse categories into a single category). In the data set nhanes_mod some variables
have been changed to the internal interval variable format, which is required if plausible val-
ues should be imputed for these variables. Finally, nhanes_imp contains a multiply imputed
data set in which missing and interval information has been replaced with plausible values
following the methodology outlined in Sections 2 and 3. These data sets are included for
illustrative purposes so that users of the package can compare different versions of the data
sets to get a better understanding of how this imputation function works. Table 4 lists the
variables present in the nhanes_* data sets.
As an illustrative example, the required steps to prepare the variable ind310 for generating
plausible values, that is, the transformation of the categorical variable from nhanes_sub to the
interval variable in nhanes_mod, are presented here (the interval variable for ind235 was gen-
erated in a similar fashion). Separate lower and upper bounds are defined for each observation
(based on the description given at https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/INQ_I.
htm); subsequently they are merged to an interval object by the function generate_interval.
By head(ind310interval), the first six elements of the interval object are shown.

R> data("nhanes_sub", package = "hmi")
R> low <- array(dim = nrow(nhanes_sub))

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/INQ_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/INQ_I.htm

Journal of Statistical Software 35

R> up <- array(dim = nrow(nhanes_sub))
R> low[nhanes_sub$ind310 == 1] <- 0
R> low[nhanes_sub$ind310 == 2] <- 3001
R> low[nhanes_sub$ind310 == 3] <- 5001
R> low[nhanes_sub$ind310 == 4] <- 10001
R> low[nhanes_sub$ind310 == 5] <- 15001
R> low[nhanes_sub$ind310 == 6] <- 0
R> low[nhanes_sub$ind310 == 7] <- 20001
R> low[nhanes_sub$ind310 == 8] <- 0
R> up[nhanes_sub$ind310 == 1] <- 3000
R> up[nhanes_sub$ind310 == 2] <- 5000
R> up[nhanes_sub$ind310 == 3] <- 10000
R> up[nhanes_sub$ind310 == 4] <- 15000
R> up[nhanes_sub$ind310 == 5] <- 20000
R> up[nhanes_sub$ind310 == 6] <- 20000
R> up[nhanes_sub$ind310 == 7] <- Inf
R> up[nhanes_sub$ind310 == 8] <- Inf
R> ind310interval <- generate_interval(low, up)
R> head(ind310interval)

"20001;Inf" "3001;5000" "0;3000" "3001;5000" "0;3000" "3001;5000"

Once the variables are registered as "interval" variables, the data set can be passed to
the hmi wrapper function. hmi will automatically generate plausible values for all variables
registered as "interval" variables. For the imputation of the missing and interval data in
nhanes_mod, we increased the number of iterations to 50, as diagnostic plots showed that the
sequential regression procedure did not converge after the default number of 10 iterations.

R> set.seed(123)
R> nhanes_imp <- hmi(nhanes_mod, maxit = 50)

Some useful functions for interval data

Package hmi also includes some useful functions to analyze and manipulate interval data.
This section provides a short summary of some of the functions available.
S3 method for table: Variables stored in interval format are interpreted as a vector of
characters or a factor by most R functions including the table function. Without the S3
method of table for ‘interval’ objects, table would order the intervals alphabetically, which
can be arbitrary. The table method for ‘interval’ objects offers improved sorting options.
By default, it orders the intervals first by the value of their lower bound and if they are equal,
by the value of the upper bound. If the argument sort is set to "mostprecise_increasing",
the intervals are first ordered by their length (from small to large) and if the lengths are equal,
by the value of the lower bound (from small to large). Using the table function on an interval
variable will automatically invoke the table method for ‘interval’ objects if hmi is loaded.

R> table(nhanes_mod$ind310)

36 hmi: Hierarchical Multiple Imputation in R

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0
20

00
0

Index of sorted values

S
av

in
gs

Figure 4: An interval data scatter plot.

0;3000 0;20000 0;Inf 3001;5000 5001;10000 10001;15000
5426 128 814 588 450 237

15001;20000 20001;Inf
110 2218

S3 method for plot: To inspect interval variables graphically, the generic plotting function
plot can be used, which will call the plot method for ‘interval’ objects. For example,
Figure 4 containing the results for the savings variable from nhanes_mod is generated using
the following code:

R> plot(nhanes_mod$ind310, ylab = "Savings", sort = "mostprecise_increasing")

The figure shows the interval values for ind310 sorted first by the interval lengths and then by
the lower bound. A second option is sort = "lowerbound_increasing" sorting the intervals
first by the lower bound and then by the upper bound. If no argument is specified for sort,
the intervals are sorted by their appearance in the data. For each observation the plot draws
a line from its lower to its upper bound (plus a small margin to make very small intervals and
point precise observations visible). As the lines for observations sharing the same interval
are grouped together, they form an area. Thus, the width of the area is an indicator for
the relative frequency of this interval. Note that in the example the upper bound for the
highest savings category and for the nonresponders is ∞ which cannot be plotted. Therefore
the upper limit of the y-axis by default is the highest finite bound observed (plus a small
margin). The axis bounds can be manually altered by the parameters xlim and ylim.
center_interval: This function simply returns a numeric vector containing the midpoint
of the reported interval for each observation (for example 1,500 if the interval is "0;3000").
Intervals including Inf or -Inf will return Inf or -Inf, unless the interval is "-Inf;Inf" or

Journal of Statistical Software 37

the parameter inf2NA was set to be TRUE. In those cases NA will be returned for these intervals.
This function can potentially be useful for some descriptive statistics, but we caution the user
that treating the midpoint of the reported interval as if it were the originally reported value
is rarely a good idea.

R> midpoints <- center_interval(nhanes_mod$ind310)
R> table(midpoints)

x
1500 4000.5 7500.5 10000 12500.5 17500.5 Inf
5426 588 450 128 2371 110 3032

idf2interval and interval2idf: Interval variables are also accepted in some other R pack-
ages. For example, the package linLIR by Wiencierz (2012) provides methods for regression
models with interval variables. However when using this package, the data containing the
interval information need to be coded as ‘idf’ (imprecise data frame). To ensure that users
can switch easily between ‘idf’ and ‘interval’ objects, we implemented idf2interval and
interval2idf which convey an object from one format to the other. Technically, ‘idf’ ob-
jects can contain multiple interval variables, so when transforming an ‘idf’ object to fit to
the ‘interval’ setting, the (multiple) interval variables from ‘idf’ are stored as variables in
a ‘data.frame’.

R> idf <- interval2idf(nhanes_mod$ind310)
R> intervaldf <- idf2interval(idf)

split_interval: This function is basically the inverse function of generate_interval. It
returns a two column matrix containing the lower bound for each reported interval in the first
column and the upper bound in the second column:

R> bounds <- split_interval(nhanes_mod$ind310)
R> head(bounds)

[,1] [,2]
[1,] 20001 Inf
[2,] 3001 5000
[3,] 0 3000
[4,] 3001 5000
[5,] 0 3000
[6,] 3001 5000

Finally, we note that basic arithmetics (+, -, *, /, %%) and transformations (log, exp, ˆ, sqrt,
round, floor, ceiling) can be applied to interval data (for example to change the currency
for the reported values):

R> log_savings_in_euro <- log(nhanes_mod$ind310 * 0.8)

38 hmi: Hierarchical Multiple Imputation in R

Original, heaped data

selfreported weight

F
re

qu
en

cy

40 60 80 100 120 140 160

0
20

40
60

80
10

0
Data after first imputation

selfreported weight

F
re

qu
en

cy

40 60 80 100 120 140 160

0
20

40
60

80
10

0

Figure 5: Self-reported weight from the selfreport data as originally observed (left) and
after generating plausible values accounting for potential rounding of the reported values
(right).

6.3. Variables affected by heaping

To briefly illustrate how to generate plausible values for a variable affected by heaping, we
use the selfreport data from the mice package. The data set contains 2060 records and 15
variables, merged from multiple Dutch data sets. The left panel of Figure 5 shows a histogram
of the self-reported weight (variable wr in the data set). Heaps at multiples of 5 and 10 are
clearly visible and thus, it seems plausible to assume that many respondents round their true
weight to the closest 5 or 10 kilograms. Counting the number of records that are divisible by
5 and 10 reveals that almost 40% of the records are divisible by 5 and approximately 20% of
the reported values are divisible by 10:

R> data("selfreport", package = "mice")
R> sum(selfreport$wr %% 5 == 0)/nrow(selfreport)

0.3800971

R> sum(selfreport$wr %% 10 == 0)/nrow(selfreport)

0.1941748

Note that these fractions are slightly below the thresholds setup in the heuristic for suggesting
rounding degrees as implemented in list_of_rounding_degrees_maker. The heuristic would
identify 5 as a rounding degree if 40% of the data would be divisible by this value and register

Journal of Statistical Software 39

10 as a rounding degree if 20% of the data are divisible by this value (see Appendix A for
details). For this reason, explicit rounding degrees must be provided in this example when
calling hmi. For the purpose of a short runtime, only two variables are used for imputation
in this illustration: the self-reported weight (wr) and the self-reported height (hr):

R> set.seed(123)
R> selfreport_imputed <- hmi(selfreport[, c("hr", "wr")],
+ rounding_degrees = list(wr = c(1, 5, 10)))

By default, every variable in the data set is included in the model for the rounding behavior as
specified in Equation 2. The model can be adjusted using rounding_formula. For example,
if only the weight variable (and the intercept) should be used in the rounding behavior model,
this could be achieved by setting rounding_formula = ~ wr. The right panel of Figure 5
shows the histogram after imputation. The heaps in the data have disappeared.

7. Conclusion
With hmi we provide comprehensive, but easy to handle tools for multiple imputation for
hierarchical data sets. The package supports imputation methods for all common types of
variables. Furthermore, imputation tools for interval and heaped variables are provided.
Several internal features of the package ensure that sensible default settings are selected
automatically. Thus, even inexperienced users will find the package convenient to use since
all they need to provide is their data and potentially the analysis model they want to run
on the imputed data. The final results (according to the given analysis model) will also be
returned by default. Still, the package offers great flexibility since almost all settings can be
defined manually if desired. Multiple imputation point estimates for analyses not supported
in mice can also be obtained using an additional function provided with the package.
Currently, hmi still has some limitations which we hope to address in future releases of the
package: Most importantly, the package does not provide any tools for imputing variables
from the second level of the hierarchical model, that is, variables which are constant within
clusters. A convenient tool for imputing such variables is available in mice. Furthermore, the
multilevel imputation models are currently limited to two levels of hierarchy and homoscedas-
tic error terms. Finally, ensuring that all Gibbs samplers of the multilevel imputation models
have converged is currently left to the user. In future versions of the package, we hope to
implement some routines that will automatically ensure that all chains run long enough to
ensure convergence.
We also note that similar to almost all other imputation software currently available, hmi
cannot directly incorporate complex sampling designs for example by using weights when
fitting the imputation models. However, hierarchical imputation models are the method of
choice to account for clustering (Reiter et al. 2006) and stratification can be taken into account
by including stratum indicators in the imputation model. If these two strategies are not
sufficient to fully reflect the sampling design, we suggest following the general recommendation
to include the weight and possibly its interaction with (some of) the covariates as additional
predictors in the imputation models (Carpenter and Kenward 2013, Chapter 11). If the
complex survey design needs to be taken into account at the analysis stage, the survey package
(Lumley 2004) offers routines for analyzing multiply imputed data sets accounting for the
complex design.

40 hmi: Hierarchical Multiple Imputation in R

Acknowledgments
This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) Priority Programme “Education as a Lifelong Process” [SPP 1646] –
DR 831/2-2. We thank the two referees for their valuable comments, which helped to improve
the package and the quality of the paper.

References

Anderson-Bergman C (2017). “icenReg: Regression Models for Interval Censored Data in R.”
Journal of Statistical Software, 81(12), 1–23. doi:10.18637/jss.v081.i12.

Andridge RR (2011). “Quantifying the Impact of Fixed Effects Modeling of Clusters in
Multiple Imputation for Cluster Randomized Trials.” Biometrical Journal, 53(1), 53–74.
doi:10.1002/bimj.201000140.

Asparouhov T, Muthén B (2010). Multiple Imputation with Mplus. Mplus Web Notes.

Audigier V, Resche-Rigon M (2019). micemd: Multiple Imputation by Chained Equations with
Multilevel Data. R package version 1.6.0, URL https://CRAN.R-project.org/package=
micemd.

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bhat CR (1994). “Imputing a Continuous Income Variable from Grouped and Missing Income
Observations.” Economics Letters, 46(4), 311–319. doi:10.1016/0165-1765(94)90151-1.

Carpenter JR, Goldstein H, Kenward MG (2011). “REALCOM-IMPUTE Software for Mul-
tilevel Multiple Imputation with Mixed Response Types.” Journal of Statistical Software,
45(5), 1–14. doi:10.18637/jss.v045.i05.

Carpenter JR, Kenward MG (2013). Multiple Imputation and its Application. John Wiley &
Sons. doi:10.1002/9781119942283.

Centers for Disease Control and Prevention (CDC) and National Center for Health Statistics
(NCHS) (2015–2016). “National Health and Nutrition Examination Survey Data.” URL
https://wwwn.cdc.gov/nchs/nhanes/.

Clogg CC, Rubin DB, Schenker N, Schultz B, Weidman L (1991). “Multiple Imputation of
Industry and Occupation Codes in Census Public-Use Samples Using Bayesian Logistic
Regression.” Journal of the American Statistical Association, 86(413), 68–78. doi:10.
1080/01621459.1991.10475005.

Creswell M (1991). “A Multilevel Bivariate Model.” In R Prosser, J Rasbash, H Goldstein
(eds.), Data Analysis with ML3. Institute of Education, London.

Czajka JL, Denmead G (2008). “Income Data for Policy Analysis: A Comparative Assessment
of Eight Surveys.” Final report to the U.S. Department of Health and Human Services
submitted by Mathematica Policy Research, Inc., U.S. Department of Health and Human
Services. URL https://aspe.hhs.gov/system/files/pdf/75721/report.pdf.

https://doi.org/10.18637/jss.v081.i12
https://doi.org/10.1002/bimj.201000140
https://CRAN.R-project.org/package=micemd
https://CRAN.R-project.org/package=micemd
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/0165-1765(94)90151-1
https://doi.org/10.18637/jss.v045.i05
https://doi.org/10.1002/9781119942283
https://wwwn.cdc.gov/nchs/nhanes/
https://doi.org/10.1080/01621459.1991.10475005
https://doi.org/10.1080/01621459.1991.10475005
https://aspe.hhs.gov/system/files/pdf/75721/report.pdf

Journal of Statistical Software 41

Dorey FJ, Little RJA, Schenker N (1993). “Multiple Imputation for Threshold-Crossing Data
With Interval Censoring.” Statistics in Medicine, 12(17), 1589–1603. doi:10.1002/sim.
4780121706.

Drechsler J (2011). Synthetic Datasets for Statistical Disclosure Control: Theory and Imple-
mentation, volume 201. Springer-Verlag. doi:10.1007/978-1-4614-0326-5.

Drechsler J (2015). “Multiple Imputation of Multilevel Missing Data – Rigor Versus Sim-
plicity.” Journal of Educational and Behavioral Statistics, 40(1), 69–95. doi:10.3102/
1076998614563393.

Drechsler J, Kiesl H (2016). “Beat the Heap: An Imputation Strategy for Valid Inferences
from Rounded Income Data.” Journal of Survey Statistics and Methodology, 4(1), 22–42.

Drechsler J, Kiesl H, Speidel M (2015). “MI Double Feature: Multiple Imputation to Address
Nonresponse and Rounding Errors in Income Questions.” Austrian Journal of Statistics,
44(2), 59–71. doi:10.17713/ajs.v44i2.77.

Enders CK, Keller BT, Levy R (2018). “A Fully Conditional Specification Approach to
Multilevel Imputation of Categorical and Continuous Variables.” Psychological Methods,
23(2), 298–317. doi:10.1037/met0000148.

Enders CK, Mistler SA, Keller BT (2016). “Multilevel Multiple Imputation: A Review and
Evaluation of Joint Modeling and Chained Equations Imputation.” Psychological Methods,
21(2), 222–240. doi:10.1037/met0000063.

Gartner H, Rässler S (2005). “Analyzing the Changing Gender Wage Gap Based on Multiply
Inputed Right Censored Wages.” Technical report, IAB-Discussion Paper 05/2005. URL
http://doku.iab.de/discussionpapers/2005/dp0505.pdf.

Gelman A, Hill J (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press. doi:10.1017/cbo9780511790942.

Geweke J (1992). “Evaluating the Accuracy of Sampling Based Approaches to Calculating
Posterior Moments.” In JB Bernando, JO Berger, AP Dawid, AFM Smith (eds.), Bayesian
Statistics 4, pp. 169–193. Clarendon Press, Oxford.

Goldstein H (2011). Multilevel Statistical Models. 4th edition. John Wiley & Sons, Chichester.

Grover G, Gupta VK (2015). “Multiple Imputation of Censored Survival Data in the Presence
of Missing Covariates Using Restricted Mean Survival Time.” Journal of Applied Statistics,
42(4), 817–827. doi:10.1080/02664763.2014.986439.

Hadfield JD (2010). “MCMC Methods for Multi-Response Generalized Linear Mixed Models:
The MCMCglmm R Package.” Journal of Statistical Software, 33(2), 1–22. doi:10.18637/
jss.v033.i02.

Hanisch JU (2005). “Rounded Responses to Income Questions.” Allgemeines Statistisches
Archiv, 89(1), 39–48. doi:10.1007/s101820500190.

Heeringa SG (1993). “Imputation of Item Missing Data in the Health and Retirement Survey.”
In Proceedings of the Survey Research Methods Section, pp. 107–116. American Statistical
Association.

https://doi.org/10.1002/sim.4780121706
https://doi.org/10.1002/sim.4780121706
https://doi.org/10.1007/978-1-4614-0326-5
https://doi.org/10.3102/1076998614563393
https://doi.org/10.3102/1076998614563393
https://doi.org/10.17713/ajs.v44i2.77
https://doi.org/10.1037/met0000148
https://doi.org/10.1037/met0000063
http://doku.iab.de/discussionpapers/2005/dp0505.pdf
https://doi.org/10.1017/cbo9780511790942
https://doi.org/10.1080/02664763.2014.986439
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.1007/s101820500190

42 hmi: Hierarchical Multiple Imputation in R

Heeringa SG, Little RJA, Raghunathan TE (1997). “Imputation of Multivariate Data on
Household Net Worth.” In Proceedings of the Survey Research Methods Section, pp. 135–
140. American Statistical Association.

Heitjan DF, Rubin DB (1990). “Inference from Coarse Data via Multiple Imputation with
Application to Age Heaping.” Journal of the American Statistical Association, 85(410),
304–314. doi:10.1080/01621459.1990.10476202.

Heitjan DF, Rubin DB (1991). “Ignorability and Coarse Data.” The Annals of Statistics,
19(4), 2244–2253. doi:10.1214/aos/1176348396.

Huttenlocher J, Hedges LV, Bradburn NM (1990). “Reports of Elapsed Time: Bounding
and Rounding Processes in Estimation.” Journal of Experimental Psychology: Learning,
Memory, and Cognition, 16(2), 196–213. doi:10.1037/0278-7393.16.2.196.

IBM Corp (2017). IBM SPSS Statistics for Windows, Version 25.0. IBM Corp, Armonk.
URL https://www.ibm.com/analytics/spss-statistics-software.

Jenkins SP, Burkhauser RV, Feng S, Larrimore J (2011). “Measuring Inequality Using Cen-
sored Data: A Multiple-Imputation Approach to Estimation and Inference.” Journal of the
Royal Statistical Society A, 174(1), 63–81. doi:10.1111/j.1467-985x.2010.00655.x.

Jolani S (2018). “Hierarchical Imputation of Systematically and Sporadically Missing Data:
An Approximate Bayesian Approach Using Chained Equations.” Biometrical Journal,
60(2), 333–351. doi:10.1002/bimj.201600220.

Kennickell AB (1991). “Imputation of the 1989 Survey of Consumer Finances: Stochastic Re-
laxation and Multiple Imputation.” In Proceedings of the Survey Research Methods Section,
pp. 440–445. American Statistical Association.

Kennickell AB (1996). “Using Range Techniques with CAPI in the 1995 Survey of Consumer
Finances.” In Proceedings of the Survey Research Methods Section, pp. 440–445. American
Statistical Association.

Kim MY, Xue X (2002). “The Analysis of Multivariate Interval-Censored Survival Data.”
Statistics in Medicine, 21(23), 3715–3726. doi:10.1002/sim.1265.

Larrimore J, Burkhauser RV, Feng S, Zayatz L (2008). “Consistent Cell Means for Topcoded
Incomes in the Public Use March CPS (1976–2007).” Journal of Economic and Social
Measurement, 33(2–3), 89–128. doi:10.3233/jem-2008-0299.

Law CG, Brookmeyer R (1992). “Effects of Mid-Point Imputation on the Analysis of
Doubly Censored Data.” Statistics in Medicine, 11(12), 1569–1578. doi:10.1002/sim.
4780111204.

Liu J, Gelman A, Hill J, Su YS, Kropko J (2014). “On the Stationary Distribution of Iterative
Imputations.” Biometrika, 101(1), 155–173. doi:10.1093/biomet/ast044.

Lüdtke O, Robitzsch A, Grund S (2017). “Multiple Imputation of Missing Data in Multilevel
Designs: A Comparison of Different Strategies.” Psychological Methods, 22(1), 141–165.
doi:10.1037/met0000096.

https://doi.org/10.1080/01621459.1990.10476202
https://doi.org/10.1214/aos/1176348396
https://doi.org/10.1037/0278-7393.16.2.196
https://www.ibm.com/analytics/spss-statistics-software
https://doi.org/10.1111/j.1467-985x.2010.00655.x
https://doi.org/10.1002/bimj.201600220
https://doi.org/10.1002/sim.1265
https://doi.org/10.3233/jem-2008-0299
https://doi.org/10.1002/sim.4780111204
https://doi.org/10.1002/sim.4780111204
https://doi.org/10.1093/biomet/ast044
https://doi.org/10.1037/met0000096

Journal of Statistical Software 43

Lumley T (2004). “Analysis of Complex Survey Samples.” Journal of Statistical Software,
9(8), 1–19. doi:10.18637/jss.v009.i08.

Meng XL (1994). “Multiple-Imputation Inferences with Uncongenial Sources of Input.” Sta-
tistical Science, 9(4), 538–573. doi:10.1214/ss/1177010269.

Mistler SA (2013). “A SAS Macro for Applying Multiple Imputation to Multilevel Data.” In
Proceedings of the SAS Global Forum. SAS.

Muñoz A, Wang MC, Bass S, Taylor JMG, Kingsley LA, Chmiel JS, Polk BF, The Mul-
ticenter AIDS Cohort Study Group (1989). “Acquired Immunodeficiency Syndrome
(AIDS)-Free Time After Human Immunodeficiency Virus Type1 (HIV-1) Seroconver-
sion in Homosexual Men.” American Journal of Epidemiology, 130(3), 530–539. doi:
10.1093/oxfordjournals.aje.a115367.

Nowok B, Raab GM, Dibben C (2016). “synthpop: Bespoke Creation of Synthetic Data in
R.” Journal of Statistical Software, 74(11), 1–26. doi:10.18637/jss.v074.i11.

Pilcher CD, Joaki G, Hoffman IF, Martinson FEA, Mapanje C, Stewart PW, Powers KA,
Galvin S, Chilongozi D, Gama S, Price MA, Fiscus SA, Cohen MS (2007). “Amplified Trans-
mission of HIV-1: Comparison of HIV-1 Concentrations in Semen and Blood During Acute
and Chronic Infection.” AIDS, 21(13), 1723–1730. doi:10.1097/qad.0b013e3281532c82.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL https://CRAN.R-project.org/doc/
Rnews/.

Quartagno M, Carpenter J (2020). jomo: A Package for Multilevel Joint Modelling Multiple
Imputation. R package version 2.7-1, URL http://CRAN.R-project.org/package=jomo.

Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P (2001). “A Multivariate
Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models.”
Survey Methodology, 27(1), 85–95.

Raghunathan TE, Solenberger PW, Berglund PA, Van Hoewyk J (2016). IVEware: Im-
putation and Variance Estimation Software. URL http://www.src.isr.umich.edu/
wp-content/uploads/IVEware-Version-0.3-User-Guide-linked.pdf.

Rässler S (2003). “A Non-Iterative Bayesian Approach to Statistical Matching.” Statistica
Neerlandica, 57(1), 58–74. doi:10.1111/1467-9574.00221.

Raudenbush SW, Bryk AS (2002). Hierarchical Linear Models: Applications and Data Anal-
ysis Methods. 2nd edition. Sage Publications, Thousand Oaks.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reiter JP (2012). “Bayesian Finite Population Imputation for Data Fusion.” Statistica Sinica,
22(2), 795–811. doi:10.5705/ss.2010.140.

Reiter JP, Raghunathan TE (2007). “The Multiple Adaptations of Multiple Imputa-
tion.” Journal of the American Statistical Association, 102(480), 1462–1471. doi:
10.1198/016214507000000932.

https://doi.org/10.18637/jss.v009.i08
https://doi.org/10.1214/ss/1177010269
https://doi.org/10.1093/oxfordjournals.aje.a115367
https://doi.org/10.1093/oxfordjournals.aje.a115367
https://doi.org/10.18637/jss.v074.i11
https://doi.org/10.1097/qad.0b013e3281532c82
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=jomo
http://www.src.isr.umich.edu/wp-content/uploads/IVEware-Version-0.3-User-Guide-linked.pdf
http://www.src.isr.umich.edu/wp-content/uploads/IVEware-Version-0.3-User-Guide-linked.pdf
https://doi.org/10.1111/1467-9574.00221
https://www.R-project.org/
https://doi.org/10.5705/ss.2010.140
https://doi.org/10.1198/016214507000000932
https://doi.org/10.1198/016214507000000932

44 hmi: Hierarchical Multiple Imputation in R

Reiter JP, Raghunathan TE, Kinney SK (2006). “The Importance of Modeling the Sampling
Design in Multiple Imputation for Missing Data.” Survey Methodology, 32(2), 143–150.

Robitzsch A, Grund S, Henke T (2020). miceadds: Some Additional Multiple Imputation
Functions, Especially for mice. R package version 3.9-14, URL https://CRAN.R-project.
org/package=miceadds.

Royston P (2007). “Multiple Imputation of Missing Values: Further Update of ice, with an
Emphasis on Interval Censoring.” The Stata Journal, 7(4), 445–464.

Rubin DB (1978). “Multiple Imputations in Sample Surveys – A Phenomenological Bayesian
Approach to Nonresponse.” In Proceedings of the Survey Research Methods Section, pp.
20–34. American Statistical Association.

Rubin DB (1986). “Statistical Matching Using File Concatenation with Adjusted Weights
and Multiple Imputations.” Journal of Business & Economic Statistics, 4(1), 87–94. doi:
10.1080/07350015.1986.10509497.

Rubin DB (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons,
Hoboken, NJ. doi:10.1002/9780470316696.

Rubin DB (1988). “Using the SIR Algorithm to Simulate Posterior Distributions.” In
JM Bernardo, MH DeGroot, DV Lindley, AFM Smith (eds.), Bayesian Statistics, volume 3,
pp. 395–402. Oxford University Press.

SAS Institute Inc (2013). SAS 9.4. SAS Institute Inc, Cary. URL https://www.sas.com/
en_us/home.html.

Schafer JL (2018). pan: Multiple Imputation for Multivariate Panel or Clustered Data. R pack-
age version 1.6, URL https://CRAN.R-project.org/package=pan.

Schenker N (2003). “Assessing Variability Due To Race Bridging: Application to Census
Counts and Vital Rates for the Year 2000.” Journal of the American Statistical Association,
98(464), 818–828. doi:10.1198/016214503000000756.

Schenker N, Raghunathan TE, Bondarenko I (2010). “Improving on Analyses of Self-Reported
Data in a Large-Scale Health Survey by Using Information from an Examination-Based
Survey.” Statistics in Medicine, 29(5), 533–545. doi:10.1002/sim.3809.

Schenker N, Raghunathan TE, Chiu PL, Makuc DM, Zhang G, Cohen AJ (2006). “Multiple
Imputation of Missing Income Data in the National Health Interview Survey.” Journal of the
American Statistical Association, 101(475), 924–933. doi:10.1198/016214505000001375.

Schneeweiss H, Komlos J, Ahmad AS (2010). “Symmetric and Asymmetric Rounding: A
Review and Some New Results.” AStA Advances in Statistical Analysis, 94(3), 247–271.
doi:10.1007/s10182-010-0125-2.

Scott SJ, Jones RA (1990). “Generation Means Analysis of Right-Censored Response-Time
Traits: Low Temperature Seed Germination in Tomato.” Euphytica, 48(3), 239–244. doi:
10.1007/bf00023656.

https://CRAN.R-project.org/package=miceadds
https://CRAN.R-project.org/package=miceadds
https://doi.org/10.1080/07350015.1986.10509497
https://doi.org/10.1080/07350015.1986.10509497
https://doi.org/10.1002/9780470316696
https://www.sas.com/en_us/home.html
https://www.sas.com/en_us/home.html
https://CRAN.R-project.org/package=pan
https://doi.org/10.1198/016214503000000756
https://doi.org/10.1002/sim.3809
https://doi.org/10.1198/016214505000001375
https://doi.org/10.1007/s10182-010-0125-2
https://doi.org/10.1007/bf00023656
https://doi.org/10.1007/bf00023656

Journal of Statistical Software 45

Seaman SR, Bartlett JW, White IR (2012). “Multiple Imputation of Missing Covariates with
Non-Linear Effects and Interactions: An Evaluation of Statistical Methods.” BMC Medical
Research Methodology, 12(46), 1–13. doi:10.1186/1471-2288-12-46.

Sheppard WF (1898). “On the Calculation of the Most Probable Values of Frequency-
Constants, for Data Arranged According to Equidistant Division of a Scale.” Proceedings
of the London Mathematical Society, 1-29(1), 353–380.

Snijders TAB, Bosker RJ (2011). Multilevel Analysis: An Introduction to Basic and Advanced
Multilevel Modeling. 2nd edition. Sage Publications, London.

Speidel M, Drechsler J, Jolani S (2020). hmi: Hierarchical Multiple Imputation. R package
version 1.0.0, URL https://CRAN.R-project.org/package=hmi.

Speidel M, Drechsler J, Sakshaug JW (2018). “Biases in Multilevel Analyses Caused by
Cluster-Specific Fixed-Effects Imputation.” Behavior Research Methods, 50(5), 1824–1840.
doi:10.3758/s13428-017-0951-1.

StataCorp (2017). Stata Statistical Software: Release 15. StataCorp LLC, College Station.
URL https://www.stata.com/.

Su YS, Gelman A, Hill J, Yajima M (2011). “Multiple Imputation with Diagnostics (mi) in
R: Opening Windows into the Black Box.” Journal of Statistical Software, 45(2), 1–31.
doi:10.18637/jss.v045.i02.

Taljaard M, Donner A, Klar N (2008). “Imputation Strategies for Missing Continuous
Outcomes in Cluster Randomized Trials.” Biometrical Journal, 50(3), 329–345. doi:
10.1002/bimj.200710423.

Taylor JMG, Muñoz A, Bass SM, Saah AJ, Chmiel JS, Kingsley LA (1990). “Estimating
the Distribution of Times from HIV Seroconversion to AIDS Using Multiple Imputation.”
Statistics in Medicine, 9(5), 505–514. doi:10.1002/sim.4780090504.

Taylor JMG, Schwartz K, Detels R (1986). “The Time from Infection with Human Immunod-
eficiency Virus (HIV) to the Onset of AIDS.” The Journal of Infectious Diseases, 154(4),
694–697. doi:10.1093/infdis/154.4.694.

Templ M, Meindl B, Kowarik A, Dupriez O (2017). “Simulation of Synthetic Complex Data:
The R Package simPop.” Journal of Statistical Software, 79(10), 1–38. doi:10.18637/
jss.v079.i10.

Therneau TM (2020). survival: Survival Analysis. R package version 3.2-3, URL https:
//CRAN.R-project.org/package=survival.

Tobin J (1958). “Estimation of Relationships for Limited Dependent Variables.” Economet-
rica, 26(1), 24–36. doi:10.2307/1907382.

Trappmann M, Gundert S, Wenzig C, Gebhardt D (2010). “PASS: A Household Panel Sur-
vey for Research on Unemployment and Poverty.” Journal of Contextual Economics –
Schmollers Jahrbuch, 130(4), 609–622. doi:10.3790/schm.130.4.609.

https://doi.org/10.1186/1471-2288-12-46
https://CRAN.R-project.org/package=hmi
https://doi.org/10.3758/s13428-017-0951-1
https://www.stata.com/
https://doi.org/10.18637/jss.v045.i02
https://doi.org/10.1002/bimj.200710423
https://doi.org/10.1002/bimj.200710423
https://doi.org/10.1002/sim.4780090504
https://doi.org/10.1093/infdis/154.4.694
https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.18637/jss.v079.i10
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.2307/1907382
https://doi.org/10.3790/schm.130.4.609

46 hmi: Hierarchical Multiple Imputation in R

Van Buuren S (2011). “Multiple Imputation of Multilevel Data.” In JJ Hox, JK Roberts
(eds.), The Handbook of Advanced Multilevel Analysis, chapter 10, pp. 173–196. Routledge
Academic, Milton Park.

Van Buuren S (2018). Flexible Imputation of Missing Data. 2nd edition. Taylor & Francis
Group, United States. doi:10.1201/9780429492259.

Van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate Imputation by Chained
Equations in R.” Jornal of Statistical Software, 45(3), 1–67. doi:10.18637/jss.v045.i03.

Van der Laan J, Kuijvenhoven L (2011). “Imputation of Rounded Data.” Statistics Nether-
lands Discussion Paper no. 201108, Statistics Netherlands. URL https://www.cbs.nl/-/
media/imported/documents/2011/08/2011-x10-08.pdf.

Wang H, Heitjan DF (2008). “Modeling Heaping in Self-Reported Cigarette Counts.” Statistics
in Medicine, 27(19), 3789–3804. doi:10.1002/sim.3281.

Wickham H (2007). “Reshaping Data with the reshape Package.” Journal of Statistical
Software, 21(12), 1–20. doi:10.18637/jss.v021.i12.

Wickham H, Henry L (2020). tidyr: Tidy Messy Data. R package version 1.1.0, URL https:
//CRAN.R-project.org/package=tidyr.

Wiencierz A (2012). linLIR: Linear Likelihood-Based Imprecise Regression. R package ver-
sion 1.1, URL https://CRAN.R-project.org/package=linLIR.

Zhou H, Elliott MR, Raghunathan TE (2016). “Synthetic Multiple-Imputation Procedure
for Multistage Complex Samples.” Journal of Official Statistics, 32(1), 231–256. doi:
10.1515/jos-2016-0011.

Zhu J, Raghunathan TE (2015). “Convergence Properties of a Sequential Regression Multiple
Imputation Algorithm.” Journal of the American Statistical Association, 110(511), 1112–
1124. doi:10.1080/01621459.2014.948117.

Zinn S, Würbach A (2016). “A Statistical Approach to Address the Problem of Heaping in
Self-Reported Income Data.” Journal of Applied Statistics, 43(4), 682–703. doi:10.1080/
02664763.2015.1077372.

https://doi.org/10.1201/9780429492259
https://doi.org/10.18637/jss.v045.i03
https://www.cbs.nl/-/media/imported/documents/2011/08/2011-x10-08.pdf
https://www.cbs.nl/-/media/imported/documents/2011/08/2011-x10-08.pdf
https://doi.org/10.1002/sim.3281
https://doi.org/10.18637/jss.v021.i12
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=linLIR
https://doi.org/10.1515/jos-2016-0011
https://doi.org/10.1515/jos-2016-0011
https://doi.org/10.1080/01621459.2014.948117
https://doi.org/10.1080/02664763.2015.1077372
https://doi.org/10.1080/02664763.2015.1077372

Journal of Statistical Software 47

A. Suggestion for rounding degrees
If the user registers a variable as potentially being affected by heaping (by setting the variable
type to "roundedcont") but does not provide rounding_degrees for this variable, hmi tries
to make an educated guess, regarding the possible degrees of rounding which should be used
when modeling the heaping. The following heuristic is used to suggest the rounding degrees:

1. For a given continuous variable all possible rounding degrees (factors or divisors in
mathematical terms), are derived for each observation. To give an example, the factors
of 10 are 1, 2, 5, 10. We will call the subfactors 1, 2, and 5 of 10.

2. For each possible factor identified in step 1, the number of observations divisible by this
factor is tabulated.

3. A rough estimate (based on the assumption of a discrete uniform distribution between
0 and ∞) for the expected number of observations being divisible by a factor s is n/s,
where n is the number of records in the data set. For example, the expected number
of observations being divisible by s = 5 for a data set containing 10,000 records is
n/s = 2000. If the observed number of individuals being divisible by factor s is at least
twice the expected number, s is a “candidate rounding degree”.

4. Starting with the highest candidate rounding degree, each candidate has to fulfill two
conditions to be stored as an actual rounding degree:

(a) At least 20% of the data have to be divisible by this candidate; observations which
are also divisible by larger rounding degrees which have been previously identified
to be an actual rounding degree are not considered. The removal of these records
ensures that the currently considered candidate actually contributes to the heaping.
For example, when 40% of the data are divisible by 100, at least 40% of the data
have to be divisible by 50. By requesting that at least 60% of the data are divisible
by 50 (if 100 has been identified previously as an actual rounding degree) it is
ensured that the fact that a large proportion of the data is divisible by 50 is not
only a spurious effect because many observations are rounded to the closest 100.

(b) The considered candidate must be a subfactor of at least two other factors found
in the data. This prevents that a rounding degree only “explains itself”. For ex-
ample 4, 000 would not be considered to be an actual rounding degree if 27% of
the individuals reported a value of 4, 000, but no one reported 8, 000 or 12, 000 etc.
This condition ensures that lower (and thus more general) rounding degrees such
as 1, 000 are favored.

Affiliation:
Matthias Speidel
Institute for Employment Research

48 hmi: Hierarchical Multiple Imputation in R

Nuremberg, Germany
E-mail: matthias.speidel@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2020, Volume 95, Issue 9 Submitted: 2018-06-04
doi:10.18637/jss.v095.i09 Accepted: 2019-07-06

mailto:matthias.speidel@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v095.i09

	Introduction
	Multiple imputation for hierarchical data sets
	Multilevel linear models
	Multilevel generalized linear models
	Dealing with missing values in hierarchical data
	Multiple imputation using multilevel models
	Joint modeling vs. sequential regression for multilevel imputation
	Existing imputation routines for multilevel data and their limitations
	Our contribution for the imputation of hierarchical data

	Multiple imputation for interval data
	Analyzing interval data
	Multiple imputation methodology for interval data
	Our contribution for the imputation of interval data

	Multiple imputation for data affected by heaping
	Analyzing rounded data
	Multiple imputation methodology for data affected by heaping
	Our contribution for the imputation of data affected by heaping

	Software
	Input
	Checks and preparations
	Specifying the modelformula
	Imputation cycles
	The different supported types of variables
	Binary variables (keyword "binary")
	Continuous variables (keyword "cont")
	Semi-continuous variables (keyword "semicont")
	Interval variables (keyword "interval")
	Rounded continuous variables (keyword "roundedcont")
	Count variables (keyword "count")
	Categorical variables (keyword "categorical")
	Ordered categorical variables (keyword "ordered categorical")
	Intercept variable (keyword "intercept")

	Pre-definition of the variable types
	Output of hmi
	Convergence checks
	Application of the multiple imputation combining rules (pooling)

	Application examples
	Multilevel data
	Before starting the imputation
	Running the imputation
	Monitoring convergence
	Analyzing the imputed data

	Interval data
	Some useful functions for interval data

	Variables affected by heaping

	Conclusion
	Suggestion for rounding degrees

