
JSS Journal of Statistical Software
November 2020, Volume 96, Issue 1. doi: 10.18637/jss.v096.i01

colorspace: A Toolbox for Manipulating and
Assessing Colors and Palettes

Achim Zeileis
Universität Innsbruck

Jason C. Fisher
U.S. Geological

Survey

Kurt Hornik
WU Wirtschafts-
universität Wien

Ross Ihaka
University of
Auckland

Claire D. McWhite
The University of
Texas at Austin

Paul Murrell
University of
Auckland

Reto Stauffer
Universität Innsbruck

Claus O. Wilke
The University of
Texas at Austin

Abstract

The R package colorspace provides a flexible toolbox for selecting individual colors or
color palettes, manipulating these colors, and employing them in statistical graphics and
data visualizations. In particular, the package provides a broad range of color palettes
based on the HCL (hue-chroma-luminance) color space. The three HCL dimensions have
been shown to match those of the human visual system very well, thus facilitating intu-
itive selection of color palettes through trajectories in this space. Using the HCL color
model, general strategies for three types of palettes are implemented: (1) Qualitative for
coding categorical information, i.e., where no particular ordering of categories is available.
(2) Sequential for coding ordered/numeric information, i.e., going from high to low (or
vice versa). (3) Diverging for coding ordered/numeric information around a central neu-
tral value, i.e., where colors diverge from neutral to two extremes. To aid selection and
application of these palettes, the package also contains scales for use with ggplot2, shiny
and tcltk apps for interactive exploration, visualizations of palette properties, accompany-
ing manipulation utilities (like desaturation and lighten/darken), and emulation of color
vision deficiencies. The shiny apps are also hosted online at http://hclwizard.org/.

Keywords: color, palette, HCL, RGB, hue, color vision deficiency, R.

1. Introduction

Color is an integral element of many statistical graphics and data visualizations. Therefore,
colors should be carefully chosen to support all viewers in accessing the information displayed

https://doi.org/10.18637/jss.v096.i01
http://hclwizard.org/

2 colorspace: Manipulating and Assessing Colors and Palettes

Hue
(Type of color)

Chroma
(Colorfulness)

Luminance
(Brightness)

0

0

95

75

25

75

150

50

55

225

75

35

300

100

15

Figure 1: Axes of the HCL color space. Top: Hue H changes from 0 (red) via 75 (yellow),
etc. to 300 (purple) with fixed C = 60 and L = 65. Center: Chroma C changes from 0 (gray)
to 100 (colorful) with fixed H = 0 (red) and L = 65. Bottom: Luminance L changes from 95
(light) to 15 (dark) with fixed H = 260 (blue) and C = 25 (low, close to gray).

(Tufte 1990; Brewer 1999; Ware 2004; Wilkinson 2005; Wilke 2019). However, until relatively
recently many software packages have been using color palettes derived from simple RGB
(red-green-blue) color combinations such as the RGB “rainbow” (or “jet”) color palette with
poor perceptual properties. See Hawkins, McNeall, Stephenson, Williams, and Carlson (2014)
and Stauffer, Mayr, Dabernig, and Zeileis (2015) and the references therein for an overview.
To address these problems, many improved color palettes with better perceptual properties
have been receiving increasing attention in the literature (Harrower and Brewer 2003; Zeileis,
Hornik, and Murrell 2009; Smith and Van der Walt 2015; CARTO 2019; Crameri 2018). Many
systems for statistical and scientific computing provide infrastructure for such color palettes.
For example, for R (R Core Team 2020) the list of useful packages encompasses RColorBrewer
(Neuwirth 2014), viridis (Garnier 2018), rcartocolor (Nowosad 2019), wesanderson (Ram and
Wickham 2018), and scico (Pedersen and Crameri 2020) among many others. Furthermore,
packages like pals (Wright 2019) and paletteer (Hvitfeldt 2020) collect many of the proposed
palettes in combination with a unified interface. Most of these palettes, however, are pre-
existing palettes, stored as a limited set of colors and interpolated as necessary. And even if
specific algorithms have been used in the initial construction of the palettes, these are often
not reflected in the software implementations.
The colorspace package (Ihaka et al. 2020) adopts a somewhat different approach that gives
the user direct access to the construction principles underlying its palettes. These are based
on simple trajectories in the perceptually-based HCL (hue-chroma-luminance) color space
(Wikipedia 2020e) whose axes match those of the human visual system very well: Hue (type
of color, dominant wavelength), chroma (colorfulness), luminance (brightness), see Figure 1.
Thus, utilizing this color model the colorspace package can derive general and adaptable
strategies for color palettes; manipulate individual colors and color palettes; and assess and
visualize the properties of color palettes (beyond simple color swatches). Specifically, col-
orspace provides three types of palettes based on the HCL model:

• Qualitative: Designed for coding categorical information, i.e., where no particular order-
ing of categories is available and every color should receive the same perceptual weight.
Function: qualitative_hcl().

• Sequential: Designed for coding ordered/numeric information, i.e., where colors go from
high to low (or vice versa). Function: sequential_hcl().

Journal of Statistical Software 3

• Diverging: Designed for coding ordered/numeric information around a central
neutral value, i.e., where colors diverge from neutral to two extremes. Function:
diverging_hcl().

A broad collection of prespecified palettes is shipped in the package. In addition, exist-
ing palettes can be easily tweaked and new or adapted palettes registered. The prespecified
palettes include suitable HCL color choices that closely approximate most palettes from pack-
ages RColorBrewer, rcartocolor, and viridis by using only a small set of hue, chroma, and
luminance parameters.
To aid choice and application of these palettes the package provides (a) scales for use with gg-
plot2 (Wickham 2016), (b) shiny (Chang, Cheng, Allaire, Xie, and McPherson 2020) and tcltk
(R Core Team 2020) apps for interactive exploration, (c) visualizations of palette properties,
and (d) accompanying manipulation utilities (like converting to grayscale by desaturation,
lighten/darken, and emulation of color vision deficiencies).
The remainder of the paper is organized as follows: Section 2 gives a first overview of the
package’s “look & feel” and the general workflow. Section 3 summarizes the S4 color space
classes and methods in the package. Section 4 introduces the extensible collection of HCL-
based palettes along with their construction details. Section 5 presents the toolbox for palette
visualization and assessment. Section 6 discusses the implemented techniques for color vision
deficiency emulation that help assess the suitability of colors for colorblind viewers. Section 7
briefly highlights the interactive color apps from the package. Some further color manipulation
utilities are highlighted in Section 8 before Section 9 concludes the paper.

2. A quick tour
The stable release version of colorspace is hosted on the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=colorspace and the development ver-
sion is hosted on R-Forge at https://R-Forge.R-project.org/projects/colorspace/.

2.1. Choosing HCL-based color palettes

The colorspace package ships with a wide range of predefined color palettes, specified through
suitable trajectories in the HCL (hue-chroma-luminance) color space. A quick overview can
be gained easily with the hcl_palettes() function (see Figure 2, some of these are illustrated
in more detail later):

R> library("colorspace")
R> hcl_palettes(plot = TRUE)

A suitable vector of colors can be easily computed by specifying the desired number of colors
and the palette name (see Figure 2 for possible palette names), e.g.,

R> q4 <- qualitative_hcl(4, palette = "Dark 3")
R> q4

[1] "#E16A86" "#909800" "#00AD9A" "#9183E6"

https://CRAN.R-project.org/package=colorspace
https://R-Forge.R-project.org/projects/colorspace/

4 colorspace: Manipulating and Assessing Colors and Palettes

Qualitative

Pastel 1

Dark 2

Dark 3

Set 2

Set 3

Warm

Cold

Harmonic

Dynamic

Sequential (single−hue)

Grays

Light Grays

Blues 2

Blues 3

Purples 2

Purples 3

Reds 2

Reds 3

Greens 2

Greens 3

Oslo

Sequential (multi−hue)

Purple−Blue

Red−Purple

Red−Blue

Purple−Orange

Purple−Yellow

Blue−Yellow

Green−Yellow

Red−Yellow

Heat

Heat 2

Terrain

Terrain 2

Viridis

Plasma

Inferno

Dark Mint

Mint

BluGrn

Teal

TealGrn

Emrld

BluYl

ag_GrnYl

Peach

PinkYl

Burg

BurgYl

RedOr

OrYel

Purp

PurpOr

Sunset

Magenta

SunsetDark

ag_Sunset

BrwnYl

YlOrRd

YlOrBr

OrRd

Oranges

YlGn

YlGnBu

Reds

RdPu

PuRd

Purples

PuBuGn

PuBu

Greens

BuGn

GnBu

BuPu

Blues

Lajolla

Turku

Hawaii

Batlow

Diverging

Blue−Red

Blue−Red 2

Blue−Red 3

Red−Green

Purple−Green

Purple−Brown

Green−Brown

Blue−Yellow 2

Blue−Yellow 3

Green−Orange

Cyan−Magenta

Tropic

Broc

Cork

Vik

Berlin

Lisbon

Tofino

Figure 2: Brief overview of available predefined palettes in colorspace.

The functions sequential_hcl(), and diverging_hcl() work analogously. Additionally,
a palette’s hue/chroma/luminance parameters can be modified, thus allowing for easy cus-
tomization of each palette. Moreover, the choose_palette()/hclwizard() app provides
convenient user interfaces to perform palette customization interactively. Finally, even more
flexible diverging HCL palettes are provided by divergingx_hcl().

2.2. Usage with base graphics

The color vectors returned by the HCL palette functions can usually be passed directly to
most base graphics, typically through the col argument. Here, the q4 vector created above
is used in a time series display (see the left panel of Figure 3):

R> plot(log(EuStockMarkets), plot.type = "single", col = q4, lwd = 2)
R> legend("topleft", colnames(EuStockMarkets), col = q4, lwd = 3, bty = "n")

As another example for a sequential palette, we demonstrate how to create a spine plot (see
the right panel of Figure 3) displaying the proportion of Titanic passengers that survived
per class. The "Purples 3" palette is used, which is quite similar to the ColorBrewer.org
(Harrower and Brewer 2003) palette "Purples". Here, only two colors are employed: a dark
purple that is highlighted against a light gray.

R> ttnc <- margin.table(Titanic, c(1, 4))
R> spineplot(ttnc, col = sequential_hcl(2, palette = "Purples 3"))

Journal of Statistical Software 5

Time

lo
g(

E
uS

to
ck

M
ar

ke
ts

)

1992 1993 1994 1995 1996 1997 1998

7.
5

8.
0

8.
5

9.
0

DAX
SMI
CAC
FTSE

Class

S
ur

vi
ve

d

1st 2nd 3rd Crew

Ye
s

N
o

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Using colorspace with base R graphics. Left: Time series plot of log-prices from
EuStockMarkets data with qualitative_hcl(4, "Dark 3") palette. Right: Spine plot with
survival proportions across passenger classes in the titanic data with sequential_hcl(2,
"Purples 3") palette.

2.3. Usage with ggplot2
To provide access to the HCL color palettes from within ggplot2 graphics (Wickham 2016;
Wickham et al. 2020) suitable discrete, continuous, and binned ggplot2 color scales are pro-
vided. The scales are named via the scheme

scale_<aesthetic>_<datatype>_<colorscale>()

where

• <aesthetic> is the name of the aesthetic (fill, color, colour).
• <datatype> is the type of the variable plotted (discrete, continuous, binned).
• <colorscale> sets the type of the color scale used (i.e., qualitative, sequential,

diverging, divergingx).

To illustrate their usage two simple examples are shown using the qualitative "Dark 3" and
sequential "Purples 3" palettes that were also employed above. For the first example, semi-
transparent shaded densities of the sepal length from the iris data are shown, grouped by
species (see the left panel of Figure 4).

R> library("ggplot2")
R> ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
+ geom_density(alpha = 0.6) +
+ scale_fill_discrete_qualitative(palette = "Dark 3")

And for the second example the sequential palette is used to code the cut levels in a scatter
of price by carat in the diamonds data (or rather a small subsample thereof, see the right
panel of Figure 4). The scale function first generates six colors but then drops the first color
because the light gray is too light here. (Alternatively, the chroma and luminance parameters
could also be tweaked.)

6 colorspace: Manipulating and Assessing Colors and Palettes

0.0

0.4

0.8

1.2

5 6 7 8
Sepal.Length

de
ns

ity

Species

setosa

versicolor

virginica

●

●●●● ●●

●

●●●●●● ● ●●●● ●

●

●●●●● ●

●

● ●●● ●●● ●● ●● ●

●

●●● ●●●● ●●● ●●

●

● ●● ●●●

●

● ●●● ●●

●

●●●● ● ●● ●●●●●

●

●● ●● ●●

●

●●● ●●● ●●● ●●●

●

●● ● ●●● ●●● ● ●●

●

●●●●● ●

●

●● ●● ●● ●●●●●●

●

●●●● ●●

●

●● ●●●●

●

●● ●●● ●●●● ●● ●

●

●●● ●● ●●●●●●●

●

●● ●● ●●

●

● ●●● ●● ●● ●●● ●

●

●●● ●● ●

●

● ●●●●●

●

●● ●●●● ●●●●● ●

●

● ● ●● ●● ●●●●●●

●

● ●● ●●●

●

●● ●● ●● ●●● ●● ●

●

●● ●●●● ●● ●●●●

● ●

●● ●● ●●●●●● ●●

●

● ●●●● ●● ●●● ●●

●

● ●● ●● ●

●

●●●● ●●● ●● ●● ●

●

●●●● ● ●●● ●●●●

●

●●●●●●

●

●●● ●●●

●

● ●●●● ●●●●● ●●

●

●● ●●●●

●

●● ●● ●● ●●●●● ●

●

●● ●●●● ●● ●●●●

●

●●● ●●●

●

● ●●●● ●

●

● ●● ●●●●● ●●● ●

●

● ● ●●●●

●

● ● ●● ● ●● ●●● ●●

●

●● ● ●● ● ●●●●● ●

●

● ●● ●●●

●

●●● ●●● ● ●● ● ●●

●

● ● ●● ●●

●

●● ●● ● ●

●

● ● ●●●●●● ●●● ●

●

● ●●● ●● ●●●● ●●

●

●●● ● ●●

●

●● ●●●●● ●●● ● ●

●

● ●●● ●●

●

●●
●●
●●

●

●●
●● ●●●● ● ●● ●

●●●●●
●
●●●● ●●
●

●●● ●●●●●●● ●●
●
●●●●●●

●
●●●●● ●●●●●●●
●

●●●● ●●● ●● ●●●
●
● ●●●●●
●
●●● ●● ●●●●●●●

●
●● ●●●●

●
●●●●●●
●
●●●●● ●●● ●●●●

●
●● ●●● ●● ●●●●●

●
●●● ●●●

●
●●●●●●● ●●● ●●

●
● ●●●●●

●
●●●● ●●

●
●●● ●●●●●●●●●

●
●● ●●●●●●●● ●●

●
●●●●●●

●
●●●●●● ●●●● ●●

●
●●● ●● ●●●●●● ●

●●

●●● ●●●●●●● ●●

●

● ●●● ●●● ●● ●●●

●

●●● ●●●

●

●●●●● ●●●● ●● ●

●

●●●● ●●●● ●● ●●

●

● ●●● ●●

●

●● ●●●●

●

●● ●●●● ●●●●●●

●

● ●●●● ●

●

●●●●●● ●● ●●●●

●

●●●●●

●●●

● ●●●●●●●● ●●●

●

●●● ●●●● ●●●●●

●

●●●●●●

●

● ●●●●●●●●● ●●

●

●● ●●●●●●● ●●●

●

●●● ●●●

●

●●● ●●●

●

●● ●●●●● ●●●● ●

●

● ●● ●●●

●

●● ●●●● ●●● ● ●●

●

●● ●●●● ●●●●●●

●

●

0

5000

10000

15000

1 2 3
carat

pr
ic

e

cut

●

●

●

●

●

Fair

Good

Very Good

Premium

Ideal

Figure 4: Using colorspace with ggplot2 graphics. Left: Kernel density of sepal
length, grouped and shaded by species, in the iris data with semi-transparent
scale_fill_discrete_qualitative(palette = "Dark 3") color scale. Right: Scat-
ter plot of price by carat, shaded by cut levels, in a subsample of the diamonds
data with the scale_color_discrete_sequential(palette = "Purples 3", nmax = 6,
order = 2:6) color scale.

R> dsamp <- diamonds[1 + 1:1000 * 50,]
R> ggplot(dsamp, aes(carat, price, color = cut)) + geom_point() +
+ scale_color_discrete_sequential(palette = "Purples 3", nmax = 6,
+ order = 2:6)

2.4. Palette visualization and assessment

The colorspace package also provides a number of functions that aid visualization and assess-
ment of its palettes.

• demoplot() can display a palette (with arbitrary number of colors) in a range of typical
and somewhat simplified statistical graphics.

• hclplot() converts the colors of a palette to the corresponding hue/chroma/luminance
coordinates and displays them in HCL space with one dimension collapsed. The col-
lapsed dimension is the luminance for qualitative palettes and the hue for sequen-
tial/diverging palettes.

• specplot() also converts the colors to hue/chroma/luminance coordinates but draws
the resulting spectrum in a line plot.

For the qualitative "Dark 3" palette from above the following plots can be obtained (see
Figure 5).

R> demoplot(q4, "bar")
R> hclplot(q4)
R> specplot(q4, type = "o")

Journal of Statistical Software 7

Figure 5: Palette visualization and assessment for the qualitative_hcl(4, "Dark 3")
palette. Left: Demo bar plot. Center: Hue-chroma plane at fixed L = 60 in HCL space.
Right: HCL spectrum with linearly changing hue (around color wheel), almost constant
chroma, and constant luminance.

Figure 6: Palette visualization and assessment for the sequential_hcl(9, "Purples 3")
palette. Left: Demo heatmap. Center: Chroma-luminance plane at fixed H = 270 in HCL
space. Right: HCL spectrum with constant hue, triangular chroma, and increasing luminance.

The bar plot is used as a typical application for a qualitative palette (in addition to the time
series and density plots used above). The other two displays show that luminance is (almost)
constant in the palette while the hue changes linearly along the color “wheel” (from degree
0 to 270). Ideally, chroma would have also been constant to completely balance the colors.
However, at this luminance the maximum chroma differs across hues so that the palette is
fixed up to use less chroma for the yellow and green elements.
Note also that in a bar plot areas are shaded (and not just points or lines) so that lighter
colors would be preferable. In the density plot in Figure 4 this was achieved through semi-
transparency. Alternatively, luminance could be increased as is done in the "Pastel 1" or
"Set 3" palettes.
Subsequently, the same types of assessment are carried out in Figure 6 for the sequential
"Purples 3" palette as employed above.

R> s9 <- sequential_hcl(9, "Purples 3")
R> demoplot(s9, "heatmap")
R> hclplot(s9)

8 colorspace: Manipulating and Assessing Colors and Palettes

R> specplot(s9, type = "o")

In Figure 6, a heatmap (based on the well-known Maunga Whau volcano data) is used as a
typical application for a sequential palette. The elevation of the volcano is brought out clearly,
using dark colors to give emphasis to higher elevations. The other two displays show that hue is
constant in the palette while luminance and chroma vary. Luminance increases monotonically
from dark to light (as required for a proper sequential palette). Chroma is triangular-shaped
which allows the viewer to better distinguish the middle colors in the palette when compared
to a monotonic chroma trajectory.

3. Color spaces: S4 classes and utilities
At the core of the colorspace package are various utilities for computing with color spaces
(Wikipedia 2020d), as the name of the package conveys. Thus, the package helps to map
various three-dimensional representations of color to each other (Ihaka 2003). A partic-
ularly important mapping is the one from the perceptually-based and device-independent
color model HCL (hue-chroma-luminance) to standard red-green-blue (sRGB) which is the
basis for color specifications in many systems based on the corresponding hexadecimal (or
simply hex) codes (Wikipedia 2020i), e.g., in HTML but also in R. For completeness further
standard color models are included as well in the package. Their connections are illustrated
in Figure 7. Color models that are (or try to be) perceptually-based are displayed with circles
and models that are not are displayed with rectangles.

3.1. Implemented color spaces

The color spaces, implemented in colorspace, along with their corresponding S4 classes and
eponymous class constructors, are:

• RGB() for the classic red-green-blue color model, which mixes three primary colors with
different intensities to obtain a spectrum of colors. The advantage of this color model is
(or was) that it corresponded to how computer and TV screens generated colors, hence
it was widely adopted and still is the basis for color specifications in many systems. For
example, hex color codes are employed in HTML but also in R. However, the RGB model
also has some important drawbacks: It does not take into account the output device
properties, it is not perceptually uniform (a unit step within RGB does not produce a
constant perceptual change in color), and it is unintuitive for humans to specify colors
(say brown or pink) in this space. See Wikipedia (2020g) for more details.

• sRGB() addresses the issue of device dependency by adopting a so-called gamma cor-
rection. Therefore, the gamma-corrected standard RGB (sRGB), as opposed to the
linearized RGB above, is a good model for specifying colors in software and for hard-
ware. But it is still unintuitive for humans to work directly with this color space.
Therefore, sRGB is a good place to end up in a color space manipulation but it is not
a good place to start. See Wikipedia (2020h) for more details.

• HSV() is a simple transformation of either the sRGB or the RGB space that tries to
capture the perceptual axes: hue (dominant wavelength, the type of color), saturation
(colorfulness), and value (brightness, i.e., light vs. dark). Unfortunately, the three axes

Journal of Statistical Software 9

polarLAB

polarLUV
(HCL)

LAB

LUV

XYZ RGB

HLS

HSV

sRGB hex

white point
= D65

gamma
= 2.4

Figure 7: Relationships among three-dimensional color spaces implemented in colorspace.
Color models that are (or try to be) perceptually-based are displayed with circles, other color
models with rectangles.

in the HSV model are confounded so that, e.g., brightness changes dramatically with
hue. See Wikipedia (2020f) for more details.

• HLS() (hue-lightness-saturation) is another transformation of either sRGB or RGB that
tries to capture the perceptual axes. It does a somewhat better job but the dimensions
are still strongly confounded. See Wikipedia (2020f) for more details.

• XYZ() was established by the CIE (Commission Internationale de l’Eclairage) based on
psychophysical experiments with human subjects. It provides a unique triplet of XYZ
values, coding the standard observer’s perception of the color. It is device-independent
but it is not perceptually uniform and the XYZ coordinates have no intuitive meaning.
See Wikipedia (2020a) for more details.

• LUV() and LAB() were therefore proposed by the CIE as perceptually uniform color
spaces where the former is typically preferred for emissive technologies (such as screens
and monitors) whereas the latter is usually preferred when working with dyes and
pigments. The L coordinate in both spaces has the same meaning and captures luminace
(light-dark contrasts). Both the U and V coordinates as well as the A and B coordinates
measure positions on red/green and yellow/blue axes, respectively, albeit in somewhat
different ways. While this corresponds to how human color vision likely evolved (see
the next section), these two color models still not correspond to perceptual axes that
humans use to describe colors. See Wikipedia (2020c,b) for more details.

• polarLUV() and polarLAB() take polar coordinates in the UV plane and AB plane,
respectively. Specifically, the polar coordinates of the LUV model are known as the
HCL (hue-chroma-luminance) model (see Wikipedia 2020e, which points out that the
LAB-based polar coordinates are also sometimes referred to as HCL). The HCL model
captures the human perceptual axes very well without confounding effects as in the
HSV or HLS approaches. (More details follow below.)

All S4 classes for color spaces inherit from a virtual class ‘color’ which is internally always
represented by matrices with three columns (corresponding to the three dimensions).
Note that since the inception of the color space conversion tools within colorspace (in C, Ihaka
2003) other R tools for this purpose became available, notably grDevices::convertColor()

10 colorspace: Manipulating and Assessing Colors and Palettes

red

green

yellow

blue

light

dark

Figure 8: Visualization of axes capturing human color vision (left) and the corresponding
HCL color model (right).

(in high-level R, R Core Team 2020) and farver::convert_colour() (in C++, Peder-
sen, Nicolae, and François 2020). For many basic color conversion purposes the colorspace
package and these alternatives are essentially equally suitable (see the discussion in Zeileis,
Gaslam, Murrell, and Pedersen 2018). For more complex conversions, including different
chromatic adaptation algorithms, a more comprehensive color science approach is imple-
mented in the R package colorscience (Gama and Davis 2018). Finally, base R also provides
grDevices::hcl() for mapping HCL representations to hex codes.
To make the colorspace package self-contained and exactly backward compatible, the C code
in colorspace is still used as the basis for all color space conversions.

3.2. Human color vision and the HCL color model

It has been hypothesized that human color vision has evolved in three distinct stages:

1. Perception of light/dark contrasts (monochrome only).
2. Yellow/blue contrasts (usually associated with our notion of warm/cold colors).
3. Green/red contrasts (helpful for assessing the ripeness of fruit).

See Kaiser and Boynton (1996), Knoblauch (2002), Ihaka (2003), Lumley (2006), Zeileis et al.
(2009) for more details and references. Thus, colors can be described using a 3-dimensional
space as shown in the left panel of Figure 8. However, for describing colors in such a space,
it is more natural for humans to employ polar coordinates in the color plane (yellow/blue
vs. green/red, visualized by the dashed circle in Figure 8) plus a third light/dark axis. Hence,
color models that attempt to capture these perceptual axes are also called perceptually-based
color spaces. As already argued above, the HCL model captures these dimensions very well,
calling them: hue, chroma, and luminance. The corresponding sRGB gamut, i.e., the HCL
colors that can also be represented in sRGB, is visualized in the right panel of Figure 8 (by
Horvath and Lipka 2016). An animated version of the same plot is provided online by Horvath
and Lipka (2017).

Journal of Statistical Software 11

Figure 9: Vertical (left) and horizontal (right) slices of the HCL space yielding a chroma-
luminance plane for given hue and a hue-chroma plane for given luminance, respectively.

The shape of the HCL space is a distorted double cone which is seen best by looking at vertical
slices, i.e., chroma-luminance planes for given hues. For example, the left panel in Figure 9
depicts the chroma-luminance plane for a certain blue (hue = 255). Along with luminance the
colors change from dark to light. With increasing chroma the colors become more colorful,
where the highest chroma is possible for intermediate luminance.
As some colors are relatively dark (e.g., blue and red assume their maximum chroma for
relatively low luminances) while others are relatively light (e.g., yellow and green), horizontal
slices of hue-chroma planes for given hue have somewhat irregular shapes. The right panel
in Figure 9 shows such a hue-chroma plane for moderately light colors (luminance = 70). At
that luminance, green and orange can become much more colorful compared to blue or red.

3.3. Utilities

Several utilities are available for working with the S4 classes implementing the color spaces
listed above.

• as() method: Convert a ‘color’ object to the various color spaces, e.g., as(x, "sRGB").
• coords(): Extract the three-dimensional coordinates pertaining to the current ‘color’

class.
• hex(): Convert a ‘color’ object to ‘sRGB’ and code in a hex string that can be used

within R plotting functions.
• hex2RGB(): Convert a given hex color string to an ‘sRGB’ color object which can also

be coerced to other color spaces.
• readRGB() and readhex() can read text files into ‘color’ objects, either from RGB

coordinates or hex color strings.
• writehex(): Write hex color strings to a text file.
• whitepoint(): Query and change the so-called white point employed in conversions

from CIE XYZ to RGB. Defaults to D65 that has been specified by the CIE to approx-
imate daylight (Poynton 2009, FAQ 15).

12 colorspace: Manipulating and Assessing Colors and Palettes

3.4. Illustration of basic colorspace functionality

As an example a vector of colors x can be specified in the HCL (or polar LUV) model:

R> (x <- polarLUV(L = 70, C = 50, H = c(0, 120, 240)))

L C H
[1,] 70 50 0
[2,] 70 50 120
[3,] 70 50 240

The resulting three colors are pastel red (hue = 0), green (hue = 120), and blue (hue = 240)
with moderate chroma and luminance. For display in other systems an sRGB representation
might be needed:

R> (y <- as(x, "sRGB"))

R G B
[1,] 0.8931564 0.5853740 0.6465459
[2,] 0.5266113 0.7224335 0.4590469
[3,] 0.4907804 0.6911937 0.8673877

The displayed coordinates can also be extracted as numeric matrices by coords(x) or coords(y).
We can also, for example, coerce from sRGB to HSV:

R> as(y, "HSV")

H S V
[1,] 348.0750 0.3446008 0.8931564
[2,] 104.6087 0.3645825 0.7224335
[3,] 208.0707 0.4341857 0.8673877

For display in many systems (including R itself) hex color codes based on the sRGB coordi-
nates can be created:

R> hex(x)

[1] "#E495A5" "#86B875" "#7DB0DD"

4. HCL-based color palettes
As motivated in the previous section, the HCL space is particularly useful for specifying indi-
vidual colors and color palettes, as its three axes match those of the human visual system very
well. Therefore, the colorspace package provides three palette functions based on the HCL
model: qualitative_hcl(), sequential_hcl(), and diverging_hcl(). Their construction
principles are exemplified in Figure 10 and explained in more detail below. The desaturated

Journal of Statistical Software 13

Qualitative (Set 2)

Color

Desaturated

Sequential (Blues 3)

Color

Desaturated

Diverging (Green−Brown)

Color

Desaturated

Figure 10: Examples of palette types in colorspace. Qualitative palettes are balanced towards
the same luminance level while sequential and diverging palettes go from dark to light and/or
vice versa, respectively.

palettes in the second row of Figure 10 bring out clearly that luminance differences (light-
dark contrasts) are crucial for sequential and diverging palettes while qualitative palettes are
balanced at the same luminance.
To facilitate obtaining good sets of colors, HCL parameter combinations that yield useful
palettes are accessible by name. These can be listed using the function hcl_palettes():

R> hcl_palettes()

HCL palettes

Type: Qualitative
Names: Pastel 1, Dark 2, Dark 3, Set 2, Set 3, Warm, Cold, Harmonic,

Dynamic

Type: Sequential (single-hue)
Names: Grays, Light Grays, Blues 2, Blues 3, Purples 2, Purples 3, Reds 2,

Reds 3, Greens 2, Greens 3, Oslo

Type: Sequential (multi-hue)
Names: Purple-Blue, Red-Purple, Red-Blue, Purple-Orange, Purple-Yellow,

Blue-Yellow, Green-Yellow, Red-Yellow, Heat, Heat 2,
Terrain, Terrain 2, Viridis, Plasma, Inferno, Dark Mint,
Mint, BluGrn, Teal, TealGrn, Emrld, BluYl, ag_GrnYl, Peach,
PinkYl, Burg, BurgYl, RedOr, OrYel, Purp, PurpOr, Sunset,
Magenta, SunsetDark, ag_Sunset, BrwnYl, YlOrRd, YlOrBr,
OrRd, Oranges, YlGn, YlGnBu, Reds, RdPu, PuRd, Purples,
PuBuGn, PuBu, Greens, BuGn, GnBu, BuPu, Blues, Lajolla,
Turku, Hawaii, Batlow

Type: Diverging
Names: Blue-Red, Blue-Red 2, Blue-Red 3, Red-Green, Purple-Green,

Purple-Brown, Green-Brown, Blue-Yellow 2, Blue-Yellow 3,
Green-Orange, Cyan-Magenta, Tropic, Broc, Cork, Vik, Berlin,
Lisbon, Tofino

To inspect the HCL parameter combinations for a specific palette simply include the palette
name where upper- vs. lower-case, spaces, etc. are ignored for matching the label, e.g., "set2"
matches "Set 2":

14 colorspace: Manipulating and Assessing Colors and Palettes

R> hcl_palettes(palette = "set2")

HCL palette
Name: Set 2
Type: Qualitative
Parameter ranges:
h1 h2 c1 c2 l1 l2 p1 p2 cmax fixup
0 NA 60 NA 70 NA NA NA NA TRUE

To compute the actual color hex codes (representing sRGB coordinates) based on these HCL
parameters, the functions qualitative_hcl(), sequential_hcl(), and diverging_hcl()
can be used which are described in more detail in the following sections. Either all parameters
can be specified “by hand” through the HCL parameters, an entire palette can be specified
“by name”, or the name-based specification can be modified by a few HCL parameters. In
case of the HCL parameters, either a vector-based specification such as h = c(0, 270) or
individual parameters h1 = 0 and h2 = 270 can be used.
The first three of the following commands lead to equivalent output. The fourth command
yields a modified set of colors (lighter due to a luminance of 80 instead of 70).

R> qualitative_hcl(4, h = c(0, 270), c = 60, l = 70)

[1] "#ED90A4" "#ABB150" "#00C1B2" "#ACA2EC"

R> qualitative_hcl(4, h1 = 0, h2 = 270, c1 = 60, l1 = 70)

[1] "#ED90A4" "#ABB150" "#00C1B2" "#ACA2EC"

R> qualitative_hcl(4, palette = "set2")

[1] "#ED90A4" "#ABB150" "#00C1B2" "#ACA2EC"

R> qualitative_hcl(4, palette = "set2", l = 80)

[1] "#FFACBF" "#C6CD70" "#32DDCD" "#C7BEFF"

4.1. Qualitative palettes

As suggested by Ihaka (2003), qualitative_hcl() distinguishes the underlying categories by
a sequence of hues while keeping both chroma and luminance constant, to give each color in the
resulting palette the same perceptual weight. Thus, h should be a pair of hues (or equivalently
h1 and h2 can be used) with the starting and ending hue of the palette. Then, an equidistant
sequence between these hues is employed, by default spanning the full color wheel (i.e., the
full 360 degrees). Chroma c (or equivalently c1) and luminance l (or equivalently l1) are
constants. Finally, fixup indicates whether colors with out-of-range coordinates should be
corrected (as illustrated in Figure 5).

Journal of Statistical Software 15

Qualitative

Pastel 1

Dark 2

Dark 3

Set 2

Set 3

Warm

Cold

Harmonic

Dynamic

Figure 11: Prespecified qualitative HCL palettes available in qualitative_hcl() in col-
orspace.

Figure 11 shows the named palettes available in the qualitative_hcl() function. The first
five palettes are close to the ColorBrewer.org palettes of the same name (Harrower and Brewer
2003). They employ different levels of chroma and luminance and, by default, span the full
hue range. The remaining four palettes are taken from Ihaka (2003). They are based on the
same chroma (50) and luminance (70) but the hue is restricted to different intervals.

R> hcl_palettes("qualitative", plot = TRUE, nrow = 5)

When palettes are employed for shading areas in statistical displays (e.g., in bar plots, pie
charts, or regions in maps), lighter colors (with moderate chroma and high luminance) such
as "Pastel 1" or "Set 3" are typically less distracting. By contrast, when coloring points
or lines, more flashy colors (with high chroma) are often required: On a white background a
moderate luminance as in "Dark 2" or "Dark 3" usually works better while on a black/dark
background the luminance should be higher as in "Set 2". Some examples with demo graph-
ics are provided in Section 5.

4.2. Sequential palettes (single-hue)

As suggested by Zeileis et al. (2009), sequential_hcl() codes the underlying numeric values
by a monotonic sequence of increasing (or decreasing) luminance. Thus, the function’s l
argument should provide a vector of length 2 with starting and ending luminance (equivalently,
l1 and l2 can be used). Without chroma (i.e., c = 0), this simply corresponds to a grayscale
palette like gray.colors(), see "Grays" and "Light Grays" in Figure 12.
For adding chroma, a simple strategy would be to pick a single hue value (via h or h1) and
then decrease chroma from some value (c or c1) to zero (i.e., gray) along with increasing
luminance. This is already very effective for bringing out the extremes (a dark high-chroma
color vs. a light gray), see "Blues 2", "Purples 2", "Reds 2", and "Greens 2".
For distinguishing colors in the center of the palette, two strategies can be employed: (a) Hue
can be varied as well by specifying an interval of hues in h (or beginning hue h1 and ending
hue h2). More details are provided in the next section. (b) Instead of a decreasing chroma, a
triangular chroma trajectory can be employed from c1 over cmax to c2 (equivalently specified
as a vector c of length 3). This yields high-chroma colors in the middle of the palette that
are more easily distinguished from the dark and light extremes. See "Blues 3", "Purples
3", "Reds 3", and "Greens 3" in Figure 12.

16 colorspace: Manipulating and Assessing Colors and Palettes

Sequential (single−hue)

Grays

Light Grays

Blues 2

Blues 3

Purples 2

Purples 3

Reds 2

Reds 3

Greens 2

Greens 3

Oslo

Figure 12: Prespecified sequential single-hue HCL palettes available in sequential_hcl() in
colorspace.

Instead of employing linear trajectories in the chroma or luminance coordinates, some palettes
employ a power transformation of the chroma and/or luminance trajectory. Either a vector
power of length 2 or separate p1 (for chroma) and p2 (for luminance) can be specified. If the
latter is missing, it defaults to the former.

R> hcl_palettes("sequential (single-hue)", n = 7, plot = TRUE, nrow = 6)

All except the last are inspired by the ColorBrewer.org palettes with the same base name
(Harrower and Brewer 2003) but restricted to a single hue only. They are intended for a
white/light background. The last palette ("Oslo") is taken from the scientific color maps of
Crameri (2018) and is intended for a black/dark background and hence the order is reversed
starting from a light blue (not a light gray).
To distinguish many colors in a sequential palette it is important to have a strong contrast on
the luminance axis, possibly enhanced by an accompanying pronounced variation in chroma.
When only a few colors are needed (e.g., for coding an ordinal categorical variable with few
levels) then a lower luminance contrast may suffice.

4.3. Sequential palettes (multi-hue)

To not only bring out extreme colors in a sequential palette but also better distinguish middle
colors it is a common strategy to employ a sequence of hues. Thus, the basis of such a palette
is still a monotonic luminance sequence as above (combined with a monotonic or triangular
chroma sequence). But rather than using a single hue, an interval of hues in h (or beginning
hue h1 and ending hue h2) can be specified.
sequential_hcl() allows combined variations in hue (h and h1/h2, respectively), chroma (c
and c1/c2/cmax, respectively), luminance (l and l1/l2, respectively), and power transforma-
tions for the chroma and luminance trajectories (power and p1/p2, respectively). This yields
a broad variety of sequential palettes, including many that closely match other well-known
color palettes. Figure 13 shows all the named multi-hue sequential palettes in colorspace:

R> hcl_palettes("sequential (multi-hue)", n = 7, plot = TRUE)

Journal of Statistical Software 17

Sequential (multi−hue)

Purple−Blue

Red−Purple

Red−Blue

Purple−Orange

Purple−Yellow

Blue−Yellow

Green−Yellow

Red−Yellow

Heat

Heat 2

Terrain

Terrain 2

Viridis

Plasma

Inferno

Dark Mint

Mint

BluGrn

Teal

TealGrn

Emrld

BluYl

ag_GrnYl

Peach

PinkYl

Burg

BurgYl

RedOr

OrYel

Purp

PurpOr

Sunset

Magenta

SunsetDark

ag_Sunset

BrwnYl

YlOrRd

YlOrBr

OrRd

Oranges

YlGn

YlGnBu

Reds

RdPu

PuRd

Purples

PuBuGn

PuBu

Greens

BuGn

GnBu

BuPu

Blues

Lajolla

Turku

Hawaii

Batlow

Figure 13: Prespecified sequential multi-hue HCL palettes available in sequential_hcl() in
colorspace.

• "Purple-Blue" to "Terrain 2" are various palettes created during the development of
colorspace, e.g., by Zeileis et al. (2009) or Stauffer et al. (2015) among others.

• "Viridis" to "Inferno" closely match the palettes that Smith and Van der Walt (2015)
developed for matplotlib and that gained popularity recently.

• "Dark Mint" to "BrwnYl" closely match palettes provided in CARTO (CARTO 2019).
• "YlOrRd" to "Blues" closely match ColorBrewer.org palettes (Harrower and Brewer

2003).
• "Lajolla" to "Batlow" closely match the scientific color maps of the same name by

Crameri (2018) and the first two of these are intended for a black/dark background.

18 colorspace: Manipulating and Assessing Colors and Palettes

Diverging

Blue−Red

Blue−Red 2

Blue−Red 3

Red−Green

Purple−Green

Purple−Brown

Green−Brown

Blue−Yellow 2

Blue−Yellow 3

Green−Orange

Cyan−Magenta

Tropic

Broc

Cork

Vik

Berlin

Lisbon

Tofino

Figure 14: Prespecified diverging HCL palettes available in diverging_hcl() in colorspace.

Note that the palettes differ substantially in the amount of chroma and luminance contrasts.
For example, many palettes go from a dark high-chroma color to a neutral low-chroma color
(e.g., "Reds", "Purples", "Greens", "Blues") or even light gray (e.g., "Purple-Blue"). But
some palettes also employ relatively high chroma throughout the palette (e.g., the viridis and
many CARTO palettes). To emphasize the extremes the former strategy is typically more
suitable while the latter works better if all values along the sequence should receive some
more perceptual weight.

4.4. Diverging palettes

diverging_hcl() codes the underlying numeric values by a triangular luminance sequence
with different hues in the left and in the right “arms” of the palette. Thus, it can be seen as
a combination of two sequential palettes with some restrictions: (a) a single hue is used for
each arm of the palette, (b) chroma and luminance trajectory are balanced between the two
arms, (c) the neutral central value has zero chroma. To specify such a palette a vector of two
hues h (or equivalently h1 and h2), either a single chroma value c (or c1) or a vector of two
chroma values c (or c1 and cmax), a vector of two luminances l (or l1 and l2), and power
parameter(s) power (or p1 and p2) are used. For more flexible diverging palettes without the
restrictions above (and consequently more parameters) see the divergingx_hcl() palettes
introduced below.
Figure 14 shows all such diverging palettes that have been named in colorspace:

R> hcl_palettes("diverging", n = 7, plot = TRUE, nrow = 10)

• "Blue-Red" to "Cyan-Magenta" have been developed for colorspace starting from Zeileis
et al. (2009), taking inspiration from various other palettes, including more balanced
and simplified versions of several ColorBrewer.org palettes (Harrower and Brewer 2003).

• "Tropic" closely matches the palette of the same name from CARTO (CARTO 2019).

Journal of Statistical Software 19

• "Broc" to "Vik" and "Berlin" to "Tofino" closely match the scientific color maps of
the same name by Crameri (2018), where the first three are intended for a white/light
background and the other three for a black/dark background.

When choosing a particular palette for a display similar considerations apply as for the se-
quential palettes. Thus, large luminance differences are important when many colors are used
while smaller luminance contrasts may suffice for palettes with fewer colors etc.

4.5. Construction details

Table 1 summarizes which types of trajectories (constant, linear, triangular) are used for the
three HCL coordinates (hue H, chroma C, luminance L) to construct the different types of
palettes (qualitative, sequential, and diverging).
As emphasized in Figure 10, luminance is probably the most important property for defining
the type of palette. It is constant for qualitative palettes, monotonic for sequential palettes
(linear or a power transformation), or uses two monotonic trajectories (linear or a power
transformation) diverging from the same neutral value.
Hue trajectories are also rather intuitive and straightforward for the three different types of
palettes (constant vs. linear). However, chroma trajectories are probably the most compli-
cated and least obvious from the examples above. Hence, the exact mathematical equations
underlying the chroma trajectories are given in the following (i.e., using the parameters c1,
c2, cmax, and p1, respectively) and are depicted in Figure 15. Analogous equations apply for
the other two coordinates.
The trajectories are functions of the intensity i ∈ [0, 1] where 1 corresponds to the full
intensity:

Constant: c1 (1)

Linear: c2 − (c2 − c1) · i (2)

Triangular:
{

c2 − (c2 − cmax) · i
j if i ≤ j

cmax − (cmax − c1) · i−j
1−j > j

(3)

where j is the intensity at which cmax is assumed. It is constructed such that the slope to the
left is the negative of the slope to the right of j:

j =
(

1 + |cmax − c1|
|cmax − c2|

)−1

Instead of using a linear intensity i going from 1 to 0, one can replace i with ip1 in Equations 1–
3. This then leads to power-transformed curves that add or remove chroma more slowly or
more quickly depending on whether the power parameter p1 is < 1 or > 1.
The three types of trajectories are also depicted in Figure 15. Note that full intensity i = 1 is
on the left and zero intensity i = 0 is on the right of each panel. The concrete parameters are:

• Constant: c1 = 80.
• Linear: c1 = 80, c2 = 10, p1 = 1 (black) vs. p1 = 1.6 (gray).
• Triangular: c1 = 60, cmax = 80, c2 = 10, p1 = 1 (black) vs. p1 = 1.6 (gray).

20 colorspace: Manipulating and Assessing Colors and Palettes

Type H C L

Qualitative Linear Constant Constant
Sequential Constant (single-hue) or Linear (+ power) or Linear (+ power)

Linear (multi-hue) Triangular (+ power)
Diverging Constant (2×) Linear (+ power) or Linear (+ power)

Triangular (+ power)

Table 1: Types of trajectories used for the HCL coordinates to construct qualitative, se-
quential, and diverging palettes, see Equations 1–3.

Constant

Intensity (i)

C
oo

rd
in

at
e

1 0.5 0

0
20

40
60

80
10

0

c1

Linear

Intensity (i)

C
oo

rd
in

at
e

1 0.5 0

0
20

40
60

80
10

0

c1

c2

p1 = 1p1 = 1.6

Triangular

Intensity (i)

C
oo

rd
in

at
e

1 0.5 0

0
20

40
60

80
10

0

c1

cmax

c2

p1 = 1p1 = 1.6

Figure 15: Types of trajectories to construct HCL color palettes, exemplified for the chroma
coordinates, see Equations 1–3.

Further discussion of these trajectories and how they can be visualized and assessed for a
given color palette is provided in Section 5.

4.6. Registering your own palettes

The hcl_palettes() already come with a wide range of predefined palettes to which cus-
tomizations can be easily added. However, it might also be convenient to register a custom
palette so that it can subsequently be reused with a new dedicated name. This is supported
by adding a register argument once to a call to qualitative_hcl(), sequential_hcl(),
or diverging_hcl():

R> qualitative_hcl(3, palette = "set2", l = 80, register = "myset")

The new palette is then included in hcl_palettes():

R> hcl_palettes("Qualitative")

HCL palettes

Type: Qualitative
Names: Pastel 1, Dark 2, Dark 3, Set 2, Set 3, Warm, Cold, Harmonic,

Dynamic, myset

Journal of Statistical Software 21

The palette can be used subsequently in qualitative_hcl() as well as the qualitative ggplot2
color scales (see Section 2.3), e.g.,

R> qualitative_hcl(4, palette = "myset")

[1] "#FFACBF" "#C6CD70" "#32DDCD" "#C7BEFF"

Remarks:

• The number of colors in the palette that was used during registration is not actually
stored and can be modified subsequently. The same holds for arguments alpha and
rev.

• When registering a new palette with a previously-used name, the old palette gets over-
written. We recommend to not overwrite the palettes that are predefined in the package
(albeit technically possible).

• The registration of a palette is only stored for the current session. When R is restarted
and/or the colorspace package reloaded, only the predefined palettes from the pack-
age are available. Thus, to make a palette permanently available a registration R
code like colorspace::qualitative_hcl(3, palette = "set2", l = 80, register
= "myset") can be placed in your .Rprofile or similar startup scripts.

4.7. Flexible diverging palettes

The divergingx_hcl() function provides more flexible diverging palettes by simply calling
sequential_hcl() twice with prespecified sets of hue, chroma, and luminance parameters.
Thus, it does not pose any restrictions that the two “arms” of the palette need to be balanced
and also may go through a non-gray neutral color (typically light yellow). Consequently, the
chroma/luminance paths can be rather unbalanced.
Figure 16 shows all such flexible diverging palettes that have been named in colorspace:

R> divergingx_palettes(n = 7, plot = TRUE, nrow = 10)

• "ArmyRose" to "Tropic" closely match the palettes of the same name from CARTO
(CARTO 2019).

• "PuOr" to "Spectral" closely match the palettes of the same name from ColorBrewer.org
(Harrower and Brewer 2003).

• "Zissou 1" closely matches the palette of the same name from wesanderson (Ram and
Wickham 2018).

• "Cividis" closely matches the palette of the same name from the viridis family (Garnier
2018). Note that despite having two “arms” with blue vs. yellow colors and a low-
chroma center color, this is probably better classified as a sequential palette due to the
monotonic chroma going from dark to light. (See Section 4.8 for more details.)

• "Roma" closely matches the palette of the same name by Crameri (2018).

Typically, the more restricted diverging_hcl() palettes should be preferred because they
are more balanced. However, by being able to go through light yellow as the neutral color
warmer diverging palettes are available.

22 colorspace: Manipulating and Assessing Colors and Palettes

Diverging (flexible)

ArmyRose

Earth

Fall

Geyser

TealRose

Temps

Tropic

PuOr

RdBu

RdGy

PiYG

PRGn

BrBG

RdYlBu

RdYlGn

Spectral

Zissou 1

Cividis

Roma

Figure 16: Prespecified flexible diverging HCL palettes available in divergingx_hcl() in
colorspace.

4.8. Approximating palettes from other packages

The flexible specification of HCL-based color palettes in colorspace allows one to closely
approximate color palettes from various other packages:

• ColorBrewer.org (Harrower and Brewer 2003) as provided by the R package RColor-
Brewer (Neuwirth 2014). See demo("brewer", package = "colorspace").

• CARTO colors (CARTO 2019) as provided by the R package rcartocolor (Nowosad
2019). See demo("carto", package = "colorspace").

• The viridis palettes of Smith and Van der Walt (2015) developed for matplotlib, as
provided by the R package viridis (Garnier 2018). See demo("viridis", package =
"colorspace").

• The scientific color maps of Crameri (2018) as provided by the R package scico (Pedersen
and Crameri 2020). See demo("scico", package = "colorspace").

The graphics resulting from the demos can also be viewed online at http://colorspace.
R-Forge.R-project.org/articles/approximations.html.
Figure 17 shows a selection of such approximations using specplot() (see also Section 5.2)
for two blue/green/yellow palettes (namely RColorBrewer::brewer.pal(7, "YlGnBu") and
viridis::viridis(7)) and two purple/red/yellow palettes (namely
rcartocolor::carto_pal(7, "ag_Sunset") and viridis::plasma(7)). Each panel com-
pares the hue, chroma, and luminance trajectories of the original palettes (top swatches, solid
lines) and their HCL-based approximations (bottom swatches, dashed lines). The palettes are
not identical but very close for most colors. Note also that the chroma trajectories from the
HCL palettes (green dashed lines) have some kinks which are due to fixing HCL coordinates
at the boundaries of admissible RGB colors.
Furthermore, Figure 17 illustrates what sets the viridis palettes apart from other sequential
palettes. While the hue and luminance trajectories of "Viridis" and "YlGnBu" are very
similar, the chroma trajectories differ: While lighter colors (with high luminance) have low
chroma for "YlGnBu", they have increasing chroma for "Viridis". Similarly, "ag_Sunset"

http://colorspace.R-Forge.R-project.org/articles/approximations.html
http://colorspace.R-Forge.R-project.org/articles/approximations.html

Journal of Statistical Software 23

ColorBrewer.org: YlGnBu

0
20

40
60

80
10

0

0

0
90

18
0

27
0

36
0

Luminance Chroma Hue

HCL Spectrum

Lu
m

in
an

ce
 /

C
hr

om
a

H
ue

viridis: Viridis

0
20

40
60

80
10

0

0

0
90

18
0

27
0

36
0

Luminance Chroma Hue

HCL Spectrum
Lu

m
in

an
ce

 /
C

hr
om

a

H
ue

CARTO: ag_Sunset

0
20

40
60

80
10

0

0

−
36

0
−

18
0

0
18

0
36

0

Luminance Chroma Hue

HCL Spectrum

Lu
m

in
an

ce
 /

C
hr

om
a

H
ue

viridis: Plasma
0

20
40

60
80

10
0

0

−
36

0
−

18
0

0
18

0
36

0
Luminance Chroma Hue

HCL Spectrum

Lu
m

in
an

ce
 /

C
hr

om
a

H
ue

Figure 17: HCL spectrum of four palettes taken from ColorBrewer.org, CARTO, and viridis
(top swatches, solid lines) along with their HCL-based approximations (bottom swatches,
dashed lines).

and "Plasma" have similar hue and luminance trajectories but different chroma trajectories.
The result is that the viridis palettes have rather high chroma throughout which does not
work as well for sequential palettes on a white/light background as all shaded areas convey
high “intensity”. However, they work better on a dark/black background (see Figure 28 on
page 33). Also, they might be a reasonable alternative for qualitative palettes when grayscale
printing should also work.
Another somewhat nonstandard palette from the viridis family is the cividis palette based
on blue and yellow hues and hence safe for red-green deficient viewers. Figure 18 shows the
corresponding specplot() along with an HCL-based approximation. This palette is unusual:
The hue and chroma trajectories would suggest a diverging palette, as there are two “arms”

24 colorspace: Manipulating and Assessing Colors and Palettes

viridis: Cividis

0
20

40
60

80
10

0

0

0
90

18
0

27
0

36
0

Luminance Chroma Hue

HCL Spectrum

Lu
m

in
an

ce
 /

C
hr

om
a

H
ue

Figure 18: HCL spectrum of viridis::cividis (top swatch, solid lines) along with an HCL-
based approximation (bottom swatch, dashed lines).

with different hues and a zero-chroma point in the center. However, the luminance trajectory
clearly indicates a sequential palette as colors go monotonically from dark to light. Due to
this unusual mixture the palette cannot be composed using the trajectories from Table 1.
However, the tools in colorspace can still be employed to easily reconstruct the palette. One
strategy would be to set up the trajectories manually, using a linear luminance, piecewise
linear chroma, and piecewise constant hue:

R> cividis_hcl <- function(n) {
+ i <- seq(1, 0, length.out = n)
+ hex(polarLUV(
+ L = 92 - (92 - 13) * i,
+ C = approx(c(1, 0.9, 0.5, 0), c(30, 50, 0, 95), xout = i)$y,
+ H = c(255, 75)[1 + (i < 0.5)]
+), fix = TRUE)
+ }

Instead of constructing the hex code from the HCL coordinates via hex(polarLUV(L, C,
H)) from colorspace, the base R function hcl(H, C, L) from grDevices could also be used.
In addition to manually setting up a dedicated function cividis_hcl(), it is possible to
approximate the palette using divergingx_hcl() (see Section 4.7), e.g.,

R> divergingx_hcl(n,
+ h1 = 255, h2 = NA, h3 = 75,
+ c1 = 30, cmax1 = 47, c2 = 0, c3 = 95,
+ l1 = 13, l2 = 52, l3 = 92,
+ p1 = 1.1, p3 = 1.0
+)

Journal of Statistical Software 25

This uses a slight power transformation with p1 = 1.1 in the blue arm of the palette but
otherwise essentially corresponds to what cividis_hcl() does. For convenience the above
parameters are already preregistered in divergingx_hcl(n, palette = "Cividis").

4.9. HCL (and HSV) color palettes corresponding to base R palettes

To facilitate switching from base R palette functions to the HCL-based palettes above, col-
orspace provides a few convenience interfaces:

• rainbow_hcl(): Convenience interface to qualitative_hcl() for a HCL-based “rain-
bow” palette to replace the (in)famous rainbow() palette.

• heat_hcl(): Convenience interface to sequential_hcl() with default parameters cho-
sen to generate more balanced heat colors than the basic heat.colors() function.

• terrain_hcl(): Convenience interface to sequential_hcl() with default parameters
chosen to generate more balanced terrain colors than the basic terrain.colors() func-
tion.

• diverging_hsv(): Diverging palettes generated in HSV space rather than HCL space
as in diverging_hcl(). This is provided for didactic purposes to contrast the more
balanced HCL palettes with the more flashy and unbalanced HSV palettes.

Meanwhile, base R has also adopted the HCL-based palettes from colorspace into the function
hcl.colors() in grDevices (Zeileis and Murrell 2019). This provides all the named palettes
introduced in colorspace (with the same names, and defaulting to "Viridis") but without
the flexibility to modify or adapt existing palettes.
Moreover, the grDevices package in base R gained a new function palette.colors() (Zeileis,
Murrell, Maechler, and Sarkar 2019) that provides various well-established qualitative color
palettes that can not be approximated well by qualitative_hcl() due to pronounced varia-
tions in luminance and chroma. While a qualitative palette with fixed luminance and chroma
is more balanced, a certain amount of variations in these properties might be necessary to
make more colors distinguishable, especially for viewers with color vision deficiencies.

5. Palette visualization and assessment
The colorspace package provides several visualization functions for depicting one or more
color palettes and their underlying properties. Color palettes can be visualized by:

• swatchplot(): Color swatches.
• specplot(): Spectrum of HCL and/or RGB trajectories.
• hclplot(): Trajectories in 2-dimensional HCL space projections.
• demoplot(): Illustrations of typical (and simplified) statistical graphics.

5.1. Color swatches

The function swatchplot() is a convenience function for displaying collections of palettes
that can be specified as lists or matrices of hex color codes. Essentially, it is just a call
to the base graphics rect() function but with heuristics for choosing default labels, mar-
gins, spacings, borders, etc. These heuristics are selected to work well for hcl_palettes()

26 colorspace: Manipulating and Assessing Colors and Palettes

Single−hue

Blues 2

Purples 2

Reds 2

Greens 2

Single−hue (advanced)

Blues 3

Purples 3

Reds 3

Greens 3

Multi−hue (advanced)

Blues

Purples

Reds

Greens

Figure 19: Variations of blue, purple, red, and green palettes with single hue and monotonic
chroma (left), single hue and triangular chroma (center), and multiple hues and triangular
chroma (right).

and might need further tweaking in future versions of the package. Thus, Figures 1–2 as
well as Figures 10–14 all use swatchplot() internally. For a simple stand-alone illustration
consider: swatchplot("Palette" = sequential_hcl(5)). Optionally, swatches emulating
color vision deficiencies (see Section 6) can be added by setting cvd = TRUE.
Next, we demonstrate a more complex example of a swatchplot() with three matrices of
sequential color palettes of blues, purples, reds, and greens (see Figure 19).

R> bprg <- c("Blues", "Purples", "Reds", "Greens")
R> swatchplot(
+ "Single-hue" = t(sapply(paste(bprg, 2), sequential_hcl, n = 7)),
+ "Single-hue (advanced)" = t(sapply(paste(bprg, 3), sequential_hcl, n = 7)),
+ "Multi-hue (advanced)" = t(sapply(bprg, sequential_hcl, n = 7)),
+ nrow = 5, line = 5)

For all palettes, luminance increases monotonically to yield a proper sequential palette. How-
ever, the hue and chroma handling is somewhat different to emphasize different parts of the
palette.

• Single-hue: In each palette the hue is fixed and chroma decreases monotonically (along
with increasing luminance). This is typically sufficient to clearly bring out the extreme
colors (dark/colorful vs. light gray).

• Single-hue (advanced): The hue is fixed (as above) but the chroma trajectory is tri-
angular. Compared to the basic single-hue palette above, this better distinguishes the
colors in the middle and not only the extremes.

• Multi-hue (advanced): As in the advanced single-hue palette, the chroma trajectory
is triangular but additionally the hue varies slightly. This can further enhance the
distinction of colors in the middle of the palette.

5.2. HCL (and RGB) spectrum

As the properties of a palette in terms of the perceptual dimensions hue, chroma, and lumi-
nance are not always clear from looking just at color swatches or (statistical) graphics based
on these palettes, the specplot() function provides an explicit display for the coordinates
of the HCL trajectory associated with a palette. This can bring out clearly various aspects,

Journal of Statistical Software 27
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Index

0

Red Green Blue

RGB Spectrum

R
ed

 /
G

re
en

 /
B

lu
e

0
20

40
60

80
10

0

0

0
90

18
0

27
0

36
0

Luminance Chroma Hue

HCL Spectrum

Lu
m

in
an

ce
 /

C
hr

om
a

H
ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

0

Red Green Blue

RGB Spectrum

R
ed

 /
G

re
en

 /
B

lu
e

0
50

10
0

15
0

0

−
36

0
−

18
0

0
18

0
36

0

Luminance Chroma Hue

HCL Spectrum

Lu
m

in
an

ce
 /

C
hr

om
a

H
ue

Figure 20: HCL spectrum of the balanced diverging "Green-Brown" palette (left panel) and
the (in)famous and rather unbalanced rainbow() palette (right panel).

e.g., whether hue is constant, whether chroma is monotonic or triangular, and whether lumi-
nance is approximately constant (as in many qualitative palettes), monotonic (as in sequential
palettes), or diverging.
The function first transforms a given color palette to its HCL (polarLUV()) coordinates.
As the hues for low-chroma colors are not (or only poorly) identified, they are smoothed by
default. Also, to avoid jumps from 0 to 360 or vice versa, the hue coordinates are shifted
suitably. By default, the resulting trajectories in the HCL spectrum are visualized by a simple
line plot where the x-axis gives the ordering of the colors in the palette. The y-axis depicts
the following information:

• Hue is drawn in red and coordinates are indicated on the axis on the right with range
[0, 360] or (if necessary) [−360, 360].

• Chroma is drawn in green with coordinates on the left axis. The range [0, 100] is used
unless the palette necessitates higher chroma values.

• Luminance is drawn in blue with coordinates on the left axis in the range [0, 100].

Additionally, a color swatch for the palette is included. Optionally, a second spectrum for the
corresponding trajectories of RGB coordinates can be included. However, this is usually just
of interest for palettes created in RGB space (or simple transformations of RGB).
As spectrum plots have already been used for illustration in Figures 5 (for a qualitative
palette) as well as Figures 6 and 17 (for sequential palettes), this section only provides a

28 colorspace: Manipulating and Assessing Colors and Palettes

couple of additional illustrations. The diverging "Green-Brown" palette is depicted in the
left panel of Figure 20. It simply combines a green and a brown/yellow sequential single-hue
palette, both with triangular chroma trajectory. Hue is constant in each “arm” of the palette
and the chroma/luminance trajectories are rather balanced between both arms. In the center
the palette passes through a light gray (with zero chroma) as the neutral value. By including
the corresponding RGB spectrum in the top panel, it also becomes apparent that choosing
such well-balanced palettes through trajectories in RGB color space is not straightforward.
This balanced palette – based on relatively simple HCL trajectories – is contrasted with
a poorly-balanced palette – based on simple linear RGB trajectories in the right panel of
Figure 20. This depicts the RGB and HCL spectrum of the (in)famous RGB rainbow palette.
(See Hawkins et al. 2014, for a plea why the RGB rainbow palette should be avoided in
almost all scientific graphics.)

R> specplot(diverging_hcl(100, "Green-Brown"), rgb = TRUE)
R> specplot(rainbow(100), rgb = TRUE)

The RGB spectrum of the rainbow palette shows that the trajectories are quite simple in
RGB space but lead to substantial variations in chroma and (more importantly) luminance.
This is why this palette is not suitable for encoding underlying data in statistical graphics.
See also the related discussion of color vision deficiency in Section 6.

5.3. Trajectories in HCL space

While the specplot() function above works well for bringing out the HCL coordinates as-
sociated with a given palette, it does not show how the palette fits into the HCL space. For
example, it is not so clear whether high chroma values are close to the maximum possible for
a given hue. Thus, it cannot be easily judged how the parameters of the hue, chroma, and
luminance trajectories can be modified to obtain another palette.
Therefore, the hclplot() is another visualization of the HCL coordinates associated with
a palette. It does so by collapsing over one of the coordinates (either the hue H or the
luminance L) and displaying a heatmap of colors combining the remaining two dimensions.
The coordinates for the given color palette are highlighted to bring out its trajectory. In case
the hue is really fixed (as in single-hue sequential palettes) or the luminance is really fixed (as
in the qualitative palettes), collapsing is straightforward. However, when the coordinate that
is collapsed over is not actually constant in the palette, a simple bivariate linear model is used
to capture how the collapsed coordinate varies along with the two displayed coordinates.
The function hclplot() has been designed to work well with the hcl_palettes() in this
package. While it is possible to apply it to other color palettes as well, the results might
look weird or confusing if these palettes are constructed very differently (e.g., like the highly
saturated base R palettes). To infer the default type of projection, hclplot() assesses the
luminance trajectory and sets the default correspondingly:

• type = "qualitative" if luminance is approximately constant.
• type = "sequential" if luminance is monotonic.
• type = "diverging" if luminance is diverging with two monotonic “arms” in the tra-

jectory.

Journal of Statistical Software 29

Figure 21: Hue-chroma plane with luminance fixed at L = 70 along with the qualitative
"Dynamic" palette with varying hue H and chroma fixed at C = 50.

Figure 22: Luminance-chroma planes with variations of blue sequential single-hue palettes
(similar to "Blues 2" and "Blues 3"). Left: Linear chroma for H = 260. Center: Triangular
chroma for H = 245. Right: Power-transformed triangular chroma for H = 245.

Figure 23: Luminance-chroma planes with blue multi-hue palette and triangular chroma (left),
blue-yellow multi-hue palette and linear chroma (center), and diverging blue-red palette with
balanced linear chroma.

30 colorspace: Manipulating and Assessing Colors and Palettes

Thus, for qualitative palettes – where luminance and chroma are fixed – the varying hue is
displayed in a projection onto the hue-chroma plane at a given fixed luminance (Figure 21):

R> hclplot(qualitative_hcl(9, "Dynamic"))

Figure 22 compares three single-hue sequential palettes by projection to the luminance-chroma
plane for the given fixed hue. In the left panel the hue 260 is used with a simple linear chroma
trajectory. The other two panels employ a triangular chroma trajectory for hue 245, either
with a piecewise-linear (center) or power-transformed (right) trajectory.

R> par(mfrow = c(1, 3))
R> hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1))
R> hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95),
+ power = 1))
R> hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95),
+ power = c(0.8, 1.4)))

Note that for H = 260 it is possible to go to dark colors (low luminance) with high chroma
while this is not possible to the same extent for H = 245 due to the distorted shape of the HCL
space. Hence, chroma has to be decreased when proceeding to the dark low-luminance colors.
Finally, Figure 23 compares two multi-hue sequential palettes along with a diverging palette.

R> par(mfrow = c(1, 3))
R> hclplot(sequential_hcl(7, h = c(260, 220), c = c(50, 75, 0),
+ l = c(30, 95), power = 1))
R> hclplot(sequential_hcl(7, h = c(260, 60), c = 60, l = c(40, 95),
+ power = 1))
R> hclplot(diverging_hcl(7, h = c(260, 0), c = 80, l = c(35, 95),
+ power = 1))

The multi-hue palette on the left employs a small hue range, resulting in a palette of “blues”
just with slightly more distinction of the middle colors in the palette. In contrast, the multi-
hue “blue-yellow” palette in the center panel uses a large hue range, resulting in more color
contrasts throughout the palette. Finally, the balanced diverging palette in the right panel
is constructed from two simple single-hue sequential palettes (for hues 260/blue and 0/red)
that are completely balanced between the two “arms” of the palette.

5.4. Demonstration of statistical graphics

To demonstrate how different kinds of color palettes work in different kinds of statistical
displays, demoplot() provides a simple convenience interface to some base graphics with
(mostly artificial) data sets. As a first overview, Figure 24 displays all built-in demos with
the same sequential heat colors palette: sequential_hcl(5, "Heat"). All types of demos
can, in principle, deal with arbitrarily many colors from any palette, but the graphics differ
in various respects such as:

• Working best for fewer colors (e.g., bar, pie, scatter, lines, . . .) vs. many colors (e.g.,
heatmap, perspective, . . .).

Journal of Statistical Software 31

map heatmap

●
●

● ●

●

●

●

●

●●
●●

●●
●

●
● ●

●●
●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●
●

●

●
● ●

●●

●

●

●

●●
●

● ●●
●

●

●
●

●

●●

●

●

● ●

●

●
●

●
●

●●●

●
●

●

●●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●
●

●●
● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●● ●●

●
●

●
●
●●
●

●

●
●

●
● ●●

●

● ●

●●

●

●● ●

●

●

●

● ●

●
●●
●

●

● ●

●

●

●

●

●●
●●

●

●
●

●

●●
●

●●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

● ●
●

●

●

●

● ●

●
● ●●

●

●●

●
●●

●
●
● ●
●

●
●

●
● ●

●

●

●

●

●

●

● ● ●●

●

●
●

●

●●
●

●

●
●

●

●
●
●

●

●
● ●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●
●

●

●● ●

●

●

●

●

●
●

●
● ●●●

●

●

●

●

●
●

●

●
●●

●

●●
● ●

●●
●

●●●
●

● ●
● ●

●

●
● ●

●●
● ●

●

●
● ●

●
●

●

●

●
●●
●

●

●

●

● ●
●●

●
●

●
●

●

●

●

●
●

scatter

spine bar pie

perspective mosaic lines

Figure 24: All built-in demoplot types with the same sequential_hcl(5, "Heat") palette.

• Intended for categorical data (e.g., bar, pie, . . .) vs. continuous numeric data (e.g.,
heatmap, perspective, . . .).

• Shading areas (e.g., map, bar, pie, . . .) vs. coloring points or lines (scatter, lines).

Hence, in the following Figures 25–27 some further illustrations are organized by type of
palette, using suitable demos for the particular palettes.
Qualitative palettes: Light pastel colors typically work better for shading areas (pie, left) while
darker and more colorful palettes are usually preferred for points (center) or lines (right).

R> par(mfrow = c(1, 3))
R> demoplot(qualitative_hcl(4, "Pastel 1"), type = "pie")

32 colorspace: Manipulating and Assessing Colors and Palettes

●
●

●
●

●

●

●

●

●●

●●

●●
●

●
● ●

●●
●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
● ●

●●

●

●

●

●
●

●

● ●●
●

●

●
●

●

●●

●

●

● ●

●

●
●

●
●

●
●●

●
●

●

●●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●●

● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●● ●●

●

●
●

●
●●
●

●

●
●

●

● ●●

●

● ●

●●

●

●● ●

●

●

●

● ●

●
●●
●

●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●●
●

●●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

● ●
●

●

●

●

● ●

●
●

●●

●

●●

●
●●

●

●
● ●
●

●
●

●

● ●
●

●

●

●

●

●

● ● ●●

●

●
●

●

●●
●

●

●
●

●

●
●
●

●

●
● ●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●
●

●

●● ●

●

●

●

●

●
●

●
● ●●●

●

●

●

●

●
●

●

●
●●

●

●●
● ●

●●
●

●●●
●

● ●
● ●

●

●
● ●

●●
● ●

●

●

● ●
●

●
●

●

●
●●

●

●

●

●

● ●
●●

●
●

●
●

●

●

●

●
●

Figure 25: Examples for demoplot() with different qualitative_hcl() palettes.

Figure 26: Examples for demoplot() with different sequential_hcl() palettes.

Figure 27: Examples for demoplot() with different diverging_hcl() palettes.

R> demoplot(qualitative_hcl(4, "Set 2"), type = "scatter")
R> demoplot(qualitative_hcl(4, "Dark 3"), type = "lines")

Sequential palettes: Heatmaps (left) or perspective plots (center) often employ almost con-
tinuous gradients with strong luminance contrasts. In contrast, when only a few ordered
categories are to be displayed (e.g., in a spine plot, right) more colorful sequential palettes
like the viridis palette can be useful.

R> par(mfrow = c(1, 3))
R> demoplot(sequential_hcl(99, "Purple-Blue"), type = "heatmap")
R> demoplot(sequential_hcl(99, "Reds"), type = "perspective")
R> demoplot(sequential_hcl(4, "Viridis"), type = "spine")

Diverging palettes: In some displays (such as the map, left), it is useful to employ an almost
continuous gradient with strong luminance contrast to bring out the extremes. Here, this

Journal of Statistical Software 33

●
●

●
●

●

●

●

●

●●

●●

●●
●

●
● ●

●●
●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
● ●

●●

●

●

●

●
●

●

● ●●
●

●

●
●

●

●●

●

●

● ●

●

●
●

●
●

●
●●

●
●

●

●●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●●

● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●● ●●

●

●
●

●
●●
●

●

●
●

●

● ●●

●

● ●

●●

●

●● ●

●

●

●

● ●

●
●●
●

●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●●
●

●●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

● ●
●

●

●

●

● ●

●
●

●●

●

●●

●
●●

●

●
● ●
●

●
●

●

● ●
●

●

●

●

●

●

● ● ●●

●

●
●

●

●●
●

●

●
●

●

●
●
●

●

●
● ●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●
●

●

●● ●

●

●

●

●

●
●

●
● ●●●

●

●

●

●

●
●

●

●
●●

●

●●
● ●

●●
●

●●●
●

● ●
● ●

●

●
● ●

●●
● ●

●

●

● ●
●

●
●

●

●
●●

●

●

●

●

● ●
●●

●
●

●
●

●

●

●

●
●

Figure 28: Examples for demoplot() with different palettes that work well on a black/dark
background.

contrast is amplified by a larger power transformation emphasizing the extremes even fur-
ther. In contrast, when fewer colors are needed more colorful palettes with lower luminance
contrasts can be desired. This is exemplified by a mosaic (center) and bar plot (right).

R> par(mfrow = c(1, 3))
R> demoplot(diverging_hcl(99, "Tropic", power = 2.5), type = "map")
R> demoplot(diverging_hcl(5, "Green-Orange"), type = "mosaic")
R> demoplot(diverging_hcl(5, "Blue-Red 2"), type = "bar")

Figures 25–27 focus on palettes designed for light/white backgrounds. Therefore, to conclude,
some palettes are highlighted in Figure 28 that work well on dark/black backgrounds.

R> par(mfrow = c(2, 3), bg = "black")
R> demoplot(sequential_hcl(9, "Oslo"), "heatmap")
R> demoplot(sequential_hcl(9, "Turku"), "heatmap")
R> demoplot(sequential_hcl(9, "Inferno", rev = TRUE), "heatmap")
R> demoplot(qualitative_hcl(9, "Set 2"), "lines")
R> demoplot(diverging_hcl(9, "Berlin"), "scatter")
R> demoplot(diverging_hcl(9, "Cyan-Magenta", l2 = 20), "lines")

34 colorspace: Manipulating and Assessing Colors and Palettes

6. Color vision deficiency emulation
Different kinds of limitations can be emulated using the physiologically-based model for sim-
ulating color vision deficiency (CVD) of Machado, Oliveira, and Fernandes (2009): deutera-
nomaly (green cone cells defective), protanomaly (red cone cells defective), and tritanomaly
(blue cone cells defective). While most other CVD simulations handle only dichromacy, where
one of three cones is non-functional, Machado et al. (2009) provide a unified model of both
dichromacy and anomalous trichromacy, where one cone has shifted spectral sensitivity. As
anomalous trichromacy is the most common form of color vision deficiency, it is important
to emulate along with the rarer, but more severe dichromacy. Below we briefly describe
our R interface to these emulation techniques and show them in practice for a heatmap
with sequential palette. Another example with a diverging palette is available at http:
//colorspace.R-Forge.R-project.org/articles/color_vision_deficiency.html. Fi-
nally, CVD emulation is particularly useful for bringing out why the RGB rainbow palette
is almost always a bad choice in scientific displays. See http://colorspace.R-Forge.
R-project.org/articles/endrainbow.html for further illustrations.

6.1. R functions

The workhorse function to emulate color vision deficiencies is simulate_cvd() which can take
any vector of valid R colors and transform them according to a certain CVD transformation
matrix and transformation equation. The transformation matrices have been established by
Machado et al. (2009) and are provided in objects protanomaly_cvd, deutanomaly_cvd, and
tritanomaly_cvd. The convenience interfaces deutan(), protan(), and tritan() are the
high-level functions for simulating the corresponding kind of color blindness with a given
severity (calling simulate_cvd() internally). A severity of 1 corresponds to dichromacy, 0
to normal color vision, and intermediate values to varying severities of anomalous trichromacy.
For further guidance on color blindness in relation to statistical graphics see Lumley (2006)
which accompanies the R package dichromat (Lumley 2013) and is based on earlier emulation
techniques (Viénot, Brettel, Ott, M’Barek, and Mollon 1995; Brettel, Viénot, and Mollon
1997; Viénot, Brettel, and Mollon 1999).

6.2. Illustration: Heatmap with sequential palette

To illustrate that poor color choices can severely reduce the usefulness of a statistical graphic
for readers with color vision deficiencies, we employ the infamous RGB rainbow color palette

Figure 29: Perspective visualization of Maunga Whau volcano data (Mount Eden, Auckland,
New Zealand).

http://colorspace.R-Forge.R-project.org/articles/color_vision_deficiency.html
http://colorspace.R-Forge.R-project.org/articles/color_vision_deficiency.html
http://colorspace.R-Forge.R-project.org/articles/endrainbow.html
http://colorspace.R-Forge.R-project.org/articles/endrainbow.html

Journal of Statistical Software 35

Original

rainbow(11, end = 2/3) sequential_hcl(11, "Blue−Yellow")

Desaturated

Deuteranope

Protanope

Tritanope

Figure 30: Heatmap of Maunga Whau volcano data with RGB rainbow (left) and HCL-based
blue-yellow palette (right). The first row shows the original color palettes while subsequent
rows emulate various color deficiencies.

36 colorspace: Manipulating and Assessing Colors and Palettes

in a heatmap. In base R this can be generated by rainbow(11, end = 2/3) ranging from
red (for high values) to blue (for low values). The poor results for the RGB rainbow palette
are contrasted in Figure 30 with a proper sequential palette ranging from dark blue to light
yellow: sequential_hcl(11, "Blue-Yellow").
The statistical graphic employed for illustration is a heatmap of the well-known MaungaWhau
volcano data from base R. This heatmap is easily available as demoplot(x, "heatmap")
where x is the color vector to be used, e.g.,

R> rainbow(11, end = 2/3)

[1] "#FF0000FF" "#FF6600FF" "#FFCC00FF" "#CCFF00FF" "#66FF00FF"
[6] "#00FF00FF" "#00FF66FF" "#00FFCCFF" "#00CCFFFF" "#0066FFFF"

[11] "#0000FFFF"

R> deutan(rainbow(11, end = 2/3))

[1] "#5D4700FF" "#B58C01FF" "#FFD005FF" "#FFE408FF" "#FFC809FF"
[6] "#DBAB0AFF" "#C4B06DFF" "#ACB5D0FF" "#7595FFFF" "#1D50FBFF"

[11] "#000CF7FF"

and so on. To aid the interpretation of the heatmap a perspective display using only gray
shades is provided in Figure 29, providing another intuitive display of what the terrain around
Maunga Whau looks like.
Subsequently, all combinations of palette and color vision deficiency are visualized. Addi-
tionally, a grayscale version is created with desaturate(). This clearly shows how poorly
the RGB rainbow performs, often giving quite misleading impressions of the terrain around
Maunga Whau. In contrast, the HCL-based blue-yellow palette works reasonably well in
all settings. The most important problem of the RGB rainbow is that it is not monotonic
in luminance, making correct interpretation quite hard. Moreover, the red-green contrasts
deteriorate substantially in the dichromatic emulations.

7. Apps for choosing colors and palettes interactively
To facilitate exploring the package and employing it when working with colors, several graph-
ical user interfaces (GUIs) are provided within the package as shiny apps (Chang et al. 2020).
All of these GUIs/apps can be run locally from within R and are also provided online at
http://hclwizard.org/.

• Palette constructor: choose_palette() or hclwizard() or hcl_wizard().
• Color picker: choose_color() or equivalently hcl_color_picker().
• Color vision deficiency emulator: cvd_emulator().

In addition to the shiny version, the palette constructor app is also available as a Tcl/Tk GUI
via R package tcltk shipped with base R (R Core Team 2020). The tcltk version can only be
run locally and is considerably faster while the shiny version has a nicer interface with more
features and can be run online. The choose_palette() function by default starts the tcltk
version while hclwizard()/hcl_wizard() by default start the shiny version.

http://hclwizard.org/

Journal of Statistical Software 37

Figure 31: App for interactively choosing HCL-based color palettes:
choose_color()/hclwizard().

7.1. Choose palettes with the HCL color model

The shiny version of the palette constructor GUI is shown in Figure 31. It interfaces the
qualitative_hcl(), sequential_hcl(), and diverging_hcl() palettes from Section 4.
The GUIs allow for interactive modification of the arguments of the respective palette-
generating functions, i.e., starting/ending hue, minimal/maximal chroma, minimal/maximal
luminance, and power transformations that control how quickly/slowly chroma and/or lumi-
nance are changed through the palette. Subsets of the parameters may not be applicable
depending on the type of palette chosen.

Optionally, the active palette can be illustrated by using a specplot() (see Section 5.2),
hclplot() (see Section 5.3), or demoplot() (see Section 5.4), and assessed using emulation
of color vision deficiencies (see Section 6). To facilitate generation of palettes for black/dark
backgrounds, a “dark mode” of the GUIs is also available.

The app has been influenced considerably by ColorBrewer.org (Harrower and Brewer 2003).
Similarities include the selection of a qualitative, sequential, or diverging palette from a list
of predefined colors along with an example visualization. However, unlike ColorBrewer.org
our shiny app allows tweaking the HCL parameters underlying each palette. This makes
the app much more flexible but also more complex, potentially requiring more thought and
experience. Due to the flexibility, our app cannot automatically judge safety regarding color
vision deficiencies and printers/photocopiers (as ColorBrewer.org does) but instead it allows
emulation of color vision deficiencies and desaturation. Finally, ColorBrewer.org is geared
towards cartography (albeit its palettes are useful much more generally) while our shiny app
includes a broader range of illustrative displays.

38 colorspace: Manipulating and Assessing Colors and Palettes

Figure 32: App for interactively choosing individual colors in HCL space:
choose_color()/hcl_color_picker().

7.2. Choose individual colors with the HCL color model
This GUI can be started with either choose_color() or equivalently hcl_color_picker().
It shows the HCL color space either as a hue-chroma plane for a given luminance value or as
a luminance-chroma plane for a given hue. Colors can be entered by:

• Clicking on a color coordinate in the hue-chroma or luminance-chroma plane.
• Specifying the hue/chroma/luminance values via sliders.
• Entering an RGB hex code.

By repeating the selection a palette of colors can be constructed and returned within R for
subsequent usage in visualizations.

7.3. Emulate color vision deficiencies
This GUI can be started with cvd_emulator(). It supports uploading a raster image in
JPG or PNG format which is then checked for various kinds of color vision deficiencies at
the selected severity. By default the severity is set to 100% and all supported kinds of color
vision deficiency are checked for.

Journal of Statistical Software 39

Figure 33: App for emulating color vision deficiencies for uploaded raster images:
cvd_emulator().

8. Color manipulation and utilities
The colorspace package provides several color manipulation utilities that are useful for creat-
ing, assessing, or transforming color palettes, namely:

• desaturate(): Desaturate colors by chroma removal in HCL space.
• darken() and lighten(): Algorithmically lighten or darken colors in HCL and/or HLS

space.
• max_chroma(): Compute maximum chroma for given hue and luminance in HCL space.
• mixcolor(): Additively mix two colors by computing their convex combination.

8.1. Desaturation in HCL space

Desaturation should map a given color to the gray with the same “brightness”. In principle,
any perceptually-based color model (HCL, HLS, HSV, . . .) could be employed for this but
HCL works particularly well because its coordinates capture the perceptual properties better
than most other color models.
The desaturate() function converts any given hex color code or named R color to the cor-
responding HCL coordinates and sets the chroma to zero. Thus, only the luminance matters

40 colorspace: Manipulating and Assessing Colors and Palettes

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

Figure 34: Color wheels in RGB (left) and HCL (right) space in color (top) and desaturated
grayscale (bottom).

which captures the “brightness” mentioned above. Finally, the resulting HCL coordinates are
transformed back to hex color codes for use in R. First, desaturate() is used to desaturate
a vector of R color names:

R> desaturate(c("white", "orange", "blue", "black"))

[1] "#FFFFFF" "#B8B8B8" "#4C4C4C" "#000000"

Notice that the hex codes corresponding to three coordinates in sRGB space are always the
same, thus corresponding to gray colors (due to the same amount of red, green, and blue).
Analogously, hex color codes can also be transformed – in this case RGB rainbow colors from
the base R function rainbow():

R> rainbow(3)

[1] "#FF0000FF" "#00FF00FF" "#0000FFFF"

R> desaturate(rainbow(3))

[1] "#7F7F7FFF" "#DCDCDCFF" "#4C4C4CFF"

Even this simple example suffices to show that the three RGB rainbow colors have very
different grayscale levels. This deficiency is even clearer when using a full color wheel (of
colors with hues in [0, 360] degrees). While the RGB rainbow() is very unbalanced, the
HCL rainbow_hcl() (or also qualitative_hcl()) is (by design) balanced with respect to
luminance.

Journal of Statistical Software 41

−40%

−20%

 0%

 20%

 40%

Figure 35: Okabe-Ito palette (0%) along with two levels of both lightening and darkening,
respectively.

R> wheel <- function(col, radius = 1, ...)
+ pie(rep(1, length(col)), col = col, radius = radius, ...)
R> par(mar = rep(0.5, 4), mfrow = c(2, 2))
R> wheel(rainbow(8))
R> wheel(rainbow_hcl(8))
R> wheel(desaturate(rainbow(8)))
R> wheel(desaturate(rainbow_hcl(8)))

8.2. Lighten or darken colors

In principle, a similar approach for lightening and darkening colors can be employed as for
desaturation above. The colors can simply be transformed to HCL space and then the lumi-
nance can either be decreased (turning the color darker) or increased (turning it lighter) while
preserving the hue and chroma coordinates. This strategy typically works well for lightening
colors, although in some situations the result can be somewhat too colorful. Conversely, when
darkening rather light colors with little chroma, this can result in rather gray colors.
In these situations, an alternative might be to apply the analogous strategy in HLS space
which is frequently used in HTML style sheets. However, this strategy may also yield colors
that are either too gray or too colorful. A compromise that sometimes works well is to adjust
the luminance coordinate in HCL space but to take the chroma coordinate corresponding to
the HLS transformation.
We have found that typically the HCL-based transformation performs best for lightening
colors and this is hence the default in lighten(). For darkening colors, the combined strategy
often works best and is hence the default in darken(). In either case it is recommended to
try the other available strategies in case the default yields unexpected results.
Regardless of the chosen color space, the adjustment of the L component by a certain amount
can occur by two methods, relative (the default) or absolute. For example, L - 100 * amount
is used for absolute darkening, or L * (1 - amount) for relative darkening. See ?lighten
and ?darken for more details.

42 colorspace: Manipulating and Assessing Colors and Palettes

For illustration the qualitative palette suggested by Okabe and Ito (2008) is transformed by
two levels of both lightening and darkening, respectively (see Figure 35).

R> oi <- c("#61A9D9", "#ADD668", "#E6D152", "#CE6BAF", "#797CBA")
R> swatchplot("-40%" = lighten(oi, 0.4), "-20%" = lighten(oi, 0.2),
+ " 0%" = oi, " 20%" = darken(oi, 0.2), " 40%" = darken(oi, 0.4),
+ off = c(0, 0))

8.3. Adjust transparency of colors

Alpha transparency is useful for making colors semi-transparent, e.g., for overlaying different
elements in graphics (Wikipedia 2020i). An alpha value (or alpha channel) of 0 (or 00 in
hex strings) corresponds to fully transparent and an alpha value of 1 (or FF in hex strings)
corresponds to fully opaque. If a color hex string in R does not provide an explicit alpha
transparency, the color is assumed to be fully opaque.
The adjust_transparency() function can be used to adjust the alpha transparency of a
set of colors. It always returns a hex color specification. This hex color can have the alpha
transparency added/removed/modified depending on the specification of the argument alpha:

• alpha = NULL: Returns a hex vector with alpha transparency only if needed. Thus, it
keeps the alpha transparency for the colors (if any) but only if different from opaque.

• alpha = TRUE: Returns a hex vector with alpha transparency for all colors, using opaque
(FF) as the default if missing.

• alpha = FALSE: Returns a hex vector without alpha transparency for all colors (even
if the original colors had non-opaque alpha).

• alpha numeric: Returns a hex vector with alpha transparency for all colors set to the
alpha argument (recycled if necessary).

For illustration, the transparency of a single black color is modified to three alpha levels:
fully transparent, semi-transparent, and fully opaque, respectively. Black can be equivalently
specified by name ("black"), hex string ("#000000"), or integer position in the palette (1).

R> adjust_transparency("black", alpha = c(0, 0.5, 1))

[1] "#00000000" "#00000080" "#000000FF"

R> adjust_transparency("#000000", alpha = c(0, 0.5, 1))

[1] "#00000000" "#00000080" "#000000FF"

R> adjust_transparency(1, alpha = c(0, 0.5, 1))

[1] "#00000000" "#00000080" "#000000FF"

Subsequently, different settings of alpha are illustrated for adjusting a vector with three
shades of gray, specified by name (gray, opaque), opaque hex string ("#BEBEBE"), and semi-
transparent hex string ("#BEBEBE80"). Four types of adjustment are shown: only if necessary
(alpha = NULL), add (alpha = TRUE), remove (alpha = FALSE), or modify (alpha = 0.8).

Journal of Statistical Software 43

R> x <- c("gray", "#BEBEBE", "#BEBEBE80")
R> adjust_transparency(x, alpha = NULL)

[1] "#BEBEBE" "#BEBEBE" "#BEBEBE80"

R> adjust_transparency(x, alpha = TRUE)

[1] "#BEBEBEFF" "#BEBEBEFF" "#BEBEBE80"

R> adjust_transparency(x, alpha = FALSE)

[1] "#BEBEBE" "#BEBEBE" "#BEBEBE"

R> adjust_transparency(x, alpha = 0.8)

[1] "#BEBEBECC" "#BEBEBECC" "#BEBEBECC"

8.4. Maximum chroma for given hue and luminance

As the possible combinations of chroma and luminance in HCL space depend on hue, it is
not obvious which trajectories through HCL space are possible prior to trying a specific HCL
coordinate by calling polarLUV(). To avoid having to fix up the color upon conversion to
RGB hex() color codes, the max_chroma() function computes (approximately) the maximum
chroma possible. For illustration we show that for given luminance (here: L = 50) the
maximum chroma varies substantially with hue:

R> max_chroma(h = seq(0, 360, by = 60), l = 50)

[1] 137.96 59.99 69.06 39.81 65.45 119.54 137.96

Similarly, maximum chroma also varies substantially across luminance values for a given hue
(here: H = 120, green):

R> max_chroma(h = 120, l = seq(0, 100, by = 20))

[1] 0.00 28.04 55.35 82.79 110.28 0.00

8.5. Additive mixing of two colors

In additive color models like RGB() or XYZ() it can be useful to combine colors by additive
mixing. Below a fully saturated red and green are mixed, yielding a medium brownish yellow.

R> R <- RGB(1, 0, 0)
R> G <- RGB(0, 1, 0)
R> Y <- mixcolor(0.5, R, G)
R> Y

R G B
[1,] 0.5 0.5 0

44 colorspace: Manipulating and Assessing Colors and Palettes

9. Summary and discussion
This paper provides an overview of the broad capabilities of the colorspace package for se-
lecting individual colors or color palettes, manipulating these colors, and employing them in
various kinds of visualizations.
In particular, the package provides various qualitative, sequential, and diverging palettes
derived by relatively simple trajectories in HCL (hue-chroma-luminance) space. In contrast
to many other packages providing modern balanced color palettes (such as ColorBrewer.org,
CARTO, viridis, or scico) special emphasis is given to flexibility of the palettes, which can
be adjusted to the particular needs of a given data visualization. The paper also provides
various tips and tricks for choosing an effective palette in a given situation. Further useful
guidance is provided in many sources, including: Ware (1988), Okabe and Ito (2008), Aigner
(2010), Stauffer et al. (2015), Zhang (2015), Rost (2018), Wilke (2019), and Ciechanowski
(2019), among many others.
There are other R packages that can complement the palettes provided by colorspace. Poly-
chrome (Coombes and Brock 2020; Coombes, Brock, Abrams, and Abruzzo 2019) implements
strategies for qualitative palettes with many “categories”. While the qualitative palettes in
Section 4 yield only about 6–8 clearly distinguishable colors due to the fixed chroma and
luminance, Polychrome relaxes this restriction and can thus find a larger number of colors in
CIELUV space that are spaced as far apart as possible. Some of these palettes have also been
included in the base R function palette.colors() in grDevices (Zeileis et al. 2019) along with
other qualitative palettes that provide more distinguishable colors than qualitative_hcl().
The palette collection packages pals (Wright 2019) and paletteer (Hvitfeldt 2020) also pro-
vide a wide range of prespecified palettes, including some qualitative schemes with many
categories. Note that the palettes are quite diverse, though, and not all of them are equally
suitable for coding qualitative information. The visualization functions in colorspace from
Section 5 may be helpful in assessing their properties. roloc (Murrell 2018a,b) also provides
color conversions, not between numeric color spaces, but rather from numeric color spaces to
English color names.
In addition to the R version of colorspace, a Python 2/Python 3 (Van Rossum et al. 2011)
re-implementation is available at https://github.com/retostauffer/python-colorspace
which is currently in beta. In the paper we focus on the more mature R implementation
replication materials for most examples are also available for Python.

Computational details
The results in this paper were obtained using R 4.0.3 (R Core Team 2020) with the packages
colorspace 2.0-0 (Ihaka et al. 2020), ggplot2 3.3.2 (Wickham et al. 2020), RColorBrewer
1.1.2 (Neuwirth 2014), rcartocolor 2.0.0 (Nowosad 2019), viridis 0.5.1 (Garnier 2018), scico
1.2.0 (Pedersen and Crameri 2020). R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

Acknowledgments
The authors would like to thank the journal editors, the associate editor, and two anonymous
reviewers for their constructive and helpful feedback that substantially improved the paper.

https://github.com/retostauffer/python-colorspace
https://CRAN.R-project.org/

Journal of Statistical Software 45

References

Aigner W (2010). “Perception and Visualization.” URL http://www.ifs.tuwien.ac.at/
~silvia/wien/vu-infovis/PDF-Files/02_perception-visualization_1up.pdf.

Brettel H, Viénot F, Mollon JD (1997). “Computerized Simulation of Color Appearance for
Dichromats.” Journal of the Optical Society of America A, 14, 2647–2655. doi:10.1364/
josaa.14.002647.

Brewer CA (1999). “Color Use Guidelines for Data Representation.” In Proceedings of the
Section on Statistical Graphics, American Statistical Association, pp. 55–60. Alexandria.
URL http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ASApaper.html.

CARTO (2019). “CARTOColors – Data-Driven Color Schemes.” URL https://carto.com/
carto-colors/.

Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2020). shiny: Web Application Frame-
work for R. R package version 1.5.0, URL https://CRAN.R-project.org/package=shiny.

Ciechanowski B (2019). “Color Spaces.” URL https://ciechanow.ski/color-spaces/.

Coombes KR, Brock G (2020). Polychrome: Qualitative Palettes with Many Colors. R package
version 1.2.5, URL https://CRAN.R-project.org/package=Polychrome.

Coombes KR, Brock G, Abrams ZB, Abruzzo LV (2019). “Polychrome: Creating and Assess-
ing Qualitative Palettes with Many Colors.” Journal of Statistical Software, Code Snippets,
90(1), 1–23. doi:10.18637/jss.v090.c01.

Crameri F (2018). “Geodynamic Diagnostics, Scientific Visualisation and StagLab 3.0.” Geo-
scientific Model Development, 11(6), 2541–2562. doi:10.5194/gmd-11-2541-2018.

Gama J, Davis G (2018). colorscience: Color Science Methods and Data. R package version
1.0.5, URL https://CRAN.R-project.org/package=colorscience.

Garnier S (2018). viridis: Default Color Maps from matplotlib. R package version 0.5.1, URL
https://CRAN.R-project.org/package=viridis.

Harrower MA, Brewer CA (2003). “ColorBrewer.org: An Online Tool for Selecting
Color Schemes for Maps.” The Cartographic Journal, 40(1), 27–37. doi:10.1179/
000870403235002042. URL http://ColorBrewer.org/.

Hawkins E, McNeall D, Stephenson D, Williams J, Carlson D (2014). “The End of the
Rainbow – An Open Letter to the Climate Science Community.” URL http://www.
climate-lab-book.ac.uk/2014/end-of-the-rainbow/.

Horvath M, Lipka C (2016). “sRGB Gamut within CIELCHuv Color Space Isosurface.”
Wikimedia Commons, URL https://commons.wikimedia.org/wiki/File:SRGB_gamut_
within_CIELCHuv_color_space_isosurface.png.

Horvath M, Lipka C (2017). “sRGB Gamut within CIELCHuv Color Space Mesh.” Wikime-
dia Commons, URL https://commons.wikimedia.org/wiki/File:SRGB_gamut_within_
CIELCHuv_color_space_mesh.webm.

http://www.ifs.tuwien.ac.at/~silvia/wien/vu-infovis/PDF-Files/02_perception-visualization_1up.pdf
http://www.ifs.tuwien.ac.at/~silvia/wien/vu-infovis/PDF-Files/02_perception-visualization_1up.pdf
https://doi.org/10.1364/josaa.14.002647
https://doi.org/10.1364/josaa.14.002647
http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ASApaper.html
https://carto.com/carto-colors/
https://carto.com/carto-colors/
https://CRAN.R-project.org/package=shiny
https://ciechanow.ski/color-spaces/
https://CRAN.R-project.org/package=Polychrome
https://doi.org/10.18637/jss.v090.c01
https://doi.org/10.5194/gmd-11-2541-2018
https://CRAN.R-project.org/package=colorscience
https://CRAN.R-project.org/package=viridis
https://doi.org/10.1179/000870403235002042
https://doi.org/10.1179/000870403235002042
http://ColorBrewer.org/
http://www.climate-lab-book.ac.uk/2014/end-of-the-rainbow/
http://www.climate-lab-book.ac.uk/2014/end-of-the-rainbow/
https://commons.wikimedia.org/wiki/File:SRGB_gamut_within_CIELCHuv_color_space_isosurface.png
https://commons.wikimedia.org/wiki/File:SRGB_gamut_within_CIELCHuv_color_space_isosurface.png
https://commons.wikimedia.org/wiki/File:SRGB_gamut_within_CIELCHuv_color_space_mesh.webm
https://commons.wikimedia.org/wiki/File:SRGB_gamut_within_CIELCHuv_color_space_mesh.webm

46 colorspace: Manipulating and Assessing Colors and Palettes

Hvitfeldt E (2020). paletteer: Comprehensive Collection of Color Palettes. R package version
1.2.0, URL https://CRAN.R-project.org/package=paletteer.

Ihaka R (2003). “Colour for Presentation Graphics.” In K Hornik, F Leisch, A Zeileis
(eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Com-
puting, Vienna, Austria. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
Proceedings/.

Ihaka R, Murrell P, Hornik K, Fisher JC, Stauffer R, Wilke CO, McWhite CD, Zeileis A
(2020). colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. R pack-
age version 2.0-0, URL https://CRAN.R-project.org/package=colorspace.

Kaiser PK, Boynton RM (1996). Human Color Vision. 2nd edition. Optical Society of
America, Washington.

Knoblauch K (2002). “Color Vision.” In S Yantis, H Pashler (eds.), Steven’s Handbook of
Experimental Psychology – Sensation and Perception, volume 1, 3rd edition, pp. 41–75.
John Wiley & Sons, New York.

Lumley T (2006). “Color Coding and Color Blindness in Statistical Graphics.” ASA Statis-
tical Computing & Graphics Newsletter, 17(2), 4–7. URL http://stat-computing.org/
newsletter/issues/scgn-17-2.pdf.

Lumley T (2013). dichromat: Color Schemes for Dichromats. R package version 2.0-0, URL
https://CRAN.R-project.org/package=dichromat.

Machado GM, Oliveira MM, Fernandes LAF (2009). “A Physiologically-Based Model for
Simulation of Color Vision Deficiency.” IEEE Transactions on Visualization and Computer
Graphics, 15(6), 1291–1298. doi:10.1109/tvcg.2009.113. URL http://www.inf.ufrgs.
br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html.

Murrell P (2018a). “Generating Colour Names: The roloc Package for
R.” URL https://stattech.wordpress.fos.auckland.ac.nz/2018/01/25/
2018-01-generating-colour-names-the-roloc-package-for-r/.

Murrell P (2018b). roloc: Convert Colour Specification to Colour Name. R package version
0.1-1, URL https://CRAN.R-project.org/package=roloc.

Neuwirth E (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, URL
https://CRAN.R-project.org/package=RColorBrewer.

Nowosad J (2019). rcartocolor: CARTOColors Palettes. R package version 2.0.0, URL
https://CRAN.R-project.org/package=rcartocolor.

Okabe M, Ito K (2008). “Color Universal Design (CUD): How to Make Figures and Presenta-
tions That Are Friendly to Colorblind People.” URL http://jfly.iam.u-tokyo.ac.jp/
color/.

Pedersen TL, Crameri F (2020). scico: Colour Palettes Based on the Scientific Colour-Maps.
R package version 1.2.0, URL https://CRAN.R-project.org/package=scico.

https://CRAN.R-project.org/package=paletteer
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
https://CRAN.R-project.org/package=colorspace
http://stat-computing.org/newsletter/issues/scgn-17-2.pdf
http://stat-computing.org/newsletter/issues/scgn-17-2.pdf
https://CRAN.R-project.org/package=dichromat
https://doi.org/10.1109/tvcg.2009.113
http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
https://stattech.wordpress.fos.auckland.ac.nz/2018/01/25/2018-01-generating-colour-names-the-roloc-package-for-r/
https://stattech.wordpress.fos.auckland.ac.nz/2018/01/25/2018-01-generating-colour-names-the-roloc-package-for-r/
https://CRAN.R-project.org/package=roloc
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=rcartocolor
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
https://CRAN.R-project.org/package=scico

Journal of Statistical Software 47

Pedersen TL, Nicolae B, François R (2020). farver: Vectorised Colour Conversion and Com-
parison. R package version 2.0.3, URL https://CRAN.R-project.org/package=farver.

Poynton C (2009). “Frequently-Asked Questions about Color.” URL http://www.poynton.
com/ColorFAQ.html, accessed 2020-11-03.

Ram K, Wickham H (2018). wesanderson: A Wes Anderson Palette Generator. R package
version 0.3.6, URL https://CRAN.R-project.org/package=wesanderson.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rost LC (2018). “What to Consider When Choosing Colors for Data Visualization.” URL
https://blog.datawrapper.de/colors/.

Smith N, Van der Walt S (2015). “A Better Default Colormap for matplotlib.” In SciPy 2015
– Scientific Computing with Python. Austin. URL https://www.youtube.com/watch?v=
xAoljeRJ3lU.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). “Somewhere over the Rainbow: How to
Make Effective Use of Colors in Meteorological Visualizations.” Bulletin of the American
Meteorological Society, 96(2), 203–216. doi:10.1175/BAMS-D-13-00155.1.

Tufte ER (1990). Envisioning Information. Graphics Press, Cheshire.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Viénot F, Brettel H, Mollon JD (1999). “Digital Video Colourmaps for Checking the Legibility
of Displays by Dichromats.” Color Research and Application, 24(4), 243–252. doi:10.1002/
(sici)1520-6378(199908)24:4<243::aid-col5>3.3.co;2-v.

Viénot F, Brettel H, Ott L, M’Barek AB, Mollon JD (1995). “What Do Colour-Blind People
See?” Nature, 376, 127–128. doi:10.1038/376127a0.

Ware C (1988). “Color Sequences for Univariate Maps: Theory, Experiments and Principles.”
IEEE Computer Graphics and Applications, 8(5), 41–49. doi:10.1109/38.7760.

Ware C (2004). “Color.” In Information Visualization: Perception for Design, chapter 4, pp.
103–149. Morgan Kaufmann Publishers.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. 2nd edition. Springer-
Verlag. doi:10.1007/978-0-387-98141-3.

Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke CO, Woo K, Yutani
H, Dunnington D (2020). ggplot2: Create Elegant Data Visualisations Using the Gram-
mar of Graphics. R package version 3.3.2, URL https://CRAN.R-project.org/package=
ggplot2.

Wikipedia (2020a). “CIE 1931 Color Space — Wikipedia, The Free Encyclopedia.” URL
https://en.wikipedia.org/wiki/CIE_1931_color_space, accessed 2020-11-03.

https://CRAN.R-project.org/package=farver
http://www.poynton.com/ColorFAQ.html
http://www.poynton.com/ColorFAQ.html
https://CRAN.R-project.org/package=wesanderson
https://www.R-project.org/
https://blog.datawrapper.de/colors/
https://www.youtube.com/watch?v=xAoljeRJ3lU
https://www.youtube.com/watch?v=xAoljeRJ3lU
https://doi.org/10.1175/BAMS-D-13-00155.1
https://www.python.org/
https://www.python.org/
https://doi.org/10.1002/(sici)1520-6378(199908)24:4<243::aid-col5>3.3.co;2-v
https://doi.org/10.1002/(sici)1520-6378(199908)24:4<243::aid-col5>3.3.co;2-v
https://doi.org/10.1038/376127a0
https://doi.org/10.1109/38.7760
https://doi.org/10.1007/978-0-387-98141-3
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://en.wikipedia.org/wiki/CIE_1931_color_space

48 colorspace: Manipulating and Assessing Colors and Palettes

Wikipedia (2020b). “CIELAB Color Space — Wikipedia, The Free Encyclopedia.” URL
https://en.wikipedia.org/wiki/CIELAB_color_space, accessed 2020-11-03.

Wikipedia (2020c). “CIELUV — Wikipedia, The Free Encyclopedia.” URL https://en.
wikipedia.org/wiki/CIELUV, accessed 2020-11-03.

Wikipedia (2020d). “Color Space — Wikipedia, The Free Encyclopedia.” URL https://en.
wikipedia.org/wiki/Color_space, accessed 2019-03-11.

Wikipedia (2020e). “HCL Color Space — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/HCL_color_space, accessed 2019-08-23.

Wikipedia (2020f). “HSL and HSV — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/HSL_and_HSV, accessed 2020-11-03.

Wikipedia (2020g). “RGB Color Space — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/RGB_color_space, accessed 2020-11-03.

Wikipedia (2020h). “sRGB — Wikipedia, The Free Encyclopedia.” URL https://en.
wikipedia.org/wiki/sRGB, accessed 2020-11-03.

Wikipedia (2020i). “Web Colors — Wikipedia, The Free Encyclopedia.” URL https://en.
wikipedia.org/wiki/Web_colors, accessed 2019-03-11.

Wilke CO (2019). Fundamentals of Data Visualization. O’Reilly Media. URL https://
clauswilke.com/dataviz/color-basics.html.

Wilkinson L (2005). The Grammar of Graphics. 2nd edition. Springer-Verlag.

Wright K (2019). pals: Color Palettes, Colormaps, and Tools to Evaluate Them. R package
version 1.6, URL https://CRAN.R-project.org/package=pals.

Zeileis A, Gaslam B, Murrell P, Pedersen TL (2018). “Benchmarking Color Space
Conversions.” Twitter discussion, URL https://twitter.com/AchimZeileis/status/
1076228936810590208.

Zeileis A, Hornik K, Murrell P (2009). “Escaping RGBland: Selecting Colors for Statistical
Graphics.” Computational Statistics & Data Analysis, 53, 3259–3270. doi:10.1016/j.
csda.2008.11.033.

Zeileis A, Murrell P (2019). “HCL-Based Color Palettes in grDevices.” The
R Blog, URL https://developer.R-project.org/Blog/public/2019/04/01/
hcl-based-color-palettes-in-grdevices/.

Zeileis A, Murrell P, Maechler M, Sarkar D (2019). “A New palette() for
R.” The R Blog, URL https://developer.R-project.org/Blog/public/2019/11/21/
a-new-palette-for-r/.

Zhang S (2015). “Finding the Right Color Palettes for
Data Visualizations.” URL https://blog.graphiq.com/
finding-the-right-color-palettes-for-data-visualizations-fcd4e707a283.

https://en.wikipedia.org/wiki/CIELAB_color_space
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/HCL_color_space
https://en.wikipedia.org/wiki/HCL_color_space
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/sRGB
https://en.wikipedia.org/wiki/sRGB
https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/Web_colors
https://clauswilke.com/dataviz/color-basics.html
https://clauswilke.com/dataviz/color-basics.html
https://CRAN.R-project.org/package=pals
https://twitter.com/AchimZeileis/status/1076228936810590208
https://twitter.com/AchimZeileis/status/1076228936810590208
https://doi.org/10.1016/j.csda.2008.11.033
https://doi.org/10.1016/j.csda.2008.11.033
https://developer.R-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/
https://developer.R-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/
https://developer.R-project.org/Blog/public/2019/11/21/a-new-palette-for-r/
https://developer.R-project.org/Blog/public/2019/11/21/a-new-palette-for-r/
https://blog.graphiq.com/finding-the-right-color-palettes-for-data-visualizations-fcd4e707a283
https://blog.graphiq.com/finding-the-right-color-palettes-for-data-visualizations-fcd4e707a283

Journal of Statistical Software 49

Affiliation:
Achim Zeileis
Universität Innsbruck
Department of Statistics
Faculty of Economics and Statistics
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: https://eeecon.uibk.ac.at/~zeileis/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2020, Volume 96, Issue 1 Submitted: 2019-03-18
doi:10.18637/jss.v096.i01 Accepted: 2019-12-02

mailto:Achim.Zeileis@R-project.org
https://eeecon.uibk.ac.at/~zeileis/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v096.i01

	Introduction
	A quick tour
	Choosing HCL-based color palettes
	Usage with base graphics
	Usage with ggplot2
	Palette visualization and assessment

	Color spaces: S4 classes and utilities
	Implemented color spaces
	Human color vision and the HCL color model
	Utilities
	Illustration of basic colorspace functionality

	HCL-based color palettes
	Qualitative palettes
	Sequential palettes (single-hue)
	Sequential palettes (multi-hue)
	Diverging palettes
	Construction details
	Registering your own palettes
	Flexible diverging palettes
	Approximating palettes from other packages
	HCL (and HSV) color palettes corresponding to base R palettes

	Palette visualization and assessment
	Color swatches
	HCL (and RGB) spectrum
	Trajectories in HCL space
	Demonstration of statistical graphics

	Color vision deficiency emulation
	R functions
	Illustration: Heatmap with sequential palette

	Apps for choosing colors and palettes interactively
	Choose palettes with the HCL color model
	Choose individual colors with the HCL color model
	Emulate color vision deficiencies

	Color manipulation and utilities
	Desaturation in HCL space
	Lighten or darken colors
	Adjust transparency of colors
	Maximum chroma for given hue and luminance
	Additive mixing of two colors

	Summary and discussion

