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Abstract

Discrete choice experiments are widely used in a broad area of research fields to capture
the preference structure of respondents. The design of such experiments will determine
to a large extent the accuracy with which the preference parameters can be estimated.
This paper presents a new R package, called idefix, which enables users to generate opti-
mal designs for discrete choice experiments. Besides Bayesian D-efficient designs for the
multinomial logit model, the package includes functions to generate Bayesian adaptive
designs which can be used to gather data for the mixed logit model. In addition, the
package provides the necessary tools to set up actual surveys and collect empirical data.
After data collection, idefix can be used to transform the data into the necessary format
in order to use existing estimation software in R.
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1. Introduction

Discrete choice experiments (DCEs) are used to gather stated preference data. In a typical
DCE, the respondent is presented several choice sets. In each choice set the respondent is
asked to choose between two or more alternatives in which each alternative consists of specific
attribute levels. By analyzing the stated preference data, one is able to gain information on
the preferences of respondents. The use of stated preference data, and DCEs in particular, has
strongly increased the past decades in fields such as transportation, environmental economics,
health economics, and marketing.
To analyze stated preference data, a choice model needs to be assumed. The large majority
of discrete choice models is derived under the assumption of utility-maximizing behavior
by the decision maker (Marschak 1950). This family of models is known as random utility
maximization (RUM) models, and the most well known members are the multinomial logit
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model (MNL; McFadden 1974), and the mixed logit model (MIXL; Hensher and Greene 2003;
McFadden and Train 2000; Train 2003). The idea behind such models is that people maximize
their utility, which is modeled as a function of the preference weights and attribute levels.
The deterministic part of the utility is most often linearly specified in the parameters, but
the corresponding logit probabilities relate nonlinearly to the observed utility.
When setting up a DCE, the researcher is usually restricted by the limited number of choice
sets they can present to a respondent, and the limited number of respondents they can
question. Therewith, the set of all possible choice sets one could present (i.e., the full factorial
design) increases rapidly by including more attributes and attribute levels. The researcher
is therefore obliged to make a selection of the choice sets to be included in the experimental
design.
At first, choice designs were built using concepts from the general linear model design liter-
ature, neglecting the fact that most choice models are nonlinear (Huber and Zwerina 1996).
Afterwards different design approaches have been proposed focusing on one or more design
properties such as: utility balance, task complexity, response efficiency, attribute balance,
and statistical efficiency (for an overview see Rose and Bliemer 2014). Where orthogonal
designs were mostly used at first, statistically optimal designs have now acquired a prominent
place in the literature on discrete choice experiments (Johnson et al. 2013). The latter aims
to select those choice sets that force the respondent to make trade-offs, hereby maximizing
the information gained from each observed choice, or alternatively phrased, to minimize the
confidence ellipsoids around the parameter estimates.
Optimal designs maximize the expected Fisher information. For choice designs, this informa-
tion depends on the parameters of the assumed choice model. Consequently, the efficiency of
a choice design is related to the accuracy of the guess of the true parameters before conducting
the experiment. In order to reduce this sensitivity, Bayesian efficient designs were developed
where the researcher acknowledges their uncertainty about the true parameters by specifying
a prior preference distribution. It has been repeatedly proven that optimal designs outper-
form other design approaches when the researcher has sufficient information on the preference
structure a priori (Kessels, Goos, and Vandebroek 2006; Rose, Bliemer, Hensher, and Collins
2008; Rose and Bliemer 2009). On the other hand, several researchers have pointed out that
even Bayesian efficient designs are sensitive to a misspecification of the prior distribution (see
Walker, Wang, Thorhauge, and Ben-Akiva 2018, for an elaborate study on the robustness of
different design approaches).
Serial designs (Bliemer and Rose 2010a), and individually adaptive sequential Bayesian (IASB)
designs (Yu, Goos, and Vandebroek 2011; Crabbe, Akinc, and Vandebroek 2014) have gone
one step further in order to ensure that the prior guess is reasonable by sequentially updat-
ing it during the survey. In serial efficient designs, the design is changed across respondents
based on the updated information. With the IASB approach individual designs are con-
structed during the survey within each respondent, based on the posterior distribution of the
individual preference parameters. By sequentially updating this distribution, those methods
have proven to be less vulnerable to a misspecification of the initial prior. In addition, the
IASB approach has been shown to perform especially well when preference heterogeneity is
large and to result in qualitative designs for estimating the MIXL model (Danthurebandara,
Yu, and Vandebroek 2011; Yu et al. 2011).
So far, no R (R Core Team 2020) package is suited to generate optimal designs for DCEs.
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In addition, there is no available software that implements any kind of adaptive designs for
DCEs. Some general experimental design R packages exist, e.g., AlgDes (Wheeler 2019) and
OptimalDesign (Harman and Filova 2019), which can be used for the generation of optimal
designs. However, none of them can be used to apply methods designed for nonlinear models
which are necessary for choice models (Train 2003). To our knowledge two R packages exist
that are promoted for designing DCEs. The package support.CEs (Aizaki 2012) provides
functions for generating orthogonal main-effect arrays, but does not support optimal designs
for discrete choice models. The package choiceDes (Horne 2018), which depends on AlgDes, is
able to generate D-optimal designs for linear models and makes use of DCE terminology but
does not take into account the dependency on the unknown preference parameters. Further-
more, it is limited to effects coded designs, and does not allow the user to specify alternative
specific constants. Such design packages are still often used in the context of DCEs, be-
cause some linearly optimized designs are also optimal for MNL models when the preference
parameters are assumed to be zero.
We believe that efficient designs deserve a place in the toolbox of the DCE researcher and
adaptive efficient designs appear to be a promising extension. Since implementing such pro-
cedures is time consuming we believe the current package can pave the way for researchers
and practitioners to become familiar with these techniques. Therefore, the R package ide-
fix (Traets 2020) available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=idefix implements D-efficient, Bayesian D-efficient, and
the IASB approach to generate optimal designs for the MNL and MIXL model. Furthermore,
it provides functions that allow researchers to set up simulation studies in order to evalu-
ate the performance of efficient and of adaptive designs for certain scenarios. In addition,
a function is included that generates a shiny application (Chang, Cheng, Allaire, Xie, and
McPherson 2020) in which designs are presented on screen, which supports both pregenerated
and adaptive designs, and allows the researcher to gather empirical data. The data format
of idefix can be easily transformed in order to use existing estimation packages in R such as
package bayesm (Rossi 2019), ChoiceModelR (Sermas 2012), RSGHB (Dumont and Keller
2019), mlogit (Croissant 2020) and the Rchoice package (Sarrias 2016).
The outline of this paper is as follows: in the next section some guidance is provided on
gathering and specifying prior information, essential to produce efficient designs. Section 3
explains how to generate statistically optimal designs for the MNL model using the R package
idefix. In Section 4, the IASB methodology is discussed together with the functions related
to that approach. Here one can also find an example of how the different functions can be
combined to set up simulation studies. Section 5 describes the SurveyApp function which
enables the researcher to gather empirical choice data by launching an interactive shiny ap-
plication. In Section 6, it is shown how to transform the idefix data format into the format
desired by the estimation package of interest. Lastly, in Section 7, we discuss planned future
development of the package.

2. Guidelines on specifying an appropriate prior distribution
The advantage of an efficient design approach lies in the fact that a priori knowledge can be
included. However, as recently pointed out by Walker et al. (2018), such designs can also
become inefficient if the prior deviates much from the true parameter values. In order to
ensure the robustness of the design, some thoughtfulness is thus needed when specifying a
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prior. In most cases, if not all, the researcher has an idea about the sign and/or magnitude
of the model coefficients before conducting the experiment. It is, however, strongly advised
to collect additional information and to critically evaluate those beliefs in order to set up
efficient and robust (choice) experiments. This is recommended for all algorithms provided in
this package, including the sequential adaptive approach (see Section 4). We therefore include
some guidelines on how to gather prior information, quantify this information, and how to
verify whether the specified prior is conform the researcher’s beliefs. Lastly we provide an
example similar to Walker et al. (2018) in which we show how to evaluate the chosen prior
regarding the robustness of a design.

2.1. Gathering prior information

We hereby list some methods that are commonly used to gather prior information:

Consult the literature

Often research concerning similar (choice) topics is available in the literature. The statistics
of interest in economics frequently involve the amount of money someone is willing to pay
(WTP) for a certain product or service. For example in transportation research, numerous
choice experiments have been published on the value of time (VOT), in health economics the
value of a statistical life (VOSL) is of interest, whereas in environmental economics the focus
lies on WTP for improvement of environmental quality and conservation of natural resources.
If one is interested in conducting a choice experiment involving price and time attributes,
an option would be to first consult for example Abrantes and Wardman (2011), where the
authors provide a comprehensive meta-analysis that covers 226 British studies in which 1749
valuations of different types of time (e.g., in-vehicle time, walk time, wait time, departure
time shift, etc.) are included. For a similar meta-analysis covering 389 European studies one
could consult Wardman, Chintakayala, and de Jong (2016).

One must be careful when copying coefficient estimates from other studies, since those are
dependent on the context, and sensitive to design and model specifications. Nevertheless the
goal is not to extract a point estimate, but rather to define a reasonable interval which most
likely contains the true coefficient. As Wardman et al. (2016) write: “These implied monetary
values serve as very useful benchmarks against which new evidence can be assessed and the
meta-model provides parameters and values for countries and contexts where there is no other
such evidence”.

Invest in a pilot study

Given the cost of collecting data, efficient designs became more popular. The more efficient
a design is, the less participants one needs to question to obtain a similar level of estimation
accuracy. An efficient way of spending resources is therefore to first do a pilot study on a
sample of the total respondents. This way meaningful parameter estimates can be obtained,
which can serve as prior information for constructing the efficient design that will be given
to the remaining respondents. For the pilot study one can use an orthogonal design or an
efficient design assuming zero parameters.
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Expert judgement and focus groups

Another method is to consult focus groups. By debating and questioning a representative
sample, one can select relevant attributes, understand their importance and incorporate mean-
ingful attribute levels in the survey. The same information can be used to define reasonable
expectations about the influence each attribute will have on the utility. For an example in
which attribute prioritization exercises, attribute consolidation exercises and semi-structured
interviews are described see Pinto et al. (2017). Besides focus groups, one can also consult
an expert related to the topic.

2.2. Quantifying prior information

To incorporate prior knowledge in the design construction, one must quantify their beliefs
about the coefficients of interest. This can either be done by providing a point guess, or
by specifying a prior distribution. The former will lead to an efficient design based on the
D-error, the latter will lead to a Bayesian D-efficient design (or DB-efficient). We recommend
to always specify a prior distribution, since such design solutions are more robust.
In theory, any distribution can serve as a prior distribution as long as the probability mass
is distributed over the parameter space proportionally to one’s degree of belief. In practice,
it is advised to use a distribution for which there exists a convenient way to take draws
from. Several types of distributions are commonly used to express prior belief such as the
(truncated) normal, the uniform and the lognormal distribution. Let us assume one believes
that the true coefficient of price will be somewhere between −2 and 0, with all values in
between being equally likely, then specifying the uniform distribution βprice ∼ U (−2, 0) would
be in accordance with that belief. Similarly, specifying a normal distribution with mean −1.5
and standard deviation 1, i.e., βprice ∼ N (−1.5, 1), would mean that the researcher believes
the true coefficient will most likely be −1.5, but also gives credibility to values near −1.5. In
case one has absolutely no idea about the value of a coefficient in advance, a large standard
deviation and mean equal to zero would reflect that uncertainty.
To come up with specific numbers for the mean and variance, we recommend to start with
defining, for each coefficient, a lower and upper boundary in between which the true coefficient
should be located. These boundaries can be set by making use of any of the previously
mentioned methods. Often one of both boundaries is known a priori, since for most attributes
one can tell whether they will have a positive or negative effect on the utility. When only
boundaries are known, specifying a uniform distribution that spans that region is possible.
When only one boundary is known, a truncated normal can be appropriate. When one is able
to make a more informed guess, usually a normal distribution with mean equal to the best
guess is specified. By specifying the variance, one modifies the range of credible values around
the best guess. A way to decide upon the variance could be to ensure that the pre-established
boundaries are for example near µ ± 2σ, with µ the mean and σ the standard deviation of
the normal distribution. The wider the variance, the more robust the design solution will be.
On the other hand, the smaller the variance, the more informative the prior is, and thus the
more efficient the design solution will be if the true parameters are close to the best guess.
In the next section we will show how one can evaluate this trade-off.
A Bayesian D-efficient design will be optimized by minimizing the mean D-error, in which
each D-error is computed with a draw from the prior. To ensure that the solution is based on
a representative sample of the prior, it is important to use enough draws. It is hard to define
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a minimum number of draws, since it depends on the dimension of the prior and the quality of
the draws (for a comparison see Bliemer, Rose, and Hess 2008). Since the computation time
of generating a DB efficient design depends on the number of draws, we advise to generate
designs with a sample such that the computation remains feasible. Afterwards one can test
the robustness of the design solution by recalculating the DB-error with a larger sample from
the prior (see the DBerr function in Section 3.3).

2.3. Test prior assumptions and robustness

In order to check whether the specified prior is reasonable, one can simply evaluate the design
solution. In the output of each design generating algorithm the probabilities of choosing each
alternative in each choice set are included (see for example the CEA algorithm in Section 3.3).
With the Decode function one can view the labeled alternatives as they would appear in
the survey (see Section 3.3). If the prior specification reflects the researcher’s belief, the
probabilities of choosing an alternative given a choice set should make sense. If for example the
alternative “travel time = 4 hour, price = $10” and the dominant alternative “travel time = 2
hour, price = $2” have equal probability of being chosen, the prior or the coding of the
attribute levels is clearly wrong.
In what follows we will cover an example similar to the one used for the robustness analysis
in Walker et al. (2018). We will consider the implications of the prior on the robustness of
a design. In this choice experiment we are interested in the value of time, i.e., the amount
of money a consumer would be willing to pay in order to reduce waiting time with one unit.
There are two continuous attributes, price and time, each containing five attribute levels. For
time we use the following levels: [30, 36, 42, 48, 54] minutes, and for price we use the levels:
[$1, $4, $7, $10, $13]. Since VOT is defined as = βtime/βprice in a choice model with time and
price as the explanatory variables, if βtime = −0.33, and βprice = −1, one is willing to pay $20
to reduce time by one hour, or VOT = $20/hour.
We use the idefix package to select three designs, each containing 20 choice sets with two
alternatives. Each design is based on a different prior belief. For each belief we fix βprice = −1.
In the first condition, the researcher has no information about the true parameters. We refer
to this condition as the naive prior in which we specify βtime ∼ N (0, 1). This corresponds
to a prior belief of VOT ∼ N ($0/hour, $60/hour). In the second condition, we assume the
researcher knows the sign of the VOT. We will call this the semi-informative condition in
which the truncated normal distribution βtime ∼ T N (0, 1) is employed. The support of this
prior distribution is restricted such that only positive VOTs have credibility. In the last
case, we assume the researcher performed a pilot study in which the estimated VOT equaled
$20/hour. Therefore, the researcher is highly confident that the true VOT should be close to
that value. We will call this the informative condition in which βtime ∼ N (−0.33, 0.1). This
corresponds to a prior belief of VOT ∼ N ($20/hour, $6/hour). We use the CEA algorithm to
optimize 12 initial random designs (is the default in CEA) for each condition, of which we then
select the design with the lowest DB-error. Afterwards we use the DBerr function in order to
evaluate the robustness of each design given a range of possible true VOTs. The complete R
code can be seen in Section 3.3 under the DBerr function.
We can compare the efficiency of the different designs for a predefined region of interest.
Assume the researcher wants to evaluate the designs given that they believe the true VOT
should lie in between $10 and $30/hour (indicated by the vertical lines in Figure 1). From
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Figure 1: Comparison of the D-error for designs generated with different priors given a range
of true value of time (VOT). The VOT range $10–$30/hour indicates the preset interval that
is believed to enclose the true value, prior to the experiment.

Figure 2: Comparison of the D-error for designs generated with different priors given a range
of true value of time (VOT). The VOT range $10–$80/hour indicates the preset interval in
which we want to evaluate different designs.

Figure 1 we can tell that the more informative the prior is, the more efficient the design will
be given that the prior was correct (true VOT = $20/hour). We can also see that this holds
for the whole predefined region ($10–$30/hour). Above $35/hour the semi-informative prior
performs best, because that prior gave more credibility to this region than the informative did.
Similarly, if the true VOT is below $4/hour, the design with the naive prior performs best.
Let us now assume that we are less confident that the true VOT will be situated in between
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$10 and $30/hour, and we would like to evaluate the designs in the VOT region of $10–
$80/hour. We could then for example adjust the informative prior to: βtime ∼ U (−1.3,−0.16).
This corresponds to believing a priori that the true VOT will be in between $9.8/hour and
$78/hour, With all values in that region being equally likely.
As can be seen in Figure 2, the updated informative prior results in the most efficient design
for true VOTs between $13 and $80/hour. The difference with the semi-informative prior
becomes smaller since the degree of belief is more spread out over the parameter space. The
previous examples show that the more informative the prior is, the stronger the potential
gain in efficiency is, but also the more inefficient the design will be if the prior information is
incorrect. One can use the DBerr function to evaluate different designs to find a suitable prior
such that prior knowledge can be incorporated without losing too much robustness. When in
doubt between different design approaches, we encourage users to add other designs to the
comparison in order to choose a design that best fits their needs.

2.4. Summary

There are multiple ways of gathering prior information. It should be feasible to at least decide
upon reasonable boundaries in which the coefficients of interest should be located. One can
evaluate a prior specification by inspecting the choice probabilities it produces. When little
information is available, knowing the sign of most parameters can already improve the design
substantially. Given predefined boundaries, the robustness of a design can be evaluated for
that region by using the DBerr function.

3. D(B)-optimal designs for the MNL model

3.1. The multinomial logit model

The most applied choice model of all times is the multinomial logit model (MNL)1, originally
developed by McFadden (1974). The utility that decision maker n (1, . . . , N) receives from
alternative k (1, . . . ,K) in choice set s (1, . . . , S) is assumed to be composed of a systematic
part and an error term

Uksn = x>ksnβ + εksn.

The p-dimensional preference vector β denotes the importance of all attribute levels, repre-
sented by the p-dimensional vector xksn. Unobserved influences on the utility function are
captured by the independent error terms εksn, which are assumed to be distributed according
to a Gumbel distribution. The probability that individual n chooses alternative k in choice
set s can then be expressed in closed form:

pksn(β) = exp(x>ksnβ)∑K
i=1 exp(x>isnβ)

. (1)

In general, standard maximum likelihood techniques are applied to estimate the preference
vector β.

1Originally this model was known as the conditional logit model, the term MNL is, however, used more
frequently nowadays.
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3.2. Optimal designs for the MNL model

The more statistically efficient a design is, the smaller the confidence ellipsoids around the
parameter estimates of a model will be, given a certain sample size. The information a
design contains, given a choice model, can be derived from the likelihood L of that model by
calculating the expected Fisher information matrix:

IFIM = −E
(

∂2L

∂β∂β>

)
.

For the MNL model, this yields the following expression, where N is the number of respon-
dents,Xs = (x>1sn, . . . ,x

>
Ksn) the design matrix of choice set s, Ps = diag[p1sn, p2sn, . . . , pKsn],

and ps = [p1sn, p2sn, . . . , pKsn]>:

IFIM (β|X) = N
S∑

s=1
X>s

(
P s − psp

>
s

)
Xs. (2)

Several efficiency measures have been proposed based on the information matrix, among which
the D-efficiency has become the standard approach (Kessels et al. 2006; Rose and Bliemer
2014). A D-optimal design approach maximizes the determinant of the information matrix,
therefore minimizing the generalized variance of the parameter estimates. The criterion is
scaled to the power 1/p, with p the number of parameters the model contains:

Ω = IFIM (β|X)−1 ,

D-error = det (Ω)1/p .

In order to calculate the D-error of a design, one must assume a model and parameter values.
Since there is uncertainty about the parameter values, a prior distribution π(β) can be defined
on the preference parameters. In this case the expected D-error is minimized over the prior
preference distribution and is referred to as the DB-error

DB-error =
∫

det (Ω)1/p π(β)dβ. (3)

To find the design that minimizes such criteria, different algorithms have been proposed (see
Cook and Nachtsheim 1980, for an overview). We choose to implement both the modified Fe-
dorov algorithm, which was adapted from the classical Fedorov exchange algorithm (Fedorov
1972), as well as a coordinate exchange algorithm. The former swaps profiles from an initial
design matrix with candidate profiles in order to minimize the D(B)-error. The latter changes
individual attribute levels in order to optimize the design. For more details see Modfed and
CEA functions in Section 3.3.

3.3. Optimal designs for the MNL model with package idefix

Two main algorithms are implemented to generate optimal designs for the MNLmodel through
the Modfed function and the CEA function. Modfed is an implementation of a modified Fedorov
algorithm, whereas CEA is a coordinate exchange algorithm. The latter is substantially faster
and better suited for large designs problems. Due to a less exhaustive search, it can produce
slightly less efficient designs when there are few choice sets compared to the Modfed algorithm.
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Dummy coding Effects coding
Levels β1 β2 β3 β1 β2 β3
level 1 0 0 0 1 0 0
level 2 1 0 0 0 1 0
level 3 0 1 0 0 0 1
level 4 0 0 1 −1 −1 −1

Table 1: Dummy and effects coding in the idefix package for an attribute with four levels.

The Modfed is much slower, but has the advantage that the user can specify a candidate list
of alternatives, and thus is able to put restrictions on the design. We will start by explaining
how to generate a candidate list of alternatives by using the Profiles function, and continue
with the Modfed function. Afterwards we show how to decode a design with the Decode
function. Lastly we explain the CEA algorithm, and we end with an example of the DBerr
function that can be used to evaluate the robustness of different design solutions.

Profiles

The first step in creating a discrete choice design is to decide which attributes, and how many
levels of each, will be included. This is often not a straightforward choice that highly depends
on the research question. In general, excluding relevant attributes will result in increased
error variance, whereas including too many can have a similar result due to the increase in
task complexity. For more elaborated guidelines in choosing attributes and levels we refer to
Bridges et al. (2011).
Afterwards one can start creating profiles as combinations of attribute levels. Most often,
all possible combinations are valid profiles and then the Profiles function can be used to
generate them. It could be that some combinations of attribute levels are not allowed for a
variety of reasons. In that case the list of possible profiles can be restricted afterwards by
deleting the profiles that do not suffice.
The function Profiles has three arguments of which one is optional. In the lvls argument
one can specify how many attributes should be included, and how many levels each attribute
should have. The number of elements in vector at.lvls indicates the number of attributes.
The numeric values of that vector indicate the number of levels each attribute contains. In
the example below there are three attributes, the first one has three, the second four, and the
last one has two levels. The type of coding should be specified for each attribute, here with
the vector c.type, with one character for each attribute. Attributes can be effects coded "E",
dummy coded "D" or treated as a continuous variable "C". In this case all attributes will be
effects coded. In Table 1, the different coding schemes in the idefix package are depicted for
an attribute containing four levels.

R> library("idefix")
R> at.lvls <- c(3, 4, 2)
R> c.type <- c("E", "E", "E")
R> Profiles(lvls = at.lvls, coding = c.type)
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Var11 Var12 Var21 Var22 Var23 Var31
1 1 0 1 0 0 1
2 0 1 1 0 0 1
3 -1 -1 1 0 0 1
4 1 0 0 1 0 1
5 0 1 0 1 0 1
6 -1 -1 0 1 0 1
...
24 -1 -1 -1 -1 -1 -1

The output is a matrix in which each row is a possible profile.
When continuous attributes are desired, the levels of those attributes should be specified in
c.lvls, with one numeric vector for each continuous attribute, and the number of elements
should equal the number of levels specified in lvls for each attribute. In the example below
there is one dummy coded attributed and two continuous attributes where the first one
contains four levels (i.e., 4, 6, 8, and 10) and the second one two levels (i.e., 7 and 9).

R> at.lvls <- c(3, 4, 2)
R> c.type <- c("D", "C", "C")
R> con.lvls <- list(c(4, 6, 8, 10), c(7, 9))
R> Profiles(lvls = at.lvls, coding = c.type, c.lvls = con.lvls)

Var12 Var13 Var2 Var3
1 0 0 4 7
2 1 0 4 7
3 0 1 4 7
4 0 0 6 7
5 1 0 6 7
6 0 1 6 7
...
24 0 1 10 9

The output is a matrix in which each row is a possible profile. The last two columns represent
the continuous attributes.

Modfed

A modified Fedorov algorithm is implemented and can be used with the Modfed function.
The function consists of eleven arguments of which seven are optional. The first argument
cand.set is a matrix containing all possible profiles that could be included in the design. This
can be generated with the Profiles function as described above, but this is not necessary.
Furthermore, the desired number of choice sets n.sets, the number of alternatives n.alts
in each choice set, and the draws from the prior distribution, for which the design should be
optimized, should be specified in par.draws. By entering a numeric vector the D-error will
be minimized given the parameter values and the MNL likelihood. By specifying a matrix in
par.draws, in which each row is a draw from a multivariate prior distribution, the DB-error
will be optimized. We recommend to always use the DB-error since a D-efficient design is
more sensitive to a misspecification of the prior.
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If alternative specific constants are desired, the argument alt.cte should be specified. In
order to do this, a binary vector should be given with length equal to n.alts, indicating
for each alternative whether an alternative specific constant should be present 1 or not 0.
Whenever alternative specific constants are present, the par.draws argument requires a list
containing two matrices as input. The first matrix contains the parameter draw(s) for the
alternative specific constant parameter(s). The second matrix contains the draw(s) for the
remaining parameter(s). To verify, the total number of columns in par.draws should equal
the sum of the number of nonzero parameters in alt.cte and the number of parameters in
cand.set.
For some discrete choice experiments, a no choice alternative is desired. This is usually an
alternative containing one alternative specific constant and zero values for all other attribute
levels. If such an alternative should be present, the no.choice argument can be set to TRUE.
When this is the case, the design will be optimized given that the last alternative of each
choice set is a no choice alternative. Note that when no.choice = TRUE, alt.cte[n.alts]
should be 1, since the no choice alternative has an alternative specific constant.
The algorithm will swap profiles from cand.set with profiles from an initial design in order
to maximize the D(B)-efficiency. In order to avoid local optima the algorithm will repeat
this procedure for several random starting designs. The default of n.start = 12 can be
changed to any integer. By default best = TRUE so that the output will only show the design
with the lowest D(B)-error. If best = FALSE, all optimized starting designs are shown in the
output. One can also provide their own starting design(s) in start.des, in this case n.start
is ignored.
The modified Fedorov algorithm is fairly rapid; however, for complex design problems (with
lots of attributes and attribute levels), the computation time can be high. Therefore, we
make use of parallel computing through the parallel package in R. By default parallel =
TRUE and detecCores will detect the number of available CPU cores. The optimization of
the different starting designs will be distributed over the available cores minus one.
The algorithm will converge when an iteration occurs in which no profile could be swapped in
order to decrease the D(B)-error anymore. A maximum number of iterations can be specified
in max.iter, but is by default infinite.
In the example below a DB-optimal design is generated for a scenario with three attributes.
The attributes have respectively four, two and three levels each. All of them are dummy
coded. The matrix M, containing draws from the multivariate prior distribution with mean
mean and covariance matrix sigma, is specified in par.draws. The mean vector contains six
elements. The first three are the parameters for the first attribute, the fourth is the parameter
for the second attribute and the last two are the ones for the third attribute.

R> code <- c("D", "D", "D")
R> cs <- Profiles(lvls = c(4, 2, 3), coding = code)
R> mu <- c(-0.4, -1, -2, -1, 0.2, 1)
R> sigma <- diag(length(mu))
R> set.seed(123)
R> M <- MASS::mvrnorm(n = 500, mu = mu, Sigma = sigma)
R> D <- Modfed(cand.set = cs, n.sets = 8, n.alts = 2,
+ alt.cte = c(0, 0), par.draws = M)
R> D



Journal of Statistical Software 13

$design
Var12 Var13 Var14 Var22 Var32 Var33

set1.alt1 1 0 0 1 1 0
set1.alt2 0 1 0 0 0 1
set2.alt1 1 0 0 1 0 1
set2.alt2 0 0 0 0 0 0
set3.alt1 1 0 0 0 0 1
set3.alt2 0 0 0 1 1 0
set4.alt1 0 0 0 1 0 0
set4.alt2 0 1 0 0 1 0
set5.alt1 0 0 0 1 1 0
set5.alt2 0 0 1 0 0 0
set6.alt1 1 0 0 0 0 0
set6.alt2 0 0 1 1 0 1
set7.alt1 0 1 0 1 0 0
set7.alt2 0 0 0 1 0 1
set8.alt1 0 1 0 1 0 0
set8.alt2 0 0 1 0 1 0

$error
[1] 2.302946

$inf.error
[1] 0

$probs
Pr(alt1) Pr(alt2)

set1 0.3516382 0.6483618
set2 0.4503424 0.5496576
set3 0.7077305 0.2922695
set4 0.4842112 0.5157888
set5 0.6790299 0.3209701
set6 0.7231303 0.2768697
set7 0.1682809 0.8317191
set8 0.4540432 0.5459568

The output consists of the optimized design that resulted in the lowest DB-error since best
is TRUE by default. Besides the final D(B)-error $error, $inf.error denotes the percentage
of draws for which the design resulted in an infinite D-error. This could happen for extremely
large parameter values, which result in probabilities of one or zero for all alternatives in all
choice sets. In that case the elements of the information matrix will be zero, and the D-error
will be infinite. This percentage should thus be preferably close to zero when calculating the
DB-error and zero when generating a D-optimal design. Lastly, $probs shows the average
probabilities for each alternative in each choice set given the sample from the prior preference
distribution par.draws.
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Decode

The Decode function allows the user to decode a coded design matrix into a readable choice
design with labeled attribute levels, as they would appear in a real survey. Comparing the
decoded alternatives with their predicted choice probabilities is a simple way of checking
whether the prior specification is reasonable. It can for example happen that an efficient
design contains some dominant alternatives. To what extent these are undesired depends on
the researcher. Some argue that dominant alternatives can serve as a test to see whether the
respondent takes the choice task seriously, others argue that it may lead to lower response
efficiency. In any case, it is important that the predicted choice probabilities, which are a
direct consequence of the prior, seem plausible. Otherwise either the prior or the used coding
is presumably wrongly specified (Crabbe and Vandebroek 2012; Bliemer, Rose, and Chorus
2017).
The design that needs to be decoded has to be specified in des. This is a matrix in which
each row is an alternative. Furthermore, the number of alternatives n.alts and the applied
coding coding should be indicated. The labels of the attribute levels which will be used in
the DCE should be specified in lvl.names. This should be a list containing a vector for
each attribute. Each vector has equal elements as the corresponding attribute has attribute
levels. In the example below we will decode the design previously generated with the Modfed
function into a readable design. We specify all attribute levels in lvls. For this example we
mimicked a transportation DCE. The first attribute is the “cost” with four different values:
$15, $20, $30 and $50. The second attribute represents “travel time”, an alternative that can
have 2 or 30 minutes as attribute levels. Lastly the attribute “comfort” has three levels, the
comfort can be bad, moderate or good. In des we specify the optimized design that resulted
in the lowest DB error from the output of the Modfed function. In coding the same type of
coding we used to generate the design matrix should be specified. In this case all attributes
were dummy coded (as in the example above).

R> lvls <- list(c("$15", "$20", "$30", "$50"), c("2 min", "15 min"),
+ c("bad", "moderate", "good"))
R> DD <- Decode(des = D$design, lvl.names = lvls, coding = code)
R> DD

$design
V1 V2 V3

set1.alt1 $20 15 min moderate
set1.alt2 $30 2 min good
set2.alt1 $20 15 min good
set2.alt2 $15 2 min bad
set3.alt1 $20 2 min good
set3.alt2 $15 15 min moderate
set4.alt1 $15 15 min bad
set4.alt2 $30 2 min moderate
set5.alt1 $15 15 min moderate
set5.alt2 $50 2 min bad
set6.alt1 $20 2 min bad
set6.alt2 $50 15 min good
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set7.alt1 $30 15 min bad
set7.alt2 $15 15 min good
set8.alt1 $30 15 min bad
set8.alt2 $50 2 min moderate

$lvl.balance
$lvl.balance$`attribute 1 `

$15 $20 $30 $50
5 4 4 3

$lvl.balance$`attribute 2 `

15 min 2 min
9 7

$lvl.balance$`attribute 3 `

bad good moderate
6 5 5

The output of Decode contains two components. The first one, $design, shows the decoded
design matrix. The second one, lvl.balance, shows the frequency of each attribute level
in the design. As previously mentioned, besides statistical efficiency other criteria such as
attribute level balance can be of importance too.
In the second example we optimize several starting designs for the same attributes as the ones
in the first example. As before, all possible profiles are generated using the Profiles function.
This time we include an alternative specific constant (asc) for the first alternative and we add
a no choice alternative. A no choice alternative is coded as an alternative that contains one asc
and zeros for all other attribute levels. The vector c(1, 0, 1) specified in alt.cte indicates
that there are three alternatives of which the first and the third (the no choice alternative)
have an asc. The mean vector m contains eight entries, the first one corresponds to the asc of
the first alternative, the second one to the asc of the no choice alternative. The third, fourth
and fifth elements correspond to the prior mean of the coefficients of the levels of the first
attribute. The sixth element indicates the prior mean of the coefficient of the levels for the
second attribute and the last two elements to the levels of the third attribute. In this example
all attributes are effects coded (see Table 1 for an example). A sample is drawn from the
multivariate normal prior distribution with mean m and covariance matrix v which is passed
to par.draws. In order to avoid confusion the draws for the alternative specific constants are
separated from the draws for the coefficients and passed on to par.draws in a list.

R> set.seed(123)
R> code <- c("E", "E", "E")
R> cs <- Profiles(lvls = c(4, 2, 3), coding = code )
R> alt.cte <- c(1, 0, 1)
R> m <- c(0.1, 1.5, 1.2, 0.8, -0.5, 1, -1.5, 0.6)
R> v <- diag(length(m))
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R> ps <- MASS::mvrnorm(n = 500, mu = m, Sigma = v)
R> ps <- list(ps[, 1:2], ps[, 3:8])
R> D.nc <- Modfed(cand.set = cs, n.sets = 10, n.alts = 3,
+ alt.cte = alt.cte, par.draws = ps, no.choice = TRUE, best = FALSE)
R> for (i in 1:length(D.nc)) print(D.nc[[i]]$error)

[1] 1.230047
[1] 1.277368
[1] 1.241679
[1] 1.241667
[1] 1.250804
[1] 1.276689
[1] 1.252373
[1] 1.266141
[1] 1.248671
[1] 1.249621
[1] 1.274209
[1] 1.253853

Because best was set to FALSE, the outcome (i.e., the optimized design matrix, the DB-error
and the probabilities) of each initial design was stored. We print out all the DB-errors and
decide which design we would like to decode. Another option is to optimize more starting
designs. In the example below the first design is decoded, since this was the one that resulted
in the lowest DB-error. Note that we now have to specify which alternative is the no choice
alternative in the no.choice argument.

R> test <- Decode(des = D.nc[[1]]$design, n.alts = 3,
+ lvl.names = lvls, alt.cte = alt.cte, coding = code, no.choice = 3)
R> cbind(test$design, probs = as.vector(t(D.nc[[1]]$probs)))

V1 V2 V3 probs
set1.alt1 $50 2 min good 0.3214916
set1.alt2 $15 15 min moderate 0.3133349
no.choice <NA> <NA> <NA> 0.3651735
set2.alt1 $15 2 min moderate 0.4697414
set2.alt2 $20 2 min good 0.3856513
no.choice.1 <NA> <NA> <NA> 0.1446072
set3.alt1 $20 15 min moderate 0.2784902
set3.alt2 $15 2 min bad 0.3145071
no.choice.2 <NA> <NA> <NA> 0.4070027
set4.alt1 $30 2 min good 0.4284075
set4.alt2 $50 2 min moderate 0.2310475
no.choice.3 <NA> <NA> <NA> 0.3405450
set5.alt1 $20 2 min good 0.3565410
set5.alt2 $15 2 min good 0.4518309
no.choice.4 <NA> <NA> <NA> 0.1916281
set6.alt1 $20 2 min bad 0.3174667
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set6.alt2 $50 15 min good 0.1360625
no.choice.5 <NA> <NA> <NA> 0.5464708
set7.alt1 $15 15 min good 0.4273929
set7.alt2 $30 2 min bad 0.1274950
no.choice.6 <NA> <NA> <NA> 0.4451121
set8.alt1 $50 2 min moderate 0.3294313
set8.alt2 $30 15 min good 0.1941744
no.choice.7 <NA> <NA> <NA> 0.4763942
set9.alt1 $15 2 min bad 0.2896765
set9.alt2 $30 2 min moderate 0.3206922
no.choice.8 <NA> <NA> <NA> 0.3896313
set10.alt1 $30 2 min moderate 0.2405066
set10.alt2 $20 2 min moderate 0.4750211
no.choice.9 <NA> <NA> <NA> 0.2844724

CEA

It is known that the computation time of the Modfed algorithm increases exponentially by
including additional attributes. Therefore, we also implemented the coordinate exchange
algorithm (CEA), which is particularly effective for larger design problems (Tian and Yang
2017; Meyer and Nachtsheim 1995). Since the CEA approach runs in polynomial time, it is
expected that computation time will be reduced by one or two orders of magnitude, while
producing equally efficient designs as the Modfed algorithm. Only when using few initial
starting designs, for small design problems (e.g., less than 10 choice sets), it could be that
the CEA function produces designs that are slightly less efficient as the ones obtained from
Modfed. This is because the CEA algorithm performs a less exhaustive search. To overcome
this problem, one can increase the number of random initial designs n.start, but we advise to
use the modified Fedorov algorithm for such problems. Similarly to the Modfed function, the
CEA procedure improves random initial design matrices in which a row represents a profile and
columns represent attribute levels. The latter, however, considers changes on an attribute-
by-attribute basis, instead of swapping each profile with each possible profile. It is thus no
longer needed to generate a candidate set of all possible profiles. The downside is that one
can also no longer eliminate particular profiles in advance. All arguments, and the output
that CEA produces, are exactly the same as the ones documented in the Modfed function. The
only difference is that the lvls and coding argument now directly serve as input for the CEA
function.

R> set.seed(123)
R> lvls <- c(4, 2, 3)
R> coding <- c("E", "E", "E")
R> alt.cte <- c(1, 0, 1)
R> m <- c(0.1, 1.5, 1.2, 0.8, -0.5, 1, -1.5, 0.6)
R> v <- diag(length(m))
R> ps <- MASS::mvrnorm(n = 500, mu = m, Sigma = v)
R> ps <- list(ps[, 1:2], ps[, 3:8])
R> D.nc_cea <- CEA(lvls = lvls, coding = coding, n.alts = 3, n.sets = 10,
+ alt.cte = alt.cte, par.draws = ps, no.choice = TRUE, best = TRUE)
R> D.nc_cea
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$design
alt1.cte alt3.cte Var11 Var12 Var13 Var21 Var31 Var32

set1.alt1 1 0 0 0 1 -1 -1 -1
set1.alt2 0 0 1 0 0 -1 0 1
no.choice 0 1 0 0 0 0 0 0
set2.alt1 1 0 1 0 0 1 0 1
set2.alt2 0 0 0 1 0 1 -1 -1
no.choice 0 1 0 0 0 0 0 0
set3.alt1 1 0 -1 -1 -1 1 -1 -1
set3.alt2 0 0 0 0 1 -1 0 1
no.choice 0 1 0 0 0 0 0 0
set4.alt1 1 0 1 0 0 1 -1 -1
set4.alt2 0 0 0 0 1 1 -1 -1
no.choice 0 1 0 0 0 0 0 0
set5.alt1 1 0 1 0 0 1 1 0
set5.alt2 0 0 0 1 0 1 0 1
no.choice 0 1 0 0 0 0 0 0
set6.alt1 1 0 -1 -1 -1 1 1 0
set6.alt2 0 0 1 0 0 -1 -1 -1
no.choice 0 1 0 0 0 0 0 0
set7.alt1 1 0 0 0 1 1 0 1
set7.alt2 0 0 1 0 0 1 1 0
no.choice 0 1 0 0 0 0 0 0
set8.alt1 1 0 0 1 0 -1 -1 -1
set8.alt2 0 0 0 0 1 1 -1 -1
no.choice 0 1 0 0 0 0 0 0
set9.alt1 1 0 0 1 0 -1 0 1
set9.alt2 0 0 -1 -1 -1 -1 -1 -1
no.choice 0 1 0 0 0 0 0 0
set10.alt1 1 0 0 1 0 1 1 0
set10.alt2 0 0 -1 -1 -1 1 0 1
no.choice 0 1 0 0 0 0 0 0

$error
[1] 1.237644

$inf.error
[1] 0

$probs
Pr(alt1) Pr(alt2) Pr(no choice)

set1 0.1870938 0.3265117 0.4863944
set2 0.4697414 0.3856513 0.1446072
set3 0.3605579 0.1517753 0.4876668
set4 0.6058905 0.1608716 0.2332379
set5 0.2186997 0.4996534 0.2816469
set6 0.1087114 0.4204388 0.4708497
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set7 0.3627346 0.2461984 0.3910670
set8 0.2609301 0.3730199 0.3660500
set9 0.3204917 0.1179716 0.5615366
set10 0.2599124 0.2614408 0.4786468

DBerr

As previously mentioned, the choice of using an efficient design approach is related to the
confidence one has in the prior specification of the parameters that are to be estimated (Walker
et al. 2018). Other design approaches often rely on different assumptions regarding the true
data generating process. Foreseeing the design implications given that some assumptions are
violated, or the prior deviates from the true parameters, can be difficult. The DBerr function
allows to evaluate designs resulting from different assumptions to be compared given a range
of plausible true parameters. The function simply calculates the D(B)-error given a design
des and parameter values par.draws. The latter can be a vector, in which case the D-error is
calculated, or it can be matrix in which each row is a draw. If a matrix is supplied and mean
= TRUE the D(B)-error is calculated. If mean = FALSE a vector with D-errors is returned.
Lastly, the number of alternatives in each choice set needs to be specified in n.alts.
In what follows we show the code used to generate the robustness plots in Section 2.3. We
compared different design solutions, each generated with different prior beliefs.

R> set.seed(123)
R> N <- 250
R> U <- rnorm(n = N, mean = 0, sd = 1)
R> S <- rtruncnorm(n = N, a = -Inf, b = 0, mean = 0, sd = 1)
R> I <- rnorm(n = N, mean = -0.33, sd = 0.1)
R> I2 <- runif(n = N, min= -1.3, max = -0.16)

We draw a sample from each of the prior distributions. The sample of the naive prior is stored
in U, S contains the semi-informative sample, and I and I2 are the informative samples for
βtime. We will continue by showing how we generated the informative design and check the
robustness for that design. The same can be done for the other priors by replacing I with
the desired sample.

R> I <- cbind(I, -1)
R> lev_time <- c(30,36,42,48,54)
R> lev_price <- c(1,4,7,10,13)
R> D_I <- CEA(lvls = c(5, 5), coding = c("C", "C"),
+ c.lvls = list(lev_time, lev_price), n.sets = 20, n.alts = 2,
+ parallel = TRUE, par.draws = I, best = TRUE)
R> des <- D_I$design

We used the CEA algorithm to generate an efficient design given sample I. Afterwards the
design matrix is stored in des. There where two attributes, each containing 5 levels. Since
the coefficient of price was fixed to −1, we can define a range of possible true VOTs ($0–
$100/hour) by varying βtime from 0 till −1.667. Finally the DBerr function can be used to
calculate the efficiency of the design given each possible true VOT. Specifying mean = TRUE,
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would return the mean which is the same as the DB-error for the specified range. One can
thus test multiple designs for different plausible parameters.

R> range <- cbind(seq(-1.667, 0, 0.08333), -1)
R> I_robust <- DBerr(par.draws = range, des = des, n.alts = 2,
+ mean = FALSE)
R> I_robust

[1] 19.41543197 15.12089434 11.77624555 9.17131336 7.14225121 5.56088291
[7] 4.32537544 3.34943050 2.54316599 1.78598093 1.01289324 0.43448119
[13] 0.15842765 0.05476671 0.02232948 0.01558887 0.01327167 0.01476203
[19] 0.01931387 0.03505369 0.07640805

As can be seen in Figure 1, the very informative prior performs well when the best guess
($20/hour) equals the true VOT, but becomes quickly inefficient when the true VOT deviates
from this value.

4. Individually adaptive sequential Bayesian designs
So far we generated statistically efficient designs, given a prior preference distribution. Since
we optimize the same design for all respondents, we hope that the prior accurately reflects the
preferences of those respondents. If we, however, assume there exists preference heterogene-
ity in the population, we must acknowledge that the design will be more efficient for some
participants and less efficient to others. The IASB approach is motivated by the desire to
overcome this problem. By making use of an individual adaptive design approach, preference
heterogeneity is taken into account in the design stage of the experiment. Before explaining
the IASB approach in more detail we will give a brief explanation of the MIXL model, which
is the most commonly used choice model that takes preference heterogeneity into account and
for which the IASB approach can be used.

4.1. The mixed logit model

Essentially the mixed logit model (MIXL) is an extension of the MNL model in the sense that
it allows for heterogeneity in the preference parameters (Hensher and Greene 2003; McFadden
and Train 2000; Train 2003). The mixed logit probability for choosing a particular alternative
in a given choice set, unconditionally on β, is expressed as follows:

πks =
∫
pks(β)f(β)dβ.

The logit probability pks(β) as specified in Equation 1 is weighted over the density function
f(β), describing the preference heterogeneity. The likelihood of the observed responses for N
respondents can then be written as

L(y|X,θ) =
N∏

n=1

∫( S∏
s=1

K∏
k=1

(pksn(βn))yksn

)
f(βn|θ)dβn,

where y is a binary vector with elements yksn which equals one if alternative k in choice set
s was chosen by respondent n, and zero otherwise, X is the full design matrix containing the
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βn ∼ g(β)

Xsn

ysn

min(D(B)-error)

update distribution

Figure 3: Flow chart of the IASB algorithm in which an individual response ysn on choice set
Xsn is used to update the prior preference distribution g(β). The next choice set is selected
based on the updated preference distribution and previously selected choice sets.

subdesigns for N respondents and θ contains the parameters of the population distribution
f(β). MIXL models are either estimated with a hierarchical Bayesian estimation procedure
or with a simulated likelihood approach.

4.2. Optimal designs for the mixed logit model

Because the Fisher information matrix for the MIXL model cannot be computed indepen-
dently of the observed responses, generating DB-optimal designs requires extensive simula-
tions and becomes quickly too time consuming (Bliemer and Rose 2010b). Another approach
has been proposed by Yu et al. (2011), which exploits the idea that the MIXL model assumes
respondents to choose according to a MNL model, but each with different preferences. The
IASB design approach consists thus of generating individual designs, where each design is
tailor-made for one unique participant. The approach is sequential because choice sets are se-
lected one after the other during the survey. The approach is adaptive because the individual
preference distribution is updated after each observed response.
The flow chart in Figure 3 represents the idea of the IASB approach. At the top we see the
distribution of the individual preferences of a respondent βn. Initially a sample is drawn from
the prior distribution βn ∼ N (µ,Σ). Based on that sample, one or more initial choice sets
Xsn will be selected by minimizing the D(B)-error. After observing the response(s) ysn, the
prior is updated in a Bayesian way and samples are now drawn from the posterior distribution
g(β). This process is repeated as many times as there are individual sequential choice sets,
resulting in an individualized design for each respondent. It has been proven that generating
designs according to this IASB approach results in choice data of high quality in order to
estimate the MIXL model (Danthurebandara et al. 2011; Yu et al. 2011).

4.3. Optimal designs for the MIXL model with package idefix
In this part, the functions necessary to generate adaptive choice sets in a sequential way, as
explained in Section 4.2, are described. The two main building blocks of the IASB approach
consist of an importance sampling algorithm ImpsampMNL to sample from the posterior, and
the SeqMOD algorithm, to select the most efficient choice set given a posterior sample. Fur-
thermore, a function to generate responses RespondMNL is included, this way all elements to
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prior likelihood

posterior draws

choice set response

ImpsampMNL

SeqMOD

RespondMNL

Figure 4: Simulation setup for the IASB approach. ImpsampMNL, SeqMOD and RespondMNL are
functions included in the idefix package.

set up a simulation study, as depicted in Figure 4, are present. If the reader has no interest
in evaluating an adaptive design approach with response simulation, but rather in collecting
empirical data, one can proceed to Section 5.
In what follows an example is given of the workflow together with a description of each of the
functions involved. In the example, choice data for one respondent will be generated, while
part of the choice sets are selected making use of the IASB methodology. We will assume
a scenario with three attributes. The first attribute has four levels, the second attribute
has three levels and the last one has two levels. We choose to use dummy coding for all
attributes and not to include an alternative specific constant. As a prior we use draws from a
multivariate normal distribution with mean vector m and covariance matrix v. In each choice
set there are two alternatives.
First we will generate a DB optimal design containing eight initial fixed choice sets in the
same way as explained in Section 2.3.

R> set.seed(123)
R> cs <- Profiles(lvls = c(4, 3, 2), coding = c("D", "D", "D"))
R> m <- c(0.25, 0.5, 1, -0.5, -1, 0.5)
R> v <- diag(length(m))
R> ps <- MASS::mvrnorm(n = 500, mu = m, Sigma = v)
R> init.des <- Modfed(cand.set = cs, n.sets = 8, n.alts = 2,
+ alt.cte = c(0, 0), par.draws = ps)$design
R> init.des

Var12 Var13 Var14 Var22 Var23 Var32
set1.alt1 0 0 1 0 1 1
set1.alt2 0 0 0 0 0 0
set2.alt1 0 1 0 0 0 1
set2.alt2 1 0 0 1 0 0
set3.alt1 0 0 0 0 0 1
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set3.alt2 0 1 0 0 1 0
set4.alt1 0 0 0 1 0 1
set4.alt2 1 0 0 0 0 0
set5.alt1 0 0 0 0 0 0
set5.alt2 1 0 0 1 0 1
set6.alt1 0 1 0 1 0 0
set6.alt2 0 0 0 0 1 0
set7.alt1 0 0 1 1 0 0
set7.alt2 1 0 0 0 0 1
set8.alt1 0 1 0 0 1 1
set8.alt2 0 0 1 0 0 0

The next step is to simulate choice data for the initial design. We assume that the true
preference parameter vector is the following:

R> truePREF <- c(0.5, 1, 2, -1, -1, 1.5)

RespondMNL

To simulate choices based on the logit model the RespondMNL function can be used. The true
(individual) preference parameters can be set in par, in this case truePREF. In des a matrix
should be specified in which each row is a profile. This can be a single choice set or a design
matrix containing several choice sets, in this example our initial design init.des is used.
The number of alternatives per choice set should be set in n.alts.

R> set.seed(123)
R> y.sim <- RespondMNL(par = truePREF, des = init.des, n.alts = 2)
R> y.sim

[1] 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1

The output is a binary vector indicating the simulated choices. Given that K = 2, the
alternatives that were chosen in each choice set were respectively the first, first, first, second,
second, first, second and second alternative.
At this point we have information about the true preferences captured in the responses y.sim,
given the choice sets in init.des. We can now take this information into account by updating
our prior distribution.

ImpsampMNL

Since the posterior has no closed form, an importance sampling algorithm is provided with
the ImpsampMNL function, which can be used to take draws from the posterior after each
observed response. As importance density a multivariate student t distribution, with degrees
of freedom equal to the dimensionality, is used. The mean of the importance density is the
mode of the posterior distribution and the covariance matrix −H−1, with H the Hessian
matrix of the posterior distribution. The draws are taken systematically using extensible
shifted lattice points (Yu et al. 2011).
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As prior distribution the multivariate normal is assumed for which the mean vector can be
specified in prior.mean, and covariance matrix in prior.covar. Here we use the same
mean prior vector m and covariance matrix v as the ones we used to generate the initial
design. Previously presented choice sets, in this case init.des, can be passed through des,
whereas the simulated responses y.sim can be passed through y. The number of draws can
be specified in n.draws, here we draw 200 samples from the posterior distribution. Note
that the ImpsampMNL function includes three more arguments which are not required. If
alternative specific constants are present, those should be specified in alt.cte argument
which is by default NULL. The last two arguments lower and upper allow the user to sample
from a truncated normal distribution. This can be desired when the researcher is certain
about the sign of one or more parameters. For example when there are three parameters and
the researcher knows the first parameter should be positive, a lower boundary of zero can
be specified for that parameter with lower = c(0, -Inf, -Inf). Equivalently when only
negative draws are desired for the first parameter an upper boundary can be specified by
stating upper = c(0, Inf, Inf). In this case we, however, do not know the signs of the
parameters and apply no boundaries.

R> set.seed(123)
R> draws <- ImpsampMNL(n.draws = 200, prior.mean = m,
+ prior.covar = v, des = init.des, n.alts = 2, y = y.sim)
R> draws

$sample
Var12 Var13 Var14 Var22 Var23

[1,] 1.070865236 0.638213757 2.049646085 -1.334767e+00 -2.14475738
[2,] 0.662390619 0.457390508 0.571839377 -1.842649e-01 -0.55735903
[3,] 2.137729327 1.737021903 1.640171096 -3.223393e-01 -1.56516482

...
[200,] 0.584339280 0.275411214 1.928374787 -1.710515e+00 -1.36622933

Var32
[1,] 0.09857508
[2,] 1.87854394
[3,] 0.83483329

...
[200,] 1.51836041

$weights
[1] 0.0064215784 0.0048492541 0.0061226039 0.0048566461 0.0068167857
[6] 0.0044063350 0.0054392379 0.0067403456 0.0033642025 0.0028369841

[11] 0.0043626513 0.0059685074 0.0090360051 0.0040963226 0.0034925534
...
[196] 0.0027203771 0.0037808188 0.0081262865 0.0040685285 0.0044834598

$max
[1] 0.8666279 0.5478021 1.3107427 -0.7595160 -1.3510582 0.9885595

$covar
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Var12 Var13 Var14 Var22 Var23
Var12 0.588263554 0.06313684 0.07088819 0.007553871 -0.005398027
Var13 0.063136836 0.63202630 0.07933276 -0.015982465 -0.040937948
Var14 0.070888189 0.07933276 0.67186035 -0.062542644 -0.025917076
Var22 0.007553871 -0.01598247 -0.06254264 0.533996254 0.064650234
Var23 -0.005398027 -0.04093795 -0.02591708 0.064650234 0.612430932
Var32 0.005892646 -0.04990347 0.04402294 -0.031610052 -0.072343996

Var32
Var12 0.005892646
Var13 -0.049903465
Var14 0.044022941
Var22 -0.031610052
Var23 -0.072343996
Var32 0.462797374

The output contains the sample $sample in which each row is a draw from the posterior. The
importance weight of each draw is given in $weights, the mode and the covariance matrix of
the importance density are given respectively in $max and $covar.
Given the draws from the posterior distribution we can now select the next optimal choice
set.

SeqMOD

The SeqMOD function can be used to select the next optimal choice set. The algorithm will
evaluate each possible choice set in combination with the previously selected choice sets and
select the one which maximizes efficiency, given the posterior preference distribution.
In the SeqMOD algorithm, the previously selected choice sets can be specified in des, which are
stored in init.des in the example. The candidate set is the same as the one we used to gen-
erate init.des, namely cs. The sample we obtained from the posterior by using ImpsampMNL
is saved in draws. The draws themselves are specified in par.draws and their importance
weights in weights. Our prior covariance matrix v is passed through prior.covar. Optional
arguments such as alt.cte, no.choice and parallel are the same as previously explained
in the Modfed function. Lastly reduce is by default TRUE and reduces the set of all potential
choice sets to a subset of choice sets that have a unique information matrix.

R> set <- SeqMOD(des = init.des, cand.set = cs, n.alts = 2,
+ par.draws = draws$sample, prior.covar = v, weights = draws$weights)
R> set

$set
Var12 Var13 Var14 Var22 Var23 Var32

[1,] 1 0 0 1 0 0
[2,] 0 1 0 0 1 1

$error
[1] 0.002874806
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The output contains the most optimal next choice set given all possible choice sets, and the
associated error.
It should be noted that the criterion used to evaluate the efficiency in the SeqMOD algorithm
is slightly different from the one we specified in Equation 3. Since the adaptive approach is
completely Bayesian, we wish to approximate the covariance matrix of the posterior preference
distribution with the generalized Fisher information matrix (GFIM), which is computed as
minus the Hessian matrix of the log-posterior density and is given by:

IGFIM (β|X) = IFIM (β|X)− EY

(
∂2π0 (β)
∂β∂β>

)
.

Here IFIM (β|X) represents the Fisher information matrix of the MNL model as described in
Equation 2. The second part represents the Fisher information contained in the prior density
π0 (β). When a multivariate normal distribution is assumed as prior preference distribution,
the second term simplifies to

EY

(
∂2π0 (β)
∂β∂β>

)
= −Σ−1

0 ,

i.e., minus the inverse of the covariance matrix of the prior preference distribution. The
expression for the generalized Fisher information matrix then becomes:

IGFIM (β|X) = IFIM (β|X) + Σ−1
0 .

The DBA-error, i.e., the DB-error used in an adaptive scenario is then calculated as:

DBA-error =
∫

det (IGFIM (β|X))−1/p π0(β)dβ.

Note that the less informative the prior preference distribution is, i.e., the closer Σ−1
0 is to

the zero matrix, the less difference there will be between the DB-error and the DBA-error.
To set up a simulation study, the previous steps can be repeated as many times as additional
adaptive choice sets are required. This can be done for N different participants, each time
drawing a unique truePREF vector from an a priori specified population preference distribu-
tion. The researcher can vary the heterogeneity of this population distribution along with the
number of adaptive choice sets and other specifications. The simulated choice data can be
stored and prepared for estimation using existing R packages for which we refer to Section 6.

5. Real surveys with idefix
With the current package it is possible to conduct DCEs and collect empirical choice data by
presenting choice sets on screen. The SurveyApp function can be used to present pregenerated
designs, for example with the Modfed function, to participants. It can also be used to apply the
IASB methodology in practice. If adaptive choice sets are required, the SurveyApp function
will generate choice sets in the same way as described in Section 4.3. The choice data can
be stored and easily loaded back into the R environment. In what follows, an example of a
scenario with and without adaptive choice sets is given. Afterwards it is explained how one
can use the SurveyApp function to deploy a shiny application online.
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5.1. Discrete choice experiment without any adaptive sets

In the following example it is shown how to present a pregenerated design on screen and how
to collect the users’ responses.
The choice design itself should be specified in des, the structure of the design is the same
throughout the package, namely a matrix in which each row is a profile. Choice sets consist
of subsequent rows. For this example we use the example choice design example_design,
which is included in the idefix package and is generated with the Modfed function, described
in Section 3.3. In this choice design there are eight choice sets with 2 alternatives each. They
consist of three attributes namely time, price and comfort.

R> data("example_design", package = "idefix")
R> xdes <- example_design
R> xdes

Time1 Time2 Price1 Price2 Comfort1 Comfort2
set1.alt1 1 0 1 0 0 0
set1.alt2 0 1 0 0 1 0
set2.alt1 0 0 0 0 1 0
set2.alt2 1 0 1 0 0 0
set3.alt1 0 1 0 0 0 1
set3.alt2 0 0 0 1 0 0
set4.alt1 0 1 0 0 0 0
set4.alt2 1 0 1 0 1 0
set5.alt1 0 0 0 1 0 1
set5.alt2 0 1 0 1 0 0
set6.alt1 1 0 0 1 1 0
set6.alt2 0 1 1 0 0 0
set7.alt1 0 0 1 0 0 1
set7.alt2 1 0 0 0 1 0
set8.alt1 0 1 1 0 1 0
set8.alt2 1 0 0 1 0 1

The total number of choice sets that need to be presented are defined in the argument n.total.
If no other choice sets besides the one in the specified design are desired, then n.total equals
the number of choice sets in des. If n.total is larger than the number of sets provided in
des, adaptive sets will be generated as explained in the third example. In alts, the names
of the alternatives have to be specified. In this case there are two alternatives, named Alt A
and Alt B. In atts the names of the attributes are specified, here Price, Time, and Comfort.

R> n.sets <- 8
R> alternatives <- c("Alt A", "Alt B")
R> attributes <- c("Price", "Time", "Comfort")

The attribute levels are specified in lvl.names, which is a list containing one character vector
for each attribute. The levels for the first attribute are $10, $5, and $1. The attribute time
can take values 20, 12 and 3 minutes. Lastly, the comfort attribute can vary between bad,
average, and good.
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Figure 5: Example of a discrete choice experiment, generated with the SurveyApp function.

R> labels <- vector(mode = "list", length(attributes))
R> labels[[1]] <- c("$10", "$5", "$1")
R> labels[[2]] <- c("20 min", "12 min", "3 min")
R> labels[[3]] <- c("bad", "average", "good")

The type of coding used in des should be specified in coding. This is the same argument as
explained in the Profiles function in Section 3.3. Here all attributes are dummy coded.

R> code <- c("D", "D", "D")

There are three arguments where some text can be provided. The character string b.text will
appear above the options where the participant can indicate his or her choice. In this example
the text "Please choose the alternative you prefer" appears in the choice task as can
be seen in Figure 5. Before the discrete choice task starts, some instructions can be given.
This text can be provided to intro.text in the form of a character string. In this case
"Welcome, here are some instructions ... good luck!" will appear on screen before
the survey starts. In the same way some ending note can be specified in end.text. The
character string "Thanks for taking the survey" will appear on screen when the survey
is completed.

R> b.text <- "Please choose the alternative you prefer"
R> i.text <- "Welcome, here are some instructions ... good luck!"
R> e.text <- "Thanks for taking the survey"

When running the SurveyApp function, a screen will pop up, starting with the initial text
provided in intro.text. Next all the choice sets in the design provided in des will be
presented on screen one after the other as can be seen in Figure 5.

R> SurveyApp(des = xdes, n.total = n.sets, alts = alternatives,
+ atts = attributes, lvl.names = labels, coding = code,
+ buttons.text = b.text, intro.text = i.text, end.text = e.text,
+ data.dir = NULL)

Lastly the directory to store the observed responses, together with the presented design can
be specified in data.dir. The default is NULL, and in this case no data will be stored. If a
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Figure 6: Example of the two data files that get stored by the SurveyApp function.

directory is specified, two text files will be written to that directory at the end of the survey.
One containing the decoded design as it was presented to the participant together with the
sequence of alternatives that were chosen. This is similar to the Decode output previously
described in Section 3.3. The second file has the same file name, which starts with the same
number (based on Sys.time()), except for the fact that "char" is replaced with "num". This
file contains the coded design matrix and the binary response vector. This file can be used to
estimate the preference parameters (see Section 6 for more information). The file containing
the decoded design can be used to inspect the choice sets as they were perceived by the
respondents. An example of both files can be seen in Figure 6.
If a no choice option is desired, the specified design should already contain a no choice
alternative in each choice set. In this example we use a toy example design, generated with
the Modfed function, and available in the idefix package. Except for the inclusion of a no
choice alternative this design has the same properties as the previous example design.

R> data("nochoice_design", package = "idefix")
R> ncdes <- nochoice_design
R> ncdes

no.choice.cte Time1 Time2 Price1 Price2 Comfort1 Comfort2
set1.alt1 0 0 1 1 0 1 0
set1.alt2 0 0 0 0 0 0 0
no.choice 1 0 0 0 0 0 0
set2.alt1 0 0 0 0 0 1 0
set2.alt2 0 1 0 1 0 0 1
no.choice 1 0 0 0 0 0 0
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set3.alt1 0 0 1 0 0 0 1
set3.alt2 0 0 0 0 1 0 0
no.choice 1 0 0 0 0 0 0
set4.alt1 0 0 1 0 1 0 1
set4.alt2 0 1 0 1 0 0 0
no.choice 1 0 0 0 0 0 0
set5.alt1 0 0 0 0 0 0 1
set5.alt2 0 0 1 0 1 0 0
no.choice 1 0 0 0 0 0 0
set6.alt1 0 0 0 0 1 1 0
set6.alt2 0 0 1 0 0 0 0
no.choice 1 0 0 0 0 0 0
set7.alt1 0 0 0 1 0 0 1
set7.alt2 0 1 0 0 0 1 0
no.choice 1 0 0 0 0 0 0
set8.alt1 0 0 0 1 0 1 0
set8.alt2 0 1 0 0 1 0 1
no.choice 1 0 0 0 0 0 0

Now three alternative names are required. The last one indicates the no choice option.

R> alternatives <- c("Alternative A", "Alternative B", "None")

Since there is an alternative specific constant, the alt.cte argument should be specified. As
before, this is done with a vector in which each element indicates whether an asc is present
for the corresponding alternative or not. Furthermore, the option no.choice, which is by
default NULL, should be altered to an integer indicating the no choice alternative.

R> SurveyApp(des = ncdes, n.total = n.sets, alts = alternatives,
+ atts = attributes, lvl.names = labels, coding = code,
+ alt.cte = c(0, 0, 1), no.choice = 3, buttons.text = b.text,
+ intro.text = i.text, end.text = e.text, data.dir = NULL)

As can be seen in Figure 7, the no choice option is not part of the decoded alternatives, it is,
however, possible to select None instead of Alternative A or Alternative B.

5.2. Discrete choice experiment containing adaptive sets

The SurveyApp function can also be used to generate sequential adaptive choice sets as
explained in Section 4. Adaptive sets can be added to a pregenerated initial design or one can
start without specifying any design in advance. An example with an initial design is given
here.
As an initial design we use the design we introduced in the first example in Section 5.1. As a
consequence, all arguments previously specified remain the same, except the number of sets
n.sets is now set to twelve instead of eight, indicating we want four additional adaptive
sets. Whenever n.total is larger than the number of choice sets in des, the SurveyApp will
select the remaining number of sets by making use of the underlying SeqMOD algorithm (see
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Figure 7: Example of a discrete choice experiment with a no choice option, generated with
the SurveyApp function.

Section 4). In order to select the most efficient choice set based on the posterior probability
of the preference parameters, the candidate set and the prior preference distribution needs
to be given. In this example the mean vector p.mean consists of six elements, one for each
parameter of the design. The covariance matrix p.var is a unit matrix, setting the prior
variance for each of the parameters to one. The Profiles function is used, as explained in
Section 3.3, to generate all possible profiles with three attributes, each containing three levels,
and all are dummy coded. These should be the same characteristics as those of the initial
design. Lastly, n.draws allows the user to specify how many draws from the posterior should
be used in the underlying importance sampling procedure (see ImpsampMNL in Section 4.3).

R> n.sets <- 12
R> alternatives <- c("Alternative A", "Alternative B")
R> p.mean <- c(0.3, 0.7, 0.3, 0.7, 0.3, 0.7)
R> p.var <- diag(length(p.mean))
R> levels <- c(3, 3, 3)
R> cand <- Profiles(lvls = levels, coding = code)
R> SurveyApp(des = xdes, n.total = n.sets, alts = alternatives,
+ atts = attributes, lvl.names = labels, coding = code,
+ buttons.text = b.text, intro.text = i.text,
+ end.text = e.text, prior.mean = p.mean, prior.covar = p.var,
+ cand.set = cand, n.draws = 100)

Time1 Time2 Price1 Price2 Comfort1 Comfort2 resp
set1.alt1 1 0 1 0 0 0 1
set1.alt2 0 1 0 0 1 0 0
set2.alt1 0 0 0 0 1 0 0
set2.alt2 1 0 1 0 0 0 1
set3.alt1 0 1 0 0 0 1 1
set3.alt2 0 0 0 1 0 0 0
set4.alt1 0 1 0 0 0 0 1
set4.alt2 1 0 1 0 1 0 0
set5.alt1 0 0 0 1 0 1 1
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set5.alt2 0 1 0 1 0 0 0
set6.alt1 1 0 0 1 1 0 1
set6.alt2 0 1 1 0 0 0 0
set7.alt1 0 0 1 0 0 1 1
set7.alt2 1 0 0 0 1 0 0
set8.alt1 0 1 1 0 1 0 1
set8.alt2 1 0 0 1 0 1 0

The same files as in the previous example are saved in data.dir if a directory is specified.
The design will now contain the initial choice sets and the additional four adaptive sets.

5.3. Online surveys

The previously described R code containing the SurveyApp function will launch a shiny ap-
plication. This application will create a user interface with which the user can interact. This
way it is possible to store responses. This procedure runs, however, locally on the computer
where the R script is being evoked. More interesting is to gather data through an online sur-
vey. A way of doing this by remaining in the R environment is to deploy a shiny application
to https://www.shinyapps.io/, a free server made available by RStudio (RStudio Team
2020) to host shiny applications. Unfortunately, at the moment there is no convenient way
to directly deploy an application embedded in an R package to a Shiny server. It is, however,
possible to disentangle the code of SurveyApp into a ui.R file and a server.R file, the files
required to deploy applications. This can simply be done by printing the SurveyApp function
in R and copy pasting the code behind ui <- into an R file, and to the same with the code
behind server <- . To deploy the application online one can follow the clear explanation on
https://shiny.rstudio.com/articles/shinyapps.html. After the application is deployed
a web link where the survey can be found will be provided. This way data can be gathered
by providing the web link to potential participants.
The only downside of this approach, for the time being, is that RStudio has not yet imple-
mented persistent data storage on https://www.shinyapps.io/, they are, however, plan-
ning to do so. For now, this problem can be overcome by storing the data remotely. One
can specify a temporary directory by using tempdir() in the data.dir argument of the
SurveyApp function. Afterwards the files can be written to, for example, Dropbox with the
rdrop2 package (Ram and Yochum 2020), or to Amazon S3 with the aws.s3 package (Leeper
2020) from that temporary directory. More information about remotely storing data while us-
ing https://www.shinyapps.io/ can be found on https://shiny.rstudio.com/articles/
persistent-data-storage.html.

6. Data management
The idefix package always uses the same data format. An individual choice design is repre-
sented as a matrix in which each row is an alternative, and subsequent rows form choice sets
(see for example the output of Modfed in Section 3.3). Individual choice data is contained
in a binary vector with length equal to the number of alternatives (rows) in the design ma-
trix. For each choice set the chosen alternative in indicated with a one and all others with
zero. Individual design matrices as well as the choice vectors can be stacked together to form

https://www.shinyapps.io/
https://shiny.rstudio.com/articles/shinyapps.html
https://www.shinyapps.io/
https://www.shinyapps.io/
https://shiny.rstudio.com/articles/persistent-data-storage.html
https://shiny.rstudio.com/articles/persistent-data-storage.html
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aggregate choice designs and an aggregate data vector. The function LoadData can be used
to do this. To estimate the preference parameters on the acquired data, several R packages
can be used. Some of those packages, however, require different data formats. The func-
tion Datatrans allows one to switch between the format of idefix and the one of the desired
estimation package.

6.1. Load data

Individual data files stored by SurveyApp in data.dir can be easily loaded back into R with
the function LoadData. As explained in Section 5, two types of files will be stored in data.dir,
a file containing character data and a file containing numeric data. For estimation purposes
we need the numeric files, therefore we specify type = "num". To get the character files one
can specify type = "char". In this case all files containing "num" in their file name will be
loaded and stacked above each other. Each file, which represents the data of one respondent,
will get a unique ID. All files in a specific directory should have the same number of columns
(i.e., parameters).
Below an example is given with a directory containing data files generated by the SurveyApp
function. There were seven participants who each responded to eight choice sets.

R> dataDir <- getwd()
R> data <- LoadData(data.dir = dataDir, type = "num")
R> data

ID X par.1 par.2 par.3 par.4 par.5 par.6 resp
1 1 set1.alt1 1 0 1 0 0 0 1
2 1 set1.alt2 0 1 0 0 1 0 0
3 1 set2.alt1 0 0 0 0 1 0 0
4 1 set2.alt2 1 0 1 0 0 0 1
5 1 set3.alt1 0 1 0 0 0 1 1
6 1 set3.alt2 0 0 0 1 0 0 0
7 1 set4.alt1 0 1 0 0 0 0 0
8 1 set4.alt2 1 0 1 0 1 0 1
9 1 set5.alt1 0 0 0 1 0 1 1
10 1 set5.alt2 0 1 0 1 0 0 0
11 1 set6.alt1 1 0 0 1 1 0 0
12 1 set6.alt2 0 1 1 0 0 0 1
13 1 set7.alt1 0 0 1 0 0 1 1
14 1 set7.alt2 1 0 0 0 1 0 0
15 1 set8.alt1 0 1 1 0 1 0 0
16 1 set8.alt2 1 0 0 1 0 1 1
17 2 set1.alt1 1 0 1 0 0 0 0
18 2 set1.alt2 0 1 0 0 1 0 1
19 2 set2.alt1 0 0 0 0 1 0 0
20 2 set2.alt2 1 0 1 0 0 0 1
...
111 7 set8.alt1 0 1 1 0 1 0 1
112 7 set8.alt2 1 0 0 1 0 1 0
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6.2. Data transformation

Datatrans

To illustrate the data transformation, we make use of an example of an aggregate dataset
included in idefix. The dataset aggregate_design is the same one as shown at the end of
Section 6.1. There are seven respondents who each responded to eight choice sets containing
two alternatives. The alternatives consist of three dummy coded attributes with each three
levels. In order to use the Datatrans function we need to split the design matrix from the
responses. To get the design matrix we remove the ID column (the first column), the column
indicating the set number (second column), and the response column (column nine). What
remains is the design matrix.

R> idefix.data <- aggregate_design
R> des <- as.matrix(idefix.data[, 3:8], ncol = 6)
R> des

par.1 par.2 par.3 par.4 par.5 par.6
[1,] 1 0 1 0 0 0
[2,] 0 1 0 0 1 0
[3,] 0 0 0 0 1 0
[4,] 1 0 1 0 0 0
[5,] 0 1 0 0 0 1
[6,] 0 0 0 1 0 0
[7,] 0 1 0 0 0 0
[8,] 1 0 1 0 1 0
[9,] 0 0 0 1 0 1
[10,] 0 1 0 1 0 0
[11,] 1 0 0 1 1 0
[12,] 0 1 1 0 0 0
[13,] 0 0 1 0 0 1
[14,] 1 0 0 0 1 0
[15,] 0 1 1 0 1 0
[16,] 1 0 0 1 0 1
[17,] 1 0 1 0 0 0
[18,] 0 1 0 0 1 0
[19,] 0 0 0 0 1 0

...
[111,] 0 1 1 0 1 0
[112,] 1 0 0 1 0 1

All responses are captured in a binary vector containing the choice data of all respondents.
Since there were seven respondents who each responded to eight choice sets containing two
alternatives, y contains 112 elements.

R> y <- idefix.data[, 9]
R> y
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[1] 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1
[36] 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0
[71] 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0
[106] 1 0 1 0 1 1 0

The function Datatrans can be used to transform the data into the correct format in order
to use existing estimation packages in R. In the pkg argument one can specify the package
for which the data needs to be transformed. There are six options: “bayesm” indicates
the rhierMnlRwMixture function of package bayesm, “ChoiceModelR” should be used for
the choicemodelr function of package ChoiceModelR, “RSGHB” for the doHB function of the
RSGHB package, “Mixed.Probit” for the rbprobitGibbs function of the bayesm package,
“mlogit” for the mlogit function of package mlogit and lastly “Rchoice” for the Rchoice
function of the Rchoice package.
Furthermore, the number of alternatives per choice set n.alts, the number of choice sets per
respondent n.sets, the number of respondents n.resp, and the number of parameters n.par
should be specified. If the response vector y is not in binary format, but in discrete format
(one integer indicating the chosen alternative per choice set), the bin argument has to be set
to FALSE. The alt.var argument which is by default NULL can be specified if the names of
the alternatives should be different. This requires a character vector with length equal to the
number of alternatives in each choice set. This only has influence on the output for mlogit
and Rchoice.

R> Datatrans(pkg = "bayesm", des = des, y = y, n.alts = 2,
+ n.sets = 8, n.resp = 7, bin = TRUE)

In the example above, the data is transformed in order to use the rhierMnlRwMixture func-
tion of package bayesm. The data format required is a list with elements $lgtdata, and
$p where $lgtdata is a list of nlgt = length(lgtdata) of length equal to the number of
respondents. Each element contains a list containing the data for each cross-sectional unit
MNL: lgtdata[[i]]$y is a vector of responses with one element per choice set indicating
the chosen alternative for each respondent. lgtdata[[i]]$X is the design matrix for each
respondent, and p is the number of alternatives in each choice set. The output of Datatrans
is the following (only the first respondent is shown):

$p
[1] 2

$lgtdata
$lgtdata[[1]]
$lgtdata[[1]]$y
[1] 1 2 1 2 1 2 1 2

$lgtdata[[1]]$X
par.1 par.2 par.3 par.4 par.5 par.6

[1,] 1 0 1 0 0 0
[2,] 0 1 0 0 1 0
[3,] 0 0 0 0 1 0
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[4,] 1 0 1 0 0 0
[5,] 0 1 0 0 0 1
[6,] 0 0 0 1 0 0
[7,] 0 1 0 0 0 0
[8,] 1 0 1 0 1 0
[9,] 0 0 0 1 0 1
[10,] 0 1 0 1 0 0
[11,] 1 0 0 1 1 0
[12,] 0 1 1 0 0 0
[13,] 0 0 1 0 0 1
[14,] 1 0 0 0 1 0
[15,] 0 1 1 0 1 0
[16,] 1 0 0 1 0 1

In the following example, the same data is transformed in order to use the mlogit package
for estimation. The output is a data.frame in long format that contains a boolean choice
variable Choice, the index of the alternative alt.names and an individual index id.var.

R> Datatrans(pkg = "mlogit", des = des, y = y,
+ alts = 2, n.sets = 8, n.resp = 7, bin = TRUE)

[1] "The dataset is ready to be used for mlogit package"
~~~~~~~
first 10 observations out of 112
~~~~~~~

id.var alt.names par.1 par.2 par.3 par.4 par.5 par.6 Choice id1 idx
1 1 alternative.1 1 0 1 0 0 0 TRUE 1 1:ve.1
2 1 alternative.2 0 1 0 0 1 0 FALSE 1 1:ve.2
3 1 alternative.1 0 0 0 0 1 0 FALSE 2 2:ve.1
4 1 alternative.2 1 0 1 0 0 0 TRUE 2 2:ve.2
5 1 alternative.1 0 1 0 0 0 1 TRUE 3 3:ve.1
6 1 alternative.2 0 0 0 1 0 0 FALSE 3 3:ve.2
7 1 alternative.1 0 1 0 0 0 0 FALSE 4 4:ve.1
8 1 alternative.2 1 0 1 0 1 0 TRUE 4 4:ve.2
9 1 alternative.1 0 0 0 1 0 1 TRUE 5 5:ve.1
10 1 alternative.2 0 1 0 1 0 0 FALSE 5 5:ve.2

~~~ indexes ~~~~
chid alt

1 1 alternative.1
2 1 alternative.2
3 2 alternative.1
4 2 alternative.2
5 3 alternative.1
6 3 alternative.2
7 4 alternative.1
8 4 alternative.2
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9 5 alternative.1
10 5 alternative.2
indexes: 1, 2

7. Future development
As previously mentioned, the package is mainly concerned with providing D(B) efficient
designs. Of course any statistic or feature that is useful to practitioners in selecting an
appropriate design can be included. We therefore encourage users to give feedback and
suggestions to further improve the package. The most recent updates can be followed on
https://github.com/traets/idefix. We plan to implement the following in the near fu-
ture:

• We are currently evaluating the performance of a sequential selection algorithm based
on a coordinate exchange approach. This would allow to speed up computations for
adaptive design methodology.

• We plan to implement a blocking procedure that would allow to split a larger design in
several sub designs based on, for example, attribute level balance.

• We would like to extend the main algorithms such that the user can impose further
restrictions on the designs (e.g., not allowing specific attribute level combinations for
particular labeled alternatives).

• In general, the layout of the output will be improved by making use of methods such
as print and summary.
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