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Abstract

Traditional tools and software for social network analysis are seldom scalable and/or
fast. This paper provides an overview of an R package called fastnet, a tool for scaling
and speeding up the simulation and analysis of large-scale social networks. fastnet uses
multi-core processing and sub-graph sampling algorithms to achieve the desired scale-up
and speed-up. Simple examples, usages, and comparisons of scale-up and speed-up as
compared to other R packages, i.e., igraph and statnet, are presented.

Keywords: social network analysis, network simulation, network metrics, multi-core process-
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1. Introduction
It has been about twenty years since the introduction of social network analysis (SNA) soft-
ware such as Pajek (Batagelj and Mrvar 1998) and UCINET (Borgatti, Everett, and Freeman
2002). Though these software packages are still existent, the last ten years have witnessed a
significant change in the needs and aspiration of researchers working in the field. The growth
of popular online social networks, such as Facebook, Twitter, LinkedIn, Snapchat, and the
availability of data from large systems such as the telecommunication system and the inter-
net of things (IoT) has ushered in the need to focus on computational and data management
issues associated with SNA. During this period, several Python (Van Rossum et al. 2011)
and Java based SNA tools, such as NetworkX (Hagberg, Schult, and Swart 2008) and SNAP
(Leskovec and Sosič 2016), and R (R Core Team 2020) packages, such as statnet (Hunter,
Handcock, Butts, Goodreau, and Morris 2008; Handcock et al. 2019) and igraph (Csardi and
Nepusz 2006) have emerged that enable researchers and practitioners to perform analytic
tasks on such large social networks. A more comprehensive list of such software and packages
is provide in Table 1.

https://doi.org/10.18637/jss.v096.i07
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However, these software packages are seldom geared towards computationally-efficient use
of available hardware resources for multi-core processing or sampling algorithms for the es-
timation of network metrics (Ebbes, Huang, and Rangaswamy 2016). This paper presents
our new scalable R-based SNA package, called fastnet (Shaikh, Dong, and Castro 2020),
which can simulate larger networks and analyze large networks faster. Thus, given a re-
source constraint such as available RAM size, researchers can simulate larger networks and
analyze them faster on fastnet than on other SNA systems such as NetworkX, statnet,
and igraph. fastnet is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=fastnet.
fastnet achieves a speed-up and scale-up by adopting the parallel computing functionalities
provided by foreach and doParallel (Kane, Emerson, and Weston 2013; Weston 2019, 2020)
and managing work allocation to all the available computational resources1. Though fastnet is
not the first R-based SNA package that uses parallel processing, the algorithms in fastnet are
customized to manage and leverage distributed computing across multiple cores. The detail
of how to utilize and customize parallel processing in fastnet can be found in Section 2.4.
fastnet also enables the speed-up on the computational time required to estimate the struc-
tural metrics of networks. fastnet combines multi-core processing with sampling-based ap-
proaches that approximate the network metrics. The speed-up and the error bounds of the
estimates of the network metrics can be controlled by the sample size and the number of core
available for multi-core processing. The methods used in fastnet are either random node sam-
pling, random link sampling, or random node pair sampling, allowing for easy implementation
and transparent measurements of errors. In the following subsections, we will present a brief
introduction of the package history, the functionalities embedded, and point to some key no-
tations for understanding the theoretical background, and the form of network representation
used in this package.

1.1. Package history

The fastnet package was created for the purpose of studying the role played by the structure
of social networks on diffusion dynamics, such as in new product diffusion, rumor propagation,
and disease spread. During the study, we were confronted with the repeated task of simulating
large networks that emulate real social networks and measuring the corresponding network
metrics. By introducing the idea of multi-core processing and sampling, we started to create
our own R functions trying to simulate large graphs2 using standard algorithms (such as those
proposed by Erdős and Rényi (1960), Watts and Strogatz (1998), Barabási and Albert (1999),
and Newman, Strogatz, and Watts (2001) that are widely applied in social science studies)
as well as network metrics that characterize a social network (such as degree distribution,
mean local clustering coefficient and APL)3. The first version of fastnet package was released

1The other way to address this limitation of a regular PC is to implement high performance computing
techniques, such as distributed computing (Liu, Zhang, and Yan 2010) and cloud computing (Yu et al. 2012).
However, since these techniques require specialized knowledge of programming and financial costs for the extra
infrastructure, it is beyond the scope of fastnet, which is developing an open-source SNA tool for large-scale
social networks that can be operated on existing computational devices.

2In this paper, we interchangeably use the terms “network” and “graph”, “link” and “edge”, as well as
“node” and “agent”.

3There are a few network algorithms that are unable to be processed in parallel. For example, the generation
of Barabási-Albert graphs has a preferential attachment mechanism that is unable to be computationally-
parallelized. We implemented such algorithms sequentially.

https://CRAN.R-project.org/package=fastnet
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in December 2016 on the Comprehensive R Archive Network (CRAN). As far as we know,
fastnet is the first SNA package that aims at fast simulating large-scale social networks and
calculating network metrics within the R environment when there is a constraint on the
available computational resources.

1.2. Functionality

At present, the fastnet package includes over 40 functionalities for SNA. These functionalities
include the ability to:

• Simulate regular networks, such as complete graphs, ring lattices, and connected cave-
man networks.4

• Simulate random networks through various stochastic processes and classic generat-
ing algorithms, such as two variants of Erdős-Rényi random graphs, i.e., g(N, p) and
g(N, m), Barabási-Albert graphs, andWatts-Strogatz graphs. Erdős-Rényi and Barabási-
Albert graphs can be generated in both direct or indirect forms.

• Simulate random networks using cluster centric algorithms such as the Holme-Kim,
Cluster-Affiliation, and Degree-constraint graphs.

• Convert network represented as igraph objects, adjacency matrices, and edgelists, to
become fastnet objects.

• Compute degree-related network metrics, such as mean degree, median degree, and
degree entropy.

• Compute distance-related network metrics, such as APL, diameter and average eccen-
tricity.

• Compute cluster-related network metrics, such as global transitivity and mean local
clustering coefficient.

• Compute eigenvector-related network metrics, such as mean eigenvector centrality.
• Compute other network metrics, such as graph density.
• Obtain the degree distribution of a network.
• Obtain the neighborhood list of any given node.
• Draw plots, such as the histogram of the degree distribution, the cumulative degree

distribution of network.

The core functionalities and their corresponding call names and parameters are listed in
Table 2 and Table 3 .

1.3. Some notations

A network is simply a collection of nodes and edges, formally denoted as G = (V, E), where V
is the node set and E is the edge set. In SNA, nodes usually represent individuals or actors who
perform social activities, while edges usually represent social interactions or relations existing
between a pair of nodes. The size of a network is the number of nodes it includes, denoted
as |V |, where | · | is the cardinality operator. The network can be directed or undirected; if
the elements in E are fully paired, where each pair includes two edges between node i and
node j, with one originated from node i to node j and another from node j to node i, the

4Note that the latter two regular networks are performed as base graphs of Watts-Strogatz networks and
rewired caveman networks, respectively, with a stochastic rewiring process being embedded.
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corresponding network is called undirected; otherwise, it is called directed. For a directed
network, the neighbors of node i is the set of nodes receiving edges from i, while for an
undirected network the neighbors of node i is the full set of nodes that link to i. The fastnet
package focuses on simulating simple graphs, both directed and undirected, that have no
looping edges over one node, or multiple edges existing between one node and another.
Network metrics are descriptive indices of networks. Network metrics can be categorized into
two groups: global and local level metrics (Dong, Rangaswamy, and Shaikh 2016). Global
level network metrics capture the overall characteristics of entire network, while the local level
network metrics measure individual characteristics of a node or a link on a network. Different
network metrics allow users to assess both the micro and macro level properties of a target
network, and tell user how close the network structures are from the topological perspective.
The fastnet package provides both global and local level metrics of networks.

1.4. Network representation form

From the perspective of developing an effective and practical SNA tool, the problem of repre-
senting a network involves economical storage and efficient retrieval of network information.
Traditionally in SNA, network information is represented by an N ×N 0–1 adjacency matrix
A, in which, the element aij represents the existence of a link starting from nodes i to j.
In this case, the number of memory units scale quadratically with N .5 Taking into account
that most social networks are sparse, allocating N × N memory units to store the linkage
information can be uneconomical. A solution for that is to present a network as a sparse
matrix, including the compressed sparse row (CSR) or the compressed sparse column (CSC)
formats (Koenker and Ng 2019). These sparse matrix representations replace the use of an
N×N adjacency matrix with three (one-dimensional) vectors, with one vector containing the
nonzero values, one vector containing the extents of rows/columns, and one vector storing
the column/rows indices. Significant efficiency gains in memory usage can be achieved by
representing the adjacency matrix as a sparse matrix6. Also, sparse matrix representation
allows faster row access and vector multiplication of matrices. However, it is not practical
to use sparse matrix forms for representing a social network, since a sparse matrix form is
unable to directly retrieve the most critical information that we seek to extract from a social
network, which relates to two questions: 1) Who do the nodes represent? and 2) Who do the
nodes link to?
Driven by the above mentioned reasons, we use a list-based egocentric representation of the
network, wherein the focus is on directly presenting nodes and their connections. By using
a list with size N , where each entry represents one node in a network and the size of each
entry is dictated by the exact number of connections for this node, the neighbors’ IDs of all
nodes in the network are sorted and saved. If the average number of connections is K−, the
memory requirement for the list scales linearly with N×K−.7 Since for most real-world social
networks, K− is significantly lower than N , the number of memory units required to store

5The number of links can reach up to O(N2) in a network of size N .
6Butts (2008a) used a sparse matrix-based representation of large and sparse networks in the network

package, indicating a 99.8% reduction in memory requirements when a network with 100,000 links and 100,000
nodes is represented by a sparse matrix.

7Note that for some networks, such as Erdős-Rényi g(N, p) random networks, where K− = N × p and p is
a constant representing the connecting probability, the memory requirement for the list can be converted to
scale linearly with N2.
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information associated with the egocentric list is significantly smaller than the ones with the
entire adjacency matrix, which scales quadratically with N .
An alternative to our egocentric representation approach is to store network information by
using an array of size N×K= (where K= is the maximum number of connections that an agent
could possibly possess in the network). Though in the R environment an object with a fixed
size is usually more memory efficient than an object with a flexible size (Visser, McMahon,
Merow, Dixon, Record, and Jongejans 2015), the memory-efficiency, in this case, depends on
the ratio between K= and K−. The list form is more efficient when the ratio between K= and
K− is much larger than 1, which is the case for most social networks (Newman 2002). Hence,
the list-based egocentric representation form better fits social network contexts (Castro, Dong,
and Shaikh 2018). In sum, compared to other existing SNA tools, fastnet has the following
advantages:

• The required memory of storing a network instance is linear in the number of nodes in
a network, which is ideal for the scaling-up of network objects in the R environment.

• Lower computational time is required for the calculation of most of the network metrics,
due to embedded multi-core processing and sampling strategies.

Section 2 provides some simple examples to demonstrate the usage of the functionalities
in fastnet. The details of how to obtain network metrics that incorporate sampling-based
techniques are specified. A method for network metric visualization is also specified. Section 3
provides a comparison of the speed-up and scale-up achieved using fastnet as compared to
igraph and statnet. Section 4 uses a case study to illustrate a general process to analyze the
structural properties of real social networks. The last section provides a summary of fastnet.

2. Working with fastnet
In this section, we try to highlight some key functions in fastnet and help its users gain a better
understanding of the package. Simple examples are presented to illustrate the functionalities
provided by the package. For additional details and usage, users can refer to the package
reference manual.

2.1. Network generation

fastnet can generate random networks through a variety of standard mechanisms, such as
uniform connecting, preferential attachment, edge rewiring, etc. Currently, fastnet provides
12 network generating algorithms, where all network generation functions start with a prefix
net. These include net.erdos.renyi.gnp and net.erdos.renyi.gnm that generate Erdős-
Rényi random networks where the degrees of nodes follow a Binomial(n, p) distribution, or
the total number of edges is a constant m, net.barabasi.albert that generates Barabási-
Albert random networks using a preferential attachment mechanism from Albert and Barabási
(2002), and net.watts.strogatz that generates a small-world network according to Watts
and Strogatz (1998). For Erdős-Rényi random networks and Barabási-Albert random net-
works, fastnet allows users to select whether the network is directed or undirected8.

8By default, all networks generated by fastnet are undirected.
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Note that the network generating functions above are also implemented in other R packages,
such as igraph and statnet. However, the major difference is that fastnet network genera-
tion functions produce a list-based egocentric representations of a network. Other than these
standard network generation functions, fastnet includes some other functions for generat-
ing simulated social networks. These include net.rewired.caveman that generates rewired
caveman networks according to Watts (1999), net.holme.kim that generates Holme-Kim net-
works from Holme and Kim (2002), and net.random.plc that generates random networks
with a power-law degree distribution and an exponential degree cutoff from Newman et al.
(2001). net.degree.constraint that generates social networks that have any pre-defined
degree distributions, and net.cluster.affilication that generates social networks that
have densely-connected and overlapped communities (Dong et al. 2016).
Besides the generation of random networks, for the purpose of benchmarking9, fastnet also
generates regular networks, such as net.complete that generates fully-connected complete
networks, net.ring.lattice that generates k-regular ring lattices and net.caveman that
generates connected caveman networks according to Watts (1999).
To begin with, we need to load the fastnet package and setup a random seed for the purpose
of reproducibility.

R> library("fastnet")
R> set.seed(99)

For instance, if we want to generate a small rewired caveman network, which has 4 clusters
with 7 nodes in each, and an edge rewiring probability of 0.1, we can type the following syntax
after the R prompt:

R> recave <- net.rewired.caveman(nc = 4, m = 7, p = 0.1)

fastnet helps users to create the required network with a given name recave. We may look
at the structure of recave by using the preview.net as follows:

R> preview.net(recave)

[[1]]
[1] 2 3 4 5 6 7

[[2]]
[1] 3 4 5 6 7 1

[[3]]
[1] 4 5 6 7 1 2

[[4]]
[1] 5 6 7 1 2 3

[[5]]
9Here benchmarking refers to measuring how the linkage randomization of a network impacts its topological

characteristics.
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[1] 7 1 2 3 4

[[6]]
[1] 7 1 2 3 4

[[7]]
[1] 1 2 3 4 5 6

[[8]]
[1] 10 11 12 13

[[9]]
[1] 10 12 13 14

[[10]]
[1] 11 12 14 8 9

Here, preview.net(recave) shows the first ten (which is set by default) agents’ neighbors
information. For example, the agent with ID “2” connects to agents with IDs “1”, “3”, “4”,
“5”, “6”, and “7”, respectively. Also, we can check the neighbor’s information of any given
agent ID. For instance, the neighbor’s information of agent with ID “20” can be obtained as
follows:

R> get.neighbors(recave, 20)

[1] 21 17 18 19 15 16

As noted above, we also generate regular networks for comparisons and benchmarks. For
instance, the base connected caveman network can be generated as follows:

R> cave <- net.caveman(m = 4, k = 7)

We can compare their structures in Figure 1. Similarly, we can generate other types of
networks according to the same paradigm.

2.2. Conversion from and to other network representation formats

fastnet is open to many standard network representation formats, such as edgelists and ad-
jacent matrices, as well as some specific network objects defined by other network packages,
such as igraph and statnet. In order to enable all the functionalities provided by the package,
we recommend fastnet users to convert different kinds of data formats into fastnet objects,
using the format conversion functions built in the package. For example, the following exam-
ple uses from.adjacency to convert adj_mat, the adjacency matrix of a network instance,
into g_from_adj_mat, a fastnet object of its equivalent, while from.igraph can transform
an igraph object net.igraph into a fastnet object of its equivalent g_from_igraph. After
the conversions, all the network metric calculation functions can be applied to the network
objects.
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Figure 1: A rewired caveman network with 4 caves and an edge rewiring probability of 0.1
(left) and the corresponding connected caveman network (right).

R> adj.mat <- matrix(c(0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0),
+ nrow = 4, ncol = 4)
R> g_from_adj_mat <- from.adjacency(adj.mat)
R> library("igraph")
R> net.igraph <- erdos.renyi.game(100, 0.1)
R> g_from_igraph <- from.igraph(net.igraph)

fastnet does not provide internal support for networks represented using sparse matrix formats
such as CSR and CSC. A network object using a sparse matrix format needs to be transformed
into an egocentric list format before it can be used within fastnet. Alternately, the network
object that uses a sparse matrix representation could be transformed into its dense equivalent
using an R package such as SparseM and then be converted to a fastnet object using the
function from.adjacency. Additionally, fastnet also allows users to convert a fastnet object
to equivalent network representation formats, such as an igraph object or an edgelist.

2.3. Network metrics calculation

Estimating network metrics in short time durations is the second key functionality of fastnet.
In fastnet, all metric calculation functions start with a prefix metric.

Presenting degree distribution

Degree distribution is a critical metric for networks. For example, a Barabási-Albert network
has a power-law degree distribution; and an Erdős-Rényi random network has a Binomial
degree distribution (Newman et al. 2001). One of the advantages of the list-based egocentric
network representation of fastnet is an easy way to obtain the network’s degree distribution.
For instance, let us first generate an Erdős-Rényi random network and present its degree
distribution.
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Figure 2: The histogram represents the degree distribution of the network object uer.

R> uer <- net.erdos.renyi.gnp(n = 50000, p = 0.001, d = FALSE)
R> uer.deg <- degree.collect(uer)
R> preview.deg(uer)

[1] 53 47 54 45 47 57 49 48 51 47

Using the first syntax of net.erdos.renyi.gnp, fastnet generates an Erdős-Rényi random
network with 50,000 nodes and a connecting probability of 0.001, and saves it in a list, called
uer. The syntax degree.collect(uer) obtains the degrees of all nodes in uer. The last
syntax, preview.deg(uer), shows the degrees of the first ten nodes. The histogram of the
degree distribution can be displayed by using degree.hist(uer) (see Figure 2).

Calculating other degree-related metrics

One of the benefits for using egocentric network representation is that the users of fastnet can
readily obtain the degree distribution of the generated network. Moreover, we can calculate
other degree-related metrics. For example, we use the following syntax to calculate six major
degree-related metrics:

R> metric.degree.max(uer)

[1] 84

R> metric.degree.min(uer)

[1] 24

R> metric.degree.sd(uer)

[1] 7.06991
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R> metric.degree.mean(uer)

[1] 50.04296

R> metric.degree.median(uer)

[1] 50

R> metric.degree.effective(uer)

[1] 59

Here, metric.degree.max provides the maximum degree of uer; metric.degree.min pro-
vides the minimum degree of uer; metric.degree.sd provides the standard deviation of all
degrees; metric.degree.mean provides the mean degree of uer; metric.degree.median pro-
vides the median degree of uer; and finally, metric.degree.effective provides the effective
degree of uer, where the effective degree of a network is defined as the 90%-quantile of the
corresponding degree distribution.

Calculating distance-related metrics

Distance-related metrics, including APL and diameter, are the most well-known global-level
network metrics. fastnet outperforms other network analysis tools, especially in the area of
efficiently calculating distance-related metrics. As far as we know, it is the first network
analysis tool that introduces the idea of node-pair sampling to facilitate the processes for ap-
proximating distance-related metrics. Moreover, fastnet allows users to self-define the power
and/or error rate, making it more manageable for users to strike a balance between result pre-
cision and time expenditure. For example, the APL of uer can be calculated by the function
metric.distance.apl as follows:

R> metric.distance.apl(uer, full.apl = FALSE)

[1] 3.053309

R> metric.distance.apl(uer, full.apl = TRUE)

[1] 3.03678

If parameter full.apl is set to be FALSE, the associated random node-pair sampling algorithm
(Castro and Shaikh 2018) is invoked with a default confidence level at 0.95 and the error rate
level at 0.03. Note that, by setting full.apl to be TRUE, fastnet allows users to avoid the
sampling process in order to obtain the exact APL of the network, but it will take longer time
compared with the sampling method (Brandes and Pich 2007). Similar to the aforementioned
process, fastnet provides functions to calculate a network’s median path length (Watts 2003),
diameter (Newman 2010) and effective diameter (Palmer, Siganos, Faloutsos, Faloutsos, and
Gibbons 2001), mean eccentricity (West 2001) and median eccentricity (West 2001), which
are demonstrated as follows:
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R> metric.distance.mpl(uer)

[1] 3

R> metric.distance.diameter(uer)

[1] 4

R> metric.distance.effdia(uer, effective_rate = 0.9, p = 0.1)

[1] 3

R> metric.distance.meanecc(uer, p = 0.1)

[1] 4

R> metric.distance.medianecc(uer, p = 0.1)

[1] 4

Calculating cluster-related metrics

Cluster-related metrics are a group of metrics that characterize the clustering effect of a
network. fastnet provides three cluster-related metrics functions: metric.cluster.global
provides the global clustering coefficient (Luce and Perry 1949), or referred to as global
transitivity (Wasserman and Faust 1994); metric.cluster.mean provides the mean local
clustering coefficient (Watts and Strogatz 1998); and metric.cluster.mean provides the
median local clustering coefficient (Uetz et al. 2006). For example, here we calculate network
uer’s cluster-related metrics as follows:

R> metric.cluster.global(uer)

[1] 0.001010511

R> metric.cluster.mean(uer)

[1] 0.001009568

R> metric.cluster.median(uer)

[1] 0.0008865248
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As we can see, all three cluster-related metrics of uer are extremely small, which matches the
theoretical low-clustering property of Erdős-Rényi random networks (Newman 2003).

2.4. Multi-core processing

fastnet speeds up generation of networks and calculation of network metrics by utilizing
multi-core processing on a single machine. We invoke multi-core processing by using the
doParallel and foreach packages provided by R and systematically allocate the available cores
to the pending tasks by parallelizing the calculation and/or simulation into multiple small
non-overlap tasks. fastnet has parallelized the distance- and cluster-based metric calculation
functions, as well as all non-evolutionary synthetic network generation functions. To identify
what functions can be processed in a parallel way, a user may check if the function contains
the argument ncores or not. Specifically, users can tune the argument ncores to specify how
many cores are invested in the computation. By default, fastnet uses all available cores in
the machine by setting ncores as detectCores(), which detects how many cores are avail-
able. For example, a user can generate an Erdős-Rényi random network using the multi-core
processing function net.erdos.renyi.gnp(n, p, ncores) provided in fastnet. The follow-
ing code generates three Erdős-Rényi random networks with the same size and connectivity
probability (n = 10, 000, p = 0.01), where the number of cores used are different.

R> g_2 <- net.erdos.renyi.gnp(10000, 0.01, ncores = 2, d = TRUE)
R> g_4 <- net.erdos.renyi.gnp(10000, 0.01, ncores = 4, d = TRUE)
R> g_all <- net.erdos.renyi.gnp(10000, 0.01,
+ ncores = parallel::detectCores(), d = TRUE)

Note that a few network metric calculations or synthetic network simulations do not require
multi-core processing to scale-up or speed-up, and not all computational processes can be
outsourced to the R packages doParallel and foreach due to their limitations on parallelizing
matrix operations and/or evolutionary algorithms.

2.5. Network visualization

fastnet provides a draw.net function that re-masks the plotting function from igraph in order
to plot fastnet network objects and the associated degree information. The development and
implementation of parallel algorithms for network visualization have been left out of the scope
for the current version of fastnet.

Topology visualization

We use draw.net to plot a ring lattice and a Barabási-Albert network, for the purpose of
visual comparison (see Figure 3):

R> rl <- net.ring.lattice(n = 12, k = 4)
R> ba <- net.barabasi.albert(n = 12, m = 4)
R> par(mfrow = c(1, 2))
R> draw.net(rl)
R> draw.net(ba)
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Figure 3: Visualization of a ring lattice and a Barabási-Albert network (both with 12 nodes).
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Figure 4: Visualization of the degree distribution of a Barabási-Albert network, one with
standard scale and one with a logarithm scale on both x- and y-axis.

Degree distribution visualization

fastnet also provides visualization tools to plot the standard and cumulative empirical degree
distribution for further analysis. Though we can simply apply the degree.hist function on
a degree distribution object to obtain the degree histogram of a network, it is not a precise
presentation of the characteristics of degrees for most cases. Instead a typical way to plot the
degree distribution is to lay out the occurrence frequency of each degree. fastnet enables the
plotting of two types of degree distributions of a network: one with standard scale and one
with a logarithm scale on both the x- and y-axis.

R> ba.large <- net.barabasi.albert(n = 10000, m = 10)
R> par(mfrow = c(1, 2))
R> degree.dist(ba.large, cumulative = FALSE, log = FALSE)
R> degree.dist(ba.large, cumulative = FALSE, log = TRUE)

In the above example, we firstly generate a Barabási-Albert network with n = 10,000 and
m = 10 and save it as a fastnet object called ba.large. The left-hand side plot displays the
standard degree distribution of ba.large and the right-hand side plot shows the logarithm-
scale degree distribution of ba.large (see Figure 4). The other variation of the standard
degree distribution is the cumulative degree distribution. fastnet provides two forms of the
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Figure 5: Visualization of two types of cumulative empirical degree distributions (type (1),
left; type (2), right).

cumulative degree distribution, type (1) and type (2), as follows:

c(d) =
∑
i≤d

p(i), (1)

c(d) =
dmax∑
i≥d

p(i), (2)

where p(i) is the proportion of nodes with degree i and dmax is the maximum degree in a
network. For example, to draw the cumulative empirical degree distribution of the same
Barabási-Albert network in the previous example, we can use the following syntax:

R> par(mfrow = c(1, 2))
R> degree.dist(ba.large, cumulative = TRUE, log = FALSE)
R> degree.dist(ba.large, cumulative = TRUE, log = TRUE)

In Figure 5, the plot on the left-hand side displays the type (1) cumulative degree distribution;
and the plot on the right-hand side displays the type (2) cumulative degree distribution. We
find that both cumulative degree distributions of the Barabási-Albert network presented in
Figure 5 follow a power-law distribution, which validates a fundamental theoretical inference
of a Barabási-Albert network (Barabási and Albert 1999).

3. Comparing with igraph and statnet
We provide a simple comparison of the speed-up and scale-up achieved using standard Erdős-
Rényi graphs. We use the same data but different packages, i.e., fastnet (version 0.1.4), igraph
(version 1.1.2) and sna (Butts 2008b; version 2.4) from the statnet suite. The speed-up and
scale-up achieved while generating Erdős-Rényi networks of various sizes are presented in
Figures 6 and 7, respectively. The speed-up achieved in the approximation of the APL of
Erdős-Rényi networks is presented in Figure 8. All computations were done on a Dell Precision
Tower Workstation (T7910) with Intel Xeon CPU E5-2637 v3 @ 3.50GHz (8 cores) and 128GB
RAM memory. The operating system is Microsoft Windows Server 2012 R2 Datacenter.
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Figure 6: The time elapsed for generating directed Erdős-Rényi networks with various sizes
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various sizes and a fixed connecting probability (p = 0.5) using fastnet, igraph and statnet.
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4. Case study
The case study presented in this section has been designed to illustrate the use of fastnet for
analyzing real social networks. We use the Twitter network data from the Stanford network
analysis project (SNAP; Leskovec and Krevl 2014). The network contains 81,306 nodes. Since
the edgelist of the network is stored in a .txt file, we first use read.table to read it in R.

R> data <- read.table("twitter_combined.txt")

Next, we use from.edgelist to import the data as a fastnet object twitter.real. The
functions length(twitter.real) and length(unlist(twitter.real)) can be applied here
to obtain the number of nodes and the number of edges in twitter.real, respectively.

R> twitter.real <- from.edgelist(data)
R> n <- length(twitter.real)
R> e <- length(unlist(twitter.real))

All functions described in Section 2 can now be applied to the fastnet object twitter.real.
For example, we can estimate the network metrics10.

R> metric.distance.apl(twitter.real, full.apl = FALSE)
R> metric.distance.apl(twitter.real, full.apl = TRUE)
R> metric.cluster.mean(twitter.real)

We can simulate synthetic networks that preserve some characteristics of the real network and
compare them to twitter.real. For example, we can use net.erdos.renyi.gnm to generate
a g(N, m) Erdős-Rényi random network, where the two imperative arguments are the number
of nodes and the number of edges. Similarly, we can use net.barabasi.albert to generate a
Barabási-Albert random network, where the two imperative inputs are the number of nodes
and the number of edges added when a new node is introduced to the generated graph.

R> twitter.er <- net.erdos.renyi.gnm(n, e)
R> twitter.ba <- net.barabasi.albert(n, round(e/(2*n)))

In order to compare the structural differences of the synthetic networks and the real network,
we can again resort to use the network metrics such as mean degree, average path length, and
global clustering coefficient, and measure the gaps between the actual versus predicted.

R> er.mean.degree.error.rate <- (metric.degree.mean(twitter.er) -
+ metric.degree.mean(twitter.real))/metric.degree.mean(twitter.real)
R> ba.mean.degree.error.rate <- (metric.degree.mean(twitter.ba) -
+ metric.degree.mean(twitter.real))/metric.degree.mean(twitter.real)
R> er.apl.error.rate <- (metric.distance.apl(twitter.er) -
+ metric.distance.apl(twitter.real))/metric.distance.apl(twitter.real)
R> ba.apl.error.rate <- (metric.distance.apl(twitter.ba) -
+ metric.distance.apl(twitter.real))/metric.distance.apl(twitter.real)

10It took about 42 seconds on our 16-core, 128GB RAM workstation for running
metric.distance.apl(twitter.real, full.apl = FALSE); about 360 seconds for running
metric.distance.apl(twitter.real, full.apl = TRUE).
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R> er.gcc.error.rate <- (metric.cluster.global(twitter.er) -
+ metric.cluster.global(twitter.real))/
+ metric.cluster.global(twitter.real)
R> ba.gcc.error.rate <- (metric.cluster.global(twitter.ba) -
+ metric.cluster.global(twitter.real))/
+ metric.cluster.global(twitter.real)

Using the codes for calculating the error rates of the predicted values, we find that the error
rates of mean degree predicted by the Erdős-Rényi and the Barabási-Albert graphs are 0.00%
and 0.72%, respectively; the error rates of average path length predicted by the Erdős-Rényi
and the Barabási-Albert graphs are 21.92% and 24.66%, respectively; the error rates of global
clustering coefficient predicted by the Erdős-Rényi and the Barabási-Albert graphs are 99.14%
and 97.32%, respectively.

5. Closing comments
The growth of online social networks, such as Facebook, and Twitter, and the availability of
data from large systems such as the Internet and telecommunication networks has ushered
in the need to focus on computational and data management issues associated with SNA.
Researchers and practitioners are therefore seeking advanced computational tools to simulate
network structures and analyze existing networks. fastnet aims at catering to this demand.
fastnet is computational efficient and can generate an egocentric form of networks using
various standard network generation algorithms. fastnet allows users to import and export
objects from and to other packages in R, such as igraph and statnet, and offers the users
the opportunity to speed-up the computations of network metrics by using a combination of
sampling-based algorithms and multi-core processing. It is an excellent tool for users who do
not have access to large computational facilities and are using PCs with multi-core processors
for SNA.
Admittedly, as an alternative to utilizing high-performance computing, fastnet is unable to
ultimately solve the large-scale network analysis issue, due to the inborn limitation of PCs
(i.e., constrained CPU and memory deployed for saving spaces and energy). Hence, the next
step for future fastnet developers is to create an R-based API to let fastnet easily get access
to advanced computing strategies, such as distributed computing and/or cloud computing in
order to expand its analytic capability.
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