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Abstract

The simsurv R package allows users to simulate survival (i.e., time-to-event) data from
standard parametric distributions (exponential, Weibull, and Gompertz), two-component
mixture distributions, or a user-defined hazard function. Baseline covariates can be in-
cluded under a proportional hazards assumption. Clustered event times, for example indi-
viduals within a family, are also easily accommodated. Time-dependent effects (i.e., non-
proportional hazards) can be included by interacting covariates with linear time or a
user-defined function of time. Under a user-defined hazard function, event times can be
generated for a variety of complex models such as flexible (spline-based) baseline hazards,
models with time-varying covariates, or joint longitudinal-survival models.
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1. Introduction

In survival analysis (also known as time-to-event analysis) one is concerned with the analysis
of an outcome variable that corresponds to the time from some defined baseline until the
occurrence of an event of interest. For instance, in clinical studies, one may be interested in the
time from diagnosis of a disease until the occurrence of death. Due to right censoring, the most
common approach for analyzing such data is not to model the time-to-event outcome directly,
but instead to model the rate of occurrence of the event. The hazard of the event at time t is
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defined as the instantaneous rate of occurrence for the event at time t. Mathematically, it is

hi(t) = lim
∆t→0

P (t ≤ T ∗i < t+ ∆t | T ∗i ≥ t)
∆t ,

where T ∗i is the so-called true event time for individual i, which may or may not be observed
due to right-censoring, and ∆t is the width of some small time interval. In practice, one
generally observes a time Ti = min(T ∗i , Ci) where Ci is a right-censoring time for individual i,
and an event status indicator di which takes the value 1 if T ∗i ≤ Ci and value 0 otherwise.
Since one often wishes to assess the effect of covariate(s) on the rate of the event, the pro-
portional hazards model is commonly used for analysis. The proportional hazards model
allows covariates to have a multiplicative effect on the hazard through the following model
formulation

hi(t) = h0(t) exp(X>i β), (1)

where h0(t) is the baseline hazard at time t, Xi is a vector of covariates for individual i, and
β is a vector of population-level (i.e., fixed effect) parameters. The baseline hazard h0(t) can
be left unspecified (as in the Cox proportional hazards model) or specified using a parametric
form. If a parametric baseline hazard is specified, then this should have sufficient flexibility
to model the underlying changes in the hazard over time given the context of the application.
When conducting simulation studies to evaluate the performance of new and existing sta-
tistical methods for analyzing survival data, one is required to simulate event times under
a known data generating model. Similarly, one may need to simulate event times for the
purpose of power calculations when designing new studies.
Traditionally, a common approach has been to make simplifying parametric assumptions
about the distribution of the event times. For example, many authors limit their simulation
studies to settings in which the simulated event times are drawn from exponential or Weibull
distributions. However, the exponential and Weibull distributions may be unrealistic in many
settings. This is because the former assumes a constant hazard (i.e., instantaneous rate of
the event) over time, whilst the latter assumes a monotonically increasing or decreasing
hazard over time. These limiting forms for the hazard function are likely to be implausible
in many applications where the underlying hazard function may have one or more turning
points. Moreover, one may wish to accommodate the effects of covariates (for example,
a treatment effect) in the data generating model when simulating the event times, either
through a proportional hazards assumption or through a more complicated time-dependent
association.
A general method, known as the cumulative hazard inversion method (Leemis 1987; Bender,
Augustin, and Blettner 2005), allows one to simulate event times under a proportional hazards
data generating model with any parametric formulation for the baseline hazard. The cumu-
lative hazard inversion method allows one to easily simulate an event time T si for individual i
by drawing a uniform random variable Ui ∼ U(0, 1) and evaluating

T si = H−1
0

(
− log(Ui) exp(−X>i β)

)
,

where H−1
0 (.) corresponds to the inverted cumulative baseline hazard. Therefore, all that is

required to generate simulated event times under the cumulative hazard inversion method
is an invertible cumulative baseline hazard function and access to independent draws of the
random uniform variable Ui. The latter is easily obtainable, since standard statistical software
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packages have built in functions to simulate uniform random variables. However, access to the
former will depend on how complex the definition of the baseline hazard is. If an analytical
form for the inverted cumulative baseline hazard can be obtained, then the cumulative hazard
inversion method is simple and computationally efficient.
In situations where the cumulative baseline hazard is not invertible, or where there is no closed
form solution to the cumulative hazard function, simulating event times is less straightforward.
To overcome these difficulties, Crowther and Lambert (2013) proposed an algorithm which
nested numerical integration inside numerical root finding. The numerical integration is used
to evaluate the cumulative hazard in situations where it does not have a closed form, while
the numerical root finding is used to invert the cumulative hazard in situations where it is
not analytically invertible. Using their algorithm it becomes possible to simulate event times
under any data generating model for which it is possible to write down the formulation of
the hazard or log hazard function. This includes, for example, models with time-varying
covariates or models with time-dependent effects (i.e., non-proportional hazards).
The simsurv package (Brilleman 2021) described in this article, written in the R software
(R Core Team 2020), and available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=simsurv, is an implementation of the methods
described by Crowther and Lambert (2013). The package is based on a corresponding pack-
age introduced in Crowther and Lambert (2012), which is available in the Stata software
(StataCorp. 2015). The simsurv package allows one to simulate event times from standard
parametric distributions (exponential, Weibull, and Gompertz), two-component mixture dis-
tributions, or a user-defined hazard, log hazard, cumulative hazard, or log cumulative hazard
function. The two-component mixture distributions can allow for a variety of flexible baseline
hazard functions. The effects of baseline covariates can be included under a proportional
hazards assumption. Moreover, time-dependent effects (i.e., non-proportional hazards) can
be included by interacting covariates with linear time or some user-defined transformation of
time. Lastly, the option to provide a user-defined hazard function means that one can simulate
under complex model formulations, for example, Royston and Parmar’s flexible parametric
model (Royston and Parmar 2002) or a joint longitudinal-survival model (Henderson, Diggle,
and Dobson 2000; Tsiatis and Davidian 2004).
Other packages currently exist in R for simulating event times. The simulate() function in
the mlt package (Hothorn 2020) allows the user to simulate event times under models where
the conditional cumulative distribution function has a closed form expression. As special
cases, this includes parametric proportional hazard models where the baseline hazard can
be integrated analytically, as well as parametric hazard models with time-dependent effects
(i.e., non-proportional hazards) as long as they are specified on the cumulative hazard or
log cumulative hazard scales (e.g., Royston and Parmar 2002, models). The prodlim (Gerds
2019), SimHaz (Xiong, Pokaprakarn, Udagawa, and Rabbee 2015), and SimSCRPiecewise
(Chapple 2016) packages each provide functions for simulating event times under a limited
set of data generating models. The survsim package (Moriña and Navarro 2014) allows
users to simulate event times from standard parametric distributions, specifically the Weibull,
log-normal, and log-logistic distributions with extensions that focus primarily on multiple
(i.e., competing) or recurrent events. The PermAlgo package (Sylvestre, Evans, MacKenzie,
and Abrahamowicz 2017) allows users to simulate event times conditional on time-varying
covariates using an extension of the permutational algorithm described by Abrahamowicz,
MacKenzie, and Esdaile (1996) and Sylvestre and Abrahamowicz (2008).

https://CRAN.R-project.org/package=simsurv
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This article is structured as follows. In Section 2 we describe the methodological framework for
simulating event times under a general hazard model formulation, potentially incorporating
the effects of time-fixed or time-varying covariates. In Section 3 we describe the implementa-
tion of the methods in the simsurv package, including a description of the arguments to the
package’s main function. In Section 4 we describe usage of the package through a series of ex-
amples. Specifically, we replicate examples from Crowther and Lambert (2012) and Crowther
and Lambert (2013). These include simulating event times from a standard parametric dis-
tribution, a survival model with clustered event times, a flexible parametric Royston-Parmar
survival model, a survival model with time-dependent effects (i.e., non-proportional hazards),
and a joint longitudinal-survival model (i.e., with a time-varying covariate) (Royston and
Parmar 2002). In Section 5 we close with a discussion.

2. Methodological framework

2.1. Simulating event times under a proportional hazards assumption

The survival function for individual i is the probability that their so-called true event time
T ∗i is greater than the current time t. That is, the survival function can be defined as

Si(t) = P (T ∗i > t).

Moreover, the corresponding probability of having failed at or before time t (i.e., having not
survived up to time t) is the complement to the survival function. That is, the probability of
failure is defined as

Fi(t) = P (T ∗i ≤ t) = 1− Si(t),

which is equivalent to the definition of the cumulative distribution function (CDF) for the
distribution of event times.
The probability integral transformation tells us that transforming a continuous random vari-
able by its own CDF leads a new random variable that must follow a uniform distribution on
the range 0 to 1 (Mood, Graybill, and Boes 1974). That is, FX(X) ∼ U(0, 1) where FX(.)
denotes the CDF for the continuous random variable X. Similarly, a new random variable
obtained by taking the complement of X transformed by its own CDF must also follow a
uniform distribution on the range 0 to 1, that is, 1 − FX(X) ∼ U(0, 1). Therefore, under
an assumption that the event times T ∗i (i = 1, . . . , N) occur in continuous time, the survival
probability for individual i at their true event time will be a uniform random variable on the
range 0 to 1. That is,

Si(T ∗i ) = Ui ∼ U(0, 1).

It is then possible to extend these results to the setting of a proportional hazards model.
Under a proportional hazards model the survival probability for individual i at their event
time T ∗i can be written as

Si(T ∗i ) = exp
(
−H0(T ∗i ) exp(X>i β)

)
, (2)

where H0(t) =
∫ t

0 h0(s)ds is the cumulative baseline hazard evaluated at time t, and Xi

is a vector of covariates with associated population-level (i.e., fixed effect) parameters β.
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This is because the proportional hazards assumption also implies proportional cumulative
hazards. Of course, using Equation 2, the survival probability Si(T ∗i ) can be replaced by the
uniform random variable Ui. Moreover, since the objective is to simulate a new event time
for individual i (i = 1, . . . , N), rather than to evaluate the survival probability at the known
true event time, one can replace T ∗i with the simulated event time for individual i, T si . This
leads to

Ui = exp
(
−H0(T si ) exp(X>i β)

)
. (3)

To obtain the formula for the cumulative hazard inversion method, one simply needs to
rearrange Equation 3 to solve for the event time. That is,

T si = H−1
0

[
− log(Ui) exp(−X>i β)

]
. (4)

2.2. Extending to complex data generating processes

If one can obtain an algebraic closed-form solution for the inverse cumulative baseline hazard,
H−1

0 (.), then a major benefit of the cumulative hazard inversion method is that it is simple
and computationally efficient. Moreover, it can be used to generate event times for a variety
of parametric baseline hazards, including standard choices such as the exponential, Weibull or
Gompertz distributions. However, two potential hurdles can be encountered when applying
the method to complex data generating processes. First, one may not be able to obtain a
closed-form solution to the cumulative baseline hazard H0(t). Second, the cumulative baseline
hazard may not be invertible.
Crowther and Lambert (2013) describe an extension to overcome these two difficulties. Their
extension incorporates numerical root finding and/or numerical quadrature.
Root finding is used to numerically solve for T si in situations where the cumulative baseline
hazard function cannot be inverted analytically. A convenient choice of algorithm is Brent’s
univariate root finder (Brent 1973), which can effectively find a solution to the equation

Si(T si )− Ui = 0

by treating T si as the single unknown. By default, the simsurv package uses Brent’s univariate
root finder as implemented in the uniroot() function from the base package stats (R Core
Team 2020). However, as an alternative (e.g., if uniroot fails to converge), the user has
the option to instead use the dfsane() function from the BB (Varadhan and Gilbert 2009)
package.
To improve numerical stability, one may wish to solve the root finding equation after apply-
ing an appropriate transformation. By default, simsurv attempts to solve the root finding
equation after applying a log transformation, that is

−Hi(T si )− log(Ui) = 0.

But another reasonable alternative might be a square root transformation, that is

(Si(T si ))0.5 − (Ui)0.5 = 0.

The simsurv package allows the transformation function for the rooting equation to be spec-
ified by the user.
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Quadrature is used to numerically evaluate the cumulative hazard function in settings where it
does not have a tractable form. A standard choice of algorithm is Gauss-Kronrod quadrature,
whereby the cumulative hazard Hi(T si ) =

∫ T s
i

s=0 hi(s)ds can be approximated by

Hi(T si ) ≈ T si
2

Q∑
q=1

wqhi

(
T si (1 + zq)

2

)
,

where wq and zq are, respectively, the standardized weights and locations (abscissa) for the
q = 1, . . . , Q quadrature nodes (Laurie 1997). When quadrature is required, the simsurv
package uses Q = 15 nodes by default (but this can be altered by the user).
In some situations, when the form of the baseline hazard function is complex, both the
root finding and quadrature steps may be required. The approach then involves nesting
the numerical quadrature inside the root finding and iterating between the two until an
appropriate solution to the root finding equation is obtained, under a tolerance, of say 1E-8.

2.3. Two-component mixture distributions
To provide greater flexibility in the specification of the baseline hazard function, the simsurv
package allows event times to be generated from two-component mixture distributions. The
two-component mixture distributions are additive on the survival scale, with a parameter
0 ≤ π ≤ 1 defining the mixing proportions, that is

S0(t) = πS01(t) + (1− π)S02(t),

where S0(t) is the baseline survival function, S01(t) and S02(t) are baseline survival functions
for the two component distributions. In simsurv, the component distributions can be speci-
fied as either exponential, Weibull, or Gompertz distributions. These choices of distribution
lead to closed forms for the hazard, cumulative hazard, and survival functions and therefore
numerical quadrature is not required (reducing computation time); these formulas are shown
in Appendix B. However, the survival function is not analytically invertible under each of the
two-component mixture distributions and therefore the cumulative hazard inversion method
as specified in Equation 4 cannot be applied directly. Instead, numerical root finding must
be used to solve for the event time.
The two-component mixture distributions allow for a wide range of shapes for the hazard
function. Some example hazard functions for the two-component Weibull distribution are
shown in Figure 1.

2.4. Time-dependent effects (i.e., non-proportional hazards)
The methods for simulating event times as described in Section 2.1 were based on a situation
in which the effects of any covariates were incorporated under a proportional hazards assump-
tion. However, the simsurv package also allows one to simulate event times conditional on
covariates that have time-dependent effects (i.e., non-proportional hazards).
Consider a hazard function of the form

hi(t) = h0(t) exp(X>i1β1 +X>i2β2f(t)), (5)

where Xi1 is a vector of covariates for individual i with an associated vector of population-
level (i.e., fixed effect) parameters β1, and Xi2 is a vector of covariates for individual i with
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Figure 1: Examples of hazard functions that can be generated from a two-component Weibull
distribution. The following parameter values were used for each panel. Panel A: λ1 = 1, λ2 =
1, γ1 = 1.5, γ2 = 0.5, π = 0.5. Panel B: λ1 = 0.1, λ2 = 0.1, γ1 = 3, γ2 = 1.6, π = 0.8. Panel
C: λ1 = 1.4, λ2 = 0.1, γ1 = 1.3, γ2 = 0.5, π = 0.9. Panel D: λ1 = 1.5, λ2 = 0.5, γ1 = 0.2, γ2 =
0.1, π = 0.1

an associated vector of population-level parameters β2 that are interacted with some scalar
valued function of time, f(t).
In the simsurv package, when time-dependent effects are specified (via the tde argument) the
default is to use f(t) = t. That is, the time-dependent effects are formed by an interaction
between the coefficient and linear time (on the log hazard scale). However, the user of simsurv
can specify any scalar valued function for f(.) (via the tdefunction argument) so long as
it takes a single input value: the current time t. In Section 4.5 we demonstrate simulating
event times using time-dependent effects generated through an interaction with log time.
Note that in many instances, X>i2 will be a subset of X>i1, but that this is not a requirement.

2.5. Incorporating cluster-specific parameters
A common approach to modeling clustered survival data is to introduce a so-called shared
frailty term. The shared frailty term is effectively a cluster-specific random intercept in-
troduced into the linear predictor of the proportional hazards model. Specifically, we can
consider the following extension of the proportional hazards model from Equation 1:

hij(t) = h0(t) exp(X>ijβ + bj),

where hij(t) is the hazard of the event at time t, for individual i (i = 1, . . . , Nj) in cluster
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j (j = 1, . . . , J), Xij is a vector of covariates for individual i in cluster j with associated
population-level parameters β (log hazard ratios), and bj is a random effect (i.e., cluster-
specific) parameter for cluster j capturing both the between-cluster variation, and within-
cluster correlation, in the event times. An appropriate distribution must be specified for bj ,
with common choices being a log-Gamma or normal distribution.
More generally, one can consider the extension to multiple random effect parameters

hij(t) = h0(t) exp(X>ijβ + Z>ij bj),

where Zij is a vector of covariates for individual i in cluster j with an associated vector of
cluster-specific parameters bj .
In Section 3 and Section 4.2, we describe how the betas argument can be used to simulate
clustered event times by providing a data frame (rather than a vector) of parameters.

3. Implementation
The simsurv R package is implemented around one function, simsurv(). The function sig-
nature for simsurv() is

simsurv(dist = c("weibull", "exponential", "gompertz"), lambdas, gammas, x,
betas, tde, tdefunction = NULL, mixture = FALSE, pmix = 0.5, hazard,
loghazard, cumhazard, logcumhazard, idvar = NULL, ids = NULL,
nodes = 15, maxt = NULL, interval = c(1e-08, 500),
rootsolver = c("uniroot", "dfsane"), rootfun = log,
seed = sample.int(.Machine$integer.max, 1), ...)

The first argument, dist, determines the parametric distribution for the event times when
no user-defined hazard, log hazard, cumulative hazard, or log cumulative hazard function
is provided. The standard parametric distributions that are available are the exponential,
Weibull, and Gompertz distributions. If no covariates are specified, then event times are sim-
ulated using an analytical form for the inverted survival function. If time-fixed covariate(s)
are specified in the data generating model, but no time-dependent effects, then the simulated
event times are generated under a proportional hazards assumption (assuming the baseline
hazard follows one of the three parametric distributions) and using an analytical form for
the inverted survival function. Appendix A provides the analytical formulas for the inverted
survival function under the assumption of an exponential, Weibull, or Gompertz baseline haz-
ard. Where relevant, the true values for the shape and scale parameters for these parametric
distributions need to be specified by the user via the lambdas and gammas arguments.
The user must provide covariate data via the x argument. This should be in the form of a data
frame. At a minimum, this must include a variable with the subject IDs for each individual,
since the number of rows in the x data frame is used to determine the number of event times to
generate (assuming that ids = NULL). For instance, if one wishes to simulate event times for
N = 1000 individuals from a model without any covariate effects then the argument could be
specified as x = data.frame(id = 1:1000), thereby providing information on the number
of individuals to simulate event times for.
The betas argument is used to specify the true parameter values for any covariate effects
used in the model. It can either be specified as NULL (i.e., left missing), a named vector, a
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data frame, or a list of data frames. If betas is specified as a named vector then the names
must coincide with named columns of the data frame of covariates. For example, if we specify
betas = c(treat = 0.5) then the data frame of covariates specified in x must have a column
named "treat" containing the covariate values for each individual and the true log hazard
ratio associated with that covariate will be 0.5. Alternatively, if betas is specified as a data
frame, then the column names in betas must coincide with corresponding column names in
x. The benefit of specifying betas as a data frame is that the true parameter values in the
data generating model can differ across individuals (or observational units), for example, if
we have individual-specific (i.e., random effect) parameters in the model. An example of this
situation is described in Section 4.2 where we simulate clustered event times. Lastly, one can
specify betas as a list of data frames, however, this would only be necessary when providing
a very complex user-defined hazard function via the hazard argument.
The tde and tdefunction arguments allow the easy specification of time-dependent effects
(i.e., non-proportional hazards). The tde argument is specified in a similar way to the betas
argument. However, instead of specifying the true parameter values for covariate main effects,
it specifies the true parameter values for an interaction between the covariate and time. If
the user wants an interaction with some function of time (instead of linear time), then this
is specified in the tdefunction argument. An example of this functionality is demonstrated
in Section 4.5. Alternatively, time-dependent effects can be accommodated in user-defined
hazard functions (i.e., arguments hazard, loghazard, cumhazard, or logcumhazard). How-
ever, the tde and tdefunction arguments are more convenient for specifying time-dependent
effects when using a model with one of the standard parametric baseline hazards provided in
the package. Note that when time-dependent effects are specified there is no longer a closed-
form solution to the cumulative hazard and, therefore, numerical quadrature and numerical
root finding are used to simulate event times. This means that computation time will be
slightly longer than when using a standard parametric proportional hazards model for which
an analytical form for the inverted survival function is available.
The mixture and pmix arguments specify whether a two-component mixture distribution is
used and the associated mixing parameter, respectively. If a two-component mixture distri-
bution is used (i.e., mixture = TRUE) then the distribution for each component is determined
by the dist argument. The two-component mixture model can be specified under a propor-
tional hazards model formulation or alongside the tde argument to generate a model with
non-proportional hazards.
The hazard, loghazard, cumhazard, and logcumhazard arguments allow for user-defined
functions. At most, only one of these arguments can be specified. When a user-defined
function is provided the dist, lambdas, gammas, tde, tdefunction, mixture, and pmix
arguments are all ignored; all of these features need to be handled within the user-defined
function, if they are required. The user-defined function must always have the following three
arguments

• t: Scalar specifying the current time at which to evaluate the hazard.

• x: A named list with the covariate data.

• betas: A named list with the true parameter values.

Each of these arguments provide information that is used in evaluating the hazard hi(t), log
hazard log hi(t), cumulative hazard Hi(t), or log cumulative hazard logHi(t) (depending on
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which type of user-specified function is being provided). These three arguments (t, x, betas)
can then be followed in the function signature by any additional arguments that may be
necessary. Examples of user-defined functions are provided in Section 4.3 and Section 4.6.
Note that when a user-defined function is provided the simulated event times are generated
using numerical root finding (for cumhazard and logcumhazard) or both numerical root
finding and numerical integration (for hazard and loghazard).
The idvar and ids arguments are only likely to be required in two situations. First, when
one wants to simulate using only a subset of the individuals in the covariate data frame
passed to argument x. Second, when the covariate data frame passed to x or the parameter
data frame(s) passed to betas contain multiple rows per individual. The latter situation will
only be relevant when simulating event times from a user-defined hazard function with, for
example, time-varying covariates in the data frame passed to x.
The maxt argument specifies the maximum follow up time; individuals with a simulated event
time larger than maxt will be right-censored and their event indicator di will be set to 0. If
maxt = NULL then there is no right-censoring of event times.
Several control arguments are also available for controlling the root finding or quadrature,
when relevant. The rootsolver argument specifies the function that should be used for nu-
merical root finding. Current options are "uniroot" or "dfsane", as described in Section 2.2.
The rootfun argument specifies the transformation function that should be applied to the
root finding equation before attempting to solve it. This defaults to a log transformation, but
other possibilities are described in Section 2.2. We only expect that the user would need to
change the rootsolver or rootfun arguments from their default values in an extreme situa-
tion where the numerical root finding fails to converge. Lastly, the nodes argument specifies
the number of nodes used in the Gauss-Kronrod quadrature.

4. Usage examples
In this section we demonstrate usage of simsurv through a series of examples. We replicate
the examples from Crowther and Lambert (2012) and Crowther and Lambert (2013).

4.1. Simulating under a standard parametric survival model
This first example shows how the simsurv package can be used to generate event times under
a Weibull proportional hazards model. The simulated event times will be generated under
the following conditions:

• A monotonically increasing baseline hazard function, achieved by specifying a Weibull
baseline hazard with a γ parameter of 1.5.

• The effect of a protective treatment obtained by specifying a binary covariate with log
hazard ratio of −0.5.

• A maximum follow up time by censoring any individuals with a simulated event time
larger than five years.

We will demonstrate simulating these event times as part of a simple simulation study. The
objective of the simulation study will be to assess the bias and coverage probability (of the
95% confidence interval) for the estimated treatment effect. This will be achieved by:
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• Generating 100 simulated datasets (ideally it should be more than 100 datasets, but we
use less here for the sake of brevity), each containing N = 200 individuals.

• Fitting a Weibull proportional hazards model to each simulated dataset using the flex-
surv package (Jackson 2016).

• Calculating, across the 100 simulated datasets, the mean bias of the estimated treatment
effect.

• Calculating, across the 100 simulated datasets, the proportion of 95% confidence inter-
vals containing the true treatment effect.

We first define a function that simulates one dataset, fits the analysis model, and then returns
a bias and coverage indicator.

R> sim_run <- function() {
+ cov <- data.frame(id = 1:200, trt = rbinom(200, 1, 0.5))
+ dat <- simsurv(lambdas = 0.1, gammas = 1.5, betas = c(trt = -0.5),
+ x = cov, maxt = 5)
+ dat <- merge(cov, dat)
+
+ mod <- flexsurvspline(Surv(eventtime, status) ~ trt, data = dat)
+
+ est <- mod$coefficients[["trt"]]
+ ses <- sqrt(diag(mod$cov))[["trt"]]
+ cil <- est + qnorm(.025) * ses
+ ciu <- est + qnorm(.975) * ses
+
+ c(bias = est - (-0.5), coverage = ((-0.5 > cil) && (-0.5 < ciu)))
+ }

We then set a seed for reproducibility, perform 100 replicates in our simulation study, and
present the mean bias and the estimate of the coverage probability for the treatment effect.

R> set.seed(908070)
R> rowMeans(replicate(100, sim_run()))

bias coverage
0.02842414 0.90000000

Here we see that there is very little bias in the estimates of the log hazard ratio for the
treatment effect, and the 95% confidence intervals are near their intended level of coverage.

4.2. Simulating clustered event times

In this example we show how the simsurv package can be used to simulate clustered event
times. Clustered event times can appear in a number of settings. One example is when event
times are observed for patients who are clustered within clinics. In that setting, we may
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wish to allow for the dependence (i.e., correlation) between event times observed for patients
clustered within the same clinic. A second example is when performing a meta-analysis of
individual participant survival data. In that setting we wish to allow for the dependence
between the event times observed for individuals drawn from the same clinical trial. For this
example, we focus on the latter; that is, we demonstrate how simsurv can be used to simulate
event times from an individual participant data meta-analysis.
For our meta-analysis example we will assume that we are meta-analyzing J = 50 studies each
containing Nj = 200 individuals. We assume that each study compared an active treatment
to a control. It is assumed that there is a population-level (i.e., average) treatment effect, and
that the J = 50 studies in our meta-analysis each have a study-specific treatment effect that
deviates from the average treatment effect. That is, we assume the following data generating
model

hij(t) = h0(t) exp(treatij × (β + bj)),

where treatij is a treatment indicator for individual i in study j, taking the value 1 if indi-
vidual i was randomized to the active treatment and value 0 if they were randomized to the
control. We will assume that each study assigned participants to the two treatment arms
using a 1:1 randomization ratio. We will assume that the average treatment effect across
all studies is β = −0.5 (i.e., a protective treatment) and that the study-specific deviations
around this average treatment effect are drawn from a bj ∼ N(0, 0.5) distribution. For the
baseline hazard we will assume a Gompertz distribution with λ = 0.1 and γ = 0.05.
It is straightforward to simulate event times under this model using the simsurv() function.
The pre-processing required is to generate a data frame with each row containing the covariate
data (i.e., subject ID and treatment indicator) for one individual in the meta-analysis, and a
separate data frame with each row containing the parameters to use in the data generating
model for one individual in the meta-analysis. First, let us define the covariate data.

R> num_studies <- 50
R> num_patients <- 200
R> tot_patients <- num_studies * num_patients
R> cov <- data.frame(id = 1:tot_patients,
+ study = rep(1:num_studies, each = num_patients),
+ treat = rbinom(tot_patients, 1, 0.5))

Then we define the parameters for each individual.

R> pop_treat_effect <- -0.5
R> study_treat_effect <- pop_treat_effect + rnorm(num_studies, 0, 0.5)
R> pars <- data.frame(treat = rep(study_treat_effect, each = num_patients))

We can now simulate the event times using a relatively straightforward call to the simsurv()
function.

R> set.seed(908070)
R> dat <- simsurv(dist = "gompertz", lambdas = 0.1, gammas = 0.05,
+ x = cov, betas = pars)
R> dat <- merge(cov, dat)
R> head(dat)
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id study treat eventtime status
1 1 1 0 18.641158 1
2 2 1 1 7.616510 1
3 3 1 1 7.957204 1
4 4 1 1 0.049017 1
5 5 1 0 1.560224 1
6 6 1 1 4.655177 1

This demonstrates one of the advantages of simsurv(); the betas argument can be specified
as a named vector if only population-level parameters are required or, alternatively, it can be
specified as a data frame if cluster-specific or individual-specific parameters are required. If
the latter approach is used then, by default, each row of the data frame specified in betas
is assumed to contain the parameters corresponding to each row of the data frame of covari-
ates specified in x. That is, betas[i, ] should extract the named parameter vector, and
x[i, ] should extract the named covariate vector, used to generate the event time for the
ith individual.
Lastly, let us fit a Cox proportional hazards model that coincides with the data generating
model used to simulate our meta-analysis event times (noting that the baseline hazard is left
unspecified in the analysis model, whereas we simulated the event times using a parametric
Gompertz baseline hazard). We fit this model using the coxme package (Therneau 2020):

R> mod <- coxme(Surv(eventtime, status) ~ treat + (treat | study),
+ data = dat)
R> summary(mod)

Cox mixed-effects model fit by maximum likelihood
Data: dat
events, n = 10000, 10000
Iterations= 19 82

NULL Integrated Fitted
Log-likelihood -82108.93 -81640.74 -81541.63

Chisq df p AIC BIC
Integrated loglik 936.38 2.00 0 932.38 917.96
Penalized loglik 1134.60 47.62 0 1039.36 696.01

Model: Surv(eventtime, status) ~ treat + (treat | study)
Fixed coefficients

coef exp(coef) se(coef) z p
treat -0.2755787 0.7591327 0.06642155 -4.15 3.3e-05

Random effects
Group Variable Std Dev Variance
study treat 0.4471346 0.1999293

Here we see that we approximately recovered the standard deviation for the study-specific
treatment effects, i.e., σb = 0.5.
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4.3. Simulating under a user-defined log cumulative hazard function

Next, we will simulate event times under a slightly more complex parametric survival model.
The data generating model will be based on the method of Royston and Parmar (2002);
i.e., restricted cubic splines are used to approximate the log cumulative baseline hazard. This
will require us to provide a user-defined log cumulative hazard function to simsurv().
To motivate the need for this type of model, we will first fit

• a Weibull survival model, and

• a Royston and Parmar flexible parametric survival model

to a real dataset and compare the fit of each model. We will use the publicly accessi-
ble German breast cancer data. This dataset is included with the simsurv package (see
help(simsurv::brcancer) for a description of the dataset). Let us look at the first few rows
of the dataset.

R> data("brcancer", package = "simsurv")
R> head(brcancer)

id hormon rectime censrec
1 1 0 1814 1
2 2 1 2018 1
3 3 1 712 1
4 4 1 1807 1
5 5 0 772 1
6 6 0 448 1

For fitting the flexible parametric model, we will use three internal knots (i.e., four degrees
of freedom) for the restricted cubic splines with the knot points placed at evenly spaced
percentiles of the distribution of observed event time (obtained by specifying the argument
k = 3 in the code below). This model can be estimated using the flexsurvspline function
from the flexsurv package (Jackson 2016). We can also estimate the Weibull proportional
hazards model using the flexsurvspline function from the flexsurv package, by specifying
no internal knots (i.e., specifying k = 0).

R> mod_weib <- flexsurvspline(Surv(rectime, censrec) ~ hormon,
+ data = brcancer, k = 0)
R> mod_flex <- flexsurvspline(Surv(rectime, censrec) ~ hormon,
+ data = brcancer, k = 3)

Now let us compare the fit of the two models by plotting in Figure 2 each of the fitted survival
functions on top of the Kaplan-Meier survival curve.
There is evidence in the plots that the flexible parametric model fits the data better than
the standard Weibull model. Therefore, if we wanted to simulate event times from a data
generating process similar to that of the breast cancer data, then using a Weibull distribution
may not be adequate. Rather, it would be more appropriate to simulate event times under
the flexible parametric model. We will demonstrate how the simsurv package can be used
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Figure 2: Predicted survival curve under Weibull and flexible parametric models (red),
with overlaid Kaplan-Meier curve (black) together with the corresponding 95% confidence
intervals.

to do this. The estimated parameters from the flexible parametric model will be used as the
true parameters for the simulated event times.
The event times can be generated under a user-specified log cumulative hazard function that
is equivalent to the Royston and Parmar specification used by the flexsurv package (Jackson
2016). First, the log cumulative hazard function for this model needs to be defined as a
function in the R session. For example, in the function definition below, the first three
compulsory arguments (t, x, betas) are followed by an additional argument knots, which
allows the calculation of the log cumulative hazard at time t to depend on the knot locations
for the splines.

R> logcumhaz <- function(t, x, betas, knots) {
+ basis <- flexsurv::basis(knots, log(t))
+ res <- betas[["gamma0"]] * basis[[1]] +
+ betas[["gamma1"]] * basis[[2]] + betas[["gamma2"]] * basis[[3]] +
+ betas[["gamma3"]] * basis[[4]] + betas[["gamma4"]] * basis[[5]] +
+ betas[["hormon"]] * x[["hormon"]]
+ res
+ }

Next, we will show how to use the simsurv function to simulate event times under the flexible
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parametric model. To demonstrate this, we will again generate the event times as part of
a simulation study. The objective of the simulation study will be to assess the bias in the
estimated log hazard ratio for hormone therapy. This will be achieved by:

• Generating 100 simulated datasets (ideally it should be more than 100 datasets, but
we use less here for the sake of brevity), each containing N = 200 individuals. The
simulated event times will be generated under our flexible parametric model (with the
“true” parameter values taken from fitting a model to the German breast cancer data).

• Fitting both a Weibull model and a flexible parametric model to each simulated dataset.

• Calculating, across the 100 simulated datasets, the mean bias in the log hazard ratio
for hormone therapy under each of the Weibull and flexible parametric models.

First, we fit the flexible parametric model to the brcancer dataset to obtain the parameter
estimates that we will use as the true parameter values in our data generating model:

R> true_mod <- flexsurvspline(Surv(rectime, censrec) ~ hormon,
+ data = brcancer, k = 3)

Then we define a function to generate one simulated dataset, fit our two analysis models
(i.e., Weibull and flexible), and then return the bias in the estimated effect of hormone therapy
under each fitted model.
R> sim_run <- function(true_mod) {
+ cov <- data.frame(id = 1:200, hormon = rbinom(200, 1, 0.5))
+ dat <- simsurv(betas = true_mod$coefficients, x = cov,
+ knots = true_mod$knots, logcumhazard = logcumhaz, maxt = NULL,
+ interval = c(1E-8, 100000))
+ dat <- merge(cov, dat)
+
+ weib_mod <- flexsurvspline(Surv(eventtime, status) ~ hormon,
+ data = dat, k = 0)
+ flex_mod <- flexsurvspline(Surv(eventtime, status) ~ hormon,
+ data = dat, k = 3)
+
+ true_loghr <- true_mod$coefficients[["hormon"]]
+ weib_loghr <- weib_mod$coefficients[["hormon"]]
+ flex_loghr <- flex_mod$coefficients[["hormon"]]
+
+ c(true_loghr = true_loghr, weib_bias = weib_loghr - true_loghr,
+ flex_bias = flex_loghr - true_loghr)
+ }

We then set a seed for reproducibility and generate 100 replicates in our simulation study.
R> set.seed(543543)
R> rowMeans(replicate(100, sim_run(true_mod = true_mod)))

true_loghr weib_bias flex_bias
-0.364039328 -0.029244642 -0.008417815
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4.4. Simulating under a user-defined piecewise hazard function

In this example we demonstrate how we can simulate under a user-defined piecewise constant
hazard function. Specifically, we will use a piecewise constant hazard that resembles the
“bathtub” curve. The bathtub hazard consists of a decreasing hazard at the lower end of the
time frame, and an increasing hazard at the upper end of the time frame. This type of hazard
is often exhibited by the failure rate of consumer products over their life cycle (i.e., high but
decreasing failure rate early on due to defects, and an increasing failure rate later on due to
wear and tear).
First, we use an exponential distribution (with rate parameter of 0.1) to generate a sequence
of random cutpoints for our piecewise hazard function.

R> set.seed(1729)
R> ncuts <- 19
R> cuts <- sort(rexp(ncuts, rate = 0.1))

Then we use those cutpoints to define a vector containing the lower limits of the time intervals
for our piecewise hazard function.

R> pw_times <- c(0, cuts)

Next, we generate the underlying “true” hazard within each time interval. We first generate
an increasing piecewise constant hazard function by drawing variates from a standard half-
normal distribution and sorting them.

R> N <- length(pw_times)
R> pw_haz <- sort(abs(rnorm(N)))

And we use those random variates to create a bathtub-shaped hazard function by centering
them around their median and taking the absolute value.

R> pw_haz <- abs(pw_haz - median(pw_haz))

Figure 3 shows the piecewise constant hazard function we will use to simulate our event times.
Since we are planning to simulate our event times under a user-defined hazard function, the
next step is to define a function in our R session that evaluates the hazard at any time t. As
in our previous example, this function definition must have the first three arguments t, x,
and betas, followed by any additional arguments needed to evaluate the hazard at time t. In
this case, our additional arguments will be

• lb_interval: A vector with the lower limits for each the time interval in our piecewise
hazard function.

• haz_interval: A vector containing the hazard rate within each time interval.

Therefore, our user-defined hazard function looks like

R> haz <- function(t, x, betas, lb_interval, haz_interval, ...) {
+ haz_interval[findInterval(t, lb_interval)]
+ }
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Figure 3: The piecewise constant hazard function we will use to simulate the event times.

Note that although the arguments x and betas are included in the function signature, they
are not actually used within the function body since there are no covariate effects or additional
parameters used in the calculation of the hazard rate.
We can now call the simsurv function to simulate N = 5000 event times under this model,
as follows.

R> cov <- data.frame(id = 1:5000)
R> dat <- simsurv(x = cov, hazard = haz, lb_interval = pw_times,
+ haz_interval = pw_haz)
R> summary(dat$eventtime)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000061 0.462052 1.107855 1.843625 2.320564 15.451911

4.5. Simulating under a Weibull model with time-dependent effects

This example shows how to simulate data under a standard Weibull survival model that
incorporates a time-dependent effect (i.e., non-proportional hazards). For the time-dependent
effect we will include a single binary covariate (e.g., a treatment indicator) with a protective
effect (i.e., a negative log hazard ratio), but we will allow the effect of the covariate to diminish
over time. The data generating model will be

hi(t) = γλtγ−1 exp(β0Xi + β1Xi × log(t)),
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where Xi is the binary treatment indicator for individual i, λ and γ are the scale and shape
parameters for the Weibull baseline hazard, β0 is the log hazard ratio for treatment when
t = 1 (i.e., when log(t) = 0), and β1 quantifies the amount by which the log hazard ratio
for treatment changes for each one unit increase in log(t). Here we are assuming the time-
dependent effect is induced by interacting the log hazard ratio with log time, but we could
have used some other function of time (for example linear time, t, or time squared, t2, if we
had wanted to).
We will simulate data for N = 10000 individuals under this model, with a maximum follow
up time of five years, and using the following true parameter values for the data generating
model: β0 = −0.5, β1 = 0.15, λ = 0.1, and γ = 1.5. The code required to generate the
simulated event times is as follows.

R> set.seed(9898)
R> cov <- data.frame(id = 1:10000, trt = rbinom(10000, 1, 0.5))
R> dat <- simsurv(dist = "weibull", lambdas = 0.1, gammas = 1.5,
+ betas = c(trt = -0.5), x = cov, tde = c(trt = 0.15),
+ tdefunction = "log", maxt = 5)
R> dat <- merge(cov, dat)
R> head(dat)

id trt eventtime status
1 1 1 3.838829 1
2 2 0 5.000000 0
3 3 0 1.159572 1
4 4 1 5.000000 0
5 5 0 5.000000 0
6 6 1 5.000000 0

Then let us fit a flexible parametric model with two internal knots (i.e., 3 degrees of freedom)
for the baseline hazard, and a time-dependent hazard ratio for the treatment effect. For
the time-dependent hazard ratio we will use an interaction with log time (the same as used
in the data generating model); this can be easily achieved using the stpm2 function from
the rstpm2 package Clements and Liu (2019) and specifying the tvc option. Note that the
rstpm2 package and flexsurv packages can both be used to fit the Royston and Parmar flexible
parametric survival model, however, they differ slightly in their post-estimation functionality
and other possible extensions. Here, we use the rstpm2 package because it allows us to easily
specify time-dependent effects and then plot the time-dependent hazard ratio after fitting the
model (as shown in the code below).
The model with the time-dependent effect for treatment can be estimated using the following
code.

R> mod_tvc <- stpm2(Surv(eventtime, status) ~ trt, data = dat,
+ tvc = list(trt = 1))

And for comparison we can fit the corresponding model, but without the time-dependent
effect for treatment (i.e., assuming proportional hazards instead).
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Figure 4: Time-dependent hazard ratio for the estimated treatment effect (solid line) with
95% confidence bounds (shaded region), the time-fixed hazard ratio for the estimated treat-
ment effect (dashed line), and the hazard ratio for the true treatment effect under the data
generating model (dotted line).

R> mod_ph <- stpm2(Surv(eventtime, status) ~ trt, data = dat)

Figure 4 shows, on the same plot region, the true time-dependent hazard ratio, the estimated
time-dependent hazard ratio, and the estimated time-fixed hazard ratio. We can see the
diminishing effect of treatment under the model with the time-dependent hazard ratio; as
time increases the hazard ratio approaches a value of 1. Moreover, note that the estimated
mean for the time-dependent hazard ratio is approximately equal to the true time-dependent
hazard ratio under the data generating model.

4.6. Simulating under a joint model for longitudinal and survival data

This example shows how the simsurv package can be used to simulate event times under a
shared parameter joint model for longitudinal and survival data. This is therefore also an
example of simulating event times with a time-varying covariate.
We will simulate event times according to the following model formulation for the longitudinal
submodel

Yi(t) = µi(t) + εi(t)
µi(t) = β0i + β1it+ β2x1i + β3x2i

β0i = β00 + b0i

β1i = β10 + b1i

(b0i, b1i)> ∼ N(0,Σ)
εi(t) ∼ N(0, σ2

y)
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and the event submodel

hi(t) = δtδ−1 exp(γ0 + γ1x1i + γ2x2i + αµi(t)),

where x1i is an indicator variable for a binary covariate, x2i is a continuous covariate, b0i
and b1i are individual-level parameters (i.e., random effects) for the intercept and slope for
individual i, the β and γ terms are population-level parameters (i.e., fixed effects), δ is the
shape parameter for the Weibull baseline hazard, and the residual errors εi(t) are assumed to
be uncorrelated with b0i and b1i.
This specification allows for an individual-specific linear trajectory for the longitudinal sub-
model, a Weibull baseline hazard in the event submodel, a current value association structure
for the time-dependent covariate, and the effects of a binary and a continuous time-fixed
covariate in both the longitudinal and event submodels.
To simulate from this model using simsurv, we need to first explicitly define the hazard
function. The code defining a function that returns the hazard for this joint model is

R> haz <- function(t, x, betas, ...) {
+ betas[["delta"]] * (t ^ (betas[["delta"]] - 1)) * exp(
+ betas[["gamma_0"]] + betas[["gamma_1"]] * x[["x1"]] +
+ betas[["gamma_2"]] * x[["x2"]] + betas[["alpha"]] * (
+ betas[["beta_0i"]] + betas[["beta_1i"]] * t +
+ betas[["beta_2"]] * x[["x1"]] +
+ betas[["beta_3"]] * x[["x2"]]))
+ }

The next step is to define the true parameter values and covariate data for each individual.
This is achieved by specifying two data frames: one for the parameter values, and one for
the covariate data. Each row of the data frame will correspond to a different individual. The
code to achieve this is

R> set.seed(5454)
R> N <- 200
R> betas <- data.frame(delta = rep(2, N), gamma_0 = rep(-11.9, N),
+ gamma_1 = rep(0.6, N), gamma_2 = rep(0.08, N), alpha = rep(0.03, N),
+ beta_0 = rep(90, N), beta_1 = rep(2.5, N), beta_2 = rep(-1.5, N),
+ beta_3 = rep(1, N))
R> b_corrmat <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
R> b_sds <- c(20, 3)
R> b_means <- rep(0, 2)
R> b_z <- MASS::mvrnorm(n = N, mu = b_means, Sigma = b_corrmat)
R> b <- sapply(1:length(b_sds), FUN = function(x) b_sds[x] * b_z[,x])
R> betas$beta_0i <- betas$beta_0 + b[, 1]
R> betas$beta_1i <- betas$beta_1 + b[, 2]
R> covdat <- data.frame(x1 = stats::rbinom(N, 1, 0.45),
+ x2 = stats::rnorm(N, 44, 8.5))

The final step is to then generate the simulated event times using a call to the simsurv
function. The only arguments that need to be specified are the user-defined hazard function,



22 simsurv: Simulate Survival Data in R

the true parameter values, and the covariate data. In this example we will also specify a
maximum follow up time of ten units (for example, ten years, after which individuals will
be censored if they have not yet experienced the event). The code to generate the simulated
event times is

R> times <- simsurv(hazard = haz, x = covdat, betas = betas, maxt = 10)

We can then examine the first few rows of the resulting data frame, to see the simulated event
times and event indicator.

R> head(times)

id eventtime status
1 1 1.549822 1
2 2 6.023793 1
3 3 10.000000 0
4 4 3.313708 1
5 5 8.317876 1
6 6 7.385959 1

Of course, we have only simulated the event times here; we haven’t simulated any observed
values for the longitudinal outcome. Moreover, although the simsurv package can be used for
simulating joint longitudinal and time-to-event data, it did take a bit of work and several lines
of code to achieve. Therefore, it is worth noting that the simjm package (Brilleman 2018),
which acts as a wrapper for the simsurv package, is designed specifically for this purpose. It
can make the process simpler for the end-user, since it shields them from much of the work
described in this example. Instead, the user can simulate joint longitudinal and time-to-event
data using one function call to simjm() and a number of optional arguments are available to
alter the exact specification of the shared parameter joint model.

5. Summary
In this article we have introduced the simsurv R package. The package facilitates the sim-
ulation of survival (i.e., time-to-event) data under any data generating model for which the
hazard, log hazard, cumulative hazard, or log cumulative hazard function can be written
down. The package is implemented as one function; simsurv(). The arguments to simsurv()
allow straightforward simulation of event times under standard parametric distributions or
two-component mixture distributions. Moreover, covariate effects can be introduced under
proportional or non-proportional hazards assumptions. Additional scenarios, for example,
time-varying covariates or complex baseline hazards are accommodated through user-defined
hazard functions. Clustered event times are easily generated through the ability to spec-
ify individual-specific or cluster-specific coefficients. Informative censoring times (e.g., that
depend on individual-level covariates) can also be easily generated by simulating an event
distribution, simulating a censoring distribution, and taking the minimum.
In future work, we will add additional arguments to the simsurv() function that will facilitate
the simulation of multiple (i.e., competing) events and recurrent events. Lastly, we will add
arguments to more easily allow the specification of an informative censoring process.
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A. Parameterizations for standard parametric distributions
The following shows the analytical forms for the hazard function hi(t), cumulative hazard
function Hi(t), survival function Si(t), and inverted survival function S−1

i (u) for each of the
standard parametric distributions under the assumption of proportional hazards.
For the exponential distribution we have the following:

hi(t) = λ exp(X>i β)
Hi(t) = λt exp(X>i β)

Si(t) = exp
(
−λt exp(X>i β)

)
S−1
i (u) =

(
− log(u)

λ exp(X>i β)

)

where λ > 0 is the rate parameter.
For the Weibull distribution we have the following:

hi(t) = γλ(tγ−1) exp(X>i β)
Hi(t) = λ(tγ) exp(X>i β)

Si(t) = exp
(
−λ(tγ) exp(X>i β)

)
S−1
i (u) =

(
− log(u)

λ exp(X>i β)

)1/γ

where λ > 0 and γ > 0 are the scale and shape parameters, respectively.
For the Gompertz distribution we have the following:

hi(t) = λ exp(γt) exp(X>i β)

Hi(t) = λ(exp(γt)− 1)
γ

exp(X>i β)

Si(t) = exp
(−λ(exp(γt)− 1)

γ
exp(X>i β)

)
S−1
i (u) = 1

γ
log

[(
−γ log(u)
λ exp(X>i β)

)
+ 1

]

where λ > 0 and γ > 0 are the shape and scale parameters, respectively.

B. Parameterizations for two-component mixture distributions
The following shows the analytical forms for the hazard function hi(t), cumulative hazard
function Hi(t), survival function Si(t), and inverted survival function S−1

i (u) for each of the
two-component mixture distributions under the assumption of proportional hazards. The
two-component mixture distributions are additive on the survival scale, with a parameter
0 ≤ π ≤ 1 defining the mixing proportions, i.e.,

S0(t) = πS01(t) + (1− π)S02(t),



26 simsurv: Simulate Survival Data in R

where S0(t) is the baseline survival function, and S01(t) and S02(t) are baseline survival
functions for the two component distributions. The following shows the analytical forms
for the hazard function hi(t), cumulative hazard function Hi(t), and survival function Si(t)
for each of the two-component mixture distributions under the assumption of proportional
hazards.

For the two-component exponential mixture distribution we have the following:

hi(t) =
[
πλ1 exp(−λ1t) + (1− π)λ2 exp(−λ2t)
π exp(−λ1t) + (1− π) exp(−λ2t)

]
exp(X>i β)

Hi(t) = − log [π exp(−λ1t) + (1− π) exp(−λ2t)] exp(X>i β)

Si(t) = [π exp(−λ1t) + (1− π) exp(−λ2t)]exp(X>
i β)

where λ1 > 0 and λ2 > 0 are the rate parameters for the component exponential distributions.

For the two-component Weibull mixture distribution we have the following:

hi(t) =
[
πγ1λ1(tγ1−1) exp(−λ1(tγ1)) + (1− π)γ2λ2(tγ2−1) exp(−λ2(tγ2))

π exp(−λ1(tγ1)) + (1− π) exp(−λ2(tγ2))

]
exp(X>i β)

Hi(t) = − log [π exp(−λ1(tγ1)) + (1− π) exp(−λ2(tγ2))] exp(X>i β)

Si(t) = [π exp(−λ1(tγ1)) + (1− π) exp(−λ2(tγ2))]exp(X>
i β)

where λ1 > 0 and λ2 > 0 are the scale parameters, and γ1 > 0 and γ2 > 0 are the shape
parameters, for the component Weibull distributions.

For the two-component Gompertz mixture distribution we have the following:

hi(t) =

πλ1 exp(γ1t) exp
(
−λ1(exp(γ1t)−1)

γ1

)
+ (1− π)λ2 exp(γ2t) exp

(
−λ2(exp(γ2t)−1)

γ2

)
π exp

(
−λ1(exp(γ1t)−1)

γ1

)
+ (1− π) exp

(
−λ2(exp(γ2t)−1)

γ2

)


exp(X>i β)

Hi(t) = − log
[
π exp

(−λ1(exp(γ1t)− 1)
γ1

)
+ (1− π) exp

(−λ2(exp(γ2t)− 1)
γ2

)]
exp(X>i β)

Si(t) =
[
π exp

(−λ1(exp(γ1t)− 1)
γ1

)
+ (1− π) exp

(−λ2(exp(γ2t)− 1)
γ2

)]exp(X>
i β)

where λ1 > 0 and λ2 > 0 are the shape parameters, and γ1 > 0 and γ2 > 0 are the scale
parameters, for the component Gompertz distributions.
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