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Abstract

The rapid development of modern technology has created many complex datasets
in non-linear spaces, while most of the statistical hypothesis tests are only available in
Fuclidean or Hilbert spaces. To properly analyze the data with more complicated struc-
tures, efforts have been made to solve the fundamental test problems in more general
spaces (Lyons 2013; Pan, Tian, Wang, and Zhang 2018; Pan, Wang, Zhang, Zhu, and Zhu
2020). In this paper, we introduce a publicly available R package Ball for the comparison
of multiple distributions and the test of mutual independence in metric spaces, which
extends the test procedures for the equality of two distributions (Pan et al. 2018) and
the independence of two random objects (Pan et al. 2020). The Ball package is com-
putationally efficient since several novel algorithms as well as engineering techniques are
employed in speeding up the ball test procedures. Two real data analyses and diverse
numerical studies have been performed, and the results certify that the Ball package can
detect various distribution differences and complicated dependencies in complex datasets,
e.g., directional data and symmetric positive definite matrix data.

Keywords: K-sample test problem, test of mutual independence problem, ball divergence, ball
covariance, metric space.

1. Introduction

With the advanced modern instruments such as the Doppler shift acoustic radar, functional
magnetic resonance imaging (fMRI) apparatus, and Heidelberg retina tomograph device, a
large number of complex datasets are being collected for contemporary scientific research. For
example, to investigate whether the wind directions of two places are distinct, meteorologists
measure the wind directions by colatitude and longitude coordinates on the earth. Another
typical example arises in biology. By using fMRI data, biologists are able to study the
association between the brain connectivity and the age. Although these complex datasets
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are potentially useful for the progress of scientific research, their various and complicated
structures challenge testing the equality of distributions and testing the mutual independence
of random objects, two fundamental problems of statistical inference. The two problems are
generally named as the K-sample test problem and the test of mutual independence problem,
which we reconsider in general metric spaces here.

In the literature, a large number of methods have been developed to address these two prob-
lems. Correspondingly, there are many functions currently available in R (R Core Team 2021),
including oneway.test, kruskal .test and cor.test from package stats, ad.test from pack-
age kSamples (Scholz and Zhu 2019), tauStarTest from package TauStar (Weihs 2019),
HellCor from package HellCor (Geenens and Lafaye de Micheaux 2021), hotelling.test
from package Hotelling (Curran 2018), coeffRV from package FactoMineR (Lé, Josse, and
Husson 2008), kmmd from package kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004),
hsic.test from package kpcalg (Verbyla, Desgranges, and Wernisch 2017), dhsic.test
from package dHSIC (Pfister and Peters 2019), eqdist.test and dcov.test from pack-
age energy (Rizzo and Székely 2019), mdm_test from package EDMeasure (Jin, Yao, Mat-
teson, and Shao 2018), multivariance.test from package multivariance (Bottcher 2020),
independence_test from package coin (Hothorn, Hornik, van de Wiel, and Zeileis 2008),
MINTperm from package IndepTest (Berrett, Grose, and Samworth 2018), hoeffD, hoeffR,
pTStar and jTStar from package SymRC (https://github.com/Lucaweihs/SymRC),
hhg.test.k.sample and hhg.test from package HHG (Brill, Heller, and Heller 2018), and so
on. Among them, the functions in stats and kSamples implement the classical parametric and
non-parametric hypothesis tests for univariate distributions and univariate random variables.
The TauStar and HellCor packages implement two novel univariate dependence measures,
Bergsma-Dassios sign covariance (Bergsma and Dassios 2014) and Hellinger correlation (Gee-
nens and Lafaye de Micheaux 2021), which possess admirable theoretical advantages. In
short, they are designed for univariate data, and hence are restricted. The Hotelling and Fac-
toMineR packages provide the multivariate extension of the Student’s ¢ test and the Pearson
correlation test, but the normality assumption for multivariate data is usually difficult to val-
idate. The functions in kernlab, kpcalg, dHSIC, energy, EDMeasure, and multivariance are
capable of distinguishing distributions and examining (mutual) independence assumptions
for univariate/multivariate continuous/discrete data. Unfortunately, since these packages
rely on energy distance (Székely and Rizzo 2004) and distance covariance (Székely, Rizzo,
and Bakirov 2007) or maximum mean discrepancy (Gretton, Borgwardt, Rasch, Scholkopf,
and Smola 2012) and Hilbert-Schmidt independence criterion (Gretton, Bousquet, Smola,
and Scholkopf 2005), they will totally lose power when the metric is not of strong negative
type (Lyons 2013) or the kernel is not of positive definiteness (Sejdinovic, Sriperumbudur,
Gretton, and Fukumizu 2013). As for the coin package, it offers user-friendly and highly flexi-
ble interfaces for performing the K-sample and independence permutation tests on Euclidean
geometry datasets under the framework proposed by Strasser and Weber (1999). The func-
tions in IndepTest use mutual information, a well-known dependence measure, to perform the
independence test between two Euclidean vectors (Berrett and Samworth 2019). The SymRC
package provides a competitive dependence measure, symmetric rank covariances, to test the
multivariate independence in Euclidean space (Drton, Weihs, and Meinshausen 2018). The
functions in HHG, based on the work of Heller, Heller, and Gorfine (2013), are known to
be useful in detecting distinctions among multivariate distributions and associations between
multivariate random variables in Euclidean space.
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Recently, two novel concepts, ball divergence (Pan et al. 2018) and ball covariance (Pan et al.
2020), are proposed to measure the discrepancy between two distributions and the dependence
between two random objects in metric spaces, respectively. Ball divergence (BD) enjoys a
remarkable property, homogeneity-zero equivalence, and ball covariance (BCOV) holds an-
other brilliant property, independence-zero equivalence. The BD and BCOV statistics, as the
empirical versions of BD and BCOV, can tackle the two-sample test and test of independence
problems, which are special cases of the K-sample test and test of mutual independence prob-
lems. The BD and BCOV statistics are both robust rank statistics, and the test procedures
based on them are consistent against any general alternative hypothesis without distribution
or moment assumptions (Pan et al. 2018, 2020). Besides, the BD statistic is proved to cope
well with imbalanced data, and the BCOV statistic can be standardized to the ball correlation
statistic to extract important features from ultra-high dimensional data (Pan, Wang, Xiao,
and Zhu 2019).

In this paper, we introduce a user-friendly R package Ball (Wang et al. 2021). The Ball
package contributes to the open-source statistical software community in the following aspects:
(i) It provides the BD two-sample test and the BCOV independence test to R users; (ii) It
implements several dedicated design algorithms to accelerate the BD two-sample test and the
BCOV independence test; (iii) It provides three powerful K-sample BD test statistics and an
efficient K-sample permutation test procedure to distinguish distributions in metric spaces;
(iv) It extends the BCOV test statistic to detect the mutual dependence among complex
random objects in metric spaces; (v) It supports several generic sure independence screening
procedures which are capable of extracting important features associated with complex objects
in metric spaces. At present, the Ball package is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=Ball.

The remaining sections are organized as follows. In Section 2, we propose our ball test
statistics and ball test procedures to tackle the K-sample test and test of mutual independence
problems in metric spaces. In Section 3, we introduce several novel and efficient algorithms
for the ball test statistics and ball test procedures. Section 4 gives a detailed account for the
main functions in the Ball package and provides two real data examples to demonstrate their
usages for complex dataset. Section 5 discusses the numerical performance of the ball test
statistics in the K-sample test and the test of mutual independence problems. Finally, the
paper concludes with a short summary in Section 6.

2. Ball test statistics

In this section, we define and illustrate the ball divergence (BD) and ball covariance (BCOV)
statistics in Section 2.1 and 2.2, respectively. We describe the details of the ball test proce-
dures in Section 2.3.

2.1. K-sample test and ball divergence statistic

In a metric space (V,d), given K independent observed samples X, = {Xy; | i =1,...,nk},
k=1,...,K, assuming that in the k-th sample, Xy1,..., X, are ii.d. and associated with
the Borel probability measure pp. The null hypothesis of the K-sample test problem is
formulated as

HoZ/Ll:"':,uK.
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We first revisit the BD statistic designed for the two-sample test problem (Pan et al. 2018),
a special case of the K-sample test problem, where K = 2 and N = n; + na. Let I(-) be
an indicator function. For any x,y,z € V, denote B(x,y) as a closed ball with center x and
radius d(z,y), and d(z,y,2) = I(2 € B(x,y)). Therefore, §(z,y, z) takes the value of 1 when
z is inside the closed ball B(z,y), or 0 otherwise. Let

1 & 1 &
P = - > 6(Xui, Xuj, Xup), PEH? = — " 6(X14, X5, Xop),
=1

ij
235

1 & 1 &
pi = - > 6(Xop, Xor, Xue), PP = . > 6(Xok, Xot, Xot),
t=1 t=1

then the two-sample BD statistic is defined as

1 & 1 &
BDn (1, p2) = s E (Pilj{lul _ Hf;luQ)Q + ~ 2 : (P]ZQ/H _ P§2“2)2.
1 i,j=1 2 k,l=1

Intuitively, if X} and X5 come from the same distribution, the proportions of the elements of X
and Xy in the closed balls B(X1;, X1;) and B(Xa, Xo) are almost the same, in other words,
Pi’;.l“l A PZ.’”;.“’“Q,Pk’/jtf“1 ~ P["*. Consequently, BDy approaches to zero in this scenario.
Otherwise, if &} and A5 come from two distinct distributions, then BDy is, relatively, far
away from zero.

Generally, for K > 2 and N = Zle nyg, the definition of the K-sample BD statistic could be

to directly sum up all of the two-sample BD statistics

S
BDNK(,U,l,...,,LLK) = Z BDns—i-nt(,u&:ut)v
1<s<t<K

or to find one group with the largest difference to other groups

K

BD.]AV/[SK (Mla e 7/'[/K) = mta‘X Z BDTLS-H'Zt (/1’87 ,U,t),
s=1,s#t

or to aggregate the K — 1 most significant two-sample BD statistics

K-1
BD?VAK(ILU, PN 7,UK) = Z BD(k),
k=1

where BD(y),...,BD_1) are the largest K — 1 two-sample BD statistics among the set

{BDyn,(ptss i) | 1 < s <t < K}. When K = 2, BD%K,BD]/:,/[K, and BD?VASK degenerate
into BDy.

2.2. Test of mutual independence and ball covariance statistic

Assume that (Vi,d1),...,(Vk,dx) are metric spaces, D is the Euclidean norm on RX,
and (V,d) is the product metric space of (Vi,d1),...,(Vk,dk), where the product metric
is defined by d((z1,...,2K), (y1,...,yx)) = D(di(z1,v1),...,drx(zK,yK)). Suppose X =
{(Xi1,...,Xix) | i=1,...,N} is a sample with N i.i.d. observations in the product metric
space V, whose associated joint Borel probability measure and marginal Borel probability
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measures are y and p1,...,ugx. The null hypothesis of the test of mutual independence
problem is formulated as

Hy:p=pp ® - @ pk.

For z,y,z € V;, denote B;(x,y) as a closed ball with center x and radius d;(x,y), and
0i(z,y,2) = I(z € Bi(z,y)). Thus, d;(x,y,2) is an indicator taking the value of 1 if z is
within the closed ball B;(x,y), or 0 otherwise. Let

| N K
P = NE_:U Xk, Xk, Xek),

and

Pi!;k:7zék k> Jk7th) k=1,....K,

then our BCOV statistic can be presented as
1N
BCov (p1, - -+, k) = N2 > (P HP’"”‘ g
i,7=1

We provide a heuristic explanation for BCovk. If p = p1 ® --- ® pg, the proportion of
the elements of X in ®szlBk(sz, X 1) should be close to the product of the proportions of
Xik, -y Xk in Br(Xix, Xjx), ie., P =~ e, PL¥. Since BCovy is the average of {(Pf; —
Hk 1 P“ ’“)2 | i,7 = 1,..., N}, a significantly 1arge BCov¥ implies that the null hypothesis
W= 1 ® - ® pg is implausible.

The BCOV statistic can be extended with positive weights @y (Xix, Xji), k= 1,..., K,

« 1 N K K
BCOVUJ,N(ML ey /'LK) = m Z (‘le; - H ‘Piuk H Zk‘7
i,j=1 k=1 k=1

As a more general dependence measure framework based on the BCOV statistic, such a
weighted extension not only allows flexible test statistics but also connects the BCOV statistic
with HHG. Several choices for the weights are feasible. For example, we could choose the
probability weight &y, (X, Xjx) = [P};*]" and the Chi-square weight & (X, Xj1) = [P (1-
Pi’;k)]_l, and denote their corresponding statistics as BCOVK N and BCOVK2 N respectively.
i Hk 1 P#k) by the
variance of 6 ( Xk, Xji, Xui) (4,7 are fixed). Furthermore, BCovféN(K = 2) is asymptotically
equivalent to HHG (Pan et al. 2020). From the definitions of BCov%, BCOV[A(VN, and BCOVXKQJV,
we may expect: (i) BCov% is good at detecting linear relationships, especially when noises are
influential, because treating each ball indiscriminately is a reasonable strategy which keeps
weights away from potential instabilities; (ii) BCOV§7 y has more power in detecting strong

BCOVK n focuses on smaller balls, while BCovfa y standardizes (P

nonlinear relationships since paying more attention to smaller balls makes BCOVK N tending
to detect the locally linear relationship; (iii) BCovffg y (or HHG) is an intermediate between

BCovk and BCOVKN.
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The BCOV statistic can be normalized. Let

N
1 .
BOovE (i) = 3 D [P = (PN P@n(Xa, X)), b= 1, K,
1,j=1

then the normalized version of the BCOV statistic is defined as the square root of

K
BCOI{;{N(HL v 7MK) = BCOVUIJ(,N(:U’D cee 7MK)/\I H BCOVZ){N(M!C))
k=1

if T, BCOVﬁN(Mk) > 0, or 0 otherwise. BCorLIiN(K = 2) is the ball correlation statistic
(Pan et al. 2020) which ranges from 0 to 1.

2.3. Ball permutation test procedure

After computing an observed ball test statistic, say B, the permutation methodology described
in Efron and Tibshirani (1994) and Davison and Hinkley (1997) is employed to derive the
p value of the ball test procedures in a distribution-free manner. We specify the permutation
procedures for the K-sample test and test of mutual independence problems below.

For the K-sample test problem, let k,, be an nj-dimensional vector whose entries are all &,
andlet L = (1, ,2) ..., K;LFK)—r be the group label vector of the pooled sample X = AU- - -U
Xy. Denote L* as a permutation of L and {Y;}¥; as X, the shuffled pooled sample associated
with L* is X* = ATU- - -UX, where X)) = {Y; € X | L7 = k,i=1,..., N}. With the shuffled
pooled sample X*, we can compute the K-sample BD statistic. The permutation is replicated
M times to derive the K-sample BD statistics under the null hypothesis: B, ..., B),. Finally,

the p value is computed according to:

1+SM 1(B,, > B)
1 — m= m . 1
p value M (1)

With respect to the test of mutual independence problem, each permutation is performed
following this manner: for each k& € {1,..., K}, Xik,..., Xnk are randomly shuffled while
Xigry .-, XN (K # k) are fixed. The permutation is replicated M times and the p value is
estimated by Equation 1.

3. Algorithm

The computational complexities of the ball test statistics are O(N?3) if we compute them
according to their definitions; however, in many cases, their computational complexities can
reduce to a more moderate level (see Table 1) by efficient algorithms utilizing the rank nature
of the ball test statistics. The rank nature motivates the acceleration in three aspects. First,
the computation procedure of the ball test statistics can avoid repeatedly evaluating whether
a point is in a closed ball because n;P/*" (s,t € {1,...,K}) and NP*(k = 1,..., K) are
related to some ranks. Second, for the K-sample permutation test, performing ranking pro-
cedures could be more efficient by preserving information for the first time when we compute
the K-sample BD statistics. Third, for univariate datasets, we can optimize the ranking pro-
cedure for computing n; P (s,t € {1,...,K}) and NP{*(k = 1,..., K) without preserving
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Statistics Univariate Other
BDYE /BDAIX /BDA O(N?) O(N?)
BCovl v (K =2) O(N?) O(N?log N)

Table 1: The optimized computational complexities of several ball test statistics.

auxiliary information. The three aspects will be illustrated in Section 3.1, 3.2, and 3.3, re-
spectively. For simplicity, we assume there is no ties among datasets. For our Ball package,
it can properly handle tied data and compute the exact ball test statistics.

Unfortunately, in the case of measuring mutual dependence among at least three random
objects, it is not easy to optimize the computation procedure of the BCOV statistic. Nev-
ertheless, with engineering optimizations such as multi-threading, the time consumption of
computing the BCOV statistic can be cut down.

3.1. Rank-based algorithm

We first recap the O(N?1log N) algorithm for BDy proposed by Pan et al. (2018). Assume
the pairwise distance matrix of X = X7 U X» is:

X1 X X1 X

DXX_ D 1-t1 D 112
- DXQXl DXQXQ .
NXN

Notice that, ani’;Wl is the rank of d(X1;, X1;) among the i-th row of D¥1% and an“““ +
na P is the rank of d(X1;, X1;) among the i-th row of D** . Consequently, after Spend—
ing O(N?log N) time on ranking D¥1* and D*? row by row to obtain their corresponding
rank matrices RV and R, we only need O(1) time to compute an“““ and an’““l +
no P2 by directly extracting the (i, j)-elements of RY1Y and RYY. Therefore comput-
ing {(P", PL"2) [ 4,5 = 1,...,m} is of O(N?log N) time complexity, and similarly for
computing {(P,*"", PL?") | k,l =1,...,n9)}. In summary, for BDy and the K-sample BD
statistics, their time complexities are O(N?log N).

With respect to BCovw ~(K = 2), the aforementioned algorithm can be directly applied
to calculate Pf' and P“2 within O(N?log N) time. To compute {NPJ; | i,j = 1,...,N}
within O(N?log N) tlme we first rearrange {(d1 (X1, Xj1),d2(Xi2,Xj2)) | j=1,...,N} to
{(d1(Xi1, Xi;1), d2(Xi2, Xij2)) | 5 = 1,...,N)}, where i; is the location of the j-th smallest

value among {d; (X1, Jl) |i=1,. N} Further, for j =1,..., N, we have

NPy —ZI di(Xi1, Xi1) < di(Xiv, Xij1)) I (da(Xio, Xip2) < do(Xi2, Xij2))

!

-
=1

I

I(d2(Xi2, Xip2) < do(Xi2, Xij2))

=1

N N (2)
= I(da(Xia, Xip2) < do(Xin, Xi2)) — D> I(da(Xig, Xiy2) < do(Xia, Xij2))

t=1 t=j+1

= NP}? - Z I(d2(Xi2, Xip2) < do(Xi2, Xij2))-
t=j+1
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Owing to Equation 2, the computation of { NP »’»‘ | 7=1,...,N} could be turned into com-
puting {3741 I(da(Xig, Xi2) < da(Xiz, X, )) | j = 1,...,N}. Notice that, given the
array A = {da(Xi2, Xi2) | j = 1,..., N}, Zt:j+1 I(da( l?aXitQ) < da(Xi2, Xij2)) is the
number of the elements of A Wthh are not only behind dz(Xig,Xijz) but also no larger
than dz(XiQ,XijQ). Therefore, computing {Zi\;j—&-l ](dg(Xig,Xitg) < dg( i2, X. )) | j =
., N} is the typical “count of smaller numbers after self” problem (https:/ / leetcode.
com/problems/count-of-smaller-numbers-after-self/), which can be solved within
O(Nlog N) time via well designed algorithms such as binary indexed tree, binary search
tree, and merge sort. Our implementation (see Appendix A) utilizes merge sort to resolve the
problem due to its efficiency. Thus, the time complexity of {IV Pf; |i,j =1,..., N} reduces
to O(N?log N), and finally, the computation of BCovfiN(K = 2) costs O(N?1log N) time.

3.2. Optimized K-sample permutation test procedure

In this section, an efficient procedure of O(N?) time complexity is introduced to compute
the K-sample BD statistics on a shuffled dataset X*. According to the definition of the K-
sample BD statistics, to reduce their time complexity to O(N?), we should reduce the time
complexity of any BD,,, 1n, to O(N?). From Section 3.1, to reduce the time complexity of
BDy,,+n, to O(N?), we need to compute the row-wise ranks of pairwise distance matrices
DX DX A and DX:JX:J(X;t = X U X)) within O(N?) time. We propose Algorithm 1
to achieve this goal. The core of Algorithm 1 is utilizing an N x N order information matrix
I*¥ as well as an N-dimensional vector G. For the order information matrix I*%, I = ¢
means that the j-th smallest element of the i-th row of pairwise distance matrix DY is
ngX . I*¥ can be obtained for the first time when we rank each row of the pairwise distance
matrix DY, Concerning the vector G, it is related to the shuffled group label vector L*
and the cumulative sample size vector C' = (0,nq,..., Zsz_ll ng). Specifically, when L} =
G; —C’k—l—zl 1I(L* =k)+1ifi> 1, 0r Gi=Cp+1if i = 1. By scanning I*? in a
row-wise manner, Algorlthm 1 can assign a proper rank value to the element of the row-wise
rank matrices of DX X5, DY and DY X with the help of the vector G.

3.3. Fast algorithm for univariate data

We first consider BD . For convenience, assume X1, ..., Xi,, have been sorted in ascending
order. For univariate data, we have

ni
ny PEM = " I(|1 Xy — Xu| < [ X1 — Xu)
t=1
- 3)
=Y I(Xy; — | X — Xuy] < Xy < X + | X0 — Xy).

Let Xj;,; be the smallest value satisfying Xy;,, > X1; — [X1; — X1| and X7,,; be the largest
element satisfying X 1ry; < Xu+|Xu—X 1j\. Thanks to Equation 3, it is easy to verify that
ni1 P =1y —1ij + 1, and consequently, an alternative way to compute ny P/ is to find
out Xy;,; and Xy,;. Inspired by this, we develop Algorithm 2 to accomplish the computation
of {an“ Wil 4 =1,...,n1} in linear time. Through slightly modifying Algorithm 2, the
computatlonal complex1ty of {m P +naPLM? | j =1,...,m} also reduces to O(N), and
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Algorithm 1 Optimized algorithm for computing the row-wise rank matrices of
DX DY A and D%
Requlre. The sample size of the s-th group ng, the cumulative sample size vector C, the
order information matrix I*% as well as the N-dimensional vector G.
1: Initialize all element of the row-wise rank matrices R X5 / RY X ) RY¥ee of DX
DX X ) DYatie with 0.
2: fori=1,...,N do

3: g < Lf.

4. if g=sor g=tthen

5: rank, < 1,ranky < 1,ranks + 1.

6: for j=1,...,N do

7: 0 LYY, g « L.

8: if g = ¢ then

9: if g = s then

10: r<«G; —Cs,c+ G, Cs,

11: R,«C X ranki, “ st + ranks,
12: ranky < ranki + 1.

13: else if g =t then

14: r < G Ct,C — G Ct,

15: ’I”(—G Ct—i—ns,c <—G Ct—l-ns,
16: RTC S ranks, RXQ X +— ranks,
17: ranks < ranks + 1

18: end if

19: else

20: if g=sand ¢’ =t then

21: T(—Gi—CS,CFGO—Ct—FnS.
22: else if ¢ =t and ¢’ = s then

23: r+ G; —Ci+ng,c+— G, — Cl.
24: end if

25: R « ranks.

26: end if

27: ranks <+ ranks + 1.

28: end for

29:  end if

30: end for

* * * * *
31: return RY% Y RY Y and R

hence, the computational complexity of {(nlﬂzl”l,nlpi‘;lw) | 3,5 = 1,...,n1} reduces to
O(N?). Similarly, the time complexity of {(ni P, noPLH?) | 4,5 =1,...,n2} is O(N?). In
summary, the computational complexity of BDy is O(N?) for univariate distributions, so are
BD%K ) BD?VASK and BD?V/IK . As for BCovw ~(K = 2), by slightly modifying Algorithm 2,

)

the time complexity of computing {(N P! NP”Q) |i,5=1,...,N} reduces to O(N?) when

1) Y
X1, X2 are univariate. Further, retaining (llj, w) and (12], ”) which satisfy NP”’1 = 7,1]

l1 +1and NP[? = r - l2 + 1, we can accomplish the computation of {P}; | i,j = 1 LN}
w1th1n quadratlc tlme by Algorlthm 3. The key of Algorithm 3 is employlng the inclusion—
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Algorithm 2 Fast algorithm for {n; P;** | j =1,...,n1} in the univariate case

Require: A sorted array {Xi1,..., X1, } with ascending order.
1: Initialize [ = 1,7 = n;.
2: while [ < r do
3: if X1, — X1; > Xq; — Xq; then

4: nlpsz:,lm %T—l—l—l,

5: ré1r—1.

6: else

7: m P —r—1+1,

8: < 1+1.

9: end if

10: end while

11: return {n PN [j=1,...,n1}

Algorithm 3 Fast algorithm for {Pf; |4,j =1,..., N} in the univariate case

Require: A set including N bivariate observations {(X;1, X;2) |i =1,..., N}; a set contain-
ing lower and upper bound pairs {(} i 21]) (12 i zJ) li,7=1,...,N}.
1: Compute the rank of {X11,..., Xn1} and {X12,..., Xn2}, respectively, and denote them
as {r},...,rx}and {r},... ;7% }.

2: Pay O(N?) time to compute the values of bivariate empirical cumulative distribution

Fn(z,y) ]{,Zi\ill(rtl <ax,ri<y)on {(i,j) | i,j = 1,...,N}, and set Fn(0,y) =
Fn(x,0) =0.

3: fori=1,...,N do

4: forj=1,...,N do

5: PM%FN( Tijs z]) FN(lilj_ ) zg) En(r 11]7lz2] )+FN(Z1 17[12] 1).

6: end for

7: end for

8:

return {P}[i,j=1,...,N}

exclusion principle which is also used in Heller, Heller, Kaufman, Brill, and Gorfine (2016).
In summary, with Algorithms 2 and 3, the time complexity of BCOVfi N(K =2)is O(N?).

4. The Ball package

In this section, we introduce the Ball package, an R package which implements the ball
test statistics and procedures introduced in Section 2 as well as the algorithms illustrated
in Section 3. The core of Ball is programmed in C to improve computational efficiency.
Moreover, we employ the parallel computing technique in the ball test procedures to speed
up the computation. To be specific, during the permutation procedure, multiple ball test
statistics are concurrently calculated with OpenMP which supports the multi-platform shared
memory multiprocessing programming in C level. Aside from speed, the Ball package is
concise and user-friendly. An R user can conduct the K-sample and independence tests via
bd.test and bcov.test functions in the Ball package, respectively.

We supply instructions and primary usages for bd.test and bcov.test functions in Sec-
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tion 4.1. Additionally, in Section 4.2, two real data examples are provided to demonstrate
how to use these functions to tackle data drawn from manifold spaces.

4.1. Functions bd.test and bcov.test

The functions bd.test and bcov.test are programmed for the K-sample test and test of
mutual independence problems, respectively. The default usages of two functions are:

bd.test.default(x, y = NULL, num.permutations = 99, distance = FALSE,
size = NULL, seed = 1, num.threads = 0, kbd.type = "sum", ...

bcov.test.default(x, y = NULL, num.permutations = 99, distance = FALSE,
weight = FALSE, seed 1, num.threads = 0, ...)

The arguments of the two functions are described as follows.

e x: A numeric vector, matrix, or data frame, or a list containing at least two numeric
vectors, matrices, or data frames.

e y: A numeric vector, matrix, or data frame.

e num.permutations: The number of permutation replications, must be a non-negative
integer. Default: num.permutations = 99.

e distance: If distance = TRUE, x is considered as a distance matrix, or a list containing
distance matrices in the test of mutual independence problem. And y is considered as a
distance matrix only in the test of independence problem. Default: distance = FALSE.

e size: A vector recording the sample size of K groups. It is only available for bd.test.

« weight: A logical value or character string used to choose the form of &y (X, Xji). If
weight = FALSE or weight = "constant", the result of BCOV%—based test is displayed.
Alternatively, weight = TRUE or weight = "probability" indicates the probability
weight is chosen while setting weight = "chisquare" means selecting the Chi-square
weight. From the definitions of BCOV%, BCOVK N and BCOVfQ ~» they are quite sim-
ilar and could be computed at the same time. Therefore, bcov. test simultaneously
computes BCOV% , BCOVK N BCovffg ~» and their corresponding p values. Users could
get other statistics and p values from the complete.info element of output without
re-running bcov.test. At present, this arguments is only available for bcov.test. Any
unambiguous substring can be given. Default: weight = FALSE.

e seed: The random seed. Default: seed = 1.

e num.threads: The number of threads used in the ball test procedures. If num.threads
= 0, all available cores are used. Default: num.threads = 0.

e kdb.type: A character string used to choose the K-sample BD statistics. Setting
kdb.type = "sum", kdb.type = "summax", or kdb.type = "max", we choose BD%K,
BDJ/\\,/‘SK , Or BD?VAK to test the equality of distributions. Notice that, the three K-sample
BD statistics are very similar, since their only difference is the aggregation strategy for
the two-sample BD statistics. Therefore, the bd.test function simultaneously com-

putes BD%K , BD?VASK , BD?V/IK , and their corresponding p values. Users could get other
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statistics and p values from the complete.info element of output without re-running
bd.test. This arguments is only available for the bd.test function. Any unambiguous
substring can be given. Default: kdb.type = "sum".

If num.permutations > 0, the output is a ‘htest’ class object similar to the object returned
by the t.test function. The output object contains the ball test statistic value (statistic),
the p value of the test (p.value), the number of permutation replications (replicates), a
vector recording the sample size (size), a 1ist mainly containing two vectors, where the first
vector is BD%K,BD%SK, and BD?V/IK for bd.test or BCOV[A{“ BCOVKN, and BCOVi{g’N for
bcov.test, and the second vector is the corresponding p values of the tests (complete.info),
a character string declaring the alternative hypothesis (alternative), a character string
describing the hypothesis test (method), and a character string giving the name and helpful
information of the data (data.name); if num.permutations = 0, only the ball test statistic
value is returned.

To give quick examples, we carry out the ball test on two synthetic datasets to check whether
the null hypothesis can be rejected when distributions are different or random variables are
associated indeed.

For the K-sample test problem (K = 2), we generate two univariate datasets {X1;}?%; and
{X5;}20, with different location parameters, where

X1~ N(0,1), X9 ~ N(1,1), i =1,...,50.
The detailed R code is as follows.

R> library("Ball")

R> set.seed(1)

R> x <- rnorm(50)

R> y <- rnorm(50, mean = 1)
R> bd.test(x = x, y = y)

2-sample Ball Divergence Test (Permutation)

data: x and y

number of observations = 100, group sizes: 50 50

replicates = 99

bd.constant = 0.092215, p-value = 0.01

alternative hypothesis: distributions of samples are distinct

In this example, the bd.test function yields the BD y value 0.0922 and the p value 0.01 when
the permutation replicate is 99. At the usual significance level of 0.05, we should reject the
null hypothesis. Thus, the test result is concordant to the data generation mechanism.

In regard to the test of mutual independence problem, we sample 100 i.i.d. observations
from the multivariate normal distribution to perform the mutual independence test based on
BCov&. The detailed R code is demonstrated below.

R> library("mvtnorm")
R> set.seed(1)
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R> cov_mat <- matrix(0.3, 3, 3)

R> diag(cov_mat) <- 1

R> data_set <- rmvnorm(n = 100, mean = c(0, 0, 0), sigma = cov_mat)
R> data_set <- as.list(as.data.frame(data_set))

R> bcov.test(x = data_set)

Ball Covariance test of mutual independence (Permutation)

data: data_set

number of observations = 100

replicates = 99, weight: constant

bcov.constant = 0.00063808, p-value = 0.03

alternative hypothesis: random variables are dependent

The output of bcov.test shows that BCov% is 6.38 x 104 when the constant weight is used.
The p value is 0.02, and at the usual significance level of 0.05, we conclude that the three
univariate variables are mutually dependent.

4.2. Examples

Wind direction dataset

We consider the hourly recorded wind speed and wind direction in the Atlantic coast of Galicia
in winter from 2003 until 2012, provided in the R package NPCirc (Oliveira, Crujeiras, and
Rodriguez-Casal 2014). In this dataset, there exist 19488 observations, and each observation
includes six variables: day, month, year, hour, wind speed, and wind direction (in degrees).
It is of interest to see whether there are any wind direction differences between the first and
last weeks of 2007-2008 winter season. We select the wind direction records from November
1 to November 7, 2007, as the first week data, and the records from January 25 to January
31, 2008, as the last week data. The missing records in two weeks are discarded.

R> library("Ball")

R> data("speed.wind", package = "NPCirc")

R> index1 <- which(speed.wind[["Year"]] == 2007 &

+ speed.wind[["Month"]] == 11 & speed.wind[["Day"]] 7Jinj 1:7)
R> index2 <- which(speed.wind[["Year"]] == 2008 &

+ speed.wind[["Month"]] == 1 & speed.wind[["Day"]] Jin7, 25:31)
R> d1 <- na.omit (speed.wind[["Direction"]] [index1])

R> d2 <- na.omit(speed.wind[["Direction"]] [index2])

Each wind direction is one-to-one transformed to a two-dimensional point in the Cartesian
coordinates, and then, the difference of any two points is measured by the great-circle distance
which is programmed in the nhdist function in the Ball package.

R> theta <- c(d1, d2) / 360
R> dat <- cbind(cos(theta), sin(theta))
R> dx <- nhdist(dat, method = "geo")

13
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90 90
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Figure 1: The raw circular data plot of the hourly wind direction dataset. The left panel is
corresponding to the first-week wind directions in 2007-2008 winter and the right panel is
corresponding to the last week’s.

In the final step, we pass the distance matrix and the sample size of two groups to the
arguments x and size, and set distance = TRUE to declare that the object passed to the
arguments x is a distance matrix.

R> size_vec <- c(length(dl), length(d2))
R> bd.test(x = dx, size = size _vec, distance = TRUE)

2-sample Ball Divergence Test (Permutation)

data: dx

number of observations = 335, group sizes: 168 167

replicates = 99, weight: constant

bd.constant = 0.29515, p-value = 0.01

alternative hypothesis: distributions of samples are distinct

As can be seen from the output information of bd.test, BDy is 0.2911 and the p value is 0.01.
Consequently, at the usual significance level of 0.05, we should reject the null hypothesis. To
further confirm our conclusion, we visualize the wind direction of two groups in Figure 1 with
the R package circular (Lund and Agostinelli 2017). Figure 1 shows that the hourly wind
directions in the first week is concentrated around the 90 degrees but the wind directions of
the last week are widely dispersed.

R> library("circular")
R> par(mfrow = c(1, 2), mar = c(0, 0, 0, 0))

R> plot(circular(c(dl), units = "degrees"), cex = 0.8, bin = 100,
+ stack = TRUE, shrink = 1.3)
R> plot(circular(c(d2), units = "degrees"), cex = 0.8, bin = 100,

+ stack = TRUE, shrink = 1.3)
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Brain fMRI dataset

We examine a public fMRI dataset from the 1000 Functional Connectomes Project (https:
//www.nitrc.org/frs/?group_id=296). This project calls on the principal investigators
from the member site to donate neuroimaging data such that the broader imaging community
have complete access to a large-scale functional imaging dataset. Given the resting-state fMRI
and demographics of 86 individuals donated from ICBM, it is of interest to evaluate whether
age is associated with brain connectivity. To properly analyze the dataset, we carry out a
preprocessing for the three fMRI of each individual with the nilearn (Abraham et al. 2014)
package in the Python environment. The preprocessing for each individual includes four steps:
(i) segment brain into a set of 116 cortical and subcortical regions for each fMRI with the
Automated Anatomical Labeling template (Tzourio-Mazoyer et al. 2002); (ii) average the
voxel-specific time series in each of these regions to form mean regional time series for each
fMRI; (iii) compute the 116 x 116 Pearson correlation coefficient matrix of each fMRI with
the 116 mean regional time series, where the Pearson correlation coefficient is a widely-used
association measure in the neuroimaging literature (Ginestet, Li, Balachandran, Rosenberg,
and Kolaczyk 2017; Ginestet and Simmons 2011; Bullmore and Sporns 2009); (iv) average the
three 116 x 116 matrices of each observation in an element-wise manner and save the averaged
matrix to disk such that it can be analyzed with R. In the R environment, the collection of
the averaged matrix and demographics are combined into a 1ist object, then it is saved to a
disk as niICBM.rda file.

To achieve our goal, we compute the pairwise distance matrices of the averaged matrices
and the age, then save them in the R objects dx and dy, respectively. Then, we pass dx
and dy to bcov.test to perform an independence test, meanwhile, let distance = TRUE to
declare what the arguments x and y accepted are distance matrices. The detailed R code is
demonstrated below.

R> library("Ball")

R> library("CovTools")

R> load("niICBM.rda")

R> dx <- as.matrix(CovDist (niICBM[["spd"]1]))

R> dy <- as.matrix(dist(niICBM[["covariate"]][["V3"]]))

R> bcov.test(x = dx, y = dy, distance = TRUE, weight = "prob")

Ball Covariance test of independence (Permutation)

data: dx and dy

number of observations = 86

replicates = 99, weight: probability

bcov.probability = 0.017138, p-value = 0.01
alternative hypothesis: random variables are dependent

The output message shows that BCOVIA(7 y is 0.0171 and the p value is smaller than the
usual significance level 0.05, and thus, we conclude that brain connectivity is associated with
age. This result is also revealed by recent research that age strongly effects structural brain
connectivity (Damoiseaux 2017). In this example, we use the Euclidean distance to measure
the difference between age, and the affine invariant Riemannian metric (Pennec, Fillard, and
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Ayache 2006) to evaluate the structural difference between the averaged Pearson correlation
coefficient matrices. The affine invariant Riemannian metric is implemented in CovTools (Lee
and You 2019)

5. Numerical studies

In this section, the numerical studies are conducted to assess the performance of the ball
test procedures for complex data, including directional data in hyper-sphere spaces, tree-
structured data in tree metric spaces, symmetric positive definite matrix data in the space of
symmetric positive-definite matrices, and functional data in L., spaces. Besides, a runtime
analysis is provided in Section 5.3. For comparison, we consider energy distance and HHG
for the K-sample test problem, while distance covariance, distance multivariance, and HHG
for the test of mutual independence problem. The permutation technique helps us obtain
the empirical distributions of these statistics under the null hypothesis, and derive their
p values. As suggested in Davison and Hinkley (1997), at least 99 and at most 999 random
permutations should suffice, and hence, we compute the p value of each test based on 399
random permutations. All models in Sections 5.1 and 5.2 are repeated 500 times to estimate
type-I errors and powers. In each replication, all methods use the same dataset and the same
non-standard distance to make a fair comparison. The significance level is fixed at 0.05.

5.1. K-sample test

In this section, we investigate the performance of test statistics on revealing the distribution
difference with two kinds of complex data, directional data and tree-structured data. They are
frequently encountered by scientists interested in wind directions, marine currents (Marzio,
Panzera, and Taylor 2014), and cancer evolution (Abbosh et al. 2017). To sample directional
and tree-structured data, we use the rmovMF and rtree functions in the R packages movMF
(Hornik and Griin 2014) and ape (Paradis, Schliep, and Schwartz 2019) to draw data from
the von Mises-Fisher distribution M (u, ) and random tree distribution T'(n, {b;}}~,), where
p and k are direction and concentration parameters while n and {b;}}_; are the numbers of
tree nodes and the branch lengths of tree. The dissimilarities of two directions and two trees
are measured by the great-circle distance and the Kendall Colijn metric (Kendall and Colijn
2016), which are programmed in the nhdist and multiDist functions in the R packages Ball
and treespace (Jombart, Kendall, Almagro-Garcia, and Colijn 2017).

We conduct the numerical analyses for directional data in Models 5.1.1, 5.1.3-5.1.5, and 5.1.9
while tree-structured data in other models. Models 5.1.1 and 5.1.2 are designed for type-1
error evaluation, while other models are devoted to evaluating powers. More specifically,
Models 5.1.3-5.1.8 focus on the case that any two groups are different, while Models 5.1.9 and
5.1.10 pay attention to the case that only one group is different to other groups. Without loss
of generality, we let K = 4 for Models 5.1.1-5.1.8 and K = 10 for Models 5.1.9 and 5.1.10.
Each group has the same sample size ranging from 10 to 50.

e Model 5.1.1: von Mises-Fisher distribution. The direction parameters are u¥ = p* =
¥ = p* = (1,0,0) and the concentration parameters are k¥ = k* = k¥ = k¥ = 30.

o Model 5.1.2: Random tree distribution with fifteen nodes. b, b%,b¢,07,i =1,...,15 are

17 )

independently sampled from the uniform distribution U (0, 1).
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e Model 5.1.3: von Mises-Fisher distribution. The direction parameters are pu* =
(0,1,1,1,1), p* = (2,1,1,1,1), ¥ = (4,1,1,1,1),u* = (6,1,1,1,1) and the concen-
tration parameters are k" = 1, k" = 2, kY = 3, k* = 4.

e Model 5.1.4: Mixture von Mises-Fisher distribution. The direction parameters are
pt = ptt = (1,0), u? = p*2 = (=1,0), p” = p* = (0,1), ¥ = u* = (0, —1) and the
concentration parameters are K1 = k"2 = g¥1 = g¥2 = 30, KT = K2 = K7 = k72 = 35.
The four mixture proportions of two von Mises-Fisher distributions are all 0.5.

e Model 5.1.5: Mixture von Mises-Fisher distribution. The direction parameters are

17

pr = (1,0,0,0), g2 = (—1,0,0,0), x® = (0,1,0,0), u® = (0,—1,0,0), u¥* = (0,0, 1,0),

w2 =(0,0,—1,0), u** = (0,0,0,1), u*> = (0,0,0,—1) and the concentration parameters
are all 30. The four mixture proportions of two von Mises-Fisher distributions are all
0.5.

o Model 5.1.6: Random tree distribution with fifteen nodes. b%,b%,bY, b7, =1,...,15 are
independently sampled from four different uniform distributions: b" ~ U(0,0.25), b7 ~
U(0,0.5),b¢ ~ U(0,0.75),b7 ~ U(0,1),i = 1,...,15.

e Model 5.1.7: Random tree distribution with fifteen nodes. b, b%,bY,b7,i =1,...,15 are
independently sampled from four different uniform distributions: b ~ U(0,12),57 ~
U(2,10),bY ~ U(3,8),b7 ~U(4,6),i=1,...,15.

e Model 5.1.8: Random tree distribution with fifteen nodes. b, b¥,bY,b7,i =1,...,15 are
independently sampled from four different F' distributions: b’ ~ F(2,2),b7 ~ F(2,3),
b o~ F(2,4), b7 ~ F(2,5),i=1,...,15.

Since only one group is different to other groups, it is sufficient to specify the following Models
by describing the distributions of two groups.

e Model 5.1.9: von Mises-Fisher distribution. The direction parameters are p* =
(0,1,1,1,1), ¥ = (2,1,1,1,1) and the concentration parameters are K* = k¥ = 3.

o Model 5.1.10: Random tree distribution with fifteen nodes. b%,bY,i = 1,...,15 are
independently sampled from two different uniform distribution: b ~ U(0,0.5),b) ~

U,1),i=1,...,15.

The type-1 error rates and power estimates are demonstrated in Figures 2 and 3. From
Figure 2, all test methods can control the type-I error rates well around the significance level.
Figure 3 shows that BD}gVK ,BD?VASK , or BD/]:,/lK outperforms energy distance and HHG in
most cases. More specifically, BD%K is generally superior to other methods when any two
groups are different, and BD%SK has an advantage when the relatively rare group distinctions
increase the difficult of the K-sample test problem. As for BD?V/[K , it is more stable compared
with BD}SVK and BD%‘SK. BD%K is better than BD%SK when any two groups are different,
and better than BD‘]SVK when the group distinctions are relatively rare.

In Models 5.1.4 and 5.1.5, the empirical powers of energy distance are low and not increasing,
yet the K-sample BD statistics and HHG are well-performed. This is not surprising because
the great-circle distance is not of strong negative type. We provide an example to illustrate
this result as follows. Without loss of generality, we simplify the distributions in Model 5.1.4
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Figure 2: Type-I error rates of the five tests for the K-sample test problem. The black dashed
line is the nominal significance level.

to the equal-probability Bernoulli distributions on a circle, where W, X take (0,1) and (0, —1)
while Y, Z take (1,0) and (—1,0). Then, the K-sample test problem could be considered as the
two-sample test problem between groups X and Y. For the two groups X and Y, the means
of the great-circle distance within the group are both 7/2, so is the mean of the great-circle
distance between the two groups. The energy distance between X and Y is zero according to
its definition (Székely and Rizzo 2013)

E(X,Y) =2E(d(X,Y)) — E(d(X, X)) — E(d(Y,Y")), (4)

where X’ and Y’ are i.i.d. copy of X and Y, respectively. Thus, energy distance fails to
detect the distribution difference. On the contrary, BDy is larger than zero since all observa-
tions in B((0,1),(0,1)) U B((0,—-1),(0,—1)) come from the group X and all observations in
B((1,0),(1,0)) U B((—1,0),(—1,0)) come from the group Y. The result of Model 5.1.5 can
be interpreted similarly.

5.2. Test of mutual independence

In this section, we evaluate the performance of test methods on detecting the relation-
ship among complex random objects. The complex random objects attracting our atten-
tion are symmetric positive definite matrix and functional curve, commonly encountered
in contemporary statistical research, for instance, Dryden, Koloydenko, and Zhou (2009)
and Wang, Chiou, and Miiller (2016). We generate the two types of random objects with
the genPositiveDefMat function in the R package clusterGeneration (Qiu and Joe 2020)
and a series of functions in the R package fda (Ramsay, Graves, and Hooker 2020). The
genPositiveDefMat function can generate a random d X d symmetric positive definite matrix
SPDg(A, p)(A>0,p> 1) whose eigenvalues range from A to pA. The R functions in fda help
construct the functional curve f(t;c) = (1,sint,cost)c and acquire 17 observed points which
are equally spaced at interval [0,87], where c is a coefficient vector. The typical dissimi-
larity measurements of two symmetric positive definite matrices and two functional curves
are the affine invariant Riemannian metric and the Lo, norm, which are implemented in the
R packages CovTools and fda.usc (Febrero-Bande and de la Fuente 2012), respectively.
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Figure 3: Power estimates of the five tests for the K-sample test problem.

We design Models 5.2.1-5.2.2 for the examination of type-I errors and Models 5.2.3-5.2.10 for
the assessment of powers. Let the sample size increase from 40 to 120.

e Model 5.2.1: X,Y are independently sampled from the SPD1y(1,10).

e Model 5.2.2: cq,co are independently sampled from the multivariate uniform distribu-
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tion on the cube [0, 1]3,
X(t) = f(t;e1), Y (t) = f(t; c2).

e Model 5.2.3: Z comes from the uniform distribution U(0,7/2), and €1, €2, €3 are inde-
pendently sampled from the Chi-square distribution with the degree of freedom 1,

XNSPDl[)(Z,l—I-El),YNSPD10(2+62,1+63).

e Model 5.2.4: The distributions of Z, €1, €2, €3 are the same as in Model 5.2.3.

X ~ SPD1y(Z,14€),Y ~ SPDyo (10|cos (3Z)] + €2, 1 + €3) .

o Model 5.2.5: ¢1, cg, c3 are independent standard normal random vectors, and €;(¢) and
€2(t) are independent Gaussian processes,

Z1(t) = f(t;e1), Za(t) = f(t;¢2), Z3(t) = f(t;¢3),
X(t) = 421(t) Z2(t) Z5(t) + €1(1), Y (t) = [Z1(t) — Za(t)]* + 2Z3(t) + ea(t).

o Model 5.2.6: X comes from the binomial distribution B(1,0.5), and €(¢) is a Gaussian
process,

P(c=1(0,0,1)" | X =0) = P(c=(0,0,—-1)" | X =0) = 0.5,
P(c=(0,1,0)" | X =1) = P(c=(0,-1,0)" | X =1) = 0.5,
Y (t) = 10f(t; ¢) + €(t).

The following four models are constructed for evaluating the power of test methods in the
test of mutual independence problem. To the best of our knowledge, only multivariance and
Ball allow R users to perform the mutual independence test on datasets in metric spaces. And
hence, we only compare Ball and multivariance below.

e Model 5.2.7: The distributions of Z, €1, €9, €3 are the same as Model 5.2.3, and €4, €5 are
independently drawn from Pareto distribution with location parameter 0.8 and shape
parameter 1.

X ~SPDyy(Z,1+¢€1),
Y ~ SPD1g (Z 4 €4,1 + €3),
Z ~ SPDio(Z +e5,1 +€3).

e Model 5.2.8: Wy, Wy are independently drawn from the ¢ distribution with the degree
of freedom 1,

X ~ SPDyo(1,|Wy| + 1),
Y ~ SPDio(1, 1+ (W1 — Wa)?),
Z ~ SPDio(1, exp (8sin(Wy — Wa)) + 1).
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Figure 4: Type-I error rates of the five tests for the test of independence problem. The black
dashed line is the nominal significance level.

e Model 5.2.9: Z;, Z5 are independently sampled from the binomial distribution B(1,0.5),
Z3=1(Z1 = Z5). Let cg = (0,1,0)",¢c; = (0,0,1) T,

I(Z1 = 0)f(t;co) + 1(Z1 = 1) f(t;¢1),
Y(t) =1(Z2 =0)f(t;co) + 1(Z2 = 1) f(t; c1),
I(Z3 = 0)f(t;co) + 1(Z3 = 1) f(t;¢1).

o Model 5.2.10: X is sampled from the binomial distribution B(1,0.5), and €1 (¢) and ea(t)
are independent Gaussian processes,

P(c=1(0,0,1)" | X =0) = P(c=(0,0,—-1)" | X =0) = 0.5,
P(c=1(0,1,0)" | X =1) = P(c=(0,-1,0)" | X =1) = 0.5,
Y (t) = 10f(t;c) + er(t), Z(t) = e2(t).

The type-I error rates and empirical power are displayed in Figures 4, 5, and 6. As shown in
Figure 4, the type-I error rates of all methods are reasonably controlled around the significance
level. From Figure 5, both the BCOV statistics and HHG are competitive and generally
exceed distance covariance. From Figure 6, the three BCOV statistics successfully detect the
complicated mutual dependence among multiple random objects, and their empirical powers
increase as the sample size augments. It is worth noting that Model 5.2.9 is an example
of pairwise independence with mutual dependence. The success in revealing the mutual
dependence of Model 5.2.9 certifies the power of the BCOV statistics.

To shed a light on the performance difference of the three BCOV statistics, we compare their
empirical powers in Models 5.2.3, 5.2.4, and 5.2.7. In Model 5.2.3, the lower bound of the
eigenvalues of X is linearly associated with that of Y, and similarly in Model 5.2.7, except
that the noise in Model 5.2.7 has an infinite first moment. BCofo{g’ ~ has a best performance
in Model 5.2.3 on account of the nonlinearity of symmetric positive definite matrices spaces
which slightly improves the nonlinearity between X and Y. In Model 5.2.7, BCovI]\? is superior
to other methods owing to the approximately linear relationship among random objects and
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its high robustness. As for Model 5.2.4, the lower bounds of the eigenvalues of X and Y have
a strongly nonlinear relationship. At this point, BCOVg n turns to be the first place.

It is also worthwhile to take a good look at Models 5.2.6 and 5.2.10. In the two models, the
empirical power of distance covariance and distance multivariance stay at a low level as the
sample size increases, because the Lo, norm is not of strong negative type. The following is
an explanation of why distance covariance has an unsatisfactory performance in Model 5.2.6.
Without loss of generality, we re-define Y (¢t) = 10f(¢;c), then denote Y (¢) | X = 0 and
Y(t)| X =1 as Yi(t) and Ya(¢). It is easy to verify that the distance covariance of (X, Y (t))
is the constant-multiple energy distance between groups Yi(t) and Y3(t). For the two groups
Yi1(t) and Y3(t), the means of the Lo, norm within the group are both 10, so is the mean of
the Lo, norm between the two groups. According to Equation 4, the energy distance between
Yi(t) and Ya(t) is 0, and thus, the distance covariance of (X, Y (t)) is 0, leading to the failure
of detecting association. The performance of distance multivariate in Model 5.2.10 could be
explained similarly.

5.3. Runtime analysis

We adopt Models 5.1.1, 5.2.1 and 5.2.7 in Sections 5.1 and 5.2 to assess the runtime per-
formance of energy (1.7.6), multivariance (2.2.0), HHG (2.3.2), and Ball (1.3.11) using the
microbenchmark package (Mersmann 2019). Here, all experiments are conducted with 20
replications, and the averaged runtimes are visualized in Figure 7. The benchmark is a 64-bit
Windows platform with Intel Core i7 @Q 3.60 GHz.

From Figure 7, energy is the fastest package in the K-sample test and the test of independence
problems, and multivariance is the fastest package in the test of mutual independence problem.
As the second fastest package, Ball is around four times faster than HHG in the K-sample
test and test of independence problems when both of them use one thread, even though
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BCOVi(Q y(K = 2) and HHG are asymptotically equivalent. Furthermore, we can cut the
runtimes of Ball down around one third via doubling threads.

In summary, if runtimes are more concerned, energy or multivariance may be a desirable
choice. Otherwise, Ball is a preferable choice due to its powerful performance in various
complex data with fewer runtime increase, especially for the K-sample test and the test of
independence problems.

6. Conclusion

We design a user-friendly R package Ball to help data scientists detect the distribution dis-
tinction and object association for complex data in metric spaces. Equipped with the novel
algorithms, efficient C implementation, advanced multi-threaded technique, and elegant the-
oretical properties of the ball test statistics, the ball test procedures programmed in the Ball
package can efficiently analyze complex data in metric spaces.

Future versions of the Ball package will endeavor to speed up the ball correlation based
generic feature screening procedure (Pan et al. 2019). Furthermore, we intend to develop
Python and Julia packages to help data scientists conduct the ball test procedures and ball
screening procedure with their most familiar program languages.
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A. Merge sort implementation

Merge sort is a classical divide-and-conquer algorithm for sorting. It recursively splits the
value array in half until all subarrays only have one element, then merges those subarrays
to a sorted array. To adapt to the “count of the smaller number after self” problem, merge
sort uses an auxiliary equal-size number array to record the numbers of the smaller element
after self. Initialized all elements with 0, the number array is split and merged with the value
array. In the merging stage, if an element of the left side value array is to be merged, then,
the merged elements of the right side value array must be no larger than the element to be
merged. And hence, the corresponding element in the left side number array should add the
number of the merged elements of the right side value array. Implemented with C in the Ball
package, the solution of “count of the numbers after self” problem is given below.

C> void count_smaller_number_after_self_solution(double *value, int *number,
const int num) {
int index[num];
for (int i = 0; i < num; ++i) {
index[i] = i;
}

merge_sort(value, index, number, 0, num - 1);

+ + + + + + +

}

C> void merge_sort(double *value, int *index, int *number, int start, int end) {
if (end - start < 1) return;

int mid = (start + end) >> 1;

merge_sort(value, index, number, start, mid);

merge_sort(value, index, number, mid + 1, end);

merge (value, index, number, start, mid, end);

+ + + + + +

}
C> void merge(double *value, int *index, int *number, int start, int mid, int end)
const int left_size = mid - start + 1, right_size = end - mid;
double left[left_size], rightl[right_size];
int left_index[left_size], right_index[right_size];
int left_merged = 0, right_merged = 0, total_merged = O0;
for (int i = start; i <= mid; ++i) {
left[i - start] = valuel[i];
left_index[i - start] = index[i];
}
for (int i = mid + 1; i <= end; ++i) {
right[i - mid - 1] = value[i];
right_index[i - mid - 1] = index[i];
}
while (left_merged < left_size && right_merged < right_size) {
if (left[left_merged] < rightl[right_merged]) {
number[left_index[left_merged]] += right_merged;
value[start + total_merged] = left[left_merged];
index[start + total_merged] = left_index[left_merged];
++left_merged;
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++total_merged;

} else {
value[start + total_merged] = right[right_merged];
index[start + total_merged] = right_index[right_merged];
++right_merged;
++total_merged;

}

}

while (left_merged < left_size) {
number[left_index[left_merged]] += right_merged;
value[start + total_merged] = left[left_merged];
index[start + total_merged] = left_index[left_merged];
++left_merged;
++total_merged;

}

while (right_merged < right_size) {
value[start + total_merged] = right[right_merged];
index[start + total_merged] = right_index[right_merged];
++right_merged;
++total_merged;

+ + + + 4+ +F +++FF A+ F A+ FEF T
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