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Abstract

Time series data, i.e., temporally ordered data, is routinely collected and analysed
in in many fields of natural science, economy, technology and medicine, where it is of
importance to verify the assumption of stochastic stationarity prior to modeling the data.
Nonstationarities in the data are often attributed to structural changes with segments be-
tween adjacent change-points being approximately stationary. A particularly important,
and thus widely studied, problem in statistics and signal processing is to detect changes
in the mean at unknown time points. In this paper, we present the R package mosum,
which implements elegant and mathematically well-justified procedures for the multiple
mean change problem using the moving sum statistics.
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1. Introduction
With its beginnings dating back as far as the 1950s (Page 1954), change-point analysis is
still a very active field of research in statistics. It can broadly be classified into procedures
for sequential or online detection of change-points (i.e., monitoring for changes as the data is
being observed) and offline detection (i.e., searching for changes after all the data is observed).
In this work, we present the package mosum (Meier, Cho, and Kirch 2021), which provides an
implementation of the moving sum (MOSUM) procedure from Eichinger and Kirch (2018) and
its multiscale extension for offline detection of multiple changes in the mean. It is available for
the statistical computing language R (R Core Team 2021) from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=mosum.
There exist many theoretical approaches and software implementations to offline change-point
analysis. For example, the R package bcp (Erdman and Emerson 2007) provides an imple-
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mentation of the Bayesian approach proposed in Barry and Hartigan (1993). Several R pack-
ages implement algorithms based on global optimization of penalized cost functions, such as
the package strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002) for detecting structural
changes in linear regression models (it also contains utility functions for empirical MOSUM
processes); changepoint (Killick and Eckley 2014) implementing the pruned exact linear time
(PELT) algorithm (Killick, Fearnhead, and Eckley 2012a) (which also implements the binary
segmentation algorithm (Scott and Knott 1974; Sen and Srivastava 1975) and the segment
neighborhood algorithm (Auger and Lawrence 1989; Bai and Perron 1998)); changepoint.np
(Haynes and Killick 2020) extending the PELT algorithm with nonparametric cost functions;
ecp (James and Matteson 2014) implementing the nonparametric change-point method for
multivariate data from Matteson and James (2014); Segmentor3IsBack (Cleynen, Rigaill,
and Koskas 2016) and fpop (Rigaill, Hocking, Maidstone, and Fearnhead 2019) implementing
pruned dynamic programming algorithms using the functional pruning, see also Rigaill (2015)
and Maidstone, Hocking, Rigaill, and Fearnhead (2017).
Another branch of methodologies performs multiscale analysis in searching for change-points
in local environments (Fang, Li, and Siegmund 2020; Chan and Chen 2017). For software im-
plementations, see e.g., breakfast (Anastasiou, Chen, Cho, and Fryzlewicz 2020) implementing
the wild binary segmentation (WBS, Fryzlewicz 2014) and the tail-greedy unbalanced Haar
(TGUH, Fryzlewicz 2018) algorithms; not (Baranowski, Chen, and Fryzlewicz 2019b) extend-
ing the WBS for detecting change-like features (Baranowski, Chen, and Fryzlewicz 2019a);
stepR (Pein, Hotz, Sieling, and Aspelmeier 2020) and FDRSeg (Li and Sieling 2017) imple-
menting the methods proposed in Frick, Munk, and Sieling (2014), Li, Munk, and Sieling
(2016) and Pein, Sieling, and Munk (2017) for multiscale inference of step functions. For the
segmentation of genomic data, there are packages such as cumSeg (Muggeo 2020), DNAcopy
(Seshan and Olshen 2020) and modSaRa (Xiao, Niu, Hao, Xu, Jin, and Zhang 2016). In addi-
tion, several methods for sequential change-point detection are provided in cpm (Ross 2015).
For an overview on recent developments in this area, we refer to Cho and Kirch (2020a) and
the repository provided by Killick, Nam, Aston, and Eckley (2012b).
The MOSUM procedure in this work can be seen as complementary to previous approaches,
and Eichinger and Kirch (2018) showed that its performance is competitive with state of the
art procedures. One of the attractive and useful features of the MOSUM framework is that
the underlying statistics have a clear and easy interpretation and lend themselves naturally
for visual inspection of structural changes. Also, it can accommodate multiscale extensions of
the MOSUM procedure for the improved adaptivity. Furthermore, the MOSUM framework
does not rely on any distributional assumption of the underlying data generating process and
thus is very flexible.
This paper is structured as follows. In Section 2, we explain the MOSUM statistic and the
procedures for change-point estimation. In particular, we discuss two algorithms for multi-
scale change-point estimation employing a range of summation bandwidths. Section 3 gives
an introduction to the mosum package, by illustrating the methods for the evaluation of
the MOSUM statistics, multiple change-point estimation and visualization with short usage
examples. Section 4 contains more detailed usage examples with an application to US macroe-
conomic data, and Section 5 summarizes the contributions made in this work and provides an
outlook for further research and development. In Appendix, we discuss some algorithmic and
implementation details (Section A), remark on the computational time of MOSUM-based pro-
cedures (Section B), and provide the proof of an asymptotic distributional result (Section C).
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2. MOSUM procedure for multiple changes in the mean
In this section, we discuss the idea of moving sums and describe the procedures for detect-
ing multiple change-points in the mean, which are implemented in the mosum package. In
Section 2.1, we review the intuition and the mathematical theory behind the use of MOSUM
statistics for multiple change-point detection. In Section 2.2, we explain how to produce the
estimators for the locations of the change-points from the MOSUM statistics, followed by a
brief discussion of MOSUM-based variance estimation in Section 2.3. In Sections 2.5 and 2.6,
we present the extensions of the MOSUM procedure with multiple summation bandwidths.
Section 2.7 elaborates on how to construct bootstrap confidence intervals for the change-point
locations.

2.1. MOSUM statistic

Consider observations X1, . . . , Xn drawn independently from a distribution with the same
mean as an example. By the Law of Large Numbers, it follows that

1
G

k+G∑
t=k+1

Xt −
1
G

k∑
t=k−G+1

Xt ≈ 0

for a sufficiently large summation bandwidth G > 0. If, on the other hand, there is a change
in the mean of height d at time point k, then

1
G

k+G∑
t=k+1

Xt −
1
G

k∑
t=k−G+1

Xt ≈ d.

Based on this observation, the following MOSUM statistic provides a good tool for change-
point detection:

TG := max
1≤k≤n

|TG(k)|
σ̂k

(1)

with the MOSUM detector

TG(k) = TG(k;X) :=
√
G

2

 1
G

k+G∑
t=k+1

Xt −
1
G

k∑
t=k−G+1

Xt

 , k = G, . . . , n−G, (2)

and a local estimator σ̂2
k of the innovation variance (see the upcoming Section 2.3). The

values TG(k) for k at the left and right boundaries can be calculated adopting a CUSUM-
type boundary extension:

TG(k) :=
√

2G
k(2G− k)

k∑
t=1

(
X̄(1,2G) −Xt

)
, k = 1, . . . , G− 1, (3)

with X̄(1,2G) := (2G)−1∑2G
t=1Xt and similarly for k = n−G+ 1, . . . , n.

The statistical model underlying the MOSUM procedure is a classical change-point location
model (c.f. Eichinger and Kirch 2018)

Xt = ft + et =
N+1∑
j=1

µjI{kj−1 < t ≤ kj}+ et, t = 1, . . . , n. (4)
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Figure 1: Top: A time seriesX1, . . . , Xn of length n = 400 with one mean change of height d =
2 at time k = 200. The corresponding step signal ft is overlaid as dashed line. Middle: The
MOSUM detector TG(k;X) for k = 1, . . . , n, where the MOSUM signal TG(k; f) is overlaid
as dashed line. Bottom: TG(k; e) = TG(k;X)− TG(k; f).

The piecewise constant deterministic signal ft has N change-points at kj , j = 1, . . . , N (with
the notational convention k0 := 0 and kN+1 := n), and the centred model innovations et
are assumed to be independent and identically distributed. Note that the MOSUM detector
from (2) is decomposed as

TG(k;X) = TG(k; f) + TG(k; e). (5)

We call TG(k; f) the MOSUM signal and TG(k; e) the noise term.
The number of change-points N and their locations kj for j = 1, . . . , N , as well as the heights
of jumps dj = µj+1 − µj , are typically unknown and in many applications, estimation of
both the number and locations of changes is of particular interest. The MOSUM detector
lends itself naturally for this purpose, since whenever a mean change at time k occurs, the
corresponding MOSUM signal TG(k; f) from (5) will attain a local maximum in its absolute
value, which is superimposed by the noise term TG(k; e) in the detector TG(k;X). This is
illustrated in Figure 1, where the prominent peak of the MOSUM signal at time k = 200 is
still clearly visible in the noisy TG(k;X).
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In order to make use of this observation for change-point detection, a suitable threshold
is needed (for details, see Section 2.2 below). One option is to use a critical value of the
corresponding test procedure as threshold. The actual distribution of the MOSUM statistic
is not known in general, even for well-known innovation distributions and small sample sizes.
One therefore makes use of an asymptotic result to derive a MOSUM-based test for changes
in the mean. Indeed, for appropriate bandwidths G = G(n) satisfying G → ∞ as n → ∞
while G/n→ 0 (as detailed in Appendix C),

aG TG − bG =⇒ Γ2 under H0 : No mean change,

where⇒ denotes the convergence in distribution, Γ2 is a Gumbel-distributed random variable
with P (Γ2 ≤ z) = exp(−2 exp(−z)), and aG and bG are sequences of properly chosen scaling
and shifting factors depending only on the sample size n and the bandwidth G. This asymp-
totic result gives rise to a MOSUM-based test with asymptotic level α, which rejects the null
hypothesis H0 : N = 0 against the alternative H1 : N > 0 when the MOSUM statistic TG
from (1) exceeds the asymptotic critical value

Cn,G(α) := bG +Q1−α(Γ2)
aG

, (6)

where Q1−α(Γ2) is the (1−α)-quantile of the Gumbel distribution. The p value corresponding
to the test statistic t is given by pn,G(t) = 1− exp(−2 exp(bG − aGt)).
The bandwidth G plays a crucial role in the performance of the methodology in practical
applications. We will discuss this issue in Section 2.4.

2.2. Change-point estimators

The absolute MOSUM detector |TG(k)| (see (2)) is a powerful tool for visual change-point
inspection. The corresponding (absolute) MOSUM signal |TG(k; f)| (see Figure 1 for an
example) is a piecewise linear function, which is equal to zero far away from the change-
points, linearly increases as a change-point is approached, and then decreases towards zero
after the change-point. Consequently, a jump of the underlying step signal ft results in a
peak in the MOSUM signal, with the location of the jump coinciding with that of the local
maximum of |TG(k; f)|.
In practice, TG(k; f) is not observable and we have to work with the noisy MOSUM detec-
tor TG(k) = TG(k;X) instead. Therefore, it is natural to apply a threshold to the (scaled)
absolute MOSUM detector and construct change-point estimators based on the local maxima
of neighborhoods exceeding the threshold. To elaborate, we consider significant neighbor-
hoods (l, r) with l ≤ k ≤ r, such that

|TG(k)|
σ̂k

≥ Cn,G(α) for k = l, . . . , r, and

|TG(k)|
σ̂k

< Cn,G(α) for k = l − 1, r + 1.

Choosing the maximal point within every significant environment

k◦(l,r) = arg max
l≤k≤r

|TG(k)|
σ̂k

(7)



6 mosum: A Package for Moving Sums in Change-Point Analysis

Time

0 50 100 150 200

−
2

0
2

4

0 50 100 150 200

0
1

2
3

4
5

6
7

Figure 2: Top: A time series with one mean changes at the location 100, where the underlying
step signal ft is overlaid as dashed line. Bottom: The corresponding absolute MOSUM
detector |TG(k)| for k = 1, . . . , n with bandwidth G = 20. The critical value for level α = 0.05
is denoted by a horizontal line, and maximal points within significant environments of TG(k)
are highlighted by the vertical lines.

as a change-point estimator, however, may result in false positives for the following reason.
Recall that the MOSUM signal TG(k; f) is a linear function to the left and right of the true
change-point and will cross the threshold. The observed detector on the other hand adds
noise to this signal. Therefore it can happen, merely by chance, that the detector falls below
the threshold only to be exceeding it again for just one time point or two, before crossing
beneath the threshold again. Obviously, this results in additional significant neighborhoods
and hence spurious estimators. See Figure 2 for an example, where this phenomenon occurs
at about time point 90. Every statistical procedure based on the MOSUM detector thus needs
to take this effect into account.
While spurious peaks such as this can usually be distinguished from true changes by visual
inspection, the following two mathematical criteria are implemented in the R package mosum
in order to avoid such systematic over-estimation.

The ε-criterion

Let 0 < ε < 1/2 be fixed. A maximal point within a significant environment k◦(l,r) as in (7)
will be accepted as a change-point estimate if and only if

r − l ≥ εG. (8)

This criterion states that the significance environment has to be large enough relative to the
summation bandwidth G. Otherwise, we argue that the significance is merely due to the
influence of a neighboring change (as in Figure 2 at about time point 90), hence it will be
discarded. Based on extensive simulation studies, we recommend ε = 0.2 as a reasonable
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default choice which works well in many situations. The estimators thus obtained for the
change-point locations are consistent in rescaled time, as long as the distance between neigh-
boring change-points is, in some asymptotic sense, at least twice the bandwidth, see Eichinger
and Kirch (2018) for further details. The ε-criterion is particularly useful if the bandwidth is
sufficiently large, i.e., G ≥ 20.

The η-criterion

Let η ≥ 0 be fixed. The η-criterion accepts a time point k◦ as a change-point estimator if
and only if it is the maximal point within its own ηG environment, i.e.,

k◦ = arg max
k◦−ηG≤k≤k◦+ηG

|TG(k)|
σ̂k

. (9)

From the simulation studies, we found that a value of η = 0.4 can be recommended if there
is no further knowledge about the mutual distance of changes in the data. Lifting the re-
quirement on the significance of the entire ηG environment, the η-criterion is less conservative
compared to the ε-criterion. This can be particularly useful when the bandwidth is small; we
further compare the two criteria in the following.

Comparison of the two criteria

The ε-criterion is conservative in the sense that it not only requires significance of one point
(as per the corresponding testing procedure) but of a whole neighborhood of length at least
εG. Therefore, in some situations, the ε-criterion might be too restrictive. In particular, if
the bandwidth is small (e.g., G = 8), significance environments of length 2 or even of length 1
should not be discarded a priori. See Figure 3 for an example of such a situation, where the
changes at time points 10 and 20 are detected with a significant environment of length 1;
nonetheless, the peaked shape of the detector clearly indicates the presence of changes.
Furthermore, it can happen for larger bandwidths and certain jump signals that the detector
lies entirely above the threshold. In such cases, the ε-criterion only keeps the global maximizer
of the detector as a change-point estimator even though it is obvious that only one change-
point could not have caused the detector to be significant everywhere. See Figure 4 for an
example of such a situation, where the location of changes is visible in the detector (in terms
of peaks), but the detector does not fall below the critical value between the changes. The η-
criterion with a suitably chosen η on the other hand can correctly identify more than one
change-points in this example.

2.3. Variance estimation

The standard variance estimator (n − 1)−1∑n
t=1(Xt − X̄n)2 is consistent in the absence of

mean changes, but systematically over-estimates the variance in the presence of mean changes
and thus is not suitable for change-point estimation procedure. The median absolute devia-
tion (Hampel 1974) or inter-quartiles range estimators are popularly adopted in the presence
of change-points, but they have also been observed to over-estimate the variance in the pres-
ence of frequent change-points, see Fryzlewicz (2020). An alternative approach to variance
estimation is to use a local variance estimator, such as the MOSUM-based variance estimator
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Figure 3: Top: A time series of length 140 with mean changes at locations 10, 20, . . . , 130,
where the underlying step signal ft is overlaid as dashed line. Bottom: The corresponding
scaled absolute MOSUM detector σ−1|TG(k)| with G = 8; the critical value for level α = 0.05
is denoted by a horizontal line. The series is a realization of the model teeth10 from Fry-
zlewicz (2014) (see Section 3.1).
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Figure 4: Left: A time series of length 150 with mean changes at locations 10, 20, . . . , 140,
where the underlying step signal ft is overlaid as dashed line. Right: The corresponding scaled
absolute MOSUM detector σ−1|TG(k)| with G = 15; the critical value for level α = 0.05 is
denoted by a horizontal line. The series is a realization of the model stairs10 from Fryzlewicz
(2014) (see Section 3.1).

defined as

σ̂2
(l,r) := 1

r − l + 1

r∑
t=l

(Xt − X̄(l,r))2

with X̄(l,r) denoting the sample mean of observations Xl, Xl+1, . . . , Xr.
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Possible choices of σ̂k for the usage within (1) are the local variance estimators

σ̂2
k = 1

2
(
σ̂2

(k−G+1,k) + σ̂2
(k+1,k+G)

)
, (10)

σ̂2
k = min{σ̂2

(k−G+1,k), σ̂
2
(k+1,k+G)}, or (11)

σ̂2
k = max{σ̂2

(k−G+1,k), σ̂
2
(k+1,k+G)}. (12)

The variance estimator in (11) is preferable for the detection of change-points at which not
only the mean but also the variance undergoes changes, whereas the estimator in (12) is more
robust in the sense that it will prevent the detection of spurious estimators in the presence of
time-varying variance; see Sections 4.1 and 4.3 for an example with heteroscedastic data.
It is possible to consider the model (4) with dependent innovations ei fulfilling weak de-
pendency assumptions. The distributional convergence and thus the thresholds associated
with the corresponding critical values as discussed in Section 2.1, remain valid as long as
the variance estimators σ̂2

k are replaced by appropriate estimators for the long-run variance
τ2 = limn→∞ var(

√
nēn) with ēn = n−1∑n

t=1 et. For this, we may use the MOSUM-version
of the flat-top kernel estimator (Politis and Romano 1995) calculated with sufficiently large
bandwidths (e.g., G ≥ 50), or the difference-based estimators from Tecuapetla-Gómez and
Munk (2017), Dette, Eckle, and Vetter (2020) and Axt and Fried (2019). This is not recom-
mended in the presence of frequent changes, however, as accurate estimation of the long-run
variance is typically very difficult and thus estimators based on small and medium-sized sam-
ples are not very reliable. An alternative approach is to use the local variance estimators
(ignoring the dependence structure) and at the same time slightly increasing the threshold,
e.g., using Cn,G(α) · log(n/G)δ for some δ > 0 (e.g., δ = 0.1), where Cn,G(α) is as in (6).

2.4. Choice of bandwidth

In practice, the choice of bandwidth plays a crucial role for the performance of the MOSUM
procedure. Smaller bandwidths can detect large jumps even if there are neighboring change-
points close by. At the same time, large bandwidths may not be suitable for estimating the
locations of such change-points due to contamination of the signal by neighboring change-
points. Indeed, with large bandwidths, the signal may have a flat top (i.e., the signal has no
longer a unique maximum but the maximal value is attained over an interval), see the third
and fourth panels in Figure 5 for an example. In this case – while being significant – the
maximal point in the corresponding significant neighborhood will effectively be arbitrary on
that interval, so it cannot be used for the purpose of change-point localization.
On the other hand, large bandwidths are able to detect small isolated changes, whereas small
bandwidths tend to miss such small jumps even if they are surrounded by long stationary
stretches. Consider Figure 5 as an example, where a bandwidth of at least G = 70 seems to
be required to detect the small change at k1 = 100. One remedy for this issue is to adopt
multiple bandwidths, which will be discussed in the upcoming Section 2.6.
In a similar manner, for some signals, using the same bandwidth for the left and right sum-
mation windows in the MOSUM detector does not provide sufficient flexibility. Consider the
case of a small mean change located close to a large mean change, see the top panel of Figure 6
for such an example. The change may be too small to be detected by a small bandwidth,
whereas the summation windows will be contaminated by the neighboring large mean change



10 mosum: A Package for Moving Sums in Change-Point Analysis

Time

0 100 200 300 400 500

−
4

−
2

0
2

4

Time

0 100 200 300 400 500

0
2

4
6

8
10

12

Time

0 100 200 300 400 500

0
2

4
6

8
10

12

0 100 200 300 400 500

0
2

4
6

8
10

Figure 5: From top to bottom: A time series with mean changes at locations k1 = 100,
k2 = 300 and k3 = 350, where the underlying step signal ft is overlaid as dashed line, and
the absolute MOSUM detector |TG(k)| for G = 30, 70 and 100, where the absolute MOSUM
signal |TG(k; f)| is overlaid as dashed line and the critical value at level α = 0.05 is visualized
by a solid horizontal line.

when a large bandwidth is used. One way of overcoming this limitation is to consider the use
of asymmetric bandwidths G = (Gl, Gr), which will be discussed in the following Section 2.5.

2.5. Asymmetric bandwidths

Let G = (Gl, Gr) be a bandwidth, possibly asymmetric (i.e., Gl 6= Gr). The asymmetric
MOSUM detector is defined as

TG(k) =
√
Gl ·Gr
Gl +Gr

 1
Gr

k+Gr∑
t=k+1

Xt −
1
Gl

k∑
t=k−Gl+1

Xt

 , k = Gl, . . . , n−Gr. (13)

At the left and right boundaries, the values of TG(k) can be defined by a CUSUM extension
similar to (3):

TG(k) :=
√

Gl +Gr
k(Gl +Gr − k)

k∑
t=1

(
X̄(1,Gl+Gr) −Xt

)
, k = 1, . . . , Gl − 1, (14)

and analogously for k = n−Gr + 1, . . . , n.
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Figure 6: From top to bottom: A time series of length n = 500 with two mean changes at
the locations 200 and 230 of respective height 3 and −1.1, and the corresponding absolute
MOSUM detector |TG(k)| for k = 1, . . . , n with (symmetric) bandwidths G = 30, 120 and G =
(30, 120). Critical value at level α = 0.05 is visualized by a solid horizontal line and the
change-points estimated according to the η-rule by solid vertical lines.

The critical value Cn,G(α) for the asymmetric MOSUM test, as well as the corresponding
p values pn,G, can be obtained similarly as in the symmetric case, see Section C in the
Appendix. As an example, the usefulness of using asymmetric bandwidths is illustrated in
the bottom panel of Figure 6.
The extension of the change-point estimators to the asymmetric case is straightforward. The
ε-criterion (8) is adjusted to

r − l ≥ ε

2(Gl +Gr), (15)

and the η-criterion (9) is adjusted to

k◦ = arg max
k◦−ηGl≤k≤k◦+ηGr

|TG(k)|
σ̂k

. (16)

The MOSUM-based variance estimators can be defined with asymmetric bandwidths in a
similar fashion as the MOSUM detector. When using asymmetric bandwidths, it is advisable
to avoid pairs of bandwidths that are too unbalanced, both in view of the asymptotic theory
and the finite sample performance as is well-known from the two-sample testing literature.
To avoid such situations, one can impose an upper bound on max(Gl, Gr)/min(Gl, Gr).



12 mosum: A Package for Moving Sums in Change-Point Analysis

Algorithm 1: Multiscale MOSUM procedure with bottom-up merging.
input : Data (X1, . . . , Xn), set G of symmetric bandwidths, α, η ∈ (0, 1)

1 Initialize P ← K ← ∅
/* P contains the pool of candidates to be pruned down and K the final

estimators */
/* Step 1: Generate candidates */

2 for G ∈ G do
3 PG ← set of MOSUM change-point estimators obtained with bandwidth G and

critical value Cn,G(α) according to criterion (9)
4 for k̂ ∈ PG do Add (k̂, G) to P
5 end

/* Step 2: Merging in the increasing order with respect to G */
6 for (k̂◦, G) ∈ P in the increasing order with respect to G do
7 if min

k̂∈K |k̂◦ − k̂| ≥ ηG then Add k̂◦ to K
8 end
output: K

2.6. Multiple bandwidths

In Section 2.4, we showed that the use of a single bandwidth (symmetric or asymmetric)
may not be adaptive enough to detect different types of changes, which advocates the use of
multiple bandwidths. On the other hand, this may introduce spurious change-point estimates
and/or multiple estimates that relate to the same underlying true change-point. For these
reasons, an additional merging step is necessary. Below, we introduce two procedures for
pruning down a set of candidate change-point estimators obtained from applying the MOSUM
procedure with multiple bandwidths.

Multiscale MOSUM procedure with bottom-up merging

As argued in Section 2.4, one possible issue of large bandwidths is that their summation
windows may contain, and thus be contaminated by, several changes, rendering the corre-
sponding estimators unreliable. Motivated by this consideration and following Messer, Kirch-
ner, Schiemann, Roeper, Neininger, and Schneider (2014), it is reasonable to keep all the
candidate estimators from the smallest bandwidth and, iteratively moving on to the next
smallest bandwidth, only keep those that cannot be accounted for by the previously accepted
estimates.
To elaborate, in the order of increasing bandwidths, we check whether there exists a previously
accepted change-point k̂ in the final set of estimators K, which is close to the current candidate
k̂◦ detected with the bandwidth G, in the sense that |k̂◦ − k̂| < ηG for some η ∈ (0, 1). If
so, we conclude that the change-point estimated by k̂◦ has already been detected by k̂ ∈
K, and thus discard k̂◦; otherwise we add it to K. We note that the tuning parameter η
bears close resemblance to the parameter η from the η-criterion in (9). For this reason, the
implementation of the procedure in the R package mosum also uses the η-criterion to obtain
the candidate set in this bottom-up merging. Algorithm 1 depicts a comprehensive high-
level description of the procedure. See Messer et al. (2014) for further details and a more
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comprehensive discussion of the rationale behind this approach in the context of change-point
estimation for point processes.
The advantages of the bottom-up merging include its ease of implementation and computa-
tional speed. There are, however, several drawbacks as well: First, this approach only works
with multiple symmetric bandwidths since a set of asymmetric bandwidths does not provide
a canonical ordering. Secondly, the effect of multiple testing should be taken into account,
which has been done in Messer et al. (2014) for the problem considered therein. More im-
portantly, the bandwidths in consideration need to be large enough so that the critical value
from the asymptotic distribution is meaningful. For example, there may be false positives in
P, in the sense that for some (k̂, G) ∈ P – particularly for small G – the detection interval
(k̂ −G, k̂ +G] does not include any true change-point, and the bottom-up merging may fail
to prevent such tuple from entering K. To avoid this, Messer et al. (2014) propose to use only
bandwidths of order n. However, for signals with frequent change-points in some parts but
no jumps in other parts, this poses as a limitation.

Multiscale MOSUM procedure with localized pruning

Niu and Zhang (2012) considered using an information criterion to prune down a set of
candidate change-point estimators generated by a multiscale MOSUM procedure, say P, by
performing an exhaustive search over every possible combination of the candidate estimators,
and a similar idea has also been explored by Yau and Zhao (2016). Such an approach quickly
becomes computationally infeasible as the number of candidate models grows exponentially
with |P|. Moreover, it does not take advantage of that each estimator is detected within a
local interval determined by the summation windows. That is, for any estimator k̂ detected
with bandwidths G = (Gl, Gr), we have the information about its detection interval I(k̂) :=
(k̂ − Gl, k̂ + Gr] which can be utilized in the pruning step. In Algorithm 2, we present
a comprehensive high-level description of the information criterion-based localized pruning
method applicable with the multiscale MOSUM procedure; in contrast to Algorithm 1, it
allows the use of asymmetric bandwidths.
In Step 2 of Algorithm 2, we determine the order in which the change-point candidates (k̂,G′′ ∈
P are to be processed. For this, we adopt a sorting function c, which assesses the “signif-
icance” of each candidate according to the inverse of the p value (cp) associated with its
detection or the (scaled) jump size (cJ) as defined below:

cp(k̂,G) = 1
pn,G(σ̂−1

k̂
|TG(k̂)|)

and cJ(k̂,G) =
√
Gl +Gr
GlGr

|TG(k̂)|
σ̂
k̂

. (17)

All change-point candidates are processed one by one in the decreasing order according to the
chosen sorting function. In case of ties, we order the candidates with respect to the length
of their detection intervals and associated bandwidths, preferring those returned at shorter
bandwidths.
In Step 2.2 of Algorithm 2, we identify a local environment (k̂L, k̂R] around the estimator k̂◦
considered at the current iteration, over which we perform the exhaustive search for change-
points. It is defined by the currently surviving candidates (which either have already been
selected or are still to be processed, contained in C) closest to k̂◦, while their detection intervals
do not overlap with that of k̂◦ (see lines 8–9 of Algorithm 2); any candidate falling within
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Algorithm 2: Multiscale MOSUM procedure with localized merging.
input : Data (X1, . . . , Xn), set G of (possibly asymmetric) bandwidths, α and

ε or η ∈ (0, 1), sorting function c as cp or cJ from (17)
1 Initialize P ← C ← K ← ∅

/* P contains the pool of candidates to be pruned down, C the
currently surviving candidates and K the final estimators */

/* Step 1: Generate candidates */
2 for G ∈ G do
3 PG ← set of MOSUM change-point estimators obtained with bandwidth G and

critical value Cn,G(α) according to criteria (15) or (16)
4 for k̂ ∈ PG do Add (k̂,G) to P
5 end

/* Step 2: Prune down P in decreasing order with respect to c(·) */
6 while P is not empty do

/* Step 2.1: Find the candidate of consideration (k̂◦,G◦) */
7 (k̂◦,G◦)← argmax(k̂,G)∈P c(k̂,G)

/* Step 2.2: Find the local environment (k̂L, k̂R] and the set of
conflicting candidates D */

8 k̂L ← max{k̂ ∈ C ∪ {0}, k̂ < k̂◦ : k̂ ∈ K or I(k̂) ∩ I(k̂◦) = ∅}
9 k̂R ← min{k̂ ∈ C ∪ {n}, k̂ > k̂◦ : k̂ ∈ K or I(k̂) ∩ I(k̂◦) = ∅}

10 D ← {(k̂,G) ∈ P : k̂L < k̂ < k̂R}
/* Step 2.3: Perform exhaustive search on conflicting candidates */
/* See Algorithm 3 in Appendix */

11 Â ← set selected according to (II) with C, D and (k̂L, k̂R]
/* Step 2.4: Update P, C and K based on the exhaustive search */

12 R ← {(k̂◦,G◦)} ∪ {(k̂,G) ∈ D : k̂ ∈ [min Â,max Â]}
13 if k̂L ∈ K ∪ {0} then R ← R∪ {(k̂,G) ∈ D : k̂ ∈ (k̂L,min Â)}
14 if k̂R ∈ K ∪ {n} then R ← R∪ {(k̂,G) ∈ D : k̂ ∈ (max Â, k̂R)}
15 Add A to K, remove R from P and update C ← P ∪A
16 end

output: K

(k̂L, k̂R] is regarded as belonging to the set of conflicting candidates D, in the sense that their
detection bandwidths overlap with that of k̂◦.

For the exhaustive search performed on D in Step 2.3, in which we determine the inclusion
or exclusion of each change-point candidate in D, the Schwarz Criterion (SC) is adopted.
Specifically, for any A ⊂ D, SC is calculated as

SC(A|C, (k̂L, k̂R]) = n

2 log RSS(A ∪ {C \ (k̂L, k̂R)}) + (|A|+ |C \ (k̂L, k̂R)|) · p(n)%, (18)
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where

RSS(Q) =
m∑
j=0

k̃j+1∑
t=k̃j+1

(
Xt − X̄(k̃j+1,̃kj+1)

)2
(19)

denotes the residual sum of squares given some set Q = {k̃1, . . . , k̃m} of change-point candi-
dates (with the convention k̃0 := 0 and k̃m+1 := n). If the user is confident that a normality
assumption on the data is reasonable, or at least that all the moments of Xt exist, we recom-
mend the choice of p(n) = log(n) with % slightly larger than one (e.g., % = 1.01). Otherwise
p(n) = n should be used with an exponent 2/ν < % < 1, where ν is the number of moments
that one believes to exist for E(|et|ν) <∞ (see Kühn 2001).
Among the 2|D| subsets of D, we select the subset Â according to the following rule. Let F
denote the collection of all subsets A ⊂ D satisfying:

adding further change-point candidates to A monotonically increases the SC, (I)

and denote by m∗ = minA∈F |A|. Then, we select

Â = arg min{A ⊂R A′ ∈ F with m∗ ≤ |A′| ≤ m∗ + 2 : SC(A|C, (k̂L, k̂R])} (II)

where, by A ⊂R A′ = {k̂i1 < k̂i2 < . . . < k̂im}, we denote that A is a “restricted” subset of
A′ which contains all inner elements of A′ (if any), while the first and the last elements of
A′ may or may not be included in A; i.e., A′ \ A ⊂ {k̂i1 , k̂im}. If there are multiple subsets
yielding the minimum SC in (II), we choose the one with the minimum cardinality; if there
are still ties, we arbitrarily select one. An efficient algorithm implementing the exhaustive
search according to (II) is outlined in Section A of the Appendix.
Finally, Â is added to the final set of estimated change-points K in Step 2.4 of Algorithm 2,
while candidates in D which do not merit further consideration are removed from P, and the
set of currently surviving candidates C is updated accordingly. Repeatedly performing the
localized exhaustive search, the algorithm is terminated when P is empty.
We refer to Cho and Kirch (2020b) for the discussion on the theoretical properties of the
multiscale MOSUM procedure with localized pruning, where it is shown to achieve consistency
both in the total number and the locations of change points under general conditions.

2.7. Bootstrap confidence intervals

Consider a set k̂1, . . . , k̂N̂ of change-point estimates returned by, e.g., the multiscale MOSUM
procedures (Algorithms 1–2) or by the single-bandwidth MOSUM procedure from Section 2.2.
Conditional on consistent estimation of the multiple change-points, both in their total number
(such that N̂ = N) and locations, we can construct confidence intervals for the locations of
change-points via bootstrapping. Below we provide the simplest version of the bootstrap
scheme for i.i.d. innovations.
Denote the (possibly asymmetric) detection bandwidths associated with k̂j by Ĝj = (Ĝl j , Ĝr j),
and let Ij := {k̂j−1+1, . . . , k̂j} for j = 1, . . . , N+1, where the convention k̂0 := 0 and k̂N+1 :=
n is employed. Note that Ij represents all time points between the (j− 1)th and the jth esti-
mated change-points, so that the underlying step signal is assumed to be (approximately) con-
stant within this interval. A bootstrap replicate {X∗t : t ∈ Ij} of the observations {Xt : t ∈ Ij}
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can be obtained by drawing a random sample of size |Ij | from {Xt : t ∈ Ij} (with replace-
ment). Repeating this for all j = 1, . . . , N̂ + 1 yields a bootstrap replicate {X∗1 , . . . , X∗n} of
the observed time series. Then a bootstrap replicate k∗j of k̂j is obtained as

k∗j = arg max
k̂j−Ĝl j+1≤k≤k̂j+Ĝr j

|T ∗Ĝj
(k)|,

where T ∗
Ĝj

(k) = TĜj
(k;X∗1 , . . . , X∗n) is defined as in (13), with Xt replaced by its bootstrap

replicates X∗t . From this, confidence intervals for the change-point locations can readily be
computed.
To elaborate, assume that for each change-point estimate k̂j , we have B bootstrap repli-
cates k∗j,b, 1 ≤ b ≤ B. Denote by Mj(α) the empirical (1 − α/2)-quantile of {|k∗j,1 −
k̂j |, . . . , |k∗j,B − k̂j |}. Then a pointwise 100(1 − α)%-confidence interval Kpw

j (α) for kj can
be constructed as

Kpw
j (α) :=

[
k̂j −Mj(α), k̂j +Mj(α)

]
. (20)

To construct uniform confidence intervals for k1, . . . , kN , we take into account the multiple
testing problem that arises when considering multiple estimates, by computing M(α) as

M(α) = min
{
c : 1

B

B∑
b=1

I
{

max
1≤j≤N

(
d̂2
j

σ̂2
j

∣∣∣k∗j,b − k̂j∣∣∣
)
≤ c

}
≥ 1− α

}
,

where d̂j = X̄(k̂j+1,̂kj+1) − X̄(k̂j−1+1,̂kj) denotes the estimated height of the jump at t = kj ,
and

σ̂2
j = 1

k̂j+1 − k̂j−1 − 2

 k̂j+1∑
t=k̂j+1

(Xt − X̄(k̂j+1,̂kj+1))
2 +

k̂j∑
t=k̂j−1+1

(Xt − X̄(k̂j−1+1,̂kj))
2


the pooled innovation sample variance. Then, uniform 100(1 − α)%-confidence intervals
for k1, . . . , kN are given by

Kunif
j (α) :=

[
k̂j −

M(α)σ̂2
j

d̂2
j

, k̂j +
M(α)σ̂2

j

d̂2
j

]
, j = 1, . . . , N. (21)

Note that for each j = 1, . . . , N , if either of the two endpoints of Kpw
j (α) falls outside the

detection interval (k̂j − Ĝl j , k̂j + Ĝr j ], we trim off the confidence intervals so that Kpw
j (α) ⊂

(k̂j − Ĝl j , k̂j + Ĝr j ]; a similar step is taken for the uniform confidence intervals Kunif
j (α).

3. Introduction to the package
In this section, we introduce the main functions of the mosum packages for multiple change-
point detection, mosum, multiscale.bottomUp and multiscale.localPrune, as well as func-
tions for producing confidence intervals for change-point locations and visualising the results.
We first start with a brief guide on how to generate piecewise stationary time series pop-
ularly used as benchmark in the change-point literature in Section 3.1. In Section 3.2, we
explain the implementation of the (single-bandwidth) MOSUM procedure described in Sec-
tions 2.1–2.2. In the subsequent Sections 3.3 and 3.4, we introduce the implementations of the
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multiscale MOSUM procedures given in Algorithms 1–2 from Section 2.6, respectively. We
present how bootstrap confidence intervals for change-points can be obtained in Section 3.6,
and discuss some tools for visualization of the outcome from multiscale change-point analysis
in Section 3.7.

3.1. Generating piecewise stationary time series

The function testData generates piecewise stationary time series with i.i.d. innovations.

testData(model = "custom", lengths = NULL, means = NULL,
sds = NULL, rand.gen = rnorm, seed = NULL, ...)

It takes the following arguments:

• model: A string specifying the model from which a realization is to be generated. The
default choice is "custom", which allows the user to parse the piecewise stationary
model with the arguments lengths, means and sds. In addition, five change-point
models "blocks", "fms", "mix", "teeth10" and "stairs10" from Fryzlewicz (2014)
have been implemented. If one of these models is chosen, the arguments lengths, means
and sds are ignored.

• lengths: Lengths of the piecewise stationary segments, represented as an integer vector.
Only in use if model = "custom".

• means, sds: Means and deviation scalings of the piecewise stationary segments, rep-
resented as numeric vectors. The i.i.d. innovations generated from the distribution
specified by rand.gen are multiplied by the respective entry of sds over each segment.
Note that the entries of sds coincides with the standard deviation in case of standard
normal innovations (rand.gen = rnorm). Only in use if model = "custom".

• rand.gen: A function to generate the time series innovations.

• seed: A seed value to be parsed to set.seed (optional) preceding a call of rand.gen.
If seed is set to NULL, then set.seed is not called.

The function testData returns a list consisting of a numeric vector containing a realization
of the specified time series model, as well as the deterministic piecewise constant signal ft
and the scaling vector applied to the innovations. As an example, we consider a realization
of the mix time series model, visually overlaid by the corresponding step signal:

R> td <- testData(model = "mix", seed = 1234)
R> plot(ts(td$x), col = "darkgray")
R> lines(td$mu, col = 2, lty = 2, lwd = 2)

The result is plotted in Figure 7.

3.2. MOSUM procedure with a single bandwidth

The single-bandwidth MOSUM procedure from Section 2.2 for multiple change-point estima-
tion is implemented in the function mosum:
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Figure 7: A realization from the mix time series model from Fryzlewicz (2014), with the
piecewise constant signal overlaid in dashed line.

mosum(x, G, G.right = G,
var.est.method = c("mosum", "mosum.min", "mosum.max", "custom")[1],
var.custom = NULL, boundary.extension = TRUE,
threshold = c("critical.value", "custom")[1], alpha = 0.1,
threshold.custom = NULL, criterion = c("eta", "epsilon")[1],
eta = 0.4, epsilon = 0.2, do.confint = FALSE, level = 0.05, N_reps = 1000)

The function takes the following arguments:

• x: Input data X1, . . . , Xn, i.e., a univariate time series represented as a numeric vector
(of length n) or an object of class ‘ts’.

• G: Bandwidth G, i.e., a single positive integer smaller than n/2. Alternatively, a single
numeric value in the interval (0, 0.5) describing G as a fraction of the data length n can
be given.

• G.right: Length of the right summation window Gr, i.e., a single positive integer, if an
asymmetric bandwidth G = (Gl, Gr) is used. As with G, it can alternatively be given as
a single numeric value in (0, 0.5). When max(Gl, Gr)/min(Gl, Gr) < 4 while threshold
= "critical.value", a warning message is generated; see also Section 2.5 for a brief
discussion.

• var.est.method: A string encoding how the local variance estimation σ̂2
k shall be con-

ducted. Currently implemented are:

– "custom": The local variance estimates supplied by the user; in this case, these val-
ues can be parsed as a numeric vector of length n with the argument var.custom;

– "mosum": The MOSUM-based variance estimator from (10) is used;
– "mosum.min": the MOSUM-based variance estimator from (11) is used;
– "mosum.max": the MOSUM-based variance estimator from (12) is used.

• var.custom: The custom local variance estimates σ̂2
k for k = 1, . . . , n as a numeric vector

of length n containing positive values. Only in use if var.est.method = "custom".
• boundary.extension: Logical variable indicating whether the values TG(k) for 1 ≤
k ≤ Gl − 1 and n − Gr + 1 ≤ k ≤ n shall be padded with CUSUM values, see (3). If
boundary.extension = FALSE, these values will be evaluated as NA.
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• threshold: A string indicating which threshold should be used to determine signif-
icance of the scaled absolute MOSUM detector. By default, the asymptotic critical
value Cn,G(α) from (6) is used, where the significance level α is given by the pa-
rameter alpha. Alternatively, with threshold = "custom", it is possible to parse a
user-defined numerical value with the argument threshold.custom. The latter case
might be used e.g., in case of dependent observations, see the discussion at the end of
Section 2.3.

• alpha: A single numeric value in (0, 1) representing the significance level for the critical
value. Only in use if threshold = "critical.value".

• threshold.custom: A numeric value greater than 0 to be used as the threshold for
the significance of the scaled absolute MOSUM detector. Only in use if threshold =
"custom".

• criterion: A string indicating which change-point estimation criterion shall be em-
ployed. Possible options are "epsilon" and "eta" for the ε-criterion and η-criterion,
respectively (see (8), (9), (15) and (16)).

• epsilon: A numeric value in (0, 1] for ε in the ε-criterion. Only in use if criterion =
"epsilon".

• eta: A numeric value greater than 0 for η in the η-criterion. Only in use if criterion
= "eta".

• do.confint: A boolean argument indicating whether to compute the confidence inter-
vals for change-points.

• level: A single numeric value in (0, 1) representing the confidence level for the confi-
dence intervals. Only in use if do.confint = TRUE.

• N_reps : A single positive integer representing the number of bootstrap replicates to
be generated for confidence interval construction. Only in use if do.confint = TRUE.

The function mosum is flexible in that it allows for the user to supply custom variance and
threshold values using the arguments var.custom and threshold.custom, respectively, as
well as providing the theoretically-motivated default choices discussed in Sections 2.1 and 2.3.
When called, mosum returns an S3 object of class ‘mosum.cpts’, containing the following
entries (apart from the call arguments):

• stat: Scaled absolute MOSUM detector σ̂−1
k |TG(k)| for 1 ≤ k ≤ n, as a numeric vector

of length n.
• rollsums: Unscaled MOSUM detector TG(k) for 1 ≤ k ≤ n, as a numeric vector of

length n.
• var.estimation: Values of σ̂2

k as a numeric vector of length n estimated as specified
by var.est.method.

• cpts: A vector containing the locations of the estimated change-points.
• cpts.info: A data frame containing the estimated change-points and their respective

detection bandwidths, asymptotic p values of the MOSUM statistics and scaled change
heights (obtained as in (17)) as columns.
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Figure 8: Annual flow of the Nile at Aswan from 1871 to 1970 with the estimated piecewise
constant signal (above) and the corresponding values of the scaled absolute MOSUM detector
with bandwidth G = 20 (below). The critical vale is visualized by a solid horizontal line and
the location of the estimated change-point location by a solid vertical line.

• ci: An S3 object of class ‘cpts.ci’ containing confidence intervals for the change-points.
Returned iff do.confint = TRUE; see Section 3.6 for further details.

S3 objects of class ‘mosum.cpts’ are supported by plot, summary, print and confint meth-
ods.
As an illustration, we analyse Nile, a time series of length n = 100 containing the annual flow
of the Nile at Aswan from the R package datasets (see help(Nile) for further information
about the dataset). Using the argument display of plot.mosum.cpts, we can visualize
either the input time series or the scaled absolute MOSUM detector along with the estimated
change-points.

R> m <- mosum(Nile, G = 20, alpha = 0.05)
R> par(mfcol = c(2, 1), mar = c(4, 2.5, 2.5, 0.5))
R> plot(m, display = "data")
R> plot(m, display = "mosum")

The result is shown in Figure 8. It can be seen that the scaled MOSUM detector exceeds the
critical value Cn,G(0.05) in the years 1895–1901. Applying the η-criterion described in (9)
with the default choice η = 0.4, a single change-point is estimated at α = 0.05 as below.

R> summary(m)
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change-points estimated at alpha = 0.05 according to eta-criterion
with eta = 0.4 and mosum variance estimate:

cpts G.left G.right p.value jump
[1,] 28 20 20 0.00308 1.721

The estimated change-point location at k = 28, where the scaled absolute MOSUM detector
attains its maximum, coincides with the year 1898, which is close to the beginning of the
construction of the Aswan Low Dam in 1899. Besides the estimated locations of change-
points, summary of ‘mosum.cpts’ objects extract and print the information contained in the
entry cpts.info.

3.3. Multiscale MOSUM procedure with bottom-up merging

The function multiscale.bottomUp provides an implementation of the multiscale MOSUM
procedure with bottom-up merging described in Algorithm 1 from Section 2.6:

multiscale.bottomUp(x, G = bandwidths.default(length(x),
G.min = max(20, ceiling(0.05*length(x)))),
threshold = c("critical.value", "custom")[1],
alpha = 0.1, threshold.function = NULL, eta = 0.4,
do.confint = FALSE, level = 0.05, N_reps = 1000, ...)

Apart from those passed to the function mosum (including ...), it accepts the following
arguments:

• G: A set G of (symmetric) bandwidths, represented as a vector of integers smaller than
n/2, or numeric values in (0, 0.5) describing the bandwidths relative to n. When the
smallest bandwidth is smaller than min(20, 0.05n) (0.05 in the case of the relative band-
width) while threshold = "critical.value", a warning message is generated, see the
discussion at the end of Section 2.6.1. By default, it is given by bandwidths.default
(see Section 3.5), with its arguments set to avoid triggering the warning.

• threshold: it is possible to parse a user-defined threshold function with the argu-
ment threshold.function when threshold = "custom"; see Section 4.2 for an exam-
ple.

• threshold.function: A user-specified function of the form function(G, n, alpha)
for computing a bandwidth-dependent threshold of significance. Only in use if threshold
= "custom".

When called, multiscale.bottomUp returns an S3 object of class ‘multiscale.cpts’, con-
sisting of the following entries in addition to the call arguments:

• cpts: Set of change-point estimators K (see Algorithm 1), represented as an integer
vector.

• cpts.info: A data frame containing the estimated change-points and their respective
detection bandwidths, asymptotic p values of the MOSUM statistics and scaled change
heights (obtained as in (17)) as columns.
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• pooled.cpts: Candidate set P containing all the estimators from the multiscale MO-
SUM procedure considered for pruning.

• ci: An S3 object of class ‘cpts.ci’ containing confidence intervals for the change-points.
Returned iff do.confint = TRUE; see Section 3.6 for further details.

S3 objects of class ‘multiscale.cpts’ are supported by plot, summary, print and confint
methods. We provide a detailed description of plot.multiscale.cpts in Section 3.7.
As an example, we apply the multiscale MOSUM procedure with bottom-up merging and the
bandwidth set G = {30, 50, 80, 130}, to a piecewise i.i.d. normal time series of length n = 600
with mean changes at time points k1 = 50, k2 = 100, k3 = 300 of size d1 = 1, d2 = 2 and
d3 = −3, respectively:

R> td <- testData(lengths = c(50, 50, 200, 300), means = c(0, 1, 3, 0),
+ sds = rep(1, 4), seed = 123)
R> x <- td$x
R> mbu <- multiscale.bottomUp(x, G = c(30, 50, 80, 130))
R> print(mbu$cpts)
R> print(mbu$pooled.cpts)

[1] 50 100 300
[1] 50 96 100 300

The output K = {50, 100, 300} of the algorithm coincides with the true change-points, whereas
the candidate set before merging P contains an additional estimate 96 which is a duplicate
estimate for k2 = 100.

3.4. Multiscale MOSUM procedure with localized pruning

The function multiscale.localPrune provides an implementation of Algorithm 2 from Sec-
tion 2.6:

multiscale.localPrune(x, G = bandwidths.default(length(x)),
max.unbalance = 4, threshold = c("critical.value", "custom")[1],
alpha = 0.1, threshold.function = NULL,
criterion = c("eta", "epsilon")[1], eta = 0.4, epsilon = 0.2,
rule = c("pval", "jump")[1], penalty = c("log", "polynomial")[1],
pen.exp = 1.01, do.confint = FALSE, level = 0.05, N_reps = 1000, ...)

It accepts the following arguments, in addition to those accepted by mosum and
multiscale.bottomUp:

• G: A set G of bandwidths, represented as a vector of integers smaller than n/2, or numeric
values in (0, 0.5) describing the bandwidths relative to n. Asymmetric bandwidths
obtained as the Cartesian product of the set G with itself are used for the multiscale
MOSUM procedure. By default, it is given by bandwidths.default, see Section 3.5.

• max.unbalance: A numeric value greater than equal to one which imposes an upper
bound on max(Gl, Gr)/min(Gl, Gr) for the bandwidth G = (Gl, Gr) to be used for
candidate generation. By default, we recommend max.unbalance = 4.
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• rule: A string for the choice of the sorting criterion c to be used in Algorithm 2.
Possible values are "pval" for the inverse of the p value corresponding to change-point
estimates (cp) and "jump" for the corresponding jump size (cJ), see (17).

• penalty: A string indicating which penalty p(n) to be used in the SC, see (18). Possible
values are "log" for p(n) = log(n) and "polynomial" for p(n) = n.

• pen.exp: A numeric value for the exponent % in the penalty term of the SC, see (18).

When called, multiscale.localPrune returns an S3 object of class ‘multiscale.cpts’, as
described in Section 3.3.
As a simple example, we continue with the normal time series x from Section 3.3, which is
analysed using an asymmetric bandwidth grid of size 16 obtained as the Cartesian product
of the set {30, 50, 80, 130} with itself:

R> mlp <- multiscale.localPrune(x, G = c(30, 50, 80, 130))
R> print(mlp$cpts)
R> print(mlp$pooled.cpts)

[1] 50 100 300
[1] 48 50 86 96 100 300

As the example shows, the initial candidate set P considered by Algorithm 2 tends to be
larger than that considered by Algorithm 1 due to the use of asymmetric bandwidths. The
localized merging algorithm is successful in removing any spurious or duplicate estimates and
returns K that correctly estimates all the change-points.

3.5. Bandwidth generation

The default option for generating bandwidths for the multiscale MOSUM procedure is the
function

R> bandwidths.default(n, d.min = 10, G.min = 10, G.max = min(n/2, n^(2/3)))

which takes as its input the sample size (n), the minimal mutual distance between change-
points that can be expected (d.min), and the minimal and maximal allowed bandwidths
(G.min and G.max). The function returns an integer vector (G1, . . . , Gm) where G0 = G1 =
max{Gmin, 2dmin/3} and Gj+1 = Gj−1 +Gj for j = 1, . . . ,m−1, with m chosen as the largest
integer such that Gm ≤ Gmax while Gm+1 > Gmax. For multiscale.bottomUp, we set G.min
so that the default bandwidths for the function do not generate a warning message about the
smallest bandwidth being too small relative to n. For multiscale.localPrune, we use the
default choices given above.

3.6. Bootstrap confidence intervals

Bootstrap confidence intervals of change-points as discussed in Section 2.7 can be computed
with the function confint, which accepts S3 objects of classes ‘mosum.cpts’ or
‘multiscale.cpts’ as its input:
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R> confint(object, parm = "cpts", level = 0.05, N_reps = 1000)

• object: An object either of class ‘mosum.cpts’ or ‘multiscale.cpts’. If
object$do.confint = TRUE, object$ci is returned without further computation.

• parm: A string indicating which parameters are to be given confidence intervals; only
parm = "cpts" is supported. The argument is required for the compatibility with the
generic function confint.

• level: A single numeric value in (0, 1) representing the confidence level for the confi-
dence intervals; corresponds to α used in Kpw

j (α) from (20) and Kunif
j (α) from (21).

• N_reps: A positive integer representing the number of bootstrap replicates to be gen-
erated for confidence interval construction.

When called, the function returns an S3 object of class ‘cpts.ci’ containing the following
entry besides the call arguments:

• CI: A data frame of five columns, containing the estimated change-points (in column
cpts) and the end points of the pointwise confidence intervals Kpw

j (α) (in columns
pw.left and pw.right) and the uniform confidence intervals Kunif

j (α) (in columns
unif.left and unif.right).

As an example, we revisit the analysis from Section 3.4:

R> mlp_ci <- confint(mlp, level = 0.05, N_reps = 10000)
R> print(mlp_ci$CI)

cpts pw.left pw.right unif.left unif.right
1 50 21 80 21 79
2 100 95 105 89 111
3 300 298 302 296 304

It shows that e.g., the 95% bootstrap confidence intervals for k2 = 100 are given byKpw
2 (0.05) =

[95, 105] (pointwise) and Kunif
2 (0.05) = [89, 111] (uniform).

3.7. Visualization

The plot of the scaled absolute MOSUM detector is particularly suitable for visually inspecting
the data for possible change-points. There is a plot method available for S3 objects of class
‘mosum.cpts’, which plots either the input time series along with piecewise constant signal
constructed using the estimated change-points, or the scaled absolute MOSUM detector along
with the critical value and the estimated locations of the change-points; see Figure 8.
S3 objects of class ‘multiscale.cpts’ for the output of the multiscale algorithms discussed
in Sections 3.3–3.4, are also supported by plot method. We can visualize the set of estimated
change-point locations (on the x-axis) against the input time series or display the significance
of the change-point estimators, as well as plotting the confidence intervals of change-points
or the detection environments of the estimators. For fair representation of the significance of
change-point estimators detected at different scales, we utilize the p values associated with
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their detection rather than plotting the MOSUM detectors from different scales simultane-
ously.
To elaborate:

plot.multiscale.cpts(x, display = c("data", "significance")[1],
shaded = c("CI", "bandwidth", "none")[1], level = 0.05, N_reps = 1000,
CI = c("pw", "unif")[1], xlab = "Time", ...)

It accepts the following arguments:

• x: An object of class ‘multiscale.cpts’.

• display: A string indicating whether to plot the input time series (display = "data")
along with the estimated change-point locations and piecewise constant signal, or to
display the significance of change-point estimators (display = "significance"), rep-
resented by one minus the p values associated with their detection.

• shaded: A string indicating whether confidence intervals (shaded = "CI") or detection
intervals (shaded = "bandwidth") shall be plotted as shaded rectangles around the
estimated change-point locations. No shaded rectangle is produced when shaded =
"none".

• level, N_reps: Arguments used for generating the bootstrap confidence intervals, to
be parsed to confint.multiscale.cpts. Only in use if shaded = "CI".

• CI: A string indicating whether pointwise (CI = "pw") or uniform (CI = "unif") con-
fidence intervals shall be plotted. Only in use if shaded = "CI".

As an example, we revisit the analysis from Section 3.4 and visualize the estimated change-
points along with their detection environment and the 95% bootstrap confidence intervals of
respective change-points:

R> par(mfrow = c(4, 1), mar = c(2, 4, 2, 2))
R> plot(mlp, display = "data", shaded = "none")
R> lines(td$mu, lty = 2, col = 2, lwd = 2)
R> plot(mlp, display = "significance", shaded = "bandwidth")
R> plot(mlp, display = "significance", shaded = "CI", CI = "pw")
R> plot(mlp, display = "significance", shaded = "CI", CI = "unif")

The output is shown in Figure 9.
It is possible to obtain a 3D surface plot of standardized scaled absolute MOSUM detectors
with “continuous” bandwidths using the function persp3D.multiscaleMosum function:

persp3D.multiscaleMosum(x, mosum.args = list(),
threshold = c("critical.value", "custom")[1], alpha = 0.1,
threshold.function = NULL, pal.name = "YlOrRd", expand = 0.2,
theta = 120, phi = 20, xlab = "G", ylab = "time", zlab = "MOSUM",
ticktype = "detailed", NAcol = "#800000FF", ...)
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Figure 9: Top: A time series realization x, its underlying signal (dashed line), the change-point
estimators (vertical lines) and the estimated piecewise constant signal (solid line). Below:
Visualization of the significance of estimated change-points where the height of the vertical
line at each estimated change-point location represents one minus the p values evaluated at the
scaled absolute MOSUM detector value associated with its detection. The detection intervals
of estimated change-points, the bootstrap pointwise confidence intervals Kpw

j (0.05) from (20)
and the uniform confidence intervals Kunif

j (0.05) from (21) for j = 1, 2, 3 are visualized as
shaded rectangles surrounding the vertical lines (second to fourth panels).

The purpose of this function is to plot all MOSUM detectors computed with a range of
symmetric bandwidths together in one surface plot. To make the graphs from different band-
widths comparable, the MOSUM detectors are standardized with respect to their respective
thresholds, e.g., obtained as the critical value at a given significance level. This is particularly
useful for visually investigating which features of the data are captured at which bandwidth
scale (c.f., the discussion in Section 2.4).
The persp3D.multiscaleMosum accepts the following arguments:

• x: Input data X1, . . . , Xn, i.e., a univariate time series represented as a numeric vector
(of length n) or an object of class ‘ts’.

• mosum.args: Further arguments to be parsed to the function mosum (see Section 3.2),
which may be empty. Note that the bandwidths are chosen by default and should not
be given as an argument in mosum.args.

• threshold, alpha, threshold.custom: Arguments specifying how to select the thresh-
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Figure 10: Surface plot visualization of the MOSUM detectors computed with a range of
bandwidths on a realization of the mix test signal from Section 3.1.

olds for standardising scaled MOSUM detectors |TG(k)|/σ̂k computed with different
bandwidths G, see the description of these arguments in Section 3.3.

• pal.name: A string containing the name of the ColorBrewer palette from the RCol-
orBrewer (Neuwirth 2014) to be used. Sequential palettes are recommended. See
brewer.pal.info of RColorBrewer for further details.

The remaining arguments are graphical parameters parsed to the function persp3D of the
plot3D package (Soetaert 2019), and further information can be found in the R documentation
thereof. The range of the color palette is chosen such that the three lightest hues (when a
sequential palette is used) indicate insignificant MOSUM values in change-point analysis.
As an example, we consider a visualization of the MOSUM detectors computed on a realization
from the test signal mix from the literature (see Figure 7 for the plot of the time series):

R> x <- testData(model = "mix", seed = 1234)$x
R> persp3D.multiscaleMosum(x, mosum.args = list(boundary.extension = FALSE))

The result is shown in Figure 10. Note that a z-axis value above one in Figure 10 implies that
the respective statistic exceeds the critical value, as indicated by the emergence of the hue of
orange. It becomes obvious that the large changes at the beginning are given prominence at
smaller bandwidths, whereas the peaks corresponding to smaller changes become significant
at larger bandwidth.

4. Usage examples
In this section, we provide more detailed examples demonstrating the usage of the mosum
package for detecting multiple change-points in the mean. We start with the single-bandwidth
MOSUM procedure applied to heteroscedastic time series in Section 4.1, followed by the
application of the multiscale algorithms from Section 2.6 to test signals with frequent change-
points and real-life time series from economics in Sections 4.2 and 4.3.
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4.1. MOSUM procedure with a single bandwidth

In this first example, we apply the MOSUM procedure with a single, asymmetric band-
width G = (40, 60) to a time series of length n = 800 with independent normal innovations
and two changes in the mean at k1 = 200 and k2 = 600 of respective height d1 = 2 and
d2 = −1.5, co-occurring with changes in variance. The variances over each stationary seg-
ment is set to be 1, 0.8 and 0.5, respectively. We adopt the local variance estimator (11),
which is expected to have more power when there are changes in both mean and variance. By
default, the η-criterion (16) with η = 0.4 is used for change-point estimation in conjunction
with the default significance level α = 0.1.

R> td <- testData(lengths = c(200, 400, 200), means = c(0, 2, 1),
+ sds = sqrt(c(1, 0.8, 0.5)), seed = 111)
R> x1 <- td$x
R> f1 <- td$mu
R> m <- mosum(x1, G = 40, G.right = 60, var.est.method = "mosum.min")
R> print(m$cpts)

[1] 205 600

The procedure correctly detects the number and locations of the change-points. It may
provide further insights to look at the time series in conjunction with the corresponding
MOSUM detector and local variance estimator:

R> par(mfcol = c(3, 1), mar = c(2, 2, 2, 1))
R> plot(ts(x1))
R> lines(f1, col = 2, lwd = 2, lty = 2)
R> plot(m, display = "mosum")
R> plot(ts(m$var.estimation))

The result is shown in Figure 11, which confirms that the estimates are consistent with the
visual inspection of the scaled MOSUM detector.

4.2. Multiscale MOSUM procedure with bottom-up merging

We apply Algorithm 1 to the piecewise stationary time series mix from Section 3.1. The
test signal is particularly interesting due to the variety of types of mean changes, from large
jumps over short intervals to small jumps over longer stretches of stationarity (see Figure 7).
We consider using a dense bandwidth grid G = {10, 11, . . . , 40} with a slightly increased
threshold Cn,G(α) · log(n/G)0.1, in order that the use of small bandwidths does not yield
spurious estimators, see the discussion at the end of Section 2.6.1.

R> x2 <- testData(model = "mix", seed = 1234)$x
R> threshold.custom <- function(G, n, alpha) {
+ mosum.criticalValue(n, G, G, alpha) * log(n/G)^0.1
+ }
R> mbu <- multiscale.bottomUp(x2, G = 10:40, threshold = "custom",
+ threshold.function = threshold.custom)
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Figure 11: Top: A time series realization x1. Middle: The scaled absolute MOSUM detector.
Bottom: Local variance estimator.

Although the smallest bandwidth from G is relatively small compared to the sample size n =
560, the use of custom threshold suppresses the issue of the warning message. Intuitively, the
large changes with small mutual distance (at the beginning of the signal) should be detected
by small bandwidths, whereas the small changes with large mutual distance (towards the end
of the signal) should be detected by the large bandwidths. This is indeed verified by inspecting
the column G.left containing the detection bandwidths in the output of summary(mbu); see
also the surface plot Figure 10 in Section 3.7.

change-points estimated at alpha = 0.1 according to eta-criterion
with eta = 0.4

cpts G.left G.right p.value jump
1 10 10 10 8.40e-06 3.304
2 20 10 10 1.98e-06 3.531
3 41 10 10 3.31e-12 5.628
4 60 10 10 8.73e-06 3.298
5 89 10 10 4.09e-04 2.691
6 120 10 10 5.22e-04 2.653
7 156 10 10 2.20e-03 2.426
8 200 10 10 3.57e-03 2.349
9 250 10 10 6.03e-03 2.267
10 302 16 16 6.90e-03 1.756
12 363 37 37 3.74e-02 0.970
11 421 30 30 2.74e-02 1.120
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4.3. Multiscale MOSUM procedure with localized pruning

We apply the multiscale MOSUM procedure summarized in Algorithm 2 to the piecewise sta-
tionary time series blocks (see Section 3.1). We use the default choice of bandwidths returned
by bandwidths.default as described in Section 3.3. Candidate change-point estimates are
generated with the generous choice of α = 0.4:

R> x3 <- testData(model = "blocks", seed = 123)$x
R> mlp <- multiscale.localPrune(x3, alpha = 0.4, pen.exp = 1.01)
R> print(mlp$cpts)

[1] 200 266 307 471 511 818 902 1331 1555 1597 1654

To see how many candidates have been discarded in the merging step of the algorithm, the
set P of change-point candidates prior to merging may also be of interest:

R> print(mlp$pooled.cpts)

[1] 29 98 148 186 195 200 203 204 205 206 208 266 307
[14] 308 315 316 387 432 438 471 472 489 510 511 512 520
[27] 521 524 783 809 810 818 819 901 902 952 1238 1279 1280
[40] 1322 1331 1340 1347 1353 1460 1469 1546 1547 1548 1555 1556 1557
[53] 1595 1596 1597 1605 1606 1646 1654 1655 1658 1659 1673 1683

In addition, we analyse the quarterly US ex-post real interest rate from 1961:Q1 to 1986:Q3
(n = 103) from the Citibase data bank, which has been extensively studied in Garcia and
Perron (1996); the data is available from the R package strucchange (Zeileis et al. 2002). We
set α = 0.1 and use the η-criterion with η = 0.4 along with the default bandwidths for the
multiscale MOSUM procedure, and use p(n) = log n and % = 1.01 for the penalty function
for the localized pruning. The plot of input data series in Figure 12 suggests that there
may be changes in the variance. To prevent detecting spurious estimators due to possible
heteroscedasticity in the data, we use the local variance estimator of (12).

R> data("RealInt", package = "strucchange")
R> mlp <- multiscale.localPrune(RealInt, alpha = 0.1, eta = 0.4,
+ var.est.method = "mosum.max", penalty = "log", pen.exp = 1.01)
R> print(mlp)

change-points estimated with bandwidths
10 20

at alpha = 0.1 according to eta-criterion with eta = 0.4:
47 79

We note that the outcome did not vary with a range of alternative choices for α, η and
%. For comparison, we analyse the same data for change-points using the WBS algorithm
with the information criterion-based model selection (Fryzlewicz 2014), the TGUH algorithm
(Fryzlewicz 2018), PELT (Killick et al. 2012a), S3IB (Rigaill 2015), cumSeg (Muggeo and
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Figure 12: Top: The quarterly US ex-post real interest rate from 1961:Q1 to
1986:Q3, where the vertical lines denote the two change-point estimators returned by
multiscale.localPrune. Also plotted are change-points estimated by the WBS, TGUH,
PELT, S3IB, cumSeg, FDRSeg and H-SMUCE. Bottom: The 90% confidence intervals of
change-point locations produced by confint (shaded areas) and the function jumpoint of
stepR (plotted on the x-axis) against the input time series and the estimated piecewise con-
stant signal.

Adelfio 2010, transforms the data and iteratively fits a linear model for change-point analy-
sis), FDRSeg (Li et al. 2016) and H-SMUCE (Pein et al. 2017); where relevant, we set the
significance level at 0.1 and follow the default setting for any other arguments. Detailed codes
for applying the above methods are provided in the online supplementary material.
Top panel of Figure 12 shows the change-points estimated by Algorithm 2 and competitors.
Among different methods, cumSeg and H-SMUCE are designed to be robust to heteroscedas-
ticity in the data, and the use of local variance estimator is found effective in this case for our
MOSUM-based method. On the other hand, the time-varying variance may have led methods
such as TGUH, S3IB and FDRSeg to detect possibly spurious change-points. Most methods
return the two change-points identified by Algorithm 2 and in fact, the WBS, PELT and
H-SMUCE return the identical estimators. Also, the two change-point estimators are close to
the two breaks reported in Garcia and Perron (1996), where the authors related the breaks
to the findings in the economics literature.
Unlike multiscale.localPrune, WBS, S3IB and cumSeg require the maximal number of
change-points as an input, and the output may vary with respect to the choice of this param-
eter; e.g., when this quantity is set as large as 100, the WBS returns 100 estimators.
We can generate bootstrap confidence intervals around the change-points and plot them:
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R> plot(mlp, display = "data", shaded = "CI", CI = "unif", level = 0.1)

The 90% uniform confidence intervals are plotted in the bottom panel of Figure 12. The
stepR package supports calculation of confidence intervals of change-point locations, based
on the exponential bounds for the probability of under-estimating the change-point set; we
plot these confidence intervals in the x-axis of the same figure. We note that the latter
confidence intervals are considerably wider than the bootstrap confidence intervals generated
as above for this data.

5. Conclusion and outlook
In this paper, we present the R package mosum (Meier et al. 2021). Implementations of both
single bandwidth and multiscale MOSUM procedures for multiple change-point estimation
have been described, as well as tools for visualization and data generation.
Due to its flexibility, the MOSUM framework discussed in this paper can be extended in several
ways. First, different MOSUM procedures for the mean change problem can be considered,
such as those based on more robust location estimators utilising the median. Secondly, multi-
variate data analysis could be incorporated. Also, different types of changes can be handled,
e.g., parameter changes in (auto-)regressive time series (linear, non-linear or even count time
series).
All of the above extensions can be dealt with theoretically in a unified framework based on
estimating functions (see e.g., Kirch and Kamgaing 2015, for a discussion in a sequential
framework). However, the details of the implementation, including important issues such
as covariance estimation, require case-by-case consideration. It is planned to incorporate
important extensions into future revisions of the mosum package.
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A. Localized exhaustive search algorithm
In this section, we discuss an efficient implementation of the exhaustive search performed
in Line 11 of Algorithm 2. It seeks for a subset Â ⊂ D according to the criterion II from
Section 2.6. For the sake of completeness and readability, we present a high-level description
thereof in Algorithm 3.

Algorithm 3: Localized exhaustive search based on SC.
input : Sets of current candidates C and conflicting candidates D ⊂ C, interval of

consideration [s, e]
1 Let M ← 2|D| and denote by D1, . . . ,DM all M subsets of D (including ∅ and D)
2 Initialize `← |D|, F ← Â ← ∅ and flagi ← true for i = 1, . . . ,M

/* Step 1: Process subsets in descending cardinality */
3 repeat

/* Step 1.1: Truncate the search space */
4 for Di with |Di| = ` and flagi = false do
5 Identify child(Di) = {j : Dj ⊂ Di with |Dj | = `− 1 and flagj = true}
6 for Dj ∈ child(Di) do flagj ← false
7 end

/* Step 1.2: Remove one candidate at a time */
8 for Di with |Di| = ` and flagi = true do
9 Update F ← F ∪ {i} and identify child(Di)

10 for j ∈ child(Di) do
11 if SC(Di|C, [s, e]) < SC(Dj |C, [s, e]) then flagj ← false
12 end
13 end
14 `← `− 1
15 until ` = 0

/* Step 2: Select final combination according to (II) */
16 if F 6= ∅ then
17 find m∗ ← mini∈F |Di|
18 identify i∗ ← arg mini:Di∈RDi′ ,i

′∈F ,m∗≤|Di′ |≤m∗+2 SC(Di|C, [s, e])
19 set Â ← Di∗
20 end

output: Â

Despite the truncation of the search space performed in Step 1.1 of Algorithm 3, the worst
case number of computations within Algorithm 3 is of exponential order 2|D|. A careful
and efficient implementation is thus needed to make the runtime of the procedure practical.
In what follows, we describe some details of our implementation of Algorithm 3 within the
mosum package. It is based on C++ code, which is integrated into R with the Rcpp package
(Eddelbuettel and François 2011).
In every iteration of Step 1.2 of Algorithm 3, several SC values have to be computed for
comparison. To make these steps less computationally intensive, we use pre-computed sums.
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Set representation Di Binary representation ~ψi Integer representation κi
∅ 0000 0
{k̃1} 0001 1
{k̃2} 0010 2
. . . . . . . . .

{k̃1, k̃2, k̃3, k̃4} 1111 15

Table 1: Connection between binary representation, set representation and integer represen-
tation of all subsets of a candidate set D = {k̃1, k̃2, k̃3, k̃4} of length |D| = 4.

To elaborate, let P = {k̃1 < . . . < k̃m} denote the set of candidate change-points returned
from Step 1 of Algorithm 2. Algorithm 3 is sped up by pre-computing and storing the sums

k̃j+1∑
t=k̃j+1

Xt and
k̃j+1∑

t=k̃j+1

X2
t for j = 1, . . . ,m,

as these sums are used repeatedly in the calculation of the residual sum of squares (19) that
are the main ingredient in calculating the information criterion (18).
Another important optimization is attributed to the usage of bit vectors for an implicit rep-
resentation of all the subsets D1, . . . ,DM of D = {k̃1, . . . , k̃|D|}, where M = 2|D|. The key
idea is that every Di ⊂ D can be represented as a vector ~ψi = (ψi,1, . . . , ψi,|D|) of binary
variables ψi,j indicating whether k̃j belongs to Di or not, i.e., ψi,j ∈ {0, 1} and ψi,j = 1 if and
only if k̃j ∈ Di, for 1 ≤ i ≤ M and 1 ≤ j ≤ |D|. In addition, every binary vector ~ψi has a
canonical representation as a nonnegative integer κi = ∑|D|

j=1 ψi,j2j−1 ∈ {0, . . . ,M − 1}. This
one-to-one correspondence Di ↔ ~ψi ↔ κi enables an efficient way of representing the subsets.
Table 1 provides an example for the case |D| = 4.
A crucial advantage of this approach is that set operations (acting on Di) can be translated
into binary operations (acting on the bits ~ψi of κi), the latter being highly performant when
implemented in C++. As an example, the outer loops in Step 1.1 and Step 1.2 of Algorithm 3
translate into a loop over all κi such that the corresponding ~ψi contains exactly ` non-zero
entries. Such a loop can be realized in C++ as follows (see Section 11.1.1 in Stroustrup 2000,
for a comprehensive overview on bitwise/logical operators in C++):

unsigned int kappa = (1 << l) - 1;
while(kappa < M-1) {

// ...
const unsigned int tmp = kappa | (kappa-1);
kappa = tmp | ((((tmp & -tmp) / (kappa & -kappa)) >> 1) - 1);

}

As another example, the inner loops (given Di) over all subsets Dj ⊂ Di with |Dj | = |Di| − 1
in Step 1.1 and Step 1.2 of Algorithm 3 translate into a loop over all κj with ~ψj having
exactly |Di| − 1 non-zero entries and ~ψj ≤ ~ψi holding component-wise among the binary
vectors. A possible realization in C++ is as follows:
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signal Algorithm 1 Algorithm 2–cp Algorithm 2–cJ WBS2 PELT TGUH
blocks 0.038 13.947 1.187 4.045 0.305 0.796
fms 0.039 1.352 0.564 4.598 0.299 0.815
mix 0.040 24.267 0.647 4.435 0.295 0.769
teeth10 0.065 0.831 0.831 4.114 0.286 0.780
stairs10 0.091 1.426 5.111 4.031 0.296 0.771

Table 2: Execution time of change-point detection algorithms when applied to the dense test
signals averaged over 100 replications.

// m = log_2(M)
for (unsigned kappa_j_help = 0; kappa_j_help < m; ++kappa_j_help) {

const unsigned kappa_j_candidate = kappa^(1 << kappa_j_help);
if (kappa_j_candidate < kappa) {

// ...
} // else: discard kappa_j_candidate and continue

}

We also benefit from the binary representation when searching for Di ⊂R Di′ in Step 2 as this
amounts to locating the leftmost and the rightmost index at which ψi′,j = 1.
Due to the exponential time and memory consumption, we restrict the candidate set size
to |D| ≤ 24 in our implementation of Algorithm 3. If a candidate set D exceeding this size is
proposed in Step 2.2 of Algorithm 2, we regard the corresponding tuple (k̂◦,G◦) (from Line 7
in Algorithm 2) as infeasible. If an infeasible tuple occurs, we swap k̂◦ with the next feasible
candidate from D or, if none of D is feasible, with the next feasible candidate from P, and
leave k̂◦ for future consideration. In many cases, changing the order of processing is already
sufficient to ensure that the number of conflicting candidates of k̂◦ will shrink at some point
to a feasible size, because some of the currently conflicting estimators will have been pruned
down due to the processing of another overlapping candidate set. If, however, all remaining
tuples in P are infeasible, we use a manual thinning step, successively removing the elements
of D until it reaches a feasible size. More precisely, the candidates of D are processed one
by one in decreasing order of mutual distance and removed, until |D| = 24. If this thinning
step is necessary in a call of multiscale.localPrune, the user will be informed by a warning
message as below:

Warning: 25 conflicting candidates, thinning manually

B. Execution time of multiscale MOSUM methods
We briefly study the execution time of multiscale MOSUM methods when applied to “dense”
test signals of length n ≥ 2 × 104, which are obtained by repeating the five test signals
implemented in the function testData until the length of the series exceeds 2× 104. Table 2
summarizes the execution time of Algorithms 1–2 implemented in mosum on the dense test
signals averaged over 100 replications, as well as that of WBS2 (proposed to improve upon
the adaptivity of the WBS for signals with possibly frequent changes, see Fryzlewicz (2020)
for details), TGUH (implemented in breakfast) and PELT (changepoint) applied with the
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default parameters. The code for generating the results in Table 2 is provided in the online
supplementary material, and is run on a 4 GHz Intel Core i7 with 16 GB of RAM running
macOS Catalina.
As expected, Algorithm 1 can be executed very quickly and its execution time requires only
a fraction of a second to handle long time series with frequent jumps. Algorithm 2 with cJ as
the sorting function, often takes less than one second to analyse dense test signals generated
under different scenarios. An exception is the test signal stairs10 where the candidates
detected at large bandwidths tend to yield large jump size due to the nature of the signal,
which results in large search space for Step 2.3 of Algorithm 2 and increased execution time.
Similarly, the p values associated with the candidates detected by large bandwidths for blocks
and mix are often set at exactly zero, which creates many ties for the sorting function cp and
leads to large search space. Nonetheless, Algorithm 2 with cp as the sorting function requires
comparable or even smaller execution time than the WBS2 for the test signals fms, teeth10
and stairs10.

C. An asymptotic result
The following result describes the asymptotic distribution of the MOSUM statistic (for sym-
metric as well as asymmetric bandwidths) under the null hypothesis of no mean changes
for i.i.d. innovations, extending the well-known result for symmetric bandwidths reported
in Eichinger and Kirch (2018). Extensions to the dependent case are straightforward. The
result is important for the described MOSUM procedure to obtain meaningful thresholds for
the scaled MOSUM detector.

Theorem 1. Let X1, . . . , Xn be independently and identically distributed with mean µ and
finite variance σ2. Assume furthermore that E|X1|2+∆ <∞ holds for some ∆ > 0. Consider
a pair of bandwidths G = (Gl, Gr) with Gmin := min(Gl, Gr) and Gmax := max(Gl, Gr)
depending on n, such that Kn := Gmin/Gmax → K > 0 as well as

nρ

Gmin
→ 0 and n

Gmin
→∞

as n→∞ is fulfilled for some ρ > 2
2+∆ . Let

TG := max
Gl≤k≤n−Gr

|TG(k)|
σ̂k

with the MOSUM detector TG(k) as defined in (13), and a local estimator σ̂2
k of the innovation

variance σ2 fulfilling the following convergence assumption:

max
Gl≤k≤n−Gr

∣∣∣σ̂2
k − σ2

∣∣∣ = op
(
(log(n/Gmin))−1

)
. (22)

Then, the following distributional convergence holds:

aGTG − bG =⇒ Γ2,

where Γ2 is a Gumbel-distributed random variable with its cumulative distribution function
P (Γ2 ≤ z) = exp(−2 exp(−z)) for z ∈ R, and the sequences aG and bG are given as

aG =
√

2 log
( n

Gmin

)
, bG = 2 log

( n

Gmin

)
+ 1

2 log log
( n

Gmin

)
+log

(K2
n +Kn + 1
Kn + 1

)
− 1

2 log π.
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Condition (22) is fulfilled for all the MOSUM-based variance estimators presented in Sec-
tion 2.3.

Proof. We prove the results only for the case of known variance σ2. The proof can readily
be extended to the general case of a local variance estimator σ̂2

k fulfilling (22) by the same
arguments as in the proof of Theorem 2.1 in Eichinger and Kirch (2018).
Without loss of generality , we can further assume that µ = 0 and σ2 = 1 as well as Gmin = Gl,
because of the following distributional equality:

T(Gl,Gr)(k) D= T(Gl,Gr)(n− k + 1), k = Gl, . . . , n−Gr.

From Kn = Gl/Gr, we get the representation

TG(k) = 1√
(Kn + 1)Gl

Kn

k+Gr∑
j=k+1

Xj −
k∑

j=k−Gl+1
Xj

 .
By the same arguments as in the proof of Theorem 2.1 in Eichinger and Kirch (2018), the
partial sums of length Gl resp. Gr can asymptotically be approximated (after an appropriate
change of probability space) by increments of a sequence W1,W2, . . . of standard Wiener
processes:

sup
t∈[1,n/Gl−1/Kn]

∣∣∣∣∣∣ 1√
Gl

btGlc∑
j=btGlc−Gl

Xj − (Wn(t)−Wn(t− 1))

∣∣∣∣∣∣ = op
(
(log(n/Gl))−1/2

)
and

sup
t∈[1,n/Gl−1/Kn]

∣∣∣∣∣∣ 1√
Gl

btGlc+Gr∑
j=btGlc+1

Xj − (Wn (t+ 1/Kn)−Wn (t))

∣∣∣∣∣∣ = op
(
(log(n/Gl))−1/2

)
.

Thus, with

Yn(t) := 1√
Kn + 1

(
Kn
(
W (t+ 1 + 1/Kn)−W (t+ 1)

)
−
(
W (t+ 1)−W (t)

))
for a standard Wiener process (W (t))t≥0, it suffices to show for every z

P

(
sup

t∈[0,n/Gl]
|Yn(t)| ≤ z + bG

aG

)
−→ exp (−2 exp(−z)) . (23)

Note that Yn(t) is a stationary centred Gaussian process with variance 1. The autocovari-
ance/autocorrelation function γYn(t) = E[Yn(t)Yn(0)] of Yn is given by

γYn(t) = 1−Kn min
(
t,

1
Kn

)
+ Kn

1 +Kn
min

(
t, 1 + 1

Kn

)
−min(1, t).

In particular, it is bounded away from ±1 (for t > 0 bounded away from 0), fulfils γYn(t) = 0
for t ≥ 1 + 1/Kn and for 0 ≤ t < 1:

γY (t) = 1− K2
n +Kn + 1
Kn + 1 t.

Consequently, the assumptions of Theorem 1 (ii) in Seleznjev (1991) are fulfilled with T =
n/Gl, α = 1 and u = (z + bG)/aG. Some calculations show that τ = exp(−z), proving
(23).
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