
JSS Journal of Statistical Software
May 2021, Volume 98, Issue 5. doi: 10.18637/jss.v098.i05

Subgroup Identification Using the personalized
Package

Jared D. Huling
University of Minnesota

Menggang Yu
University of Wisconsin-Madison

Abstract

A plethora of disparate statistical methods have been proposed for subgroup identifi-
cation to help tailor treatment decisions for patients. However a majority of them do not
have corresponding R packages and the few that do pertain to particular statistical meth-
ods or provide little means of evaluating whether meaningful subgroups have been found.
Recently, the work of Chen, Tian, Cai, and Yu (2017) unified many of these subgroup
identification methods into one general, consistent framework. The goal of the person-
alized package is to provide a corresponding unified software framework for subgroup
identification analyses that provides not only estimation of subgroups, but evaluation of
treatment effects within estimated subgroups. The personalized package allows for a vari-
ety of subgroup identification methods for many types of outcomes commonly encountered
in medical settings. The package is built to incorporate the entire subgroup identification
analysis pipeline including propensity score diagnostics, subgroup estimation, analysis of
the treatment effects within subgroups, and evaluation of identified subgroups. In this
framework, different methods can be accessed with little change in the analysis code.
Similarly, new methods can easily be incorporated into the package. Besides familiar sta-
tistical models, the package also allows flexible machine learning tools to be leveraged in
subgroup identification. Further estimation improvements can be obtained via efficiency
augmentation.

Keywords: subgroup identification, heterogeneity of treatment effect, interaction modeling,
inverse weighting, individualized treatment rules, precision medicine.

1. Introduction

Many studies of medical interventions, especially clinical trials, often focus on population
average treatment effects. However, it is widely recognized that the effects of treatments can
have substantial differences across a population. With the increasing interest to improve the

https://doi.org/10.18637/jss.v098.i05
https://orcid.org/0000-0003-0670-4845
https://orcid.org/0000-0002-7904-3155

2 Subgroup Identification Using the personalized Package

efficacy and effectiveness of health care, there has been a significant effort in the statistics
community to develop methodology for optimal allocation of treatments to patients. Optimal
treatment allocation can be thought of as a subgroup identification task, where subgroups are
determined based on the heterogeneity of treatment effect. Heterogeneity of treatment effect
can be characterized by the interaction of the treatment with patient characteristics. Thus,
the goal in subgroup identification is to characterize and estimate these interactions in order
to construct an optimal mapping from patient characteristics to a treatment assignment. This
mapping is called an individualized treatment rule (ITR). An optimal ITR is one that, when
enacted on a population, results in the largest expected patient outcome, assuming without
loss of generality that larger outcomes are preferred. The overall patient outcome is impacted
by both the main effects of patient characteristics and the treatment-covariate interactions
and thus many approaches, such as Qian and Murphy (2011), focus on modeling this full
relationship to estimate ITRs. In their work, Qian and Murphy (2011) show robustness prop-
erties to model misspecification under certain conditions. Many recent works have instead
focused on methods which do not require correct specification of the entire relationship be-
tween patient characteristics, treatment, and outcome, but only the parts relevant to the
optimal ITR and are thus often more robust to modeling choices. Regardless of the general
modeling approach, a vast majority of methods for ITR estimation do not have corresponding
R packages and those that do often pertain to particular statistical methods for optimal ITR
estimation (Huang, Sun, Chatterjee, and Trow 2017; Riviere 2021; Dusseldorp, Doove, Van
de Put, Mechelen, and Claramunt Gonzalez 2020; der Elst, Alonso, and Molenberghs 2020;
Holloway, Laber, Linn, Zhang, Davidian, and Tsiatis 2020; Egami, Ratkovic, and Imai 2019).
In addition, there has been much focus on estimation of subgroups based on patient charac-
teristics, yet not enough emphasis on evaluation of the treatment effects within the resulting
estimated subgroups, which is an equally important but challenging aspect of any subgroup
analysis.
Chen et al. (2017) revealed that a wide range of existing statistical methods for optimal ITR
estimation fall under the umbrella of a unified estimation framework. This unified framework
focuses on the estimation of treatment scores, which rank patients based on their individ-
ualized treatment effect. The scoring system encompasses optimal ITR estimation in the
sense that a threshold for the treatment score can be used as a treatment assignment mecha-
nism. The personalized package (Huling 2021) aims to be a versatile tool in the R statistical
language (R Core Team 2021) for optimal ITR estimation and treatment scoring correspond-
ing to the framework of Chen et al. (2017). Further, two valid approaches for estimation
of treatment effects within the estimated subgroups are provided and can be used straight-
forwardly with any of the available methods for estimation of treatment scores, enabling
validation of fitted subgroup identification models. The personalized package offers an entire
subgroup analysis workflow with intuitive and easy-to-use structure. Thus, a wide range of
subgroup identification methods can be accessed with little change in the analysis workflow
of the user. Furthermore the subgroup identification framework allows the practitioner to
conduct a subgroup identification analysis using familiar statistical modeling concepts. The
package is designed to accommodate a wide range of subgroup identification and treatment
decision-making analyses.
The features of the personalized package include:

1. A wide range of loss function-based subgroup identification methods.
2. Modeling options for continuous, binary, count, and time-to-event outcomes.

Journal of Statistical Software 3

3. Accommodation of observational studies via either propensity score-based analysis or
matching.

4. Handling of both binary and multiple treatment scenarios.
5. Efficiency improvements through loss augmentation.
6. Evaluation of estimated subgroups with correction for overfitting.
7. Options for utilizing custom loss functions.

The package is available on the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-project.org/package=personalized in addition to a development version available
as a GitHub repository at https://github.com/jaredhuling/personalized.
In Section 2 we provide background on the methodological underpinnings of package person-
alized, followed by a detailed description of the package itself in Section 3. In Section 4 we
evaluate the various methods offered in the personalized package in a numerical comparison
with several methods from other packages. Finally, in Section 5 we demonstrate the use
of the package on a subgroup identification analysis of the National Supported Work Study
(LaLonde 1986) and conclude with some discussion in Section 6.

2. Subgroup identification framework

2.1. Modeling setup and notation

Individualized treatment effects, benefit scores, and individualized treatment rules

In this section we provide a formal overview of the subgroup identification framework of
Chen et al. (2017). We first consider binary treatments and then provide extensions to
multi-category treatments in a later section. Let the treatment assignment be denoted as
T ∈ T = {−1, 1}, where T = 1 indicates that a patient received the treatment, and T = −1
indicates a patient received the control. We also observe the patient outcome Y , where larger
values are assumed to be preferable without loss of generality. We further observe a length
p vector of patient covariate information X ∈ X . Note that the first element of X is an
intercept term. The covariates may modify the effect of T on Y , resulting in treatment
effect heterogeneity. Relating the above to observable quantities, we observe data from n
patients {(Yi, Ti,Xi), i = 1, . . . , n} consisting of n independent, identically distributed copies
of (Y, T,X). In identifying subgroups of patients who may benefit from T differently, we are
often interested in estimating the contrast function

∆(X) ≡ E(Y |T = 1,X)− E(Y |T = −1,X). (1)

Note that (1) involves a difference of means. There can be cases where a ratio,

Γ(X) ≡ E(Y |T = 1,X)/E(Y |T = −1,X), (2)

may instead be a more interpretable or relevant estimand, especially for positive Y . Treatment
effect heterogeneity is clearly reflected only through either ∆(X) or Γ(X). To see how these
quantities relate to the full regression model, note that a completely unspecified regression

https://CRAN.R-project.org/package=personalized
https://CRAN.R-project.org/package=personalized
https://github.com/jaredhuling/personalized

4 Subgroup Identification Using the personalized Package

model E(Y |T,X) can be expressed in terms of main covariate effects and interactions of the
covariates and treatment status:

E(Y |T,X) = I(T = 1) · E(Y |T = 1,X) + I(T = −1) · E(Y |T = −1,X)
≡ g(X) + T ·∆(X)/2,

where I(·) is an indicator function and g(X) ≡ 1
2 [E(Y |T = 1,X)+E(Y |T = −1,X)] represents

the covariate main effects. Regardless of the form of E(Y |T,X), the only components that
guide which patients benefit from a treatment are the treatment-covariate interactions, ∆(X).
A similar re-expression of E(Y |T,X) can be shown in terms of Γ(X) for positive Y .
Not all subgroup identification methods target ∆(X) or Γ(X) directly, but may rather target
some useful transformation of them. To formalize this notion, we define a benefit score to
be any mapping f(X) that possesses the following two properties: i) it reflects the degree
to which individual patients “benefit” from a treatment, i.e., is monotone in the treatment
effect ∆(X), Γ(X), or otherwise; ii) it has a meaningful, known cutpoint value c such that
for a given level of covariates x, f(x) > c implies that the treatment is more effective than
the control (e.g., ∆(X) > 0) and f(x) ≤ c implies the control is more effective than the
treatment (e.g., ∆(X) ≤ 0). Clearly ∆(X) is itself a benefit score as it reflects how much a
patient is expected to benefit from a treatment in terms of his or her outcome. For a patient
with X = x, ∆(x) > 0 indicates that the treatment is “better” in terms of the expected
outcome whereas ∆(x) < 0 indicates that the control is better. Hence, estimation of ∆(X)
or its sign allows recommending different subgroups of patients to different treatments in an
optimal manner. By definition, ∆(X) can also be used to rank patients by the magnitude
of treatment effect. Γ(X) is clearly also a benefit score where Γ(x) > 1 indicates that the
treatment is better in terms of the expected outcome and Γ(x) ≤ 1 indicates the reverse. It
is easily seen that the use of either ∆(x) or Γ(x) should lead to similar subgroups.
In Section 2.2 we will introduce benefit score estimators f̂(X) which can either identify the
patients for whom a treatment is better than a control or rank patients by the degree of
“benefit” a treatment has. These estimators are not always estimators of ∆(X) directly, but
often monotone transformations of f̂(X) will yield estimators of ∆(X), i.e., ∆̂(X) = h(f̂(X))
for some monotone h(·).
Another quantity of interest is an ITR, which is a map from patient characteristics to treat-
ment decisions d(X) : X 7→ T . An optimal ITR maximizes the value function V (d) = Ed(Y) =∫
Y dP d, where P d is the distribution of (Y, T,X) given T = d(X). Essentially, optimal ITRs

make treatment decisions for patients in a manner such that the average outcomes across the
population are maximized. Both ∆(X) and Γ(X) can be used to construct optimal ITRs. In
particular, sign{∆(X)} and sign{Γ(X)− 1} are optimal ITRs.

Assumptions for causal interpretations

To deal with non-randomized treatment assignment in observational studies, as in Chen et al.
(2017), we adopt the notation from the potential outcome framework of Rubin (2005). Let
Y (1) and Y (−1) be the potential outcomes if the patient receives T = 1 and T = −1, re-
spectively. In reality only one of the potential outcomes can be observed for each individ-
ual. Formally, this statement can be enforced by the relation Y = I(T = 1)Y (1) + I(T =
−1)Y (−1), where I(·) is the indicator function, under the stable unit treatment value as-
sumption (SUTVA; Rubin 2005). In essence, SUTVA requires the potential outcome of a

Journal of Statistical Software 5

unit when exposed to a treatment will be the same no matter what mechanism is used to
assign the treatment. We also assume “strong ignorability” (Rosenbaum and Rubin 1983;
Rubin 2005), that is, T ⊥⊥ (Y (1), Y (−1)) |X. Violations of SUTVA can occur when there are
spillover effects from treated units to other units, however in this paper we always assume
SUTVA holds. We assume that the treatment assignment mechanism is either known, as is
the case in randomized controlled trials, or is unknown and can be estimated, as is the case
when there are no unmeasured confounders. In other words, π(X) = P(T = 1|X) is either a
known function or can be consistently estimated via regression modeling. Further, a “positiv-
ity” assumption that all patients have a chance of receiving the treatment, i.e., 0 < π(x) < 1
for all x ∈ X , is required. Under these assumptions, ∆(X) = E(Y (1)|X) − E(Y (−1)|X) and
Γ(X) = E(Y (1)|X)/E(Y (−1)|X) are treatment effects conditional on patient characteristics.
Note that in the potential outcome notation, the value function is V (d) = E[Y (d)]. Many
matching strategies (Imbens and Rubin 2015) can also be used instead of direct modeling of
π(X) = P(T = 1|X). However, note that under matching, the targeted estimand can depend
on the matching mechanism. For example, if matching is based on the treated subjects, then
the estimand is the treatment effect on the treated conditional on patient characteristics, i.e.,
∆1(X) = E(Y (1)|X, T = 1)−E(Y (−1)|X, T = 1) or Γ1(X) = E(Y (1)|X, T = 1)/E(Y (−1)|X, T =
1).

2.2. Benefit score estimators and their properties

Subgroup identification and benefit score estimation via loss functions

The framework of Chen et al. (2017) covers two classes of benefit score estimators. The two
methods, called the weighting method and the advantage-learning (A-learning) method, are
both quite general approaches for estimating ∆(X) or Γ(X) (or transformations of ∆(X) or
Γ(X)) via loss functions. Both the weighting and the A-learning methods do not require
specification of the full outcome regression model and focus on direct estimation of ∆(X),
Γ(X), or transformations thereof. As we will explore in later sections, outcome regression
models can, however, be incorporated into both the weighting and A-learning methods in
order to improve efficiency. A major benefit of both the weighting and A-learning methods
is that even when full outcome regression models are utilized, misspecification of the full
outcome regression model does not impact the validity of the resulting estimators.
Consider a convex loss function M(y, v) used for the purpose of estimating benefit scores. A
useful example is the squared error loss, M(y, v) = (y − v)2. In their original work, Chen
et al. (2017) require M(y, v) to meet the following conditions i) Mv(y, v) = ∂M(y, v)/∂v
is increasing in v for every fixed y and ii) Mv(y, 0) is monotone in y. These requirements
are sufficient for Fisher consistent subgroup identification, however, they are not necessary.
Conditions i) and ii) can be relaxed to incorporate a wider class of losses such as the hinge
loss M(y, v) = ymax(1− v, 0). In Section 2.4, we point out that the conditions specified by
Chen et al. (2017) on M for the multi-category treatment setting can also be relaxed.

Weighting method

The first estimation method is called the weighting method. Given a sample of n patients,
the weighting method estimates ∆(X) or Γ(X) (or transformations thereof) by minimizing

6 Subgroup Identification Using the personalized Package

the following objective function with respect to f(X):

LW (f) = 1
n

n∑
i=1

M(Yi, Ti × f(Xi))
Tiπ(Xi) + (1− Ti)/2

, (3)

where W indicates the weighting method and π(x) = P(T = 1|X = x) is the propensity
score function. The weighting estimator is then f̂W = argminfLW (f). The corresponding
population level weighting estimator is the minimizer of `W (f) = E[`W (f,x)], where

`W (f,x) = E
[M(Y, T × f(x))
Tπ(x) + (1− T)/2 |X = x

]
, (4)

with respect to f , where W again indicates the weighting method. The weighting method is
valid without specification of the full outcome regression model, as the inverse weights result
in the interactions T × f(X) being uncorrelated with the main effects g(X). The estimated
benefit score under the weighting method, f̂W , can be used to estimate ∆(X) under many
different loss functions. See Table 1 for examples.

A-learning method

The A-learning estimator involves minimizing

LA(f) = 1
n

n∑
i=1

M(Yi, {(Ti + 1)/2− π(Xi)}×f(Xi)), (5)

where A indicates the A-learning method and (Ti + 1)/2 = I(Ti = 1). The A-learning
estimator is then f̂A = argminfLA(f). The A-learning method works without specification
of the full regression model, because the centered interaction {(T + 1)/2− π(X)} × f(X) is
uncorrelated with, and in fact orthogonal to, the main effects g(X). This property follows from
the fact that E[(T + 1)/2 − π(X)|X] is zero. The corresponding population level A-learning
estimator is the minimizer of

`A(f,x) = E [M(Y, {(T + 1)/2− π(x)}×f(x))|X = x] (6)

with respect to f , where again A indicates the A-learning method and (T + 1)/2 = I(T = 1).

Benefit score properties and estimands

Although f̂W (·) and f̂A(·) are not always themselves estimates of ∆(·), the zero point for f̂W (·)
and f̂A(·) is always meaningful and can be used as a threshold for determining subgroups.
For example, assuming that larger outcomes are preferred, all patients with covariates x such
that fW (x) > 0 should have better outcomes under the treatment than under the control on
average. More formally, denote the population estimators to be

fW0(x) = argminfE{`W (f,x)} and fA0(x) = argminfE{`A(f,x)}.

Under both the weighting and A-learning methods and conditions i) and ii) of M from
above, for patients with a negative benefit score score (fA0(x) < 0 or fW0(x) < 0), we
have E{U(Y (1))|X = x} > E{U(Y (−1))|X = x} where U(y) = ∂M(y, v)/∂v|v=0 and for those
with a positive benefit score, we have E{U(Y (1))|X = x} < E{U(Y (−1))|X = x}. Thus,

Journal of Statistical Software 7

dW0(x) = sign(fW0(x)) and dA0(x) = sign(fA0(x)) are optimal decision rules for mapping
patient characteristics X to treatment decision T . Note that treatment assignment decisions
here, while based on the overall cutoff value of 0, are determined by the individual treatment
effects. It was shown in Chen et al. (2017) that the estimates resulting from both the weight-
ing and A-learning methods result in Fisher-consistent treatment decision rules under a wide
class of types of outcomes and M functions. Hence, the estimated benefit scores can be used
to optimally assign patients to treatment groups. For non-differentiable losses such as the
hinge loss, similar arguments can be made.
Furthermore, the benefit scores themselves can reflect the magnitude of the individual treat-
ment effect and thus can be used for ranking patients by how effective the treatment is. For
example if we use M(y, v) = (y − v)2, then

2fW0(x) = E(Y (1)|X = x)− E(Y (−1)|X = x) = ∆(x)

and
fA0(x) = E(Y (1)|X = x)− E(Y (−1)|X = x) = ∆(x).

Other choices of M(y, v) lead to different interpretations. See Table 1 for more examples
of the relationship between fW0, fA0 and ∆(X) or Γ(X). As pointed out in Chen et al.
(2017), similar to using surrogate loss functions in a classification setting (Bartlett, Jordan,
and McAuliffe 2006), the final form of the solution, fW0 or fA0, depends on the choice of the
loss functions. However, not all choices of M(y, v) lead to such direct interpretation. For
example, the hinge loss M(y, v) = ymax(0, 1 − v) does not seem to have a direct link with
∆(X), though the zero point of both fW0 and fA0 under the hinge loss is still meaningful. The
personalized package offers estimation under more losses than are listed in Table 1, however
the additional losses lead to less interpretable estimates. A listing of all losses implemented
in the personalized package is available in Table 2.
In scenarios where there are limited resources to allocate treatments, it may be of interest to
find a smaller subgroup of patients to recommend the treatment than the subgroup resulting
from patients with fW0 > 0. Since fW0 and fA0 rank patients by magnitude of treatment
effect under most losses, and thus using fW0 > c with c > 0 yields a smaller subgroup with
larger treatment effect than fW0 > 0. Thus, given limited resources for treatment allocation,
using fW0 > c can be useful to find a small subgroup of patients for whom the treatment is
highly beneficial.

Loss function choices and relationship with other methods

Although many of the loss functions in Table 1 are related to negative log-likelihoods from
specific models and distributions, in general there is no distributional requirement of outcomes
for specific choices of losses, except for the loss corresponding to the Cox proportional hazards
model. Thus, if the outcome of interest is a count outcome, it is valid to use losses other than
M(y, v) = −[yv− exp(v)], such as the squared loss, hinge loss, or others. Similarly, it is valid
to use losses other than the logistic loss, M(y, v) = −[yv − log(1 + exp{−v})].
Each combination of the A-learning or weighting methods with a valid loss function results
in a different estimator, allowing for a high degree of versatility in estimation. For example,
M(y, v) = y log{1 + exp(−v)} corresponds to the method developed in Xu, Yu, Zhao, Li,
Wang, and Shao (2015), M(y, v) = ymax(1 − v, 0) corresponds to the outcome weighted
learning (OWL) method of Zhao, Zeng, Rush, and Kosorok (2012), under a randomized

8 Subgroup Identification Using the personalized Package

M(y, v) Estimand Weighting A-learning
(y − v)2 ∆(X) 2fW0(X) fA0(X)

−[yv − exp(v)] ∆(X) exp{fW0(X)}− exp{(1− π(X))fA0(X)}
exp{−fW0(X)} − exp{−π(X)fA0(X)}

−[yv − log(1 + exp{−v})] ∆(X) exp{fW 0(X)}−1
exp{fW 0(X)}+1

(exp{fA0(X)}−1)
(exp{π(X)fA0(X)}+1)×

1
1+exp{(1−π(X))fA0(X)}

y log(1 + exp{−v}) Γ(X) exp{fW0(X)} 1+exp{(1−π(X))fA0(X)}
1+exp{−π(X)fA0(X)}

−{
∫ τ

0 (v − log[E{evI(X ≥ u)}]) dN(u)} Γ∗M (X)† exp{−fW0(X)} exp{−fA0(X)}

†Censoring rates are assumed to be equal within treatment arms.

Table 1: The last loss above is for survival outcomes with y = (X, δ) = {X̃∧C, I(X̃ ≤ t)}, X̃ is
the survival time, C is the censoring time, N(t) = I(X̃ ≤ t)δ, and τ is a fixed point such that
P(X ≥ τ) > 0. The term Γ∗M (X) forM ∈ {W,A} above is defined as E[Λ∗M (Y †)|T=1,X]

E[Λ∗M (Y †)|T=−1,X] , where
Λ∗W (t) is a monotone increasing function described in the Appendix of Tian et al. (2014) and
Λ∗A(t) is quite similar to Λ∗W (t). Γ∗W (X) corresponds to the estimand of the weighting method
and Γ∗A(X) corresponds to the estimand of the A-learning method. Under randomization into
treatment and control groups with equal probability, the forms above for Γ(X) or ∆(X) for
the A-learning method simplify dramatically. For example, under equal randomization and
M(y, v) = y log(1 + exp{−v}), Γ(X) = exp{fA0(X)/2}.

clinical trial setting with treatments assigned with equal probability, both the A-learning
and weighting methods with M(y, v) = (y − v)2 reduce to the modified covariate method of
Tian et al. (2014) for continuous responses, the A-learning method with M(y, v) = (y − v)2

corresponds to the approach of Lu, Zhang, and Zeng (2013) and Ciarleglio, Petkova, Ogden,
and Tarpey (2015), among others. Using the A-learning method with the squared error loss
and loss augmentation (described below in Section 2.5) is equivalent, after accounting for any
variable selection penalties, to the estimation method utilized in Zhao, Small, and Ertefaie
(2017), Shi, Song, and Lu (2016), Shi, Fan, Song, Lu et al. (2018), and the method behind
the de-sparsified estimator of Jeng, Lu, Peng et al. (2018).

Modeling choices for the benefit score

Modeling choices must be made for the form of fW and fA. One can use a simple form of f
such as a linear combination of the covariates, i.e., f(X) = X>β. Hence f̂(X) = X>β̂. Such
a choice leads to interpretable models. For most loss functions, if the effect βj of variable j
is positive, then increased values of variable j lead to an increase in treatment benefit and
negative effects lead to decreased benefit. Beyond linear forms, regression trees, smoothing
splines, or other nonparametric and flexible approaches may be used for fW or fA.

2.3. Loss function example and implementation details

One of the key benefits of the framework of Chen et al. (2017) is the relative ease of imple-

Journal of Statistical Software 9

mentation. Many combinations of method (weighting or A-learning) and loss function can
be computed by existing regression software. Either (3) or (5) can be minimized for a given
loss by providing existing software a modified covariate X̃, provided the existing software can
accept observation weights.
To see how this is accomplished, consider the familiar example of the squared error loss
function M(y, v) = (y − v)2. Under this loss and the assumption that ∆(X) = X>β, we
can minimize (3) using existing software. First, denote the n × p design matrix of patient
covariate information to be X. Denote a modified design matrix X̃ to be diag(T)X, where
T = (T1, . . . , Tn)> and diag(T) is the diagonal matrix with diagonal elements as the elements
of the vector T . Then the minimizer of (3) is simply the weighted least squares estimator

(X̃>diag(W)X̃)−1X̃
>diag(W)Y ,

where W is a vector of weights with the i-th element as 1/(Tiπ(xi) + (1− Ti)/2) and Y =
(Y1, . . . , Yn)>. If X̃ is high dimensional and variable selection is desired, X̃ and Y along with
a vector of observation weights can be supplied to existing software, such as the glmnet R
package (Friedman, Hastie, Tibshirani, Narasimhan, Tay, and Simon 2021). More details on
how this is handled in the personalized package are provided in Section 3.
More generally, existing software can be used to minimize (3) and (5) by appropriate construc-
tion of weights and modified design matrices. The modified design matrix for the weighting
method is defined as in the example above, and the modified design matrix for the A-learning
method is defined as X̃ = diag((T +1)/2−π(X))X where π(X) is a vector with i-th element
equal to π(xi).

2.4. Extension to multi-category treatments

Often, more than two treatments are available for patients and the researcher may wish to
understand which of all treatment options are the best for which patients. Extending the
above methodology to multi-category treatment results in added complications, and in par-
ticular there is no straightforward extension of the A-learning method for multiple treatment
settings. In the supplementary materials of Chen et al. (2017), the weighting method was
extended to estimate a benefit score corresponding to each level of a treatment subject to a
sum-to-zero constraint for identifiability. In particular, we are interested in estimating (the
sign of)

∆kl(x) ≡ E(Y |T = k,X = x)− E(Y |T = l,X = x). (7)

If ∆kl(x) > 0, then treatment k is preferable to treatment l for a patient with X = x. For
each patient, evaluation of all pairwise comparisons of the ∆kl(x) indicates which treatment
leads to the largest expected outcome. The weighting estimators of the benefit scores are the
minimizers of the following loss function:

LW (f1, . . . , fK) = 1
n

n∑
i=1

M(Yi,
∑K
k=1 I(Ti = k)× fk(Xi))

P(T = Ti|X = Xi)
(8)

subject to ∑K
k=1 fk(Xi) = 0. Clearly when K = 2, this loss function is equivalent to (3).

Estimation of the benefit scores in this model is still challenging without added modeling as-
sumptions, as enforcing∑K

k=1 fk(Xi) = 0 may not always be feasible using existing estimation

10 Subgroup Identification Using the personalized Package

routines. However, if each ∆kl(X) has a linear form, i.e., ∆kl(X) = X>βk where l represents
a reference treatment group, estimation can then easily be fit into the same computational
framework as for the simpler two treatment case by constructing an appropriate design matrix.
Thus, for multiple treatments the personalized package is restricted to linear estimators of
the benefit scores. For instructive purposes, consider a scenario with three treatment options,
A, B, and C. Let X = (X>A,X>B,X>C)> be the design matrix for all patients, where each
X>k is the sub-design matrix of patients who received treatment k. Under ∆kl(X) = X>βk
with l as the reference treatment, we can construct a new design matrix which can then be
provided to existing estimation routines in order to minimize (8). With treatment C as the
reference treatment, the design matrix is constructed as

X̃ = diag(J)

XA 0
0 XB

XC XC

 ,
where the i-th element of J is 2I(Ti 6= C)− 1 and the weight vector W is constructed with
the i-th element set to 1/P(T = Ti|X = Xi). Furthermore denote β̃ = (β>A,β>B)>. Hence
X̃
>
β̃ = X>AβA+X>BβB−X>C(βA+βB), and thus the sum-to-zero constraints on the benefit

scores hold by construction.
The conditions specified for the loss functions in the supplementary material of Chen et al.
(2017) are too restrictive. In general, we find that all Fisher-consistent margin based classifica-
tion loss functions (Bartlett et al. 2006; Tewari and Bartlett 2007; Zou, Zhu, and Hastie 2008;
Tewari and Bartlett 2007) can be adopted for the weighting method in the multi-category
treatment setting. The sum-to-zero constraint may be elegantly solved by mimicking the
angle-based reformulation proposed by Zhang and Liu (2014) in the classification setting.
However this approach has not yet been adopted in the personalized package.

2.5. Efficiency improvement via loss function augmentation

As mentioned in previous sections, the weighting and A-learning approaches do not require
the specification of a full outcome regression model to consistently recover optimal subgroups.
However, gains in efficiency can be made through augmentation of the loss function. Loss
augmentation involves positing and fitting a full outcome regression model and using the
predictions from this model to construct a modified loss function. This approach has a few
benefits: First, if the full outcome regression model is indeed correctly specified, then the
resulting estimator will be efficient and second, if the outcome regression model is incorrectly
specified, it does not impact the Fisher consistency of the estimated subgroups. Further,
in practice even when the outcome regression model is incorrect, efficiency gains are often
realized.
The basic approach to augmentation is the following:

1. Fit a regression model for the conditional mean E[Y |T,X] = g(X) + T∆(X) and create
predictions Ê[Y |T,X]. When the conditional mean is linked to predictors via a link
function, fit a regression model for h(E[Y |T,X]) = g(X)+T∆(X), where h(·) is a known
link function, and generate predictions on the scale of the linear predictor, pred(X, T) =
h(Ê[Y |T,X]).

Journal of Statistical Software 11

2. Create the augmentation function by integrating predictions over both treatment op-
tions: a(Xi) = ∑

T∈T aTpred(Xi, T), where aT are weights. In practice, a simple average
with aT = 1/2 works well.

3. Construct an augmented loss function M̃(y, v) = M(y, v) + g(a(X), v), where g(y, v)
meets the same conditions required of M(y, v).

The augmented loss function M̃(y, v) does not change the optimality of the resulting decision
rules, and thus allows for potential reductions in variance. The most efficient augmenta-
tion function under the class of augmentation functions of the multiplicative form vg(X)
was derived in the supplementary material of Chen et al. (2017). However, in the personal-
ized package, we consider a more limited class of augmentation functions g∗(X) = g(a(X))
that allows for simpler implementation using the functionality for offsets provided in existing
software.

2.6. Validating subgroups via subgroup-conditional treatment effects
A subgroup analysis under the framework of Chen et al. (2017) involves estimating a set of
benefit scores f̂(Xi) based on {(Yi, Ti,Xi), i = 1, . . . , n} and then using the benefit scores to
construct subgroups, i.e., a subgroup of patients for whom the treatment is “recommended”
via f̂(Xi) > 0 and a subgroup of patients for whom the treatment is not recommended,
f̂(Xi) ≤ 0. Upon using the data for this purpose, some natural questions to ask are “what
is the effect of the treatment among those with f̂(Xi) > 0?”, “is the effect of the treatment
among those with f̂(Xi) > 0 meaningfully different from zero?”, and “what would be the
improvement in outcomes over the population of interest if all patients followed the recom-
mendations of f̂(Xi)?”. Such questions are nontrivial to answer using the same n samples
used to construct the subgroups. The subgroups themselves are conditional on the observed
outcomes, thus simply evaluating treatment effects within subgroups will yield biased and
overly-optimistic estimates of the subgroup-conditional treatment effects. See Athey and
Imbens (2016) and Qiu, Zeng, and Wang (2018) for more discussion.
Denote the decision rule under benefit scores f̂ as d(X) = sign(f̂(X)). Then the overall
benefit of the treatment assignment rule d over the population is

δ(d) = E(Y (d(X))|d(X) = T)− E(Y (−d(X))|d(X) = T).

Further define the following subgroup-conditional treatment effects as

δ1(d) = E(Y (1)|d(X) = 1)− E(Y (−1)|d(X) = 1)
= E(Y |T = 1, d(X) = 1)− E(Y |T = −1, d(X) = 1)

and

δ−1(d) = E(Y (−1)|d(X) = −1)− E(Y (1)|d(X) = −1)
= E(Y |T = −1, d(X) = −1)− E(Y |T = 1, d(X) = −1).

The quantities δ1(d) and δ−1(d) may also be of interest. Directly calculating empirical ver-
sions, δ̂(d), δ̂1(d), and δ̂−1(d) as defined below, of the above quantities using the following
will yield biased estimates. The biased, empirical estimates are

δ̂t(d) =
∑
i I{d(Xi) = Ti = t}Yi∑
i I{d(Xi) = Ti = t}

−
∑
i I{d(Xi) = Ti = −t}Yi∑
i I{d(Xi) = Ti = −t}

12 Subgroup Identification Using the personalized Package

for t ∈ {1,−1} and

δ̂(d) =
∑
i I{d(Xi) = Ti}Yi∑
i I{d(Xi) = Ti}

−
∑
i I{d(Xi) 6= Ti}Yi∑
i I{d(Xi) 6= Ti}

.

Thus, alternative approaches are needed to estimate δ(d), δ1(d), and δ−1(d). Another poten-
tially interesting statistic to measure benefit of subgroup recommendations is the C-for-benefit
statistic of Van Klaveren, Steyerberg, Serruys, and Kent (2018), however this is not used in
the personalized package.

Bootstrap bias correction

The first approach used in the personalized package to estimate δ(d), δ1(d), and δ−1(d) is
the bootstrap bias correction approach of Harrell, Lee, and Mark (1996). The bootstrap bias
correction approach seeks to estimate the bias in the estimates of the subgroup treatment
effects that arise from using the same data to estimate these effects as was used to construct
the subgroups and then corrects for this bias. This bootstrap bias correction method was
introduced in Harrell et al. (1996) and later used in Foster, Taylor, and Ruberg (2011) for
the purpose of evaluating subgroup effectiveness. For any statistic S, let Sfull(X) be the
statistic estimated with the full training data {(Yi, Ti,Xi), i = 1, . . . , n} and evaluated on
data X and Sb(X) be the statistics estimated using a bootstrap sample Xb (samples from
{(Yi, Ti,Xi), i = 1, . . . , n}) and evaluated on X. The general outline of the bootstrap bias
correction method is as follows:

• Construct B bootstrap samples of size n with replacement. For the b-th bootstrap
sample calculate the statistic Sb(X) and Sb(Xb).

• The bootstrap estimate of the amount of bias with regards to the statistic S is

biasS(X) = 1
B

B∑
b=1

[Sb(Xb)− Sb(X)] .

• The bias-corrected estimate of the statistic S is then calculated as

Sfull(X)− biasS(X).

The term Sb(Xb) involves evaluating statistic S on the same data as was used to construct
the underlying estimator. The term Sb(X) involves evaluating the S on the original dataset,
which acts like an external dataset. Thus, Sb(Xb)− Sb(X) mimics the bias that arises from
evaluating a statistic on the same dataset that was used to construct the statistic/estimator.
The personalized package uses the bootstrap bias correction procedure to estimate δ(d), δ1(d),
and δ−1(d).

Repeated training/testing splitting

The training and testing splitting approach we outline in this section is similar to the sample-
splitting scheme of Qiu et al. (2018), however their approach is based on a K-fold type
procedure, whereas ours is based on repeated splitting of the data. The personalized package
has functionality for using the training/testing splitting procedure to estimate δ(d), δ1(d), and

Journal of Statistical Software 13

δ−1(d). The procedure involves repeatedly randomly partitioning the data into a training
portion and a testing portion. Each replication partitions τ × 100% of the data into the
training data and (1 − τ) × 100% into the testing data. Using similar notation as for the
bootstrap bias correction approach, define for the b-th replication Strain,b(X) to be statistic
S constructed using the b-th training sample and evaluated on data X and Xtest,b to be the
covariates from the b-th test data. The repeated training/testing splitting is as follows:

• Construct B random partitions of the data using training fraction τ and for each b
calculate Strain,b(Xtest,b).

• The training/testing splitting estimate of statistic S is then 1
B

∑B
b=1 Strain,b(Xtest,b).

Foster et al. (2011) explored a variety of approaches for estimating quantities similar to
subgroup-conditional treatment effects and found bootstrap bias correction approaches to be
the least biased and have lower variability than cross-validation based approaches. Foster
et al. (2011) found that cross-validation approaches tend to underestimate effects of interest.
Thus, we advocate the use of the bootstrap bias correction approach, however the training
and testing splitting approach is appropriate as well and tends to give more conservative
estimates of the subgroup-conditional treatment effects.

3. The personalized package
In this section we provide detailed information about the personalized package and how it is
utilized in subgroup identification analyses. We begin by providing an outline of the workflow
of the personalized package. The remainder of this section roughly follows the order of this
workflow and explains each function involved in each step. Along the way, key arguments
of each of these functions are described in detail with usage examples intermixed. Finally,
this section concludes with a demonstration of an entire subgroup identification analysis on
a simulated dataset with a multi-category treatment.

3.1. Workflow of subgroup identification analysis

Regardless of the specific modeling choices, the workflow of subgroup identification analyses
in the personalized package has the following four steps:

1. Construct propensity score function and check propensity score diagnostics (function
check.overlap()).

2. Fit a subgroup identification model using function fit.subgroup().
3. Estimate the resulting treatment effects among estimated subgroups using function

validate.subgroup().
4. Visualize and examine the model (plot()), subgroup treatment effects (print()), and

characteristics of the subgroups (summarize.subgroups()).

We will create a simulated dataset where we know the underlying data-generating mecha-
nism. We will use this dataset throughout this paper for illustration. In this simulation, the
treatment assignment depends on covariates and hence we must model the propensity score
π(x) = P(T = 1|X = x). We also assume that larger values of the outcome are better. We

14 Subgroup Identification Using the personalized Package

generate 1000 samples with 50 covariates and consider continuous, binary, and time-to-event
outcomes. The covariates in X in this dataset are generated from a normal distribution and
are uncorrelated, the propensity function π(x) depends only on the 21st and 41st covariates,
the optimal treatment rule depends on covariates 3, 11, 1, and 12 including linear terms an
an interaction between covariates 1 and 12, and the main effects in the outcome regression
model depend on covariates 1, 11, 12, 13, and 15 and include both nonlinear and linear terms.

R> library("personalized")
R> set.seed(123)
R> n.obs <- 1000
R> n.vars <- 50
R> x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

Here we simulate non-randomized treatment assignment.

R> xbetat <- 0.5 + 0.25 * x[, 21] - 0.25 * x[, 41]
R> trt.prob <- plogis(xbetat)
R> trt <- rbinom(n.obs, 1, prob = trt.prob)

Here we simulate the differential treatment effect.

R> delta <- 0.5 + x[, 2] - 0.5 * x[, 3] - 1 * x[, 11] + 1 * x[, 1] * x[, 12]

Now we simulate the main effects and add them to the differential treatment effect and then
generate i) continuous, ii) binary, and iii) time-to-event outcomes.

R> xbeta <- x[, 1] + x[, 11] - 2 * x[, 12]^2 + x[, 13] + 0.5 * x[, 15]^2
R> xbeta <- xbeta + delta * (2 * trt - 1)
R> trt <- as.factor(ifelse(trt == 1, "Trt", "Ctrl"))
R> y <- xbeta + rnorm(n.obs)
R> y.binary <- 1 * (xbeta + rnorm(n.obs, sd = 2) > 0)
R> surv.time <- exp(-20 - xbeta + rnorm(n.obs, sd = 1))
R> cens.time <- exp(rnorm(n.obs, sd = 3))
R> y.time.to.event <- pmin(surv.time, cens.time)
R> status <- 1 * (surv.time <= cens.time)

Note that for the continuous outcomes y in the code above, delta aligns with (1), however
delta does not exactly correspond to (1) for the binary outcomes y.binary and the time-to-
event outcomes y.time.to.event above. Still, delta in all types of outcomes above drives
heterogeneity of treatment effect.

3.2. The check.overlap() function

Observational studies

To deal with non-randomized treatment assignment in subgroup identification analysis for
observational studies, we usually construct a model for the propensity score, which is the

Journal of Statistical Software 15

probability of treatment assignment conditional on observed baseline characteristics (Im-
bens and Rubin 2015). Our package also allows matched analysis for which this step or the
check.overlap() function is not needed. In the personalized package, we need to wrap the
propensity score model in a function which inputs covariate values and the treatment statuses
and outputs propensity scores between 0 and 1. It is crucial for the personalized package to
utilize the propensity score model as a function instead of simply a vector of probabilities.
Later in this paper when we seek to evaluate the subgroup treatment effects, we must use
either bootstrap resampling or repeated training and test splitting of our data. In both of
these approaches we need to re-fit our subgroup identification model, including the propensity
score model and hence it would be invalid to assume the propensity scores remain constant
for each bootstrap iteration. A simple example of how one constructs their propensity score
function is as follows.

R> propensity.func <- function(x, trt) {
+ data.fr <- data.frame(trt = trt, x)
+ propensity.model <- glm(trt ~ ., family = binomial(), data = data.fr)
+ pi.x <- predict(propensity.model, type = "response")
+ return(pi.x)
+ }
R> propensity.func(x, trt)[101:105]

101 102 103 104 105
0.2251357 0.2786683 0.9021204 0.4400091 0.8250830

R> trt[101:105]

[1] Ctrl Ctrl Trt Trt Trt
Levels: Ctrl Trt

The above function uses a binomial generalized linear model (GLM) as the propensity score
model and then uses the predict() function to return the estimated propensity scores as a
vector.
To assess the positivity assumption, propensity scores should be checked to ensure sufficient
overlap between treatment groups. This is a requirement for valid use of propensity scores.
The personalized package offers a visual aid for checking overlap via the check.overlap()
function, which plots densities or histograms of the propensity scores for each of the treatment
groups. The following code generates Figure 1:

R> check.overlap(x, trt, propensity.func)

To help assess whether there is sufficient overlap of the propensity score distributions between
treated and untreated, the user should check whether the regions near 0 or 1 where there is
either an area where there is a positive density of propensity scores for the treatment group
but not the control group or for the control group and not the treatment group. Figure 1
illustrates the data has reasonable overlap, however there is a slight region near 0 with a
positive density of propensity scores for the control group but no density of propensity scores
for the treatment group. One may consider corrective measures to mitigate this. In the

16 Subgroup Identification Using the personalized Package

0

10

20

30

0.00 0.25 0.50 0.75 1.00

Propensity Score

co
un

t

Treatment Ctrl Trt

Histograms of propensity scores by treatment group

Figure 1: Histograms illustrating overlap of propensity scores.

presence of insufficient overlap, techniques such as those proposed in Crump, Hotz, Imbens,
and Mitnik (2009) may be utilized. Further discussion on identification of support overlap
issues and approaches for mitigating these issues can be found in Caliendo and Kopeinig
(2008) and Garrido, Kelley, Paris, Roza, Meier, Morrison, and Aldridge (2014).

Randomized controlled trials
If the data to be analyzed come from a randomized controlled trial, it is still valid to construct
a propensity score model as above, but is not necessary. If the modeler knows that patients
were randomized to the treatment group with probability 0.5, for example, the propensity
function can simply be constructed as the following:

R> constant.propensity.func <- function(x, trt) 0.5

3.3. The fit.subgroup() function
The fit.subgroup() function is the main workhorse of the personalized package. It provides
fitting capabilities for a wide range of subgroup identification models for different types of
outcomes. We will first show a basic usage of the fit.subgroup() function and then provide
detailed information about its arguments and more involved examples.
A basic usage of fit.subgroup() for continuous outcomes based on the A-learning method
is as follows. The final argument, nfolds, given to fit.subgroup() is an argument for the
underlying fitting function, glmnet().

R> subgrp.model <- fit.subgroup(x = x, y = y, trt = trt,
+ propensity.func = propensity.func, method = "a_learning",
+ loss = "sq_loss_lasso", nfolds = 10)
R> summary(subgrp.model)

Journal of Statistical Software 17

family: gaussian
loss: sq_loss_lasso
method: a_learning
cutpoint: 0
propensity
function: propensity.func

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Outcomes:
Recommended Ctrl Recommended Trt

Received Ctrl -7.8102 (n = 171) -18.589 (n = 239)
Received Trt -18.9831 (n = 258) -7.5232 (n = 332)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

11.1729 (n = 429)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

11.0658 (n = 571)

NOTE: The above average outcomes are biased estimates of
the expected outcomes conditional on subgroups.
Use 'validate.subgroup()' to obtain unbiased estimates.

Benefit score quantiles (f(X) for Trt vs Ctrl):
0% 25% 50% 75% 100%

-18.144 -2.746 1.020 4.298 16.332

Summary of individual treatment effects:
E[Y|T=Trt, X] - E[Y|T=Ctrl, X]

Min. 1st Qu. Median Mean 3rd Qu. Max.
-18.1440 -2.7457 1.0201 0.8175 4.2980 16.3316

4 out of 50 interactions selected in total by the lasso (cross validation
criterion).

The first estimate is the treatment main effect, which is always selected.
Any other variables selected represent treatment-covariate interactions.

18 Subgroup Identification Using the personalized Package

Trt V2 V3 V11 V13
Estimate 0.7957 1.2542 -0.5189 -0.884 0.5292

The above code fits a model with linear interaction terms with a squared error loss as M(·, ·)
with a lasso penalty for variable selection. The squared error loss is used due to the outcome
y being continuous. The A-learning method is used for demonstrative purposes and in this
situation, the weighting method could have been used as well. The nfolds argument is passed
to the underlying fitting function cv.glmnet() from the glmnet package. The output pro-
vides some basic summary statistics of the resulting subgroups, benefit scores, and estimated
conditional treatment effects for each sample and shows the estimated interaction coefficients.

Explanation of major function arguments

x The argument x is for the design matrix. Each column of x corresponds to a variable
to be used in the model for ∆(X) and each row of x corresponds to an observation. Every
variable in x will be used for the subgroup identification model (however some variables may
be removed if a variable selection procedure is specified for loss).

y The argument y is for the response vector. Each element in y is a patient observation.
In the case of time-to-event outcomes y should be specified as a ‘Surv’ object of the survival
package (Therneau 2021). For example the user should specify y = Surv(time, status),
where time is the observed time and status is an indicator that the observed time is the
survival time.

trt The argument trt corresponds to the vector of observed treatment statuses. The
vector trt can either be a character vector specifying the levels of the treatments (e.g.,
"Trt" vs. "Ctrl"), a factor vector, or an integer vector (e.g., for binary treatment, 1 or
0 in the i-th position indicates patient i received the treatment or control). For character
vectors or integer vectors it is assumed that the first level alphabetically or numerically,
respectively, is the reference treatment in the sense that the estimated benefit score will
represent the benefit of the second treatment level with respect to the reference level. For
example, if trt is a character vector with two treatment options "Trt" and "Ctrl", the
estimated benefit score reflects the benefit of "Trt" versus "Ctrl" in the sense that positive
estimated benefit scores indicate "Trt" is preferable to "Ctrl". For a factor vector, the first
level of the factor will be the reference treatment. Without specifying otherwise, for trt
vectors with more than 2 treatment levels, the reference treatment will be chosen in the same
way. However, the user may specify which level of the treatment should be the reference
via the reference.trt argument. For example, if trt has the levels c("TrtA", "TrtB",
"Ctrl"), setting reference.trt = "Ctrl" will ensure that "Ctrl" is the reference level.

propensity.func The argument propensity.func corresponds to a function which returns
a propensity score. While it seems cumbersome to have to specify a function instead of a vec-
tor of probabilities, it is crucial for later validation for the propensity scores to be re-estimated
using the resampled or sampled data (this will be explained further in the section below for
the validate.subgroup() function). The user should specify a function which inputs two

Journal of Statistical Software 19

arguments: trt and x, where trt corresponds to the trt argument for the fit.subgroup()
function and x corresponds to the x argument for the fit.subgroup() function. The func-
tion supplied to the propensity.func argument should contain code that uses x and trt
to fit a propensity score model and then return an estimated propensity score for each ob-
servation in x. If there are many covariates, the modeler may wish to use variable selection
techniques in constructing the propensity score model. In the following code we construct the
wrapper function for the propensity score model, which is a logistic regression model with
the lasso penalty where the tuning parameter is selected by 10-fold cross-validation using the
cv.glmnet() function of the glmnet package (Friedman et al. 2021):

R> propensity.func.lasso <- function(x, trt) {
+ propens.model <- cv.glmnet(y = trt, x = x, family = "binomial")
+ pi.x <- predict(propens.model, s = "lambda.min", newx = x,
+ type = "response")[, 1]
+ pi.x
+ }

For randomized controlled trials with equal probability of assignment to treatment and con-
trol, the user can simply define propensity.func as:

R> propensity.func.const <- function(x, trt) 0.5

which always returns the constant 1/2.
For cases with multi-category treatments, the user must specify a propensity function that
returns P(T = Ti|X = x) for patient i. In other words, it should return the probability of
receiving the treatment that was actually received for each patient. For example, the below
code uses nnet::multinom, whose predict method returns a matrix of probabilities with
one column for each treatment level. We produce code below that returns the probability
corresponding to the treatment that was actually observed for each observation.

R> propensity.func.multinom <- function(x, trt) {
+ require("nnet")
+ df <- data.frame(trt = trt, x)
+ mfit <- nnet::multinom(trt ~ . -trt, data = df)
+ propens <- predict(mfit, type = "probs")
+ if (is.factor(trt)) {
+ values <- levels(trt)[trt]
+ } else {
+ values <- trt
+ }
+ probs <- propens[cbind(1:nrow(propens),
+ match(values, colnames(propens)))]
+ probs
+ }

Optionally the user can specify the function to return a matrix of treatment probabilities,
however, the columnsmust be ordered by the levels of trt. An example of this is the following,
where we ensure that the columns are ordered correctly:

20 Subgroup Identification Using the personalized Package

loss prefix Outcomes M(y, v)
"sq_loss" C/B/CT (y − v)2

"logistic_loss" B −[yv − log(1 + exp{−v})]
"owl_logistic"† C/B/CT y log(1 + exp{−v})

"owl_hinge"† C/B/CT ymax(0, 1− v)
"owl_logistic_flip" C/B/CT |y| log(1 + exp{−sign(y)v})

"owl_hinge_flip" C/B/CT |y|max(0, 1− sign(y)v)
"poisson_loss"† CT −[yv − exp(v)]

"cox_loss" TTE −{
∫ τ

0 (v − log[E{evI(X ≥ u)}]) dN(u)}
where y = (X, δ) = {X̃ ∧ C, I(X̃ ≤ t)},

X̃ is the survival time, C is the censoring time,
N(t) = I(X̃ ≤ t)δ, and τ is a fixed point

such that P(X ≥ τ) > 0.

†The outcomes need to be non-negative.

Table 2: Listed above are the forms of the loss function M(y, v) available in the personalized
package. In the outcomes column, “C” indicates a loss is available for continuous outcomes,
“B” for binary outcomes, “CT” for count outcomes, and “TTE” for time-to-event outcomes.
Note that positive continuous outcomes may be used for "poisson_loss" as well. In general
there are fewer restrictions in theory about the types of outcomes used for the above losses,
however the imposed restrictions in this package are due to implementation limitations.

R> propensity.func.multinom <- function(x, trt) {
+ require("nnet")
+ df <- data.frame(trt = trt, x)
+ mfit <- multinom(trt ~ . -trt, data = df)
+ propens <- predict(mfit, type = "probs")
+ if (is.factor(trt)) {
+ levels <- levels(trt)
+ } else {
+ levels <- sort(unique(trt))
+ }
+ probs <- propens[, match(levels, colnames(propens))]
+ probs
+ }

For more information on the construction of propensity scores for multi-category treatments,
see McCaffrey, Griffin, Almirall, Slaughter, Ramchand, and Burgette (2013).

loss The loss argument specifies the combination of M function (i.e., loss function) and
underlying model f(X). The name of each possible value for loss has two parts: The first
part corresponds to the M function and the second part corresponds to f(X) and whether
variable selection via the lasso is used. The available M functions are listed in Table 2.
All loss options that have "lasso" in their suffix use f(X) = X>β and have the penalty term∑p
j=1 |βj | added to the overall objective function LW (f) or LA(f). Adding the penalty term

Journal of Statistical Software 21

makes the benefit score estimate f̂(X) = X>β̂ sparse in the sense that some elements of β̂ will
be exactly zero, allowing a simpler form of the benefit score. An example is "sq_loss_lasso",
which corresponds to using M(y, v) = (y − v)2, a linear form of f , i.e., f(X) = X>β, and
an additional penalty term ∑p

j=1 |βj | added to the loss function for variable selection. All
options containing "lasso" in the name use the cv.glmnet() function of the glmnet package
(Friedman et al. 2021) for the underlying model fitting and variable selection. A K-fold cross-
validation is used to select the penalty tuning parameter. Please see the documentation of
cv.glmnet() for information about other arguments which can be passed to it.
Any options for loss which end with "lasso_gam" have a two-stage model. Variables are
selected using a linear or GLM in the first stage and then the selected variables are used in a
generalized additive model in the second stage. Univariate nonparametric smoother terms are
used in the second stage for all continuous variables. Binary variables are used as linear terms
in the model. All loss options containing "gam" in the name use the gam() function of the
R package mgcv (Wood 2017, 2019). Please see the documentation of gam() for information
about other arguments which can be passed to it.
All options that end in "gbm" use gradient-boosted decision trees models for f(X). Such
machine learning models can provide more flexible forms of estimation by essentially using
a sum of decision trees models. However, these “black box” models can be more challenging
to interpret. The gbm-based models are fit using the gbm R package (Greenwell, Boehmke,
Cunningham, and GBM Developers 2020). Please see the documentation for the gbm()
function of the gbm package for more details on the possible arguments. Tuning the values of
the hyperparameters shrinkage, n.trees, and interaction.depth is crucial for a successful
gradient-boosting model. These arguments can be passed to the fit.subgroup() function.
By default, when gbm-based models are used, a plot of the cross-validation error versus the
number of trees is displayed. If this plot has values which are still decreasing at the maximum
value of the number of trees, then it is recommended to either increase the number of trees
(n.trees), the maximum tree depth (interaction.depth), or the step size of the algorithm
(shrinkage).
The loss "owl_hinge" options are based on the hinge loss function and thus correspond to
support vector machine type of optimization procedures. Optimization of hinge-based losses
is done via the kernlab package (Karatzoglou, Smola, Hornik, and Zeileis 2004; Karatzoglou,
Smola, and Hornik 2019). As such, the underlying model for f(X) depends on the kernel
chosen by the user. A linear kernel will yield a linear decision rule f(X), whereas a nonlinear
kernel such as the Gaussian radial basis function kernel will yield a more flexible, nonlinear
decision rule. Available kernels are listed in the kernlab package and can be displayed by
?kernels.
The outcome-weighted learning based losses with "flip" in their name allow for non-positive
outcomes. In these cases they may offer substantial finite sample efficiency gains compared
with using the original outcome-weighted learning losses and shifting the response such that
it is positive.

method The method argument is used to specify whether the weighting or A-learning method
is used. Specify "weighting" for the weighting method that uses LW (f) and "a_learning"
for the A-learning method that uses LA(f).

22 Subgroup Identification Using the personalized Package

match.id This argument allows the user to specify that the analysis dataset is based on
matched groups of cases and controls. If used, it should be either a character, factor, or
integer vector with length equal to the number of observations in x indicating which patients
are in which matched groups. Defaults to NULL and assumes the samples are not from a
matched cohort. Matched case-control groups can be created using any method such as
propensity score matching, optimal matching, etc. (Imbens and Rubin 2015). If each case is
matched with a control or multiple controls, this would indicate which case-control pairs or
groups go together. If match.id is supplied, then it is unnecessary to specify a function via
the propensity.func argument. A quick usage example is: If the first patient is a case and
the second and third are controls matched to it, and the fourth patient is a case and the fifth
through seventh patients are matched with it, then the user should specify match.id = c(1,
1, 1, 2, 2, 2, 2) or match.id = rep(c("Grp1", "Grp2"), c(3, 4)).

augment.func The augment.func argument is used to allow the user to specify an efficiency
augmentation function. The basic idea of efficiency augmentation is to construct a model for
the main effects of the outcome model and shift the outcome based on these main effects.
The resulting estimator based on the shifted outcome can be more efficient than using the
outcome itself.
For the same reason that the propensity.func must be specified as a function, the user
should specify a wrapper function for augment.func which inputs the covariate information
x and the outcome y and outputs a prediction for the outcome for each observation in x.
The predictions should be returned on the link scale, in other words on the scale of the
linear predictors. The augmentation function may be from a nonlinear or nonparametric
model, however the predictions should still be returned on the link scale. An example of an
augmentation function that uses linear regression with a lasso penalty for this model is as
follows:

R> augment.func.simple <- function(x, y) {
+ cvmod <- cv.glmnet(y = y, x = x, nfolds = 10)
+ predictions <- predict(cvmod, newx = x, s = "lambda.min")
+ predictions
+ }

A more involved example that models the full conditional outcome E[Y |T,X] and integrates
over the treatment levels is given by the following code, which obtains predictions for each
observation under both treatment levels and averages these predictions:

R> augment.func <- function(x, y, trt) {
+ data <- data.frame(x, y, trt = ifelse(trt == "Trt", 1, -1))
+ xm <- model.matrix(y ~ trt * x - 1, data = data)
+ cvmod <- cv.glmnet(y = y, x = xm)
+ data$trt <- 1
+ xm1 <- model.matrix(y ~ trt * x - 1, data = data)
+ preds_1 <- predict(cvmod, xm1, s = "lambda.min")
+ data$trt <- -1
+ xm2 <- model.matrix(y ~ trt * x - 1, data = data)
+ preds_n1 <- predict(cvmod, xm2, s = "lambda.min")

Journal of Statistical Software 23

+ return(0.5 * (preds_1 + preds_n1))
+ }

For binary outcomes, one must define the augmentation function such that it returns predic-
tions on the link scale as follows:

R> augment.func.bin <- function(x, y) {
+ cvmod <- cv.glmnet(y = y, x = x, family = "binomial")
+ predict(cvmod, newx = x, s = "lambda.min", type = "link")
+ }

Then the defined augmentation function can be used in fit.subgroup() by passing the func-
tion to the argument augment.func. A usage example using the above-defined augmentation
function is the following:

R> subgrp.model.eff <- fit.subgroup(x = x, y = y, trt = trt,
+ propensity.func = propensity.func, loss = "sq_loss_lasso",
+ augment.func = augment.func, nfolds = 10)
R> summary(subgrp.model.eff)

family: gaussian
loss: sq_loss_lasso
method: weighting
cutpoint: 0
augmentation
function: augment.func
propensity
function: propensity.func

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Outcomes:
Recommended Ctrl Recommended Trt

Received Ctrl -8.6343 (n = 178) -18.0961 (n = 232)
Received Trt -19.7439 (n = 254) -7.0398 (n = 336)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

11.1095 (n = 432)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

11.0563 (n = 568)

NOTE: The above average outcomes are biased estimates of
the expected outcomes conditional on subgroups.
Use 'validate.subgroup()' to obtain unbiased estimates.

24 Subgroup Identification Using the personalized Package

Benefit score quantiles (f(X) for Trt vs Ctrl):
0% 25% 50% 75% 100%

-12.750 -1.885 0.832 3.248 10.467

Summary of individual treatment effects:
E[Y|T=Trt, X] - E[Y|T=Ctrl, X]

Min. 1st Qu. Median Mean 3rd Qu. Max.
-25.500 -3.770 1.664 1.363 6.496 20.934

13 out of 50 interactions selected in total by the lasso (cross validation
criterion).

The first estimate is the treatment main effect, which is always selected.
Any other variables selected represent treatment-covariate interactions.

Trt V1 V2 V3 V8 V9 V11 V13 V17
Estimate 0.7119 0.2294 0.6364 -0.3792 -0.016 -0.0467 -0.7971 0.4577 0.0512

V27 V36 V42 V43 V50
Estimate -0.1035 0.0489 -0.1526 -0.1059 0.0434

From the online supplementary material of Chen et al. (2017), the optimal efficiency aug-
mentation function may depend on the treatment statuses. Hence the user is allowed to
specify augment.func as additionally a function of trt, i.e., augment.func <- function(x,
y, trt).

fit.custom.loss The fit.custom.loss argument allows the user to provide a function
which minimizes a custom loss function for use in the fit.subgroup() function. The loss
function, M(y, v), to be minimized must meet the criteria outlined in Section 2.2. The user
must provide as fit.custom.loss a function which minimizes a sample weighted version of
the loss function and returns a list with the solution of the minimization in addition to a
function which takes covariates as an argument and returns predictions of the benefit score
f̂(x) under the estimator resulting from the minimization of the custom loss.
If provided, this function should take the modified design matrix and the responses as ar-
gument s and optimize a custom weighted loss function. The provided function must be a
function with the following arguments:

• x – design matrix.
• y – vector of responses.
• weights – vector for observations weights. The underlying loss function must have

samples weighted according to this vector. See the example below.

Journal of Statistical Software 25

• ... – additional arguments passed via This can be used so that users can specify
more arguments to the underlying fitting function via fit.subgroup() if so desired.

The provided function must return a list with the following elements:

• predict – a function that inputs a design matrix and a type argument for the type
of predictions and outputs a vector of predictions on the scale of the linear predictor.
Note that the matrix provided to fit.custom.loss has a column appended to the first
column of x corresponding to the treatment main effect. Thus, the prediction function
should deal with this, e.g., predict(model, cbind(1, x)).

• model – a fitted model object returned by the underlying fitting function. This can be
an arbitrary R object.

• coefficients – if the underlying fitting function yields a vector of coefficient estimates,
they should be provided here.

The provided function can also optionally take the following arguments which may be option-
ally used in the custom fitting routine:

• match.id – vector of case/control cluster identifiers. This is useful if cross-validation
is used in the underlying fitting function in which case it is advisable to sample whole
clusters randomly instead of individual observations.

• offset – if efficiency augmentation is used, the predictions from the outcome model
from augment.func will be provided via the offset argument, which can be used as
an offset in the underlying fitting function as a means of incorporating the efficiency
augmentation model’s predictions.

• trt – vector of treatment statuses.
• family – family of outcome.

An example of fit.custom.loss is a minimization of the exponential loss M(y, v) = y exp(−v)
for positive outcomes. In the following code, we first define the weighted loss function with
a linear form for the benefit score as the function expo.loss. We then use the optim()
function to minimize this function to obtain coefficient estimates and then define pred to be
a function which returns predicted benefit scores. The function finally returns a list with the
prediction function, the returned optimization object, and the estimated coefficients.

R> fit.expo.loss <- function(x, y, weights, ...) {
+ expo.loss <- function(beta, x, y, weights) {
+ sum(weights * y * exp(-drop(x %*% beta)))
+ }
+ opt <- optim(rep(0, NCOL(x)), fn = expo.loss, x = x, y = y,
+ weights = weights)
+ coefs <- opt$par
+ pred <- function(x, type = "response") {
+ cbind(1, x) %*% coefs
+ }
+ list(predict = pred, model = opt, coefficients = coefs)
+ }

26 Subgroup Identification Using the personalized Package

larger.outcome.better The argument larger.outcome.better is a Boolean variable in-
dicating whether larger values of the outcome are better or preferred. If the argument
larger.outcome.better = TRUE, then fit.subgroup() will seek to estimate subgroups in
a way that maximizes the population average outcome and if larger.outcome.better =
FALSE, fit.subgroup() will seek to minimize the population average outcome.

reference.trt As already mentioned for trt, the user may specify which level of the
treatment should be the reference via the reference.trt argument. For example, if trt has
the levels c("TrtA", "TrtB", "Ctrl"), setting reference.trt = "Ctrl" will ensure that
"Ctrl" is the reference level. This argument is not used for multi-category treatment fitting
with OWL-type losses, as the underlying multinomial outcome-weighted model is parameter-
ized such that there is not a reference treatment group. This parameterization is described
in Friedman, Hastie, and Tibshirani (2010).

cutpoint The cutpoint is the numeric value of the benefit score f(X) above which patients
will be recommended the treatment. In other words for outcomes where larger values are
better and a cutpoint with value c if f(x) > c for a patient with covariate values X = x,
then they will be recommended to have the treatment instead of recommended the control.
If lower values are better for the outcome, c will be the value below which patients will be
recommended the treatment (i.e., a patient will be recommended the treatment if f(x) < c).
By default the cutpoint value is 0. Users may wish to increase this value if there are limited
resources for treatment allocation. The cutpoint argument is available for multi-category
treatments and is still a single value applied to each comparison with the reference treatment.
The user can also set cutpoint = "median", which will use the median value of the benefit
scores as the cutpoint. Similarly, the user can set specific quantile values via "quantx"
where "x" is a number between 0 and 100 representing the quantile value; e.g., cutpoint
= "quant75" will use the 75th percent upper quantile of the benefit scores as the cutpoint
value.

retcall The argument retcall is a Boolean variable which indicates whether to return
the arguments passed to fit.subgroup(). It must be set to TRUE if the user wishes to
later validate the fitted model object from fit.subgroup() using the validate.subgroup()
function. This is necessary because when retcall = TRUE, the design matrix x, response y,
and treatment vector trt must be re-sampled in either the bootstrap procedure or training
and testing resampling procedure of validate.subgroup(). The only time when retcall
should be set to FALSE is when the design matrix is too big to be stored in the fitted model
object.

... The argument ... is used to pass arguments to the underlying modeling functions.
For example, if the lasso is specified in the loss argument, ... is used to pass arguments
to the cv.glmnet() function from the glmnet package. If gam is present in the name for the
loss argument, the underlying model is fit using the gam() function of mgcv, so arguments to
gam() can be passed using The only tricky part for gam() is that it also has an argument
titled method and hence instead, to change the method argument of gam(), the user can pass
values using method.gam which will then be passed as the argument for method in the gam()

Journal of Statistical Software 27

function. For all loss options with "hinge", this will be passed to both weighted.ksvm()
from the personalized package and ipop from the kernlab package.

Continuous outcomes

The loss argument options that are available for continuous outcomes are:

• "sq_loss_lasso"

• "owl_logistic_loss_lasso"

• "owl_hinge_loss"

• "owl_logistic_flip_loss_lasso"

• "owl_hinge_flip_loss"

• "sq_loss_gam"

• "owl_logistic_loss_gam"

• "owl_logistic_flip_loss_gam"

• "sq_loss_lasso_gam"

• "owl_logistic_loss_lasso_gam"

• "owl_logistic_flip_loss_lasso_gam"

• "sq_loss_gbm"

Note that the loss options "owl_logistic_loss_lasso", "owl_logistic_loss_gam", and
"owl_logistic_loss_lasso_gam" require the outcome to be positive whereas the corre-
sponding options with "_flip_" in them have no such requirement. Similarly, the option
"owl_hinge_loss" requires the outcome to be positive whereas "owl_hinge_flip_loss"
does not.
Flexible gradient-boosted decision trees models can also be used. A typical usage of such
models for continuous outcomes is as follows, where the last 4 arguments provided to function
fit.subgroup() are arguments to be passed to the underlying fitting function, gbm().

R> subgrp.model.gbm <- fit.subgroup(x = x, y = y, trt = trt,
+ propensity.func = propensity.func.lasso, loss = "sq_loss_gbm",
+ shrinkage = 0.025, n.trees = 1000, interaction.depth = 2, cv.folds = 5)

Binary outcomes

All loss options for continuous outcomes can also be used for binary outcomes. Additionally,
the loss argument options that are exclusively available for binary outcomes are:

• "logistic_loss_lasso"

• "logistic_loss_lasso_gam"

28 Subgroup Identification Using the personalized Package

• "logistic_loss_gam"

• "logistic_loss_gbm"

R> subgrp.bin <- fit.subgroup(x = x, y = y.binary, trt = trt,
+ propensity.func = propensity.func.lasso,
+ loss = "logistic_loss_lasso", nfolds = 10)

When gradient-boosted decision trees are used for f(X) by the package gbm, care must be
taken to choose the hyperparameters effectively. Specifically, shrinkage (similar to the step-
size in gradient descent), n.trees (the number of trees to fit), and interaction.depth (the
maximum depth of each tree) should be tuned according to the data at hand. By default for
gradient-boosting models, fit.subgroup() plots the cross-validation error versus the number
of trees to enable the users to assess their choice of tuning parameters.

Count outcomes

All loss options for continuous outcomes can also be used for count outcomes. Additionally,
the loss argument options that are exclusively available for count outcomes are:

• "poisson_loss_lasso"

• "poisson_loss_lasso_gam"

• "poisson_loss_gam"

• "poisson_loss_gbm"

Time-to-event outcomes

The loss argument options that are available for time-to-event outcomes are:

• "cox_loss_lasso"

• "cox_loss_gbm"

For subgroup identification models for time-to-event outcomes, the user should provide func-
tion fit.subgroup() with a ‘Surv’ object of the survival package for y. This can be done as
follows:

R> library("survival")
R> set.seed(123)
R> subgrp.cox <- fit.subgroup(x = x, y = Surv(y.time.to.event, status),
+ trt = trt, propensity.func = propensity.func.lasso,
+ loss = "cox_loss_lasso", nfolds = 10)

The subgroup treatment effects are estimated using the restricted mean survival time statistic
(Irwin 1949; Zhao and Tsiatis 1997, 1999; Chen and Tsiatis 2001) and can be displayed with
the summary or print methods for the ‘subgroup_fitted’ objects returned as follows:

Journal of Statistical Software 29

R> summary(subgrp.cox)

family: cox
loss: cox_loss_lasso
method: weighting
cutpoint: 0
propensity
function: propensity.func

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Outcomes:
Recommended Ctrl Recommended Trt

Received Ctrl 275.7499 (n = 255) 11.9909 (n = 155)
Received Trt 367.1772 (n = 369) 162.6475 (n = 221)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

-91.4273 (n = 624)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

150.6566 (n = 376)

NOTE: The above average outcomes are biased estimates of
the expected outcomes conditional on subgroups.
Use 'validate.subgroup()' to obtain unbiased estimates.

Benefit score quantiles (f(X) for Trt vs Ctrl):
0% 25% 50% 75% 100%

-0.51188 -0.16824 -0.05754 0.07037 0.66802

Summary of individual treatment effects:
E[Y|T=Trt, X] / E[Y|T=Ctrl, X]
Note: for survival outcomes, the above ratio is
E[g(Y)|T=Trt, X] / E[g(Y)|T=Ctrl, X],
where g() is a monotone increasing function of Y,
the survival time

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5127 0.9320 1.0592 1.0686 1.1832 1.6684

30 Subgroup Identification Using the personalized Package

8 out of 49 interactions selected in total by the lasso (cross validation
criterion).

The first estimate is the treatment main effect, which is always selected.
Any other variables selected represent treatment-covariate interactions.

Trt V1 V2 V3 V11 V12 V13 V17 V47
Estimate 0.0461 0.0065 0.0473 -0.0101 -0.0207 -0.0014 0.0065 2e-04 -0.0024

V50
Estimate 0.0176

3.4. The summarize.subgroups() function for summarizing subgroups

The summarize.subgroups() function provides a quick way of comparing the covariate values
between the subgroups recommended the treatment and the control respectively. p values for
the differences of covariate values between subgroups are computed and adjusted for multiple
comparisons using the approach of Hommel (1988). For continuous variables the p values come
from t tests and for discrete variables the p values come from chi-squared tests. The p values
are computed and used as a means to filter out covariates without meaningful differences
between subgroups, however they are not displayed as they do not represent valid statistical
inferences due to their post-hoc nature.

R> comp <- summarize.subgroups(subgrp.cox)

The user can optionally print only the covariates which have “significant” differences between
subgroups with a multiple comparisons-adjusted p value below a given threshold like the
following:

R> print(comp, p.value = 0.01)

Avg (recom Ctrl) Avg (recom Trt) Ctrl - Trt SE (recom Ctrl)
V1 0.4021 -0.5387 0.9408 0.11842
V2 1.7412 -2.5508 4.2920 0.09051
V11 -0.5269 1.0827 -1.6095 0.11687
V50 0.8054 -1.0275 1.8329 0.12070

SE (recom Trt)
V1 0.1503
V2 0.1085
V11 0.1500
V50 0.1564

3.5. The validate.subgroup() function for evaluating identified subgroups

It is crucial to evaluate the findings by assessing the improvement in outcomes with the esti-
mated subgroups. Ideally, the treatment should have a positive impact on the outcome within
the subgroup of patients who are recommended the treatment and the control should have a

Journal of Statistical Software 31

positive impact on the outcome within the subgroup of patients who were not recommended
the treatment.
In general it is quite challenging to obtain valid estimates of these effects because usually
only one dataset is available. Using data twice, or taking the average outcomes by treatment
status within each subgroup (using the same data) to estimate the treatment effects, will yield
biased and typically overly-optimistic estimates of the subgroup-specific treatment effects.
Therefore, as described in Section 2.6, we use resampling-based procedures to alleviate this
phenomenon and hope to estimate these effects reliably. The personalized package offers
two methods for subgroup treatment effect estimation. Both methods are available via the
validate.subgroup() function.

Repeated training/test splitting

The first method of subgroup-specific treatment effects available in validate.subgroup() is
prediction-based and requires multiple replications of data partitioning. For each replication
in this procedure, data are randomly partitioned into training and testing portions. Then
the subgroup identification model is estimated using the training portion and the subgroup
treatment effects are estimated via empirical averages within subgroups using the testing
portion. This method requires two arguments to be passed to validate.subgroup(). The
first argument is B, the number of replications and the second argument is train.fraction,
the proportion of samples used for training. Hence 1 - train.fraction is the portion of
samples used for testing.
The main object which needs to be passed to validate.subgroup() is a fitted object returned
by fit.subgroup(). Note that in order to validate a fitted object from fit.subgroup(), the
model must be fit with the fit.subgroup() argument retcall set to TRUE because the data
passed to fit.subgroup() must be accessed. The validate.subgroup() function uses the
same arguments that were passed to the original call of fit.subgroup() for fitting during
each replication.
The validation process is carried out by fixing the cutpoint value at the user specified cut-
point from the call to fit.subgroup(). However, especially in scenarios with very costly
treatments, it may be of interest to investigate the treatment effects within subgroups de-
fined by different cutpoints along the range of the benefit score. To simultaneously run
the validation procedure for subgroups defined by different cutpoints of the benefit score,
the user can specify a vector of benefit score quantiles to validate.subgroup() via the
benefit.score.quantiles argument. For example, setting benefit.score.quantiles =
c(0.5, 0.75) will yield validation results for subgroups defined by a median cutoff value
for the benefit score and a cutoff value at the 75th quantile of the benefit score, the latter
of which will result in a smaller subgroup assigned to the treatment that will ideally have a
larger treatment effect. The default value for benefit.score.quantiles is the vector c(1/6,
2/6, 3/6, 4/6, 5/6). The results of this can be accessed by setting the argument type =
"conditional" for the plot method of ‘subgroup_validated’ objects or by specifying a vec-
tor of indexes via the argument which.quant of the print method of ‘subgroup_validated’
objects.

R> class(subgrp.model.eff)

[1] "subgroup_fitted"

32 Subgroup Identification Using the personalized Package

Here the argument B specifies the number of replications, method indicates what estimation
method to use, and benefit.score.quantiles specifies which quantiles of the benefit score
to use as cutpoints in addition to 0.

R> validation.eff <- validate.subgroup(subgrp.model.eff, B = 25,
+ method = "training_test_replication",
+ benefit.score.quantiles = c(0.5, 0.75, 0.9), train.fraction = 0.75)
R> validation.eff

family: gaussian
loss: sq_loss_lasso
method: weighting

validation method: training_test_replication
cutpoint: 0
replications: 25

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Test Set Outcomes:
Recommended Ctrl

Received Ctrl -11.2162 (SE = 4.9659, n = 44.64)
Received Trt -16.4652 (SE = 2.8617, n = 64.4)

Recommended Trt
Received Ctrl -16.0059 (SE = 3.1811, n = 58.08)
Received Trt -9.3996 (SE = 2.0931, n = 82.88)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

5.249 (SE = 6.5083, n = 109.04)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

6.6063 (SE = 4.0641, n = 140.96)

Est of
E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
5.4049 (SE = 2.7976)

Note that when a larger quantile cutoff is used fewer patients are recommended the treatment,
however the treatment effect among those recommended the treatment is much larger.

R> print(validation.eff, which.quant = c(2, 3))

family: gaussian
loss: sq_loss_lasso
method: weighting

Journal of Statistical Software 33

validation method: training_test_replication
cutpoint: Quant_75
replications: 25

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Test Set Outcomes:
Recommended Ctrl

Received Ctrl -13.6323 (SE = 3.057, n = 76.52)
Received Trt -14.2462 (SE = 1.4602, n = 110.48)

Recommended Trt
Received Ctrl -15.5259 (SE = 4.2005, n = 26.2)
Received Trt -7.2177 (SE = 4.0275, n = 36.8)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

0.6139 (SE = 3.3128, n = 187)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

8.3082 (SE = 6.048, n = 63)

Est of E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
2.5018 (SE = 2.484)

<===>

family: gaussian
loss: sq_loss_lasso
method: weighting

validation method: training_test_replication
cutpoint: Quant_90
replications: 25

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Test Set Outcomes:
Recommended Ctrl

Received Ctrl -13.8475 (SE = 2.8093, n = 91.88)
Received Trt -13.0648 (SE = 1.3536, n = 133.12)

Recommended Trt
Received Ctrl -16.2354 (SE = 6.8779, n = 10.84)
Received Trt -7.3182 (SE = 8.6173, n = 14.16)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

34 Subgroup Identification Using the personalized Package

-0.7826 (SE = 3.4515, n = 225)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

8.9172 (SE = 11.4587, n = 25)

Est of E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
0.1748 (SE = 3.3348)

Bootstrap bias correction

The second method for estimation of subgroup-conditional treatment effects described in
Section 2.6 and available in validate.subgroup() is the bootstrap bias correction method.
The bootstrap bias correction method can be accessed via the validate.subgroup() function
as follows:

R> validation.boot <- validate.subgroup(subgrp.model.eff, B = 100,
+ method = "boot_bias_correction")
R> validation.boot

family: gaussian
loss: sq_loss_lasso
method: weighting

validation method: boot_bias_correction
cutpoint: 0
replications: 100

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Bootstrap Bias-Corrected Outcomes:
Recommended Ctrl

Received Ctrl -11.4446 (SE = 1.875, n = 177.19)
Received Trt -17.7519 (SE = 1.9165, n = 253.83)

Recommended Trt
Received Ctrl -15.6872 (SE = 1.9325, n = 231.04)
Received Trt -8.7282 (SE = 1.1628, n = 337.94)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

6.3073 (SE = 2.3743, n = 431.02)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

6.959 (SE = 2.1228, n = 568.98)

Est of
E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
6.5025 (SE = 1.7104)

Journal of Statistical Software 35

Evaluating performance of subgroup-specific treatment effect estimation

We now generate an independent dataset from the same data-generating mechanism of the
simulation in order to evaluate how well the subgroup-specific treatment effects are estimated
by validate.subgroup().

R> x.test <- matrix(rnorm(10 * n.obs * n.vars, sd = 3), 10 * n.obs, n.vars)
R> xbetat.test <- 0.5 + 0.25 * x.test[, 21] - 0.25 * x.test[, 41]
R> trt.prob.test <- plogis(xbetat.test)
R> trt.test <- rbinom(10 * n.obs, 1, prob = trt.prob.test)
R> delta.test <- 0.5 + x.test[, 2] - 0.5 * x.test[,3] - x.test[, 11] +
+ x.test[, 1] * x.test[, 12]
R> xbeta.test <- x.test[, 1] + x.test[, 11] - 2 * x.test[, 12]^2 +
+ x.test[, 13] + 0.5 * x.test[, 15]^2
R> xbeta.test <- xbeta.test + delta.test * (2 * trt.test - 1)
R> y.test <- xbeta.test + rnorm(10 * n.obs, sd = 2)

We then use the predict() function for objects returned by fit.subgroup() to obtain the
estimated benefit scores for the test data:

R> bene.score.test <- predict(subgrp.model.eff, newx = x.test)

Finally we evaluate the subgroup-specific treatment effects on the test data based on the
estimated subgroups and compare these values with confidence intervals from the bootstrap
bias correction method. The effect of control among those recommended control is obtained
by:

R> mean(y.test[bene.score.test <= 0 & trt.test == 0]) -
+ mean(y.test[bene.score.test <= 0 & trt.test == 1])

[1] 7.19437

R> quantile(validation.boot$boot.results[[1]][, 1], c(0.025, 0.975),
+ na.rm = TRUE)

2.5% 97.5%
1.824823 10.732421

The treatment effect among those recommended treatment is obtained by:

R> mean(y.test[bene.score.test > 0 & trt.test == 1]) -
+ mean(y.test[bene.score.test > 0 & trt.test == 0])

[1] 5.957166

R> quantile(validation.boot$boot.results[[1]][, 2], c(0.025, 0.975),
+ na.rm = TRUE)

36 Subgroup Identification Using the personalized Package

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Recommended Ctrl Recommended Trt

Ctrl Trt Ctrl Trt

−150

−100

−50

0

50

Received

O
ut

co
m

e

Individual Observations Among Subgroups

Figure 2: Individual outcomes within both the subgroup of patients whose benefit scores are
positive and the subgroup of those whose benefit scores are negative.

2.5% 97.5%
3.266023 11.345697

We can see that the true values are contained within the bootstrap confidence intervals.

3.6. The plot() method and the plotCompare() function

The outcomes (or average outcomes) of patients within different subgroups can be plotted
using the plot() function. In particular, this function plots patient outcomes by treatment
statuses within each subgroup of patients. Boxplots of the outcomes can be plotted in addition
to densities and interaction plot of the average outcomes within each of these groups. They
can all be generated using code like the one below with resulting plots in Figures 2, 3, and 4:

R> plot(subgrp.model)
R> plot(subgrp.model, type = "density")
R> plot(subgrp.model, type = "interaction")

For objects of class ‘subgroup_fitted’, specifying the argument type = "conditional" in
the plot() function displays smoothed means of the outcomes conditional on each treatment
group as a function of the benefit score. Thus, a meaningful subgroup will be revealed if the
conditional means of the treated and untreated groups are not parallel in the benefit score.
The conditional plot generated from the below code is in Figure 5.

R> plot(subgrp.model, type = "conditional")

Multiple models can be visually compared using the plotCompare() function, which offers
the same plotting options as the plot method for ‘subgroup_fitted’ objects.

Journal of Statistical Software 37

Recommended Ctrl Recommended Trt

0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03

−150

−100

−50

0

50

density

O
ut

co
m

e

Received Ctrl Trt

Individual Observations Among Subgroups

Figure 3: Density plots of individual outcome observations among the different subgroups.

●

●
●

●

−17.5

−15.0

−12.5

−10.0

−7.5

Ctrl Trt

Recommended

A
ve

ra
ge

 O
ut

co
m

e

Received ● ●Ctrl Trt

Average Outcomes Among Subgroups

Figure 4: Interaction plot of the average outcome values within each subgroup by treatment
status.

3.7. Efficiency augmentation

We now run the repeated training and testing splitting procedure on the model for continuous
outcomes that did not utilize efficiency augmentation so we can compare with the efficiency-
augmented model:

R> validation <- validate.subgroup(subgrp.model, B = 100,
+ method = "training_test_replication", train.fraction = 0.75)

38 Subgroup Identification Using the personalized Package

●

●

●

●

●

●
● ●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●● ●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●● ●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●
● ●

●

● ●

●
●

●

●●● ●
● ●

●

●

● ●●

● ●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●●
●

●●
●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●● ●

●

●

●

●●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

● ● ●●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●●●

● ●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●●

●

●

●

● ●●
●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●
● ●●

●●
● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●
●

●●

●

●
●

● ●

●
●

●

●

●

●

● ●

●

●
●

●

−150

−100

−50

0

50

−10 0 10

bs

O
ut

co
m

e

Received ● ●Ctrl Trt

Individual Observations by Treatment Group

Figure 5: Individual observations of outcomes versus estimated benefit score by treatment
status with smoothed mean lines by treatment arm.

R> validation

family: gaussian
loss: sq_loss_lasso
method: a_learning

validation method: training_test_replication
cutpoint: 0
replications: 100

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Test Set Outcomes:
Recommended Ctrl

Received Ctrl -10.83 (SE = 5.5725, n = 40.21)
Received Trt -16.314 (SE = 4.9946, n = 59.98)

Recommended Trt
Received Ctrl -15.6022 (SE = 3.3228, n = 62.22)
Received Trt -10.4702 (SE = 3.131, n = 87.59)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

5.5198 (SE = 8.5388, n = 100.19)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

5.132 (SE = 5.019, n = 149.81)

Journal of Statistical Software 39

●
●

●

●●
●

●

●●

●
●

●

●

●●

Recommended Ctrl Recommended Trt

Ctrl Trt Ctrl Trt

−30

−20

−10

0

Received

A
ve

ra
ge

 O
ut

co
m

e

Average Test Set Outcome Across Replications Among Subgroups

Figure 6: Values of average test set outcomes stratified by subgroups and treatment statuses
across the training and testing replications.

Est of
E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
3.9346 (SE = 3.7614)

The results across the iterations for either the bootstrap of the training and testing partition-
ing procedure can be plotted using the plot() function similarly to how the plot() function
can be used for fitted objects from fit.subgroup(). Similarly, boxplots, density plots, and
interaction plots are all available through the type argument. Example code is below with
resulting plot shown in Figure 6. For the sake of space, we do not show the density plot.

R> plot(validation)
R> plot(validation, type = "density")

Specifying the argument type = "conditional" plots the validation results conditional on
different cutoff values for the benefit score as specified to validate.subgroup() via the
benefit.score.quantiles argument. The resulting conditional plot generated by the below
code is shown in Figure 7.

R> plot(validation, type = "conditional")

Multiple validated models can be visually compared using the plotCompare() function, which
offers the same plotting options as the plot method for ‘subgroup_validated’ objects. Here
we compare the model fitted using "sq_loss_lasso" to the one fitted using "sq_loss_lasso"
and efficiency augmentation. The resulting plot is shown in Figure 8.

R> plotCompare(validation, validation.eff)

From this comparison plot we can see that the efficiency-augmented model provides estimated
subgroups that result in better overall outcomes when the recommended treatment is indeed
the treatment received.

40 Subgroup Identification Using the personalized Package

●

●

●
●●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
● ●

Cutoff: Quant_17 Cutoff: Quant_33 Cutoff: Quant_50 Cutoff: Quant_67 Cutoff: Quant_83

R
ecom

m
ended C

trl
R

ecom
m

ended Trt

Ctrl Trt Ctrl Trt Ctrl Trt Ctrl Trt Ctrl Trt

−30

−20

−10

0

10

−30

−20

−10

0

10

Received

A
ve

ra
ge

 O
ut

co
m

e

Average Test Set Outcome Across Replications Among Subgroups

Figure 7: Values of average test set outcomes across the training and testing replications
stratified by treatment statuses and subgroups as defined by different quantiles of the benefit
score.

●●

●

●●●

●

●●
●
●

●

●
●●

validation validation.eff

R
ecom

m
ended C

trl
R

ecom
m

ended Trt

Ctrl Trt Ctrl Trt

−30

−20

−10

0

−30

−20

−10

0

Received

O
ut

co
m

e

Figure 8: Comparison plot of the training and testing validation results for two different
models.

Journal of Statistical Software 41

3.8. Example with multi-category treatments

First we simulate data with three treatments. The treatment assignments will be based on
covariates and hence mimic an observational setting with no unmeasured confounders. The
term delta1 below is the effect of treatment 1 relative to treatment 3 and delta2 is defined
similarly for treatment 2. The main effects have nonlinearities.

R> set.seed(123)
R> n.obs <- 1000; n.vars <- 100
R> x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)
R> xbetat_1 <- 0.1 + 0.5 * x[, 21] - 0.25 * x[, 25]
R> xbetat_2 <- 0.1 - 0.5 * x[, 11] + 0.25 * x[, 15]
R> trt.1.prob <- exp(xbetat_1) / (1 + exp(xbetat_1) + exp(xbetat_2))
R> trt.2.prob <- exp(xbetat_2) / (1 + exp(xbetat_1) + exp(xbetat_2))
R> trt.3.prob <- 1 - (trt.1.prob + trt.2.prob)
R> prob.mat <- cbind(trt.1.prob, trt.2.prob, trt.3.prob)
R> trt.mat <- apply(prob.mat, 1, function(rr) rmultinom(1, 1, prob = rr))
R> trt.num <- apply(trt.mat, 2, function(rr) which(rr == 1))
R> trt <- as.factor(paste0("Trt_", trt.num))
R> delta1 <- 2 * (0.5 + x[, 2] - 2 * x[, 3])
R> delta2 <- 0.5 + x[, 6] - 2 * x[, 5]
R> xbeta <- x[, 1] + x[, 11] - 2 * x[, 12]^2 + x[, 13] +
+ 0.5 * x[, 15] ^ 2 + 2 * x[, 2] - 3 * x[, 5]
R> xbeta <- xbeta + delta1 * ((trt.num == 1) - (trt.num == 3)) +
+ delta2 * ((trt.num == 2) - (trt.num == 3))
R> y <- xbeta + rnorm(n.obs, sd = 2)

We will use the factor version of the treatment status vector in our analysis, however, the
integer values vector, i.e., trt.num, could be used as well.

R> trt[1:5]

[1] Trt_3 Trt_1 Trt_3 Trt_2 Trt_3
Levels: Trt_1 Trt_2 Trt_3

R> table(trt)

trt
Trt_1 Trt_2 Trt_3

368 359 273

Then we construct a propensity score function that takes covariate information and the treat-
ment statuses as input and generates a matrix of probabilities as output. Each row i of the
output matrix represents an observation and each column j is the probability that the i-th
patient received the j-th treatment. The treatment levels are ordered alphabetically (or nu-
merically if the treatment assignment vector is a vector of integers). Our propensity score
model in this example will be a multinomial logistic regression model with a lasso penalty for
the probability of treatment assignments conditional on covariate information:

42 Subgroup Identification Using the personalized Package

Trt_1 G
roup

Trt_2 G
roup

Trt_3 G
roup

0.00 0.25 0.50 0.75 1.00

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

Propensity Score

co
un

t

Treatment Trt_1 Trt_2 Trt_3

Histograms of propensity scores by treatment group

Figure 9: Propensity score overlap plot for multi-category treatment data.

R> propensity.multinom.lasso <- function(x, trt) {
+ if (!is.factor(trt)) trt <- as.factor(trt)
+ gfit <- cv.glmnet(y = trt, x = x, family = "multinomial")
+ propens <- drop(predict(gfit, newx = x, type = "response",
+ s = "lambda.min"))
+ probs <- propens[, match(levels(trt), colnames(propens))]
+ probs
+ }

An important assumption for the propensity score is that 0 < P(Ti = t|X) < 1 for all X and
t. This assumption, often called the positivity assumption, is impossible to verify. However,
in practice validity of the assumption can be assessed via a visualization of the empirical
overlap of our estimated propensity scores to determine if there is any evidence of positivity
violations. The check.overlap() function also allows us to visualize the overlap of our
propensity scores for multi-category treatment applications. The following code results in the
plot shown Figure 9.

R> check.overlap(x = x, trt = trt, propensity.multinom.lasso)

Each plot in Figure 9 is for a different treatment group, e.g., the plot in the first row of plots
is the subset of patients who received treatment 1. There seems to be no obvious evidence
against the positivity assumption.
As the outcome is continuous and there is a large number of covariates available for our
construction of a benefit score, we will use the squared error loss and a lasso penalty. The
model can be fit in the same manner as for the binary treatment setting, however only

Journal of Statistical Software 43

linear models and the weighting method are available. Here we can also specify the reference
treatment (the treatment that the non-reference treatments are compared with by each benefit
score). Here we specify that the reference treatment level is "Trt_3".

R> set.seed(123)
R> subgrp.multi <- fit.subgroup(x = x, y = y, trt = trt,
+ propensity.func = propensity.multinom.lasso, reference.trt = "Trt_3",
+ loss = "sq_loss_lasso")
R> summary(subgrp.multi)

family: gaussian
loss: sq_loss_lasso
method: weighting
cutpoint: 0
propensity
function: propensity.func

benefit score: f_Trt_1(x): Trt_1 vs Trt_3, f_Trt_2(x): Trt_2 vs Trt_3
f_Trt_3(x): 0

maxval = max(f_Trt_1(x), f_Trt_2(x))
which.max(maxval) = The trt level which maximizes maxval
Trt recom = which.max(maxval)*I(maxval > c) + Trt_3*I(maxval <= c)
where c is 'cutpoint'

Average Outcomes:
Recommended Trt_1 Recommended Trt_2 Recommended Trt_3

Received Trt_1 -1.9711 (n = 170) -9.1388 (n = 131) -30.9531 (n = 67)
Received Trt_2 -16.9325 (n = 181) 2.2732 (n = 111) -31.8461 (n = 67)
Received Trt_3 -22.4541 (n = 127) -11.1916 (n = 86) -2.7072 (n = 60)

Treatment effects conditional on subgroups:
Est of E[Y|T=Trt_1,Recom=Trt_1]-E[Y|T=/=Trt_1,Recom=Trt_1]

17.6189 (n = 478)
Est of E[Y|T=Trt_2,Recom=Trt_2]-E[Y|T=/=Trt_2,Recom=Trt_2]

12.4103 (n = 328)
Est of E[Y|T=Trt_3,Recom=Trt_3]-E[Y|T=/=Trt_3,Recom=Trt_3]

28.6932 (n = 194)

NOTE: The above average outcomes are biased estimates of
the expected outcomes conditional on subgroups.
Use 'validate.subgroup()' to obtain unbiased estimates.

Benefit score 1 quantiles (f(X) for Trt_1 vs Trt_3):
0% 25% 50% 75% 100%

-18.451 -2.903 2.216 6.885 22.101

44 Subgroup Identification Using the personalized Package

Benefit score 2 quantiles (f(X) for Trt_2 vs Trt_3):
0% 25% 50% 75% 100%

-23.8125 -4.8801 -0.2818 4.7656 26.2459

Summary of individual treatment effects:
E[Y|T=trt, X] - E[Y|T=Trt_3, X]
where 'trt' is Trt_1 and Trt_2

Trt_1-vs-Trt_3 Trt_2-vs-Trt_3
Min. :-36.902 Min. :-47.6249
1st Qu.: -5.807 1st Qu.: -9.7602
Median : 4.432 Median : -0.5636
Mean : 4.415 Mean : -0.4341
3rd Qu.: 13.771 3rd Qu.: 9.5311
Max. : 44.202 Max. : 52.4918

13 out of 200 interactions selected in total by the lasso (cross validation
criterion).

The first estimate is the treatment main effect, which is always selected.
Any other variables selected represent treatment-covariate interactions.

7 out of 100 variables selected for delta 1 by the lasso (cross validation
criterion).

Trt_1 V2 V3 V10 V32
Estimates for delta (Trt_1 vs Trt_3) 2.0007 1.0344 -2.1732 0.1916 0.1272

V61 V62 V79
Estimates for delta (Trt_1 vs Trt_3) -0.0834 -0.1028 -0.3649

6 out of 100 variables selected for delta 2 by the lasso (cross validation
criterion).

Trt_2 V5 V11 V63 V80
Estimates for delta (Trt_2 vs Trt_3) -0.4728 -2.2508 0.0558 0.3312 -0.1906

V92 V98
Estimates for delta (Trt_2 vs Trt_3) -0.0112 -0.7417

The summary() function now displays selected variables for each of the two benefit scores
and shows the quantiles of each benefit score. We can also plot the empirical observations
within the different subgroups using the plot() function, however now it is slightly more

Journal of Statistical Software 45

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Recommended Trt_1 Recommended Trt_2 Recommended Trt_3

Tr
t_

1

Tr
t_

2

Tr
t_

3

Tr
t_

1

Tr
t_

2

Tr
t_

3

Tr
t_

1

Tr
t_

2

Tr
t_

3

−150

−100

−50

0

50

Received

O
ut

co
m

e

Individual Observations Among Subgroups

Figure 10: Individual outcome observations by treatment group and subgroup.

complicated. It appears that the average outcome is higher for those who received the level
of the treatment they were recommended than those who received a different treatment than
they were recommended. Also note that the plot method for ‘subgroup_fitted’ objects
returns a ‘ggplot’ object (Wickham 2016; Wickham, Chang, Henry, Pedersen, Takahashi,
Wilke, Woo, Yutani, and Dunnington 2021) and can thus be modified by the user. The below
example yields Figure 10.

R> pl <- plot(subgrp.multi)
R> pl + theme(axis.text.x = element_text(angle = 90, hjust = 1))

To obtain valid estimates of the subgroup-specific treatment effects, we perform the repeated
training and testing resample procedure using the validate.subgroup() function:

R> set.seed(123)
R> validation.multi <- validate.subgroup(subgrp.multi, B = 100,
+ method = "training_test_replication", train.fraction = 0.5)
R> print(validation.multi, digits = 2, sample.pct = TRUE)

family: gaussian
loss: sq_loss_lasso
method: weighting

validation method: training_test_replication
cutpoint: 0
replications: 100

benefit score: f_Trt_1(x): Trt_1 vs Trt_3, f_Trt_2(x): Trt_2 vs Trt_3

46 Subgroup Identification Using the personalized Package

●

●

●
●

●

●

●

●

●
●

●

●

●

Recommended Trt_1 Recommended Trt_2 Recommended Trt_3

Tr
t_

1

Tr
t_

2

Tr
t_

3

Tr
t_

1

Tr
t_

2

Tr
t_

3

Tr
t_

1

Tr
t_

2

Tr
t_

3

−50

−25

0

25

Received

A
ve

ra
ge

 O
ut

co
m

e

Average Test Set Outcome Across Replications Among Subgroups

Figure 11: Validation results for multi-category treatment data.

f_Trt_3(x): 0
maxval = max(f_Trt_1(x), f_Trt_2(x))
which.max(maxval) = The trt level which maximizes maxval
Trt recom = which.max(maxval)*I(maxval > c) + Trt_3*I(maxval <= c)
where c is 'cutpoint'

Average Test Set Outcomes:
Recommended Trt_1 Recommended Trt_2

Received Trt_1 -4.02 (SE = 3.29, 19.31%) -8.43 (SE = 3.83, 10.96%)
Received Trt_2 -16.98 (SE = 4.06, 20.25%) 2.49 (SE = 7.77, 9.02%)
Received Trt_3 -20.6 (SE = 3.16, 14.15%) -10.45 (SE = 5.47, 7.53%)

Recommended Trt_3
Received Trt_1 -28.34 (SE = 6.91, 6.53%)
Received Trt_2 -25.98 (SE = 5.47, 6.69%)
Received Trt_3 -4.89 (SE = 5.05, 5.57%)

Treatment effects conditional on subgroups:
Est of E[Y|T=Trt_1,Recom=Trt_1]-E[Y|T=/=Trt_1,Recom=Trt_1]

14.72 (SE = 5.14, 53.7%)
Est of E[Y|T=Trt_2,Recom=Trt_2]-E[Y|T=/=Trt_2,Recom=Trt_2]

11.93 (SE = 8.39, 27.52%)
Est of E[Y|T=Trt_3,Recom=Trt_3]-E[Y|T=/=Trt_3,Recom=Trt_3]

22.24 (SE = 7.02, 18.78%)

Est of
E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
13.76 (SE = 3.04)

Journal of Statistical Software 47

Setting the sample.pct argument above to TRUE prints out the average percent of all patients
which are in each subgroup (as opposed to the average sample sizes). We can see that about
58% of patients were recommended treatment 1 and among those recommended treatment 1,
we expect them to have larger outcomes if they actually receive treatment 1 as opposed to
the other treatments. The estimated effects are positive within all three subgroups (meaning
those recommended each of the different treatments have a positive benefit from receiving the
treatment they are recommended as opposed to receiving any another treatments).
We can visualize the subgroup-specific treatment effects using plot() as usual with results
shown in Figure 11:

R> plv <- plot(validation.multi)
R> plv + theme(axis.text.x = element_text(angle = 90, hjust = 1))

4. Numerical comparisons
In this section we evaluate the finite sample performance of many different available methods
in the personalized package and comparative methods available in other packages via a set
of numerical studies. These comparative methods, outside the scope of the personalized
package, are the residual-weighted learning (RWL) method of Zhou, Mayer-Hamblett, Khan,
and Kosorok (2017) as implemented in the DynTxRegime package, the `1-PLS approach of
Qian and Murphy (2011, outcome-lasso), an outcome-modeling approach based on Bayesian
additive regression trees (outcome-BART), and the model-based trees and forests approach of
Seibold, Zeileis, and Hothorn (2016, 2017) implemented in the model4you package (Seibold,
Zeileis, and Hothorn 2021). Comparison with more packages and methods would be ideal,
however the majority of available packages either do not provide functions for prediction for
new patients or are too computationally demanding. The methods from the personalized
package utilized in this comparison are the A-learning method with the square loss and a
lasso penalty (Sq-A); the weighting method with the square loss and a lasso penalty (Sq-W);
the weighting method the flipped outcome weighted learning logistic loss and a lasso penalty,
i.e., M(y, v) = |y| log(1 + exp{−sign(y)v}), (FOWL-L-W); and the weighting method the
flipped outcome weighted learning hinge loss, i.e., M(y, v) = |y|max(0, 1−sign(y)v), (FOWL-
H-W). We additionally compare with loss-augmented versions of all of these aforementioned
methods; the corresponding names have “-Aug” appended to the end, e.g., “Sq-W-Aug”.
Covariates were generated as X = (X1, . . . , Xp)>, where X2, X4, X6, . . . , X40 are binary ran-
dom variables with probability of success 0.25, and the remaining p − 20 elements of X
are generated from a multivariate normal random variable with variance-covariance ma-
trix 1 on the diagonal and ρ|i−j| for the element in the i-th row and j-th column with
ρ = 0.75. Treatment statuses are generated from an observational study type setting with
P(T = 1|X = x) = expit(βT0 +β>T x), where expit(x) = 1/(1 + e−x) and the first 10 elements
in βT are generated from a uniform random variable on [−0.5,−0.25]∪ [0.25, 0.5] and the rest
are 0. The intercept βT0 is set such that on average 1/3 of observations would receive T = 1.
The responses are generated from the following two models:

Model 1: Y = γ>X + Tβ>X + ε

Model 2: Y = exp(0.5γ>X)−exp(0.5{ν1X1X2 +ν2X1X3 +ν3X2X3 +ν4X3X4 +ν5X5X6})+
Tβ>X + ε,

48 Subgroup Identification Using the personalized Package

where the first 10 elements in γ are generated from a uniform random variable on [−c,−0.5c]∪
[0.5c, c] and the rest are 0, νi for i = 1, . . . , 5 are generated from a uniform random variable
on [−c,−0.5c]∪ [0.5c, c], and 10 randomly chosen elements in β are generated from a uniform
random variable on [−1,−0.5] ∪ [0.5, 1]. For the large main covariate effects setting, c = 4/3
and for the moderate main covariate effects setting, c = 2/3.
For all methods that apply variable selection, the lasso is used and 10-fold cross-validation
based on mean-squared error is used for selection of the tuning parameter. For all methods
that require the use of a propensity score, the propensity score is created by fitting a binary
logistic regression model with a lasso penalty. For all modeling options in the personalized
package that do not use the hinge loss, the lasso is used for variable selection. For all methods
in the personalized package that use outcome augmentation, a linear model Y ∼ x + x:trt
with the lasso is used to create the augmentation part. The treatment-covariate interactions
are included in this function so that the main effects can be correctly specified. However,
as the goal in subgroup identification is to estimate treatment-covariate interactions, the
augmentation function we use averages over the predictions for trt = 1 and trt = -1. We
note that, under Model 2, this augmentation function is misspecified.
For the BART approach, we use the BayesTree package (Chipman and McCulloch 2016) with
all covariates and the treatment indicator included and estimate the benefit score ∆(x) for
each patient by evaluating the difference in predictions for trt = 1 versus trt = -1. We
use the default settings in the BayesTree package as the default settings are well-known to
perform admirably (Chipman, George, McCulloch et al. 2010). Similarly, with the `1-PLS
approach, we fit a linear model with a lasso penalty for the outcome, including covariate main
effects and treatment-covariate interactions. The benefit score is estimated in the same way
as the BART approach. The augmentation function needed in creating the residuals for the
RWL method is constructed in the same way as that used for the outcome augmentation of
the personalized package.
The methods are evaluated by investigating the rank correlation between the true benefit
score ∆(x) with its estimate f̂(x) (or a monotone transformation of an estimate of ∆(x)) on
independent test sets of size 10000. Methods are also evaluated by their area under the receiver
operating characteristic curves (AUC) with respect to the true underlying subgroups. The
results are displayed in Figures 12 and 13, where “ME size: large” indicates the main effects are
large, i.e., c = 4/3, and “ME size: small” indicates c = 2/3. The vertical dashed line separates
methods from the personalized package and other methods. We did not include results for the
outcome weighted learning losses, only the flipped versions of the outcome weighted learning
losses as the flipped versions were uniformly better. Similarly, the tree-based version of the
approach in model4you is not included, since the forest version of the method of model4you
is uniformly better. However, the results are available in the supplementary material. Under
Model 1, the `1-PLS method is correctly specified thus can serve as the gold standard in
terms of performance. However, under Model 2, the main effects are non-linear and the `1-
PLS model is incorrectly specified. Under Model 2, when the main effect size is small, the
interaction effects dominate the main effects in size and outcome modeling approaches such
as the `1-PLS method are more robust to model misspecification than for large main effect
sizes under Model 2.
We can see that augmentation with correct specification (Model 1) in the personalized package
can boost performances although not necessarily so with incorrect specification (Model 2).
Understandably, scenarios with larger main effects are associated with worse performance

Journal of Statistical Software 49

●
●●

●

●●

●●

●

●●

●●●

●

●

●●
●

●

●●●
●

●

●

●

●
●
●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

● ●

●●

●

●

●

●

●
●

●
●

●
●● ●

●●

●
●

●

●

●
●
●

●●●
●
●

●

●
●●

●

●

●

●●

●●
●

●

●
●

●
●
●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●●●

●

●

●
●●

●

●

●
●
●●●
●

●●

●

●

●

●

●
●

●

●●

●

●
●
●●●

●
●

●

●

●

●

●●
●

●

●

●
●
● ●

●

●
●●
●

●

● ●

●
●●
●●

●

●

●
●

●

●

● ●

●
●●●
●

●

●

●
●

●

●
●

●●●●
●

●
●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●●

● ●

●

●
●

●
●

●

●

●
●
●

●●
●

●

● ●

●●●

●

●●
●

●
●
●●
●
● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

n = 200 n = 400
M

E
 size

:large

M
odel 1

M
E

 size
:sm

all

M
odel 1

M
E

 size
:large

M
odel 2

M
E

 size
:sm

all

M
odel 2

0.00

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

−0.5

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

Method

C
or

re
la

tio
n

Outcome−Lasso
BART
model4you−Forest

RWL
Sq−A
Sq−A−Aug

Sq−W
Sq−W−Aug
FOWL−L−W

FOWL−L−W−Aug
FOWL−H−W
FOWL−H−W−Aug

Figure 12: Correlations of the estimated benefit scores with the true benefit scores when the
number of variables is 50. Results displayed are from 100 independent runs of the simulation.

for all methods. Of the two tree-based ensemble approaches, model4you-Forest tends to
perform the best under most scenarios. Under Model 2 and large main effect sizes, the flipped
outcome weighted learning approach with the hinge loss and no loss augmentation works very
well and has the lowest variance. The flipped outcome weighted learning approach with loss
augmentation with the logistic loss is never the best in any setting, however it is close to
the best in all scenarios and is thus a reasonable choice in data scenarios where not much is
known about the problem a priori.

50 Subgroup Identification Using the personalized Package

●●
●

●

● ●
●

●

●

●
●

●●

●●●
●

●

●

●

●
●
●

●

●

●
●●

●●●

●

●

●
●

●
●
●●

●
●

●●

●
● ●

●

●

●●

●

●

●

●

●
●
●

●●●

●●●

● ●

●

●

●
●

●

●

●

●●
●● ●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●
●
●●●●●
●

●
●

●

●

●

●

●

●●

●●● ●

●

●●●

●●●
● ●

●●

●

●
●
●●●

●

●
●●

●
●●●●

●

●

●

●

●
●
●
●●●●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

● ●

●

●

●

●●
●
●

●

●●●

●

●

●●
●

●

●●

●

●

●●

●
●

●

●

●

●
●
●

●●

●

●
●

●
●

●●

n = 200 n = 400
M

E
 size

:large

M
odel 1

M
E

 size
:sm

all

M
odel 1

M
E

 size
:large

M
odel 2

M
E

 size
:sm

all

M
odel 2

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

Method

A
U

C

Outcome−Lasso
BART
model4you−Forest

RWL
Sq−A
Sq−A−Aug

Sq−W
Sq−W−Aug
FOWL−L−W

FOWL−L−W−Aug
FOWL−H−W
FOWL−H−W−Aug

Figure 13: AUCs of the estimated benefit groups with respect to the true subgroups when the
number of variables is 50. Results displayed are from 100 independent runs of the simulation.

5. Analysis of National Supported Work study
In this section we conduct a subgroup identification analysis for a study of the effectiveness
of a training program designed to help under-served and under-employed workers gain the
requisite skills for employment. The data came from the National Supported Work Study
(LaLonde 1986). The outcome of interest is whether or not the earnings of individuals are
greater in 1978 than in 1975 before the training program.

R> data("LaLonde", package = "personalized")

Journal of Statistical Software 51

R> y <- LaLonde$outcome

The treatment assignment is whether each person had employment training or not. The
object data.x is the set of covariates to be used in estimating the benefit score. Since it is a
data.frame, we must use model.matrix to return a matrix object.

R> trt <- LaLonde$treat
R> x.varnames <- c("age", "educ", "black", "hisp", "white", "marr",
+ "nodegr", "log.re75", "u75")
R> data.x <- LaLonde[, x.varnames]
R> x <- model.matrix(~ -1 + ., data = data.x)

The data come from a randomized controlled trial where patients were randomly assigned
to either the supported work program or the control group. Even when the true propensity
function is known, it is often more efficient to estimate it from the data. Hence we use the
average number of those who were in the supported work program as the estimated propensity
score.

R> const.propens <- function(x, trt) {
+ mean.trt <- mean(trt == "Trt")
+ rep(mean.trt, length(trt))
+ }

Here we fit a logistic regression-based estimator using the weighting method with the lasso
penalty. We specify the cv.glmnet() argument type.measure = "auc" to specify the usage
of area under the receiver operating characteristic curve (AUC) as the cross-validation metric
for the determination of the lasso tuning parameter. We use the weighting method here only,
since the results for the A-learning method were very similar.

R> set.seed(1)
R> subgrp_fit_w <- fit.subgroup(x = x, y = y, trt = trt,
+ loss = "logistic_loss_lasso", propensity.func = const.propens,
+ type.measure = "auc", nfolds = 10)
R> summary(subgrp_fit_w)

family: binomial
loss: logistic_loss_lasso
method: weighting
cutpoint: 0
propensity
function: propensity.func

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Outcomes:
Recommended Ctrl Recommended Trt

Received Ctrl 0.7292 (n = 48) 0.5146 (n = 377)

52 Subgroup Identification Using the personalized Package

Received Trt 0.5714 (n = 28) 0.6059 (n = 269)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

0.1577 (n = 76)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

0.0914 (n = 646)

NOTE: The above average outcomes are biased estimates of
the expected outcomes conditional on subgroups.
Use 'validate.subgroup()' to obtain unbiased estimates.

Benefit score quantiles (f(X) for Trt vs Ctrl):
0% 25% 50% 75% 100%

-0.2034 0.1334 0.1334 0.1334 0.3158

Summary of individual treatment effects:
E[Y|T=Trt, X] - E[Y|T=Ctrl, X]

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.10133 0.06658 0.06658 0.06351 0.06658 0.15661

2 out of 10 interactions selected in total by the lasso (cross validation
criterion).

The first estimate is the treatment main effect, which is always selected.
Any other variables selected represent treatment-covariate interactions.

Trt hispYes marrYes
Estimate 0.1334 -0.3367 0.1825

To evaluate the impact of the estimated subgroups, we randomly split the data into a training
portion (80%) and a testing portion (the remaining 20%), fit a benefit score model on the
training portion, and evaluate the treatment effects within the estimated subgroups on the
testing portion with 500 replications. This allows us to determine whether using our benefit
score to make treatment decisions for patients will result in better outcomes.

R> val_subgrp_w <- validate.subgroup(subgrp_fit_w, B = 500,
+ method = "training", train.fraction = 0.80)
R> print(val_subgrp_w, digits = 4, sample.pct = TRUE)

family: binomial

Journal of Statistical Software 53

● ●●●●●●●●●●

●●

●

●

Recommended Ctrl Recommended Trt

Ctrl Trt Ctrl Trt

0.00

0.25

0.50

0.75

1.00

Received

A
ve

ra
ge

 O
ut

co
m

e

Average Test Set Outcome Across Replications Among Subgroups

Figure 14: Average test set outcomes across training and testing replications stratified by
subgroup and treatment status.

loss: logistic_loss_lasso
method: weighting

validation method: training_test_replication
cutpoint: 0
replications: 500

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Test Set Outcomes:
Recommended Ctrl Recommended Trt

Received Ctrl 0.7058 (SE = 0.1453, 5.4883%) 0.521 (SE = 0.0538, 53.4566%)
Received Trt 0.6341 (SE = 0.2012, 3.5476%) 0.6017 (SE = 0.0611, 37.5076%)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

0.0717 (SE = 0.2359, 9.0359%)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

0.0807 (SE = 0.0837, 90.9641%)

Est of
E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
0.0757 (SE = 0.0779)

The results over the 500 training and testing replications are displayed in Figure 14.

R> plot(val_subgrp_w)

The plotCompare() function allows us to inspect the treatment effects within subgroups

54 Subgroup Identification Using the personalized Package

●

●

●

●

●

●

●

●

●

●

●

●

subgrp_fit_w val_subgrp_w val_subgrp_w_boot

Ctrl Trt Ctrl Trt Ctrl Trt

0.55

0.60

0.65

0.70

Recommended

A
ve

ra
ge

 O
ut

co
m

e

Received ● ●Ctrl Trt

Figure 15: Interaction plot showing the difference in the empirical averages of outcomes on
the training data compared with the average test set results across the training and testing
replications.

on the testing datasets across all repetitions of the validation procedure in comparison with
the estimated subgroup treatment effects using the training data. This comparison, with
an additional comparison with the estimates generated from the bootstrap bias correction
approach, is displayed in Figure 15. The estimates of the subgroup treatment effects based on
the training data is likely overly-optimistic. However, the training/testing procedure allows
us to correct a possible overfitting. We can see that among those who are recommended
to receive the employment training, those who actually received the employment training
were more likely to have a higher salary than those who did not receive the training. On
the other hand, among those who were not recommended the training, those who did not
receive the training may have a slightly higher salary. However there seem to be much
more variation. Indeed the estimate of the benefit of employment training is attenuated for
the validation-based estimates compared with the biased empirical estimates. Across the
replications approximately 91% of the samples were recommended to receive employment
training.

R> val_subgrp_w_boot <- validate.subgroup(subgrp_fit_w, B = 500,
+ method = "boot")
R> print(val_subgrp_w_boot, digits = 4, sample.pct = TRUE)

family: binomial
loss: logistic_loss_lasso
method: weighting

validation method: boot_bias_correction
cutpoint: 0

Journal of Statistical Software 55

replications: 500

benefit score: f(x),
Trt recom = Trt*I(f(x)>c)+Ctrl*I(f(x)<=c) where c is 'cutpoint'

Average Bootstrap Bias-Corrected Outcomes:
Recommended Ctrl Recommended Trt

Received Ctrl 0.6995 (SE = 0.0538, 6.5224%) 0.5246 (SE = 0.0298, 52.3299%)
Received Trt 0.6203 (SE = 0.0668, 3.9615%) 0.5922 (SE = 0.0293, 37.1861%)

Treatment effects conditional on subgroups:
Est of E[Y|T=Ctrl,Recom=Ctrl]-E[Y|T=/=Ctrl,Recom=Ctrl]

0.0796 (SE = 0.0805, 10.4839%)
Est of E[Y|T=Trt,Recom=Trt]-E[Y|T=/=Trt,Recom=Trt]

0.0676 (SE = 0.039, 89.5161%)

Est of
E[Y|Trt received = Trt recom] - E[Y|Trt received =/= Trt recom]:
0.0631 (SE = 0.0373)

The bootstrap bias correction approach yields very similar estimates of the subgroup-conditional
treatment effects. However, the bootstrap bias correction approach has smaller standard er-
rors. This aligns with the findings of Foster et al. (2011), who noted that cross-validation
type approaches lead to excessively high standard errors.

R> plotCompare(subgrp_fit_w, val_subgrp_w, val_subgrp_w_boot, type = "int")

6. Discussion
The personalized package provides simple-to-use routines for subgroup identification and
personalized medicine via the general subgroup identification framework of Chen et al. (2017).
The methods available under this framework cover a wide variety of models, outcomes, and
loss functions all under a unified code structure. The underlying code is also designed to
incorporate new models and loss functions that fall under the purview of the framework of
Chen et al. (2017). The personalized package offers multiple methods for validating the impact
of estimated subgroups and various ways of visualizing and inspecting the estimated subgroups
and the resulting subgroup treatment effects. We hope to make subgroup identification and
personalized medicine available to more statisticians and practitioners by making the entire
subgroup identification analysis process as simple, understandable, and general as possible.

Acknowledgments
Research reported in this article was partially funded through a Patient-Centered Outcomes
Research Institute (PCORI) Award (ME-1409-21219). The views in this publication are solely
the responsibility of the authors and do not necessarily represent the views of the PCORI, its
Board of Governors or Methodology Committee.

56 Subgroup Identification Using the personalized Package

References

Athey S, Imbens G (2016). “Recursive Partitioning for Heterogeneous Causal Effects.” Pro-
ceedings of the National Academy of Sciences of the United States of America, 113(27),
7353–7360. doi:10.1073/pnas.1510489113.

Bartlett PL, Jordan MI, McAuliffe JD (2006). “Convexity, Classification, and Risk
Bounds.” Journal of the American Statistical Association, 101(473), 138–156. doi:
10.1198/016214505000000907.

Caliendo M, Kopeinig S (2008). “Some Practical Guidance for the Implementation of Propen-
sity Score Matching.” Journal of Economic Surveys, 22(1), 31–72. doi:10.1111/j.
1467-6419.2007.00527.x.

Chen PY, Tsiatis AA (2001). “Causal Inference on the Difference of the Restricted Mean Life-
time between Two Groups.” Biometrics, 57(4), 1030–1038. doi:10.1111/j.0006-341x.
2001.01030.x.

Chen S, Tian L, Cai T, Yu M (2017). “A General Statistical Framework for Subgroup
Identification and Comparative Treatment Scoring.” Biometrics, 73(4), 1199–1209. doi:
10.1111/biom.12676.

Chipman H, McCulloch R (2016). BayesTree: Bayesian Additive Regression Trees. R package
version 0.3-1.4, URL https://CRAN.R-project.org/package=BayesTree.

Chipman HA, George EI, McCulloch RE, et al. (2010). “BART: Bayesian Additive Regression
Trees.” The Annals of Applied Statistics, 4(1), 266–298. doi:10.1214/09-aoas285.

Ciarleglio A, Petkova E, Ogden RT, Tarpey T (2015). “Treatment Decisions Based on Scalar
and Functional Baseline Covariates.” Biometrics, 71(4), 884–894. doi:10.1111/biom.
12346.

Crump RK, Hotz VJ, Imbens GW, Mitnik OA (2009). “Dealing with Limited Overlap in
Estimation of Average Treatment Effects.” Biometrika, 96(1), 187–199. doi:10.1093/
biomet/asn055.

der Elst WV, Alonso A, Molenberghs G (2020). EffectTreat: Prediction of Therapeutic Suc-
cess. R package version 1.1, URL https://CRAN.R-project.org/package=EffectTreat.

Dusseldorp E, Doove L, Van de Put J, Mechelen IV, Claramunt Gonzalez J (2020). quint:
Qualitative Interaction Trees. R package version 2.1.0, URL https://CRAN.R-project.
org/package=quint.

Egami N, Ratkovic M, Imai K (2019). FindIt: Finding Heterogeneous Treatment Effects.
R package version 1.2.0, URL https://CRAN.R-project.org/package=FindIt.

Foster JC, Taylor JMG, Ruberg SJ (2011). “Subgroup Identification from Randomized Clin-
ical Trial Data.” Statistics in Medicine, 30(24), 2867–2880. doi:10.1002/sim.4322.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

https://doi.org/10.1073/pnas.1510489113
https://doi.org/10.1198/016214505000000907
https://doi.org/10.1198/016214505000000907
https://doi.org/10.1111/j.1467-6419.2007.00527.x
https://doi.org/10.1111/j.1467-6419.2007.00527.x
https://doi.org/10.1111/j.0006-341x.2001.01030.x
https://doi.org/10.1111/j.0006-341x.2001.01030.x
https://doi.org/10.1111/biom.12676
https://doi.org/10.1111/biom.12676
https://CRAN.R-project.org/package=BayesTree
https://doi.org/10.1214/09-aoas285
https://doi.org/10.1111/biom.12346
https://doi.org/10.1111/biom.12346
https://doi.org/10.1093/biomet/asn055
https://doi.org/10.1093/biomet/asn055
https://CRAN.R-project.org/package=EffectTreat
https://CRAN.R-project.org/package=quint
https://CRAN.R-project.org/package=quint
https://CRAN.R-project.org/package=FindIt
https://doi.org/10.1002/sim.4322
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01

Journal of Statistical Software 57

Friedman J, Hastie T, Tibshirani R, Narasimhan B, Tay K, Simon N (2021). glmnet: Lasso
and Elastic-Net Regularized Generalized Linear Models. R package version 4.1-1, URL
https://CRAN.R-project.org/package=glmnet.

Garrido MM, Kelley AS, Paris J, Roza K, Meier DE, Morrison RS, Aldridge MD (2014).
“Methods for Constructing and Assessing Propensity Scores.” Health Services Research,
49(5), 1701–1720. doi:10.1111/1475-6773.12182.

Greenwell B, Boehmke B, Cunningham J, GBM Developers (2020). gbm: Generalized
Boosted Regression Models. R package version 2.1.8, URL https://CRAN.R-project.org/
package=gbm.

Harrell FE, Lee KL, Mark DB (1996). “Multivariable Prognostic Models: Issues in Developing
Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors.”
Statistics in Medicine, 15(4), 361–387. doi:10.1002/(sici)1097-0258(19960229)15:
4<361::aid-sim168>3.0.co;2-4.

Holloway ST, Laber EB, Linn KA, Zhang B, Davidian M, Tsiatis AA (2020). DynTxRegime:
Methods for Estimating Optimal Dynamic Treatment Regimes. R package version 4.9, URL
https://CRAN.R-project.org/package=DynTxRegime.

Hommel G (1988). “A Stagewise Rejective Multiple Test Procedure Based on a Modified
Bonferroni Test.” Biometrika, 75(2), 383–386. doi:10.1093/biomet/75.2.383.

Huang X, Sun Y, Chatterjee S, Trow P (2017). SubgrpID: Patient Subgroup Identification
for Clinical Drug Development. R package version 0.11, URL https://CRAN.R-project.
org/package=SubgrpID.

Huling J (2021). personalized: Estimation and Validation Methods for Subgroup Identification
and Personalized Medicine. R package version 0.2.6, URL https://CRAN.R-project.org/
package=personalized.

Imbens GW, Rubin DB (2015). Causal Inference for Statistics, Social, and Biomedical Sci-
ences: An Introduction. Cambridge University Press. doi:10.1017/cbo9781139025751.

Irwin J (1949). “The Standard Error of an Estimate of Expectation of Life, with Special
Reference to Expectation of Tumourless Life in Experiments with Mice.” The Journal of
Hygiene, 47(2), 188. doi:10.1017/s0022172400014443.

Jeng XJ, Lu W, Peng H, et al. (2018). “High-Dimensional Inference for Personalized
Treatment Decision.” Electronic Journal of Statistics, 12(1), 2074–2089. doi:10.1214/
18-ejs1439.

Karatzoglou A, Smola A, Hornik K (2019). kernlab: Kernel-Based Machine Learning Lab.
R package version 0.9-29, URL https://CRAN.R-project.org/package=kernlab.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. doi:10.18637/jss.v011.i09.

LaLonde RJ (1986). “Evaluating the Econometric Evaluations of Training Programs with
Experimental Data.” The American Economic Review, 76(4), 604–620.

https://CRAN.R-project.org/package=glmnet
https://doi.org/10.1111/1475-6773.12182
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://doi.org/10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4
https://CRAN.R-project.org/package=DynTxRegime
https://doi.org/10.1093/biomet/75.2.383
https://CRAN.R-project.org/package=SubgrpID
https://CRAN.R-project.org/package=SubgrpID
https://CRAN.R-project.org/package=personalized
https://CRAN.R-project.org/package=personalized
https://doi.org/10.1017/cbo9781139025751
https://doi.org/10.1017/s0022172400014443
https://doi.org/10.1214/18-ejs1439
https://doi.org/10.1214/18-ejs1439
https://CRAN.R-project.org/package=kernlab
https://doi.org/10.18637/jss.v011.i09

58 Subgroup Identification Using the personalized Package

Lu W, Zhang HH, Zeng D (2013). “Variable Selection for Optimal Treatment Decision.”
Statistical Methods in Medical Research, 22(5), 493–504. doi:10.1177/0962280211428383.

McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF (2013).
“A Tutorial on Propensity Score Estimation for Multiple Treatments Using Generalized
Boosted Models.” Statistics in Medicine, 32(19), 3388–3414. doi:10.1002/sim.5753.

Qian M, Murphy SA (2011). “Performance Guarantees for Individualized Treatment Rules.”
The Annals of Statistics, 39(2), 1180–1210. doi:10.1214/10-aos864.

Qiu X, Zeng D, Wang Y (2018). “Estimation and Evaluation of Linear Individual-
ized Treatment Rules to Guarantee Performance.” Biometrics, 74(2), 517–528. doi:
10.1111/biom.12773.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Riviere MK (2021). SIDES: Subgroup Identification Based on Differential Effect Search.
R package version 1.16, URL https://CRAN.R-project.org/package=SIDES.

Rosenbaum PR, Rubin DB (1983). “The Central Role of the Propensity Score in Observational
Studies for Causal Effects.” Biometrika, 70(1), 41–55. doi:10.1093/biomet/70.1.41.

Rubin DB (2005). “Causal Inference Using Potential Outcomes: Design, Modeling, De-
cisions.” Journal of the American Statistical Association, 100(469), 322–331. doi:
10.1198/016214504000001880.

Seibold H, Zeileis A, Hothorn T (2016). “Model-Based Recursive Partitioning for Sub-
group Analyses.” The International Journal of Biostatistics, 12(1), 45–63. doi:10.1515/
ijb-2015-0032.

Seibold H, Zeileis A, Hothorn T (2017). “Individual Treatment Effect Prediction for Amy-
otrophic Lateral Sclerosis Patients.” Statistical Methods in Medical Research, 27(10), 3104–
3125. doi:10.1177/0962280217693034.

Seibold H, Zeileis A, Hothorn T (2021). model4you: Stratified and Personalised Models
Based on Model-Based Trees and Forests. R package version 0.9-7, URL https://CRAN.
R-project.org/package=model4you.

Shi C, Fan A, Song R, Lu W, et al. (2018). “High-Dimensional A-Learning for Optimal
Dynamic Treatment Regimes.” The Annals of Statistics, 46(3), 925–957. doi:10.1214/
17-aos1570.

Shi C, Song R, Lu W (2016). “Robust Learning for Optimal Treatment Decision with
NP-Dimensionality.” Electronic Journal of Statistics, 10(2), 2894–2921. doi:10.1214/
16-ejs1178.

Tewari A, Bartlett PL (2007). “On the Consistency of Multiclass Classification Methods.”
Journal of Machine Learning Research, 8(May), 1007–1025.

Therneau TM (2021). survival: Survival Analysis. R package version 3.2-11, URL https:
//CRAN.R-project.org/package=survival.

https://doi.org/10.1177/0962280211428383
https://doi.org/10.1002/sim.5753
https://doi.org/10.1214/10-aos864
https://doi.org/10.1111/biom.12773
https://doi.org/10.1111/biom.12773
https://www.R-project.org/
https://CRAN.R-project.org/package=SIDES
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1515/ijb-2015-0032
https://doi.org/10.1515/ijb-2015-0032
https://doi.org/10.1177/0962280217693034
https://CRAN.R-project.org/package=model4you
https://CRAN.R-project.org/package=model4you
https://doi.org/10.1214/17-aos1570
https://doi.org/10.1214/17-aos1570
https://doi.org/10.1214/16-ejs1178
https://doi.org/10.1214/16-ejs1178
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

Journal of Statistical Software 59

Tian L, Alizadeh AA, Gentles AJ, Tibshirani R (2014). “A Simple Method for Estimating
Interactions between a Treatment and a Large Number of Covariates.” Journal of the
American Statistical Association, 109(508), 1517–1532. doi:10.1080/01621459.2014.
951443.

Van Klaveren D, Steyerberg EW, Serruys PW, Kent DM (2018). “The Proposed
‘Concordance-Statistic for Benefit’ Provided a Useful Metric When Modeling Heteroge-
neous Treatment Effects.” Journal of Clinical Epidemiology, 94, 59–68. doi:10.1016/j.
jclinepi.2017.10.021.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. 2nd edition. Springer-
Verlag, New York. doi:10.1007/978-3-319-24277-4.

Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani
H, Dunnington D (2021). ggplot2: Create Elegant Data Visualisations Using the Gram-
mar of Graphics. R package version 3.3.3, URL https://CRAN.R-project.org/package=
ggplot2.

Wood S (2019). mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness
Estimation. R package version 1.8-31, URL https://CRAN.R-project.org/package=mgcv.

Wood SN (2017). Generalized Additive Models: An Introduction with R. 2nd edition. Chapman
& Hall/CRC.

Xu Y, Yu M, Zhao YQ, Li Q, Wang S, Shao J (2015). “Regularized Outcome Weighted
Subgroup Identification for Differential Treatment Effects.” Biometrics, 71(3), 645–653.
doi:10.1111/biom.12322.

Zhang C, Liu Y (2014). “Multicategory Angle-Based Large-Margin Classification.”
Biometrika, 101(3), 625–640. doi:10.1093/biomet/asu017.

Zhao H, Tsiatis AA (1997). “A Consistent Estimator for the Distribution of Quality Adjusted
Survival Time.” Biometrika, 84(2), 339–348. doi:10.1093/biomet/84.2.339.

Zhao H, Tsiatis AA (1999). “Efficient Estimation of the Distribution of Quality-Adjusted
Survival Time.” Biometrics, 55(4), 1101–1107. doi:10.1111/j.0006-341x.1999.01101.x.

Zhao Q, Small DS, Ertefaie A (2017). “Selective Inference for Effect Modification via the
Lasso.” arXiv:1705.08020 [math.ST], URL http://arxiv.org/abs/1705.08020.

Zhao Y, Zeng D, Rush AJ, Kosorok MR (2012). “Estimating Individualized Treatment
Rules Using Outcome Weighted Learning.” Journal of the American Statistical Associa-
tion, 107(499), 1106–1118. doi:10.1080/01621459.2012.695674.

Zhou X, Mayer-Hamblett N, Khan U, Kosorok MR (2017). “Residual Weighted Learning for
Estimating Individualized Treatment Rules.” Journal of the American Statistical Associa-
tion, 112(517), 169–187. doi:10.1080/01621459.2015.1093947.

Zou H, Zhu J, Hastie T (2008). “New Multicategory Boosting Algorithms Based on Mul-
ticategory Fisher-Consistent Losses.” The Annals of Applied Statistics, 2(4), 1290–1306.
doi:10.1214/08-aoas198.

https://doi.org/10.1080/01621459.2014.951443
https://doi.org/10.1080/01621459.2014.951443
https://doi.org/10.1016/j.jclinepi.2017.10.021
https://doi.org/10.1016/j.jclinepi.2017.10.021
https://doi.org/10.1007/978-3-319-24277-4
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=mgcv
https://doi.org/10.1111/biom.12322
https://doi.org/10.1093/biomet/asu017
https://doi.org/10.1093/biomet/84.2.339
https://doi.org/10.1111/j.0006-341x.1999.01101.x
http://arxiv.org/abs/1705.08020
https://doi.org/10.1080/01621459.2012.695674
https://doi.org/10.1080/01621459.2015.1093947
https://doi.org/10.1214/08-aoas198

60 Subgroup Identification Using the personalized Package

Affiliation:
Jared D. Huling
University of Minnesota
420 Delaware St. SE
Minneapolis, Minnesota 55455, United States of America
E-mail: huling@umn.edu
URL: http://jaredhuling.org/

Menggang Yu
University of Wisconsin-Madison
600 Highland Ave.
Madison, WI 53792, United States of America
E-mail: meyu@biostat.wisc.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
May 2021, Volume 98, Issue 5 Submitted: 2018-04-14
doi:10.18637/jss.v098.i05 Accepted: 2020-12-28

mailto:huling@umn.edu
http://jaredhuling.org/
mailto:meyu@biostat.wisc.edu
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v098.i05

	Introduction
	Subgroup identification framework
	Modeling setup and notation
	Individualized treatment effects, benefit scores, and individualized treatment rules
	Assumptions for causal interpretations

	Benefit score estimators and their properties
	Subgroup identification and benefit score estimation via loss functions
	Weighting method
	A-learning method
	Benefit score properties and estimands
	Loss function choices and relationship with other methods
	Modeling choices for the benefit score

	Loss function example and implementation details
	Extension to multi-category treatments
	Efficiency improvement via loss function augmentation
	Validating subgroups via subgroup-conditional treatment effects
	Bootstrap bias correction
	Repeated training/testing splitting

	The personalized package
	Workflow of subgroup identification analysis
	The check.overlap() function
	Observational studies
	Randomized controlled trials

	The fit.subgroup() function
	Explanation of major function arguments
	Continuous outcomes
	Binary outcomes
	Count outcomes
	Time-to-event outcomes

	The summarize.subgroups() function for summarizing subgroups
	The validate.subgroup() function for evaluating identified subgroups
	Repeated training/test splitting
	Bootstrap bias correction
	Evaluating performance of subgroup-specific treatment effect estimation

	The plot() method and the plotCompare() function
	Efficiency augmentation
	Example with multi-category treatments

	Numerical comparisons
	Analysis of National Supported Work study
	Discussion

